Steady-states of receptor–ligand dynamics: A theoretical framework

Article in *Journal of Theoretical Biology* · May 2004

CITATIONS
28

READS
35

3 authors, including:

Madalena Chaves
National Institute for Research in Compute…
45 PUBLICATIONS 755 CITATIONS

Eduardo D Sontag
Rutgers, The State University of New Jersey
746 PUBLICATIONS 29,604 CITATIONS

All in-text references *underlined in blue* are linked to publications on ResearchGate, letting you access and read them immediately.

Available from: Eduardo D Sontag
Retrieved on: 08 September 2016
Steady-states of receptor–ligand dynamics: a theoretical framework

Madalena Chavesa,*,1, Eduardo D. Sontaga,2, Robert J. Dinersteinb

aDepartment of Mathematics, Rutgers University, Piscataway, NJ, USA
bLead Generation Informatics, Aventis, Bridgewater, NJ, USA

Received 26 June 2003; accepted 17 November 2003

Abstract

This paper studies aspects of the dynamics of a conventional mechanism of ligand–receptor interactions, with a focus on the stability and location of steady-states. A theoretical framework is developed, which is based upon the rich and deep formalism of irreducible biochemical networks. When represented in this manner, the mass action kinetics of biochemical processes can be clearly seen in terms of their component biochemical interactions, their kinetic rate constants, and the stoichiometry for the system. A minimal parametrization is provided for models for two- or multi-state receptor interaction with ligand, and an “affinity quotient” is introduced, which allows an elegant classification of ligands into agonists, neutral agonists, and inverse agonists.

Keywords: Multi-state receptor models; Agonist classes; Biochemical networks

1. Introduction

Models of receptor–ligand interactions play an important role in understanding the biochemical mechanisms that initiate cellular signaling. They also serve the practical purpose of guiding the identification and optimization of new therapies that interact at receptors. The earliest models were based on the specific receptor–ligand interaction that results in Langmuir saturation (van Rossum, 1977). Subsequently, it was realized that receptor–ligand interaction can have at least three outcomes (Kenakin, 2002; Leff, 1995). First, a ligand can function as an agonist, resulting in a distinct biological consequence, such as contraction, secretion, or chemotaxis. Second, a ligand can bind to a receptor with no effect, i.e. as a neutral agonist, but this neutral activity can be used to block or antagonize an agonist. And third, if the receptor produces an intrinsic or constitutive amount of activity, a ligand can suppress this constitutive response by functioning as an inverse agonist. Down-stream biochemical feedback loops and other processes that modulate or limit the initial receptor–ligand interaction can further complicate the ligand–receptor interaction; these secondary events will not be discussed here.

Many models have been developed to explain ligand–receptor interactions (for reviews, see, inter alia, Woolf et al., 2001; Lauffenburger and Linderman, 1993). For these models, the biochemical reactions are delineated and their interactions diagrammed. A system of differential equations is then formulated to represent the time-dependent events that result from mass action kinetics. Experimental data for receptor–ligand interactions are obtained at relatively long times that are taken to be at steady-state, and for this reason, the representative differential equations are converted to algebraic equations for the steady-state condition. The final results are expressed in terms of equilibrium constants derived from kinetic constants. Even with a modest increase in the number of biochemical interactions, these models produce complex expressions, that can require the use of computer-based equation solvers (Bywater et al., 2002). The formulas obtained in this manner are complicated and virtually impossible to interpret in biological terms, which suggests the appeal of a more theoretical and conceptual approach. In this paper, we introduce such an approach.

Our approach is based upon the “complex balancing” ideas described by Horn and Jackson (1972) and
Feinberg (1977, 1995). It allows a systematic and concise description of the mass action kinetics of biochemical processes, expressed in terms of their component biochemical interactions, their kinetic rate constants, and the stoichiometry for the system, and it greatly simplifies the study of their dynamical behavior, steady-states, and stability properties. Among other benefits of this approach, we will be able to:

1. guarantee existence and uniqueness (subject to stoichiometry constraints) of positive steady-states,
2. guarantee global (subject to stoichiometry constraints) stability of these unique steady-states,
3. provide an explicit and simple parametric analysis of the dependence of the steady-state values on the kinetic constants and initial concentrations, and
4. introduce an affinity quotient which allows the classification of ligands into agonists, neutral agonists, and inverse agonists.

