Consensus Problems in Multi-Robot Systems

Examples

1. Rendezvous: robots must know the rendezvous point
2. Information consensus: robots must have a consistent view of information state
 Ex: Center of shape of a formation, rendezvous time, length of perimeter being monitored, direction of motion, target location of payload
3. Formation control, 3b. flocking
4. Attitude alignment (also called agreement protocols)

- Consensus algorithms are distributed: only neighbor-to-neighbor interactions
- Robots update the value of the state of interest based on their neighbors' values
- Goal: Design an update law so that the states of all robots converge to a common value.

- Analysis framework:
 - Based on tools from matrix theory, algebraic graph theory, and control theory.
 - Spectral and structural properties of networks (eigenvalues) speed of information diffusion in consensus algorithms
(Communication)
- Comm. network allows continuous comm. / Comm. bandwidth is large ⇒ Info state update of each vehicle modeled as ODE
- Comm. data arrive in discrete packets ⇒ modeled as difference equation
- Team's comm. topology rep. by a directed graph (digraph).
 - Comm. dropouts may occur, vehicle motion away from other ⇒ time-varying topology
- Most common continuous consensus alg:

\[\dot{x}_i(t) = -\sum_{j=1}^{n} a_{ij}(t) (x_i(t) - x_j(t)) \quad i=1, \ldots, n \]

\(n \) = # of vehicles (robots)
\(x_i(t) \) = info state of \(i \)th vehicle (robot) at time \(t \)
\(a_{ij}(t) \) = \((i,j) \) entry of adjacency matrix of the comm. graph at time \(t \)

Vertices: \(V = \{1, \ldots, n\} \) (also called nodes)
Edges: \(E = \{(i,j) \mid \text{robot } j \text{ can obtain info from robot } i\} \)
- Directed \(G \) = ordered pair if graph is directed
- Undirected \(G \) = \(E = \{(i,j) \mid \text{robots } i \text{ and } j \text{ can obtain square info from each other}\} \)
- The digraph of a matrix \(M \) is the digraph with vertex set \(V = \{1, \ldots, n\} \) such that \(\exists \) an edge from \(j \) to \(i \) iff \(M_{ij} \neq 0 \).
Adjacency Matrix: \(A \in \mathbb{R}^{n \times n} \)

of a digraph

\(a_{ij} \) is a positive weight if \((j, i) \in E\)
\(a_{ij} = 0 \) if \((j, i) \notin E\)

If the weights aren't relevant, then \(a_{ij} = 1 \) for all \((j, i) \in E\).

Self-edges \((a_{ii} > 0)\) are allowed.

\(A \) is symmetric for undirected graphs.

Laplacian Matrix: \(L \in \mathbb{R}^{n \times n} \)

of a digraph

\[l_{ii} = \sum_{j \neq i} a_{ij} \]
\[l_{ij} = -a_{ij}, \; i \neq j \]

If \((j, i) \in E\), then \(l_{ij} = -a_{ij} = 0 \)

\(L \) is symmetric for an undirected graph.

Properties:

1. \(l_{ij} \leq 0, \; i \neq j \)
2. \(\sum_{j=1}^{n} l_{ij} = 0, \; i = 1, 2, \ldots, n \) (rows sum to 0)

Undirected \(G \): \(L \) is positive semidefinite; all nonzero \(\lambda_i \)'s of \(L \) are positive.

Directed \(G \): all nonzero \(\lambda_i \)'s of \(L \) have positive real part.

Undirected Graph:

\[\lambda_i(L) = \text{ith smallest} \; \lambda_i \; \text{of} \; L, \; \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \]

Quantifies the algebraic connectivity and the convergence rate of consensus algorithms, and is positive if \(G \) is connected (i.e., an undirected path exists between every pair of distinct nodes).
From the model for $x_i(t)$, $x_i(t) \to$ inf of state of the neighbors of i.

- Ensures that all $x_i(t) \to \bar{x}$ (common value)
 But doesn't dictate a specific value.

- In general, the common value is a convex combination of the $x_i(0)$.

Can write (1) as: $\dot{x}(t) = -L(t)x(t)$

Consensus is achieved if $\forall x_i(0)$ and all $i, j = 1, ..., n$,
$|x_i(t) - x_j(t)| \to 0$ as $t \to \infty$.

Convergence Analysis of Consensus Alg w/ Time-Invariant Communication Topologies

λ is constant in this case. λ = eigenvalue

- Recall: 0 is an λ of $-L$, all nonzero λ's of $-L$
 have neg. real parts.

 $L1 = 0 \Rightarrow \text{span } \{1\} \subseteq \text{kernel of } L$

 \Rightarrow If 0 is a simple λ of L, then $x(t) \to \bar{x}1$.