Using this mathematical formalism, the response curves of a receptor model that consists of two receptor conformations and corresponding receptor–ligand complexes will be studied in detail. For example, the two-state model has been used to describe the responses of the chemotactic cAMP receptor of the slime mold amoeba Dictostelium (Devreotes and Sherrington, 1985). We show that this model can exhibit the dose–response curves corresponding to inverse agonists, as well as those of positive and neutral agonists, depending on the relative values of the kinetic constants. We will derive equations that characterize agonism classes in terms of the kinetic constants. These results will be extended to the multi-state receptor case, and will show that allowing more than two receptor conformations introduces no qualitatively new behavior into the system, in agreement with previous observations (Leff, 1995; Leff et al., 1997; Woolf, et al., 2001).

As already mentioned, our approach is based upon the rich and deep theory developed by Horn, Jackson, and Feinberg for irreducible biochemical networks, and more specifically, in the language of Feinberg (1995), for zero-deficiency and weakly reversible chemical networks (we will call such networks HJF networks, so as to reflect the contributions of the above authors). For convenience, we employ the formalism and notations introduced in Sontag (2001), and also appeal to theoretical results on global convergence shown in that reference and in Chaves (2003).

2. Theoretical background

Our approach to mathematical models of receptor–ligand interactions begins by formulating the system graphically in terms of nodes consisting of elemental events or “complexes,” and of edges comprised of reaction rates. In order to illustrate the formalism, let us consider first the two-state receptor model which is depicted in Fig. 1. Here, \(R_1 = [R_1] \) represents the concentration of free receptors in an inactive state, \(R_2 = [R_2] \) represents the concentration of free receptors in an active state, \(L = [L] \) represents the concentration of free ligand, and \(C_1 = [R_1L] \), \(C_2 = [R_2L] \) represent the two corresponding receptor–ligand complexes. From this diagram, and based on the principles of mass action kinetics, one derives in a routine fashion the following set of differential equations:

\[
\begin{align*}
\frac{dR_1}{dt} &= -(k_{21} + k_{31})R_1L + k_{12}C_1 + k_{13}R_2L, \\
\frac{dR_2}{dt} &= -(k_{13} + k_{43})R_2L + k_{31}R_1L + k_{34}C_2, \\
\frac{dL}{dt} &= -k_{21}R_1L - k_{43}R_2L + k_{12}C_1 + k_{34}C_2, \\
\frac{dC_1}{dt} &= -(k_{12} + k_{42})C_1 + k_{21}R_1L + k_{24}C_2, \\
\frac{dC_2}{dt} &= -(k_{34} + k_{24})C_2 + k_{42}C_1 + k_{43}R_2L.
\end{align*}
\]

We now discuss the general formulation, for an arbitrary biochemical network which consists of reactions among \(n \) individual species \(x_1, x_2, \ldots, x_n \). In the example in Fig. 1, there are five species: \(R_1, R_2, L, C_1, C_2 \). In such a general network, there will be a number \(m \) of nodes, representing each group of reactants, or group of products, in the network. In the example in Fig. 1, there are four distinct nodes, corresponding to each of \(R_1 + L, C_1, R_2 + L, C_2 \). We will always assume that the number of nodes is no larger than the number of species: \(m \leq n \). (This is a key condition needed for our theoretical results to be valid.)

We represent each node \(i, i = 1, \ldots, n \) by a vector \(b_i \). Each \(b_i \) contains the information on which individual species participate as reactants at that node. Thus each \(b_i \) is in fact a vector in \(\mathbb{R}^n \), whose coordinates are

![Fig. 1. A two-state receptor–ligand network.](image-url)
\[b_i = (b_{i1}, b_{i2}, \ldots, b_{in})', \text{ with } b_{ij} \neq 0 \text{ if species } x_j \text{ is part of the node } b_i. \text{ The } m \text{ vectors } b_i \text{ form the column vectors of a matrix } B \in \mathbb{R}^{m \times n}: \]
\[B := (b_1, b_2, \ldots, b_m). \]

As an illustration, in the particular case of the network shown in Fig. 1, the nodes are characterized as follows:

\[\begin{align*}
K &:= K^{in} - K^{out} := \\
R_1 + L &\rightarrow b_1, \ C_1 \rightarrow b_2, \ R_2 + L &\rightarrow b_3, \ C_2 &\rightarrow b_4,
\end{align*} \]

where
\[b_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad b_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \]

and
\[B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} . \]

For the next step in developing the model, links between nodes are represented by a matrix containing all of the kinetic constants. Specifically, if the reactants in node \(b_j \) are products resulting from the reactants in node \(b_i \), then there is an arrow pointing from \(b_j \) to \(b_i \), with a corresponding kinetic constant \(k_{ij} \). A first matrix, representing reactions ending at a node is \(K^{in} = (k_{ij}) \in \mathbb{R}^{m \times m} \), where \(k_{ij} \neq 0 \) if there is an arrow from \(b_i \) to \(b_j \). A second matrix can be constructed, which contains in its \(i \)-th diagonal entry the information on all the reactions that start from the node \(b_i \), that is, \(K^{out} = \text{Diag}(\sum k_{j1}, \sum k_{j2}, \ldots, \sum k_{jm}) \).

Thus, for the network in Fig. 1, we write
\[K^{in} := \begin{pmatrix} 0 & k_{12} & k_{13} & 0 \\ k_{21} & 0 & 0 & k_{24} \\ k_{31} & 0 & 0 & k_{34} \\ 0 & k_{42} & k_{43} & 0 \end{pmatrix} \]

and
\[K^{out} := \begin{pmatrix} k_{21} + k_{31} & 0 & 0 & 0 \\ 0 & k_{12} + k_{42} & 0 & 0 \\ 0 & 0 & k_{13} + k_{43} & 0 \\ 0 & 0 & 0 & k_{24} + k_{34} \end{pmatrix} . \]

The net contribution of both matrices is
\[\begin{pmatrix} -(k_{21} + k_{31}) & k_{12} & k_{13} & 0 \\ k_{21} & -(k_{12} + k_{42}) & 0 & k_{24} \\ k_{31} & 0 & -(k_{13} + k_{43}) & k_{34} \\ 0 & k_{42} & k_{43} & -(k_{24} + k_{34}) \end{pmatrix} . \]

In the last step, a vector-valued function is constructed whose components consist of the mass action elemental events defined at each node as
\[\theta_B(x) = \begin{pmatrix} x^b_{11} x^b_{21} \ldots x^b_{mn} \\ x^b_{12} x^b_{22} \ldots x^b_{mn} \\ \vdots \\ x^b_{1m} x^b_{2m} \ldots x^b_{nm} \end{pmatrix} . \]

For the model in Fig. 1, with \(x = (R_1, R_2, L, C_1, C_2)' \), this vector is
\[\theta_B(x) := \begin{pmatrix} R_1 L \\ C_1 \\ R_2 L \\ C_2 \end{pmatrix} . \]

These elemental events, when multiplied by the suitable kinetic constants, provide the reaction rates: for instance, the reaction “\(R_1 + L \rightarrow C_1 \)” has a reaction rate given by \(k_{23}R_1L \), as the mass action kinetics rate is usually expressed.