 $\Rightarrow \quad |x_i(t) - x_j(t)| \to 0$ as $t \to \infty \quad \forall \quad i, j = 1, ..., n$

- If the digraph of L is strongly connected, then L
 0 is a simple λ of L.

 But not necessarily vice versa. (This is not a necessary condition)
0 is a simple eigenvalue of \preceq iff the associated digraph of \preceq contains a rooted directed spanning tree (rdst).

Iff the graph has at least one vertex with a directed path to all the other vertices.

Undirected graph: This condition is equivalent to being connected.

This condition is necessary and sufficient for model \dagger to achieve consensus.
Equilibrium State of Consensus Algorithm

Assume a_{ij} constant, network topology is fixed.

If the digraph contains a rooted directed spanning tree, then
\[
\lim_{t \to \infty} e^{-\frac{1}{\tau}t} \to \pm V^T, \quad V \in \mathbb{R}^{n \times 1}, \quad \sum_{j=1}^{n} v_j = 1, \quad v_j \geq 0,
\]

\[
\Rightarrow x_i(t) \to \sum_{j=1}^{n} v_j x_j(0) \text{ as } t \to \infty.
\]

If some $v_j = 0$, then the info states x_j don't contribute to the equilibrium.

Define $M = \max_i L_{ii} \geq \frac{1}{\tau}$. M is nonnegative.

Diagonal entries of L

V is a nonnegative left eigenvector of M corresponding to

$\lambda = \max_i L_{ii}$ of M.

Gershgorin's disk theorem \Rightarrow spectral radius

$\rho(M) = \max_i L_{ii}$.

$\rho(M) = \max \{ |\lambda_1|, \ldots, |\lambda_n| \}$.

Digraph G is strongly connected \Rightarrow Digraph of M is, too

[Digraph of M is the digraph w/ node set $V=\{1, \ldots, n\}$

such that \exists an edge from j to i iff $M_{ij} \neq 0$.]

M is irreducible (not similar via permutation to a block upper triangular matrix)

Perron-Frobenius Theorem:

M is irreducible $\Rightarrow V$ is positive \Rightarrow all initial info states contribute to the the equilibrium x_e.
If $v_i = \gamma^n + i$, then $x_e = \left(\sum_{i=1}^{n} x_i(0) \right) 1$.

average consensus condition

- If digraph is strongly connected and balanced
 ($\sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ji}$ for all i, or total weight of edges leaving i = total weight of edges entering i)
 \[1^T L = 0 \] (1 is a left eigenvector of L assoc. with the simple 0 eigenvalue)
 \Rightarrow average consensus is achieved iff G is strongly conn. and balanced.

- If G is undirected, then ave. consensus is achieved iff G is connected.
Convergence Analysis for Dynamic Communication Topologies

- Set of a robot's neighbors may change over time
 - Communication links may be unreliable
 - Neighbors visible to a robot may change as robots move toward/away from each other

- What are the conditions under which consensus algorithms converge under random switching of the network topology?

Consensus alg: \(\dot{x}(t) = -L(t)x(t) \) linear model

Solution: \(x(t) = \Phi(t,0)x(0) \)

- Can show that \(\Phi(t,0) \) is a row-stochastic matrix with positive diagonal entries for all \(t > 0 \).
 - A square nonnegative matrix \(M \) is row-stochastic if all of its row sums equal 1.
 - Also, \(M1 = 1 \) \(\Rightarrow \) eigenvalue is 1

- Consensus is achieved if \(\lim_{t \to \infty} \Phi(t,0) = \frac{1}{M}1u^T \) for some column vector \(u \).

Assume that network topology is piecewise constant over finite lengths of time (dwell times), which are bounded below by a positive constant.

Switching times: \(t_1, t_2, \ldots \)

Dwell times: \(T_j = t_{j+1} - t_j \)

- Consensus achieved if \(\lim_{j \to \infty} e^{-\frac{1}{2}T_j}e^{-\frac{1}{2}(t_{j-1})T_{j-1}} \ldots e^{-\frac{1}{2}(t_0)T_0} = \frac{1}{M}1u^T \)
Convergence analysis involves the study of as products of stochastic matrices, specifically ones that are indecomposable and aperiodic (SIA matrices), for which:
\[\lim_{k \to \infty} M_k^k = \mathbb{I} v^T \text{ for some column vector } v. \]

Let \(M = \{M_1, M_2, \ldots, M_k\} \) be a finite set of SIA matrices for which every finite product \(M_{ij} M_{ij-1} \ldots M_{i1} \) is SIA.

\[\Rightarrow \text{ For each } \infty \text{ sequence } M_{i1}, M_{i2}, \ldots \Rightarrow \text{ a column vector } \]
\[v \text{ such that } \lim_{j \to \infty} M_{ij} M_{ij-1} \ldots M_{i1} = \mathbb{I} v^T. \]

of potential network topologies is finite

\[\Rightarrow \text{ Set of matrices } \{M_j \equiv e^{-L(t_j)(t_{j+1} - t_j)}\}_{j=1}^{\infty} \]
is finite if the \(T_j = t_{j+1} - t_j \) are drawn from a finite set.