Finally, the time-dependent evolution of the concentration of the \(n \) species of this receptor–ligand model can then be written compactly as the product of \(B \), \(K \) and \(\theta_B \):
\[\frac{dx}{dt} = BK \theta_B(x) \quad (2) \]

or equivalently, for each species \(\ell = 1, \ldots, n, \)
\[\frac{dx_\ell}{dt} = \sum_{ij=1}^{m} k_{ij} x^b_{1j} x^b_{2j} \ldots x^b_{nj} (b_{ji} - b_{ij}) \quad (3) \]

Expression (2) is equivalent to Eq. (1), but has the advantage that the information on the system is “condensed” into three objects: (1) the matrix \(B \), which defines the nodes involved in the reactions; (2) the matrix \(K \), which specifies the kinetic constants; and (3) the vector \(\theta_B(x) \), which specifies the elemental events.
Throughout this paper the following assumptions are required:

(A1) the matrix B has full column rank, i.e. the vectors b_1,\ldots,b_m are linearly independent, and none of its rows vanish;

(A2) the matrix K^{in} is irreducible, i.e. $(K^{in} + I)^n$ has all entries positive, where I is the identity matrix.

When they are satisfied, we shall say that the network is an HJF network. The first condition translates into a "zero-deficiency" constraint, in the language of Feinberg (1995). The second condition amounts to the requirement ("weakly reversibility" in the language of Feinberg (1995)) that there is a chemical pathway connecting each pair of nodes. For instance, in the example in Fig. 1, there exists a chemical pathway leading from the node "$R_1 + L"$ to the node "$C_2"$, by passing through "$C_1". Similarly, it is possible to travel from "$C_2" back to "$R_1 + L" by another chemical pathway. (In the example, the pathways happen to be all reversible but, in general, complete reversibility is not needed.) We need these assumptions in order to conclude the existence and uniqueness of steady-states of (2) (Feinberg, 1995; Sontag, 2001). (Actually, a somewhat weaker condition, block-irreducibility, which asks that each connected component of the reaction graph should be weakly reversible, would be sufficient.)

2.1. Conservation laws and positive classes

The conservation laws for the networks described by Eq. (2) can be found by constructing a subspace from the differences of the column vectors of B. These differences, called stoichiometric vectors (Horn and Jackson, 1972), form the stoichiometric space, given by

$$\mathcal{D} := \text{span}\{b_i - b_j : i,j = 1,\ldots,m\}$$

$$= \text{span}\{b_i - b_j : j = 2,\ldots,m\}.$$

The significance of \mathcal{D} is that the concentrations of receptor, ligand, and receptor–ligand complexes are represented as trajectories constrained to evolve in a subspace which is a parallel translate of \mathcal{D}. That is, if we compute all the vectors which are perpendicular to that subspace \mathcal{D}^\perp:

$$\mathcal{D}^\perp := \{g \in \mathbb{R}^n : g \text{ is perpendicular to all } (b_i - b_j)\},$$

it is not difficult to see (from Eq. (3)) that the inner product

$$g \cdot \frac{dx}{dt} = 0.$$

Integrating, it follows that the linear combination "$g \cdot x" is constant throughout time:

$$g \cdot x \equiv g \cdot x(0),$$

where $x(0)$ is the vector of initial concentrations. So, each vector g in \mathcal{D}^\perp expresses a conservation law of the system. By assumption (A1), the b_i’s are linearly independent, which implies that the space \mathcal{D} has dimension $m - 1$. As a result; there are exactly $n - (m - 1) \geq 1$ other linearly independent vectors (g) perpendicular to \mathcal{D}, and hence, there are also $n - (m - 1)$ distinct conservation laws.

For the model in Fig. 1, the space \mathcal{D} can be computed to give

$$\mathcal{D} = \text{span}\{b_1 - b_j : j = 2,3,4\}$$

$$= \text{span}\left\{\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right\}$$

and two (= 5 – 3) linear independent vectors perpendicular to \mathcal{D} can be picked as

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

corresponding to the following conservation equations:

$$L(t) + C_1(t) + C_2(t) = \alpha,$$

$$R_1(t) + R_2(t) + C_1(t) + C_2(t) = \beta$$

for some positive constants α and β. As expected, these equations reflect the conservation of the total amount of ligand and of the total amount of receptors. In other words, one can say that

$$\alpha = L_{\text{total}} = L(0) + C_1(0) + C_2(0), \quad (4)$$

$$\beta = R_{\text{total}} = R_1(0) + R_2(0) + C_1(0) + C_2(0). \quad (5)$$

Formally, for each pair of positive constants α, β, the pair of Eqs. (4,5) defines a subspace of \mathbb{R}^3, where the trajectories of system (1) evolve whenever the initial conditions satisfy $L_{\text{total}} = \alpha$ and $R_{\text{total}} = \beta$. We call a positive class any set that is the intersection of one such subspace with the positive orthant:

$$\mathcal{C}_{x_0} := \{x \in \mathbb{R}^n_{\geq 0} : g^{(i)} \cdot x = g^{(i)} \cdot x_0, \quad i = 1,\ldots,n - m + 1\},$$

where the vectors $\{g^{(1)},g^{(2)},\ldots,g^{(n-m+1)}\}$ form a basis of \mathcal{D}^\perp and where $x_0 \in \mathbb{R}^n_{\geq 0}$. Each positive class may also be represented as a parallel translate of the stoichiometric space \mathcal{D}, since (see Fig. 2)

$$\mathcal{C}_{x_0} = (x_0 + \mathcal{D}) \cap \mathbb{R}^n_{\geq 0}$$

$$= \{x \in \mathbb{R}^n_{\geq 0} : x = x_0 + d, \text{ for some } d \in \mathcal{D}\}.$$
positive classes can be found by solving the equation depleted. The boundary steady-states for system (2), when at least one of the species becomes completely A boundary steady-state corresponds to a situation model, and can be verified as follows. Upon substitution Assumption (A3) is often satisfied for biochemical 2.2. Steady-states

The steady-states of system (2) (i.e., the steady-state concentrations of the component biochemical species) are the vectors \(\bar{x} \in \mathbb{R}^n \) defined by

\[
f(\bar{x}) = BK\theta_B(\bar{x}) = 0
\]

and can be divided into positive and boundary steady-states:

\[
E_+ = \{ \bar{x} : f(\bar{x}) = 0, \quad x_i > 0, \quad \text{for all coordinates } i \},
\]

and \(\bar{x}_i > 0, \) for all coordinates \(i \},

\[
E_0 = \{ \bar{x} : f(\bar{x}) = 0, \quad \bar{x}_i = 0, \quad \text{for some coordinate } i \}.
\]

A boundary steady-state corresponds to a situation when at least one of the species becomes completely depleted. The boundary steady-states for system (2), can be found by solving the equation \(\theta_B(\bar{x}) = 0. \) For model (1) the boundary steady-states are determined according to

\[
R_1 L = 0, \quad C_1 = 0, \quad R_2 L = 0, \quad C_2 = 0,
\]

so that the set \(E_0 \) is given by

\[
E_0 = \{(r_1, r_2, 0, 0, 0), (0, 0, r_3, 0, 0) : r_1, r_2, r_3 > 0 \}.
\]

For our results, in addition to assumptions (A1) and (A2), we also require

(A3) There exist no boundary steady-states in each positive class, i.e.

\[
\mathcal{I} \cap E_0 = 0.
\]

Assumption (A3) is often satisfied for biochemical networks. This is indeed the case for this two-state model, and can be verified as follows. Upon substitution into Eqs. (4) and (5), note that points of the type \((r_1, r_2, 0, 0, 0) \) imply that \(R_{total} = r_1 + r_2, \)

\[
L_{total} = 0,
\]

so this would be an experiment involving no ligand, and thus no reactions would occur. Similarly, points of the type \((0, 0, r_3, 0, 0) \) imply that \(R_{total} = 0, \) and \(L_{total} = r_3, \)

corresponding to an experiment where only molecules of ligand are present, and again no reactions would occur. In both cases, the pair \((r, r) = (L_{total}, R_{total}) \) does not define a positive class, because either \(L_{total} = 0, \) or \(R_{total} = 0. \)

On the other hand, it can be shown (see Feinberg, 1995; Horn and Jackson, 1972) that each positive class contains exactly one positive steady-state, and that this positive steady-state is globally asymptotically stable (see Sontag, 2001) with respect to the class. In other words, for HJF networks, i.e. under assumptions (A1)–(A3) (as in the case of the two-state model, and later on for the multi-state model), the trajectory of system (2) with a given initial condition \(x(0) = x_0 \) converges to the unique positive steady-state \(\bar{x} \) in the same class of \(x_0. \)

The positive steady-states \((E_+) \) can be further characterized in terms of the kinetic constants \(k_1. \) In order to give this characterization, we need to introduce the set

\[
\text{nullspace}(K) := \{ v = (v_1, v_2, v_3, v_4) : Kv = 0 \}.
\]

The steady-states satisfy

\[
\bar{x} \in E_+ \iff BK\theta_B(\bar{x}) = 0
\]

\[
\iff \theta_B(\bar{x}) = 0 \iff \theta_B(\bar{x}) \in \text{nullspace}(K),
\]

where the second equivalence is justified because, by assumption (A1), the matrix \(B \) has full column rank, and the third equivalence is simply the definition of the nullspace of \(K. \)

Then the following statement ("complex balancing") is immediate from the assumptions; see e.g. (Horn and Jackson (1972)) or Lemma V.1 in Sontag (2001).

Lemma 1. The point \(\bar{x} \) is a positive steady-state if and only if the vector \(\theta_B(\bar{x}) \) belongs to the nullspace of \(K. \)

Assumption (A2) states that the matrix \(K^m \) is irreducible (as was mentioned earlier, this assumption is essentially a mathematical way to describe the property of "weak reversibility" of the biochemical network). This irreducibility property allows a very useful characterization of the nullspace of \(K: \)

(1) the nullspace of \(K \) has dimension one,

(2) the nullspace of \(K \) is spanned by a positive vector.

This means that the nullspace of \(K \) can be characterized by a scaling factor \(\sigma \) and positive constants \(\nu_2, \nu_3 \).
and \(v_4 \) as

\[
\text{nullspace}(K) = \{ \sigma(1, v_2, v_3, v_4)^T ; \sigma \in \mathbb{R} \}.
\]

The positive constants \(v_2, v_3 \) and \(v_4 \) depend only on the kinetic constants \(k_{ij} \). A computation of the nullspace of \(K \) for the model in Fig. 1 is presented in Appendix A, where explicit expressions for the parameters \(v_2, v_3 \) and \(v_4 \) in terms of the \(k_{ij} \) are obtained. This characterization of the nullspace of \(K \) is obtained as a routine application of the Perron–Frobenius Theorem from linear algebra, see e.g. Berman and Plemmons (1979); for ease of reference, a sketch of the proof is also presented in Appendix A. For each steady-state \(x \in \mathbb{R}_+ \), there is an appropriate, positive, value of \(\sigma \) so that

\[
\theta_B(x) = \sigma \begin{pmatrix} 1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix},
\]

where the factor \(\sigma \) depends on the initial conditions \(x(0) \).

To summarize, the steady-states for the receptor–ligand model of Fig. 1 are completely characterized by Eqs. (6), and (4),(5):

\[
BK\theta_B(x) = 0 \iff \begin{pmatrix} R_1L \\ \tilde{C}_1 \\ \tilde{R}_2L \\ \tilde{C}_2 \end{pmatrix} = \sigma \begin{pmatrix} 1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}
\]

and

\[
\hat{L} + \hat{\tilde{C}}_1 + \hat{\tilde{C}}_2 = L_{\text{total}},
\]

\[
\hat{R}_1 + \hat{\tilde{R}}_2 + \hat{\tilde{C}}_1 + \hat{\tilde{C}}_2 = R_{\text{total}},
\]

so there are 6 independent equations to determine 6 distinct quantities \(L, \tilde{C}_1, \tilde{C}_2, \tilde{R}_1, \tilde{R}_2 \) and \(\sigma \) (which also depends on \(L_{\text{total}} \) and \(R_{\text{total}} \)).

The steady-states can be parametrized by the three numbers \(v_2, v_3, v_4 \) which summarize all the information needed about the kinetic constants, together with the two numbers \(L_{\text{total}} \) and \(R_{\text{total}} \) which summarize all the information needed about the initial states.

2.3. Remarks on the scaling factor \(\sigma \) and parameters \(v_2, v_3 \) and \(v_4 \)

In essence, the factor \(\sigma \) has recast the receptor–ligand model in terms of the product of the steady-state amounts of the basic conformation \(R_1 \) and free ligand \(L \). And, as we shall see, the three numbers \(v_2, v_3, v_4 \) lump the eight kinetic constants \(k_{ij} \) and, together with \(\sigma \), they provide a complete description of the steady-state condition for the model with a minimal number of parameters. It had already been remarked in Woolf et al. (2001) that only 3 out of 8 constants that describe the network of reactions would be independent. The formalism described in this Section shows one possible way of extracting the independent constants, as well as providing them with a physical meaning. According to (7), the \(v_i \)’s are equilibrium constants that give the fraction of steady-state values of the elemental events relative to one another: for instance, \(v_2 \) is the fraction of the steady-state concentration of the receptor–ligand complex \(\tilde{C}_1 \) relative to the value \(R_1L \). As will be seen in Section 3.3, in the case the reaction \(R_1 + L \rightarrow \tilde{C}_1 \) is much faster than its reverse, then \(v_2 \) is the inverse of the dissociation constant for that reaction.

3. Steady-state activity of the two-state receptor model

In this Section, the two-state model is examined in detail, using the formalism described earlier. Our steady-state analysis will show that this model provides a good description for receptor–ligand interactions not only for the case of agonists, but also for the case of neutral and inverse agonists, by varying the relative values of the kinetic constants. We will develop explicit expressions for several quantities of interest and provide a characterization of the different classes of ligand affinity in terms of the system’s parameters. In Section 5, the same analysis will be extended to a multi-state receptor model with \(p \) receptor conformations and corresponding receptor–ligand complexes.

The steady-state response for different initial ligand concentrations is determined experimentally using ligand binding assays (Woolf et al., 2001). What is observed in these experiments is usually some combination of the concentration of the species in the model, or as introduced by Segel et al. (1986), one may consider the final steady-state activity as a linear combination

\[
\mathcal{A} = a_1\hat{R}_1 + a_2\hat{\tilde{C}}_1 + a_3\hat{\tilde{R}}_2 + a_4\hat{\tilde{C}}_2.
\]

Here the activity coefficients \(a_1, a_2, a_3 \) and \(a_4 \) are arbitrary nonnegative constants. For the general case of arbitrary (nonnegative) activity coefficients, we will provide a complete and exact analysis of the final steady-state activity, \(\mathcal{A} \), as a function of the initial amount of ligand, \(L_{\text{total}} \). This analysis will then lead to a characterization of affinity classes based on the values of the activity coefficients \(a_i \) (as well as the kinetic constants). We will assume, from now on, that the initial conditions are of the form

\[
R_1(0) = R_{10}, \quad R_2(0) = R_0 - R_{10}, \quad L(0) = L_0,
\]

\[
C_1(0) = 0, \quad C_2(0) = 0,
\]

that is, initially there are as yet no receptor–ligand complexes. In particular, note that

\[
L_{\text{total}} = L_0 \quad \text{and} \quad R_{\text{total}} = R_0.
\]

As an example, we remark that a typical “response” may be determined as the fraction of receptors in one of
the two possible states (Bywater et al., 2002; Devreotes and Sherrington, 1985), and plotted as a concentration—
response curve, that is,
\[\frac{[\dot{R}_2 + \dot{C}_2]}{R_{\text{total}}}, \text{ vs. } \log L_{\text{total}}, \]
corresponding to the choice
\[a_1 = 0, \quad a_2 = 0, \quad a_3 = 1, \quad a_4 = 1, \]
in the final steady-state activity, \(\dot{A} \).
Since the steady-state values \(\dot{R}_1, \dot{R}_2, \dot{L}, \dot{C}_1 \) and \(\dot{C}_2 \) are uniquely characterized by a set of algebraic
equations (7)—(9), in principle, it is possible to obtain the exact values for these constants in terms of the kinetic constants \((k_{ij}) \), and the initial conditions
\((R_i(0), R_2(0), L(0), C_i(0) \) and \(C_2(0)) \). However, the
use of direct substitution to solve this set of algebraic
equations can lead to very complex expressions (see
Bywater et al., 2002). Alternatively, one may solve the
set of differential equations (1) numerically, since one
knows that the solutions do converge to a (unique,
positive) steady-state. However, focusing only on a
numerical solution would not allow for general conclu-
sions about the actual functional dependence of
\(\dot{R}_1, \ldots, \dot{C}_2 \), on the parameters \(k_{ij} \) and the initial condi-
tions \(R_0, L_0 \). The knowledge of this functional depend-
ence would enable one to show whether the model does
indeed exhibit the experimental curves \(\dot{A} \) vs. \(\log L_0 \),
characteristic of the three classes of ligand affinity. For
this specific system, a closed explicit expression for
\(\dot{R}_1, \dot{R}_2, \dot{L}, \dot{C}_1 \) and \(\dot{C}_2 \), can be given, using the
techniques developed in Feinberg (1995), Sontag (2001)
and later in Chaves (2003), and summarized in
Section 2.

3.1. Steady-state response

We will now analyse the steady-state values and their
dependence on the initial conditions and other para-
eters. From Eq. (7) it is immediate to see that
\[\dot{C}_1 = v_2 \sigma, \quad \dot{C}_2 = v_4 \sigma, \]
and then from the conservation equation (8) it follows that
\[\dot{L} = L_0 - (v_2 + v_4) \sigma. \]
Substituting this expression for \(\dot{L} \) back into Eq. (7) we have
\[\dot{R}_1 = \frac{\sigma}{L_0 - (v_2 + v_4) \sigma}, \quad \dot{R}_2 = \frac{v_3 \sigma}{L_0 - (v_2 + v_4) \sigma}. \]
As we noted above, the factor \(\sigma \) depends on the initial
conditions, and to compute this dependence we will use the
second conservation equation (9):
\[\frac{\sigma}{L_0 - (v_2 + v_4) \sigma} + \frac{\sigma v_3}{L_0 - (v_2 + v_4) \sigma} + v_2 \sigma + v_4 \sigma = R_0. \]
This leads to a quadratic polynomial on \(\sigma \):
\[(v_2 + v_4) \sigma^2 - [(L_0 + R_0)(v_2 + v_4) + (1 + v_3)] \sigma + R_0 L_0 = 0, \]
Together with the fact that \(L_0 - (v_2 + v_4) \sigma > 0 \) (since
\(\dot{L} > 0 \)). There are two possible solutions for this
quadratic equation, but the correct one is found to be
\[\sigma = \frac{1}{2(v_2 + v_4)} \left[L_0 + R_0 + \frac{1 + v_3}{v_2 + v_4} - \sqrt{\left[L_0 + R_0 + \frac{1 + v_3}{v_2 + v_4} \right]^2 - 4R_0 L_0} \right]. \]
We remark that the expression inside the square root
is indeed a positive quantity, for all possible
\(L_0 \geq 0, \quad R_0 \geq 0 \). The other solution,
\(\sigma = - \sqrt{\cdots} \), would violate the conservation laws of the total amount
of ligand and receptors. To see that this is so, we add up
Eqs. (8) and (9):
\[\dot{L} + \dot{R}_1 + \dot{R}_2 + 2 \dot{C}_1 + 2 \dot{C}_2 = L_0 + R_0, \]
and finally substitute \(\sigma = \sigma_+ \) (note that the factors
\(2(v_2 + v_4) \) cancel out), to obtain
\[\dot{L} + \dot{R}_1 + \dot{R}_2 + L_0 + R_0 + \frac{1 + v_3}{v_2 + v