These matrices are SIA \(\Rightarrow \) can show consensus for a particular set of robot nearest-neighbor rules and conditions on \(\Delta t \) if the union of undirected graphs is connected. (see * on next page.)

[union of graphs is a graph whose node and edge sets are the unions of the node and edge sets of all graphs]

More realistic assumption about \(T_j \): they are drawn from an \(\infty \) but bounded set.

Let \(M = \{M_1, M_2, \ldots\} \) be an infinite set of nxn SIA matrices and let \(N_\tau \) be the # of different types of these matrices (have 0 entries + positive entries in the same locations).

Define \(f(P) = 1 - \min_{i_1, i_2} \Sigma_j \min (P_{ij}, P_{i_2j}) \)
\[
\lim_{j \to \infty} M_{ij} M_{ij-1} \cdots M_{i1} = \pm \nu^T \quad \text{if} \quad \exists \, d \in [0,1)
\]

such that, for every \(W = M_{k1} M_{k2} \cdots M_{kn+1} \),

\[\lambda(W) \leq d.\]

[Satisfied if \(t \) an \(\infty \)-sequence of contiguous, uniformly bounded time intervals \(\Delta t \) such that across each interval, the union of the network graphs has a rooted directed spanning tree.]

[Satisfied if \(t \) an \(\infty \)-sequence of contiguous, uniformly bounded \(\Delta t \), having one of a finite number of different lengths, such that across each \(\Delta t \), the union of undirected network graphs is connected.]

Communication Delays and Asynchronous Consensus

- Consider time delays \(\delta_{ij} \) for information communicated from robot \(j \) to reach robot \(i \).

Consensus algorithm becomes:

\[
\dot{x}_i = \sum_{j=1}^{n} a_{ij}(t) [x_j(t - \delta_{ij}) - x_i(t - \delta_{ij})].
\]

If \(\delta_{ij} = \sigma \) and graph \(G \) is fixed, undirected, and connected, then average consensus is achieved iff

\[
0 \leq \sigma < \frac{\pi}{2\lambda_{\text{max}}(L)}
\]
Case where σ_{ij} only affects info state being transmitted:

$$\dot{x}_i = \sum_{j=1}^{n} a_{ij}(t) \left[x_j(t-\sigma_{ij}) - x_i(t) \right]$$

If $\sigma_{ij} = 0$ and G is directed and switching, the consensus result for a switching topology is valid for an arbitrary delay σ.

In an asynchronous consensus framework, robots exchange info at different times t and update their states with possibly outdated info from neighbors.

Must consider heterogeneous robots, time-varying σ_{ij}, and communication packet dropout.

Algebraic Connectivity and Spectral Properties of Graphs

- Quantifies the convergence rate of consensus algorithms.

Gershgorin theorem ⇒ all λ_i's of L lie in a closed disk in the complex plane centered at $\Delta + 0j$ with radius $\Delta = \max_i d_i$, where d_i is the degree of node i (the # of edges incident to node i)

[Digraphs have indegrees and outdegrees.]

- Undirected graphs: L is symmetric & has real λ_i's ⇒

$$0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq 2\Delta$$

If G is connected, then $\lambda_2 > 0$. λ_2 = algebraic connectivity of G.
- Directed graphs that are balanced and strongly connected.

Symmetric part of \mathbb{L}: $\mathbb{L}_S = \frac{1}{2} (\mathbb{L} + \mathbb{L}^T)$

A continuous-time consensus is globally exponentially reached with a speed $\geq \lambda_2(\mathbb{L}_S)$.

Synchronization of Coupled Oscillators

- Applications in physics, biology, neuroscience, math.
 - Synchronous flashing of fireflies
 - Chemical/biological oscillators
 - Networks of pacemaker cells in the heart

$\Theta_i =$ phase of ith oscillator, $i \in \{1, \ldots, N\}$

$\omega_i =$ natural frequency of ith oscillator

Nonlinear extension of consensus algorithm:

$$\dot{\Theta}_i = \frac{K}{N} \sum_{j \in N_i} \sin(\Theta_j - \Theta_i) + \omega_i$$

$K =$ coupling strength

- If K is sufficiently large, then for a network with all-to-all edges, synchronization to the aligned state is globally achieved for all initial states.

- Can write this model as: (For the case where all j are neighbors of each i)$$\dot{\Theta}_i = K r \sin(\Psi - \Theta_i) + \omega_i$$

where $r = \left| \frac{1}{N} \sum_{j=1}^{N} e^{i\Theta_j} \right|$

- r measures phase coherence
- Ψ is the average phase

[Diagram of swarm of particles on a unit circle in the complex plane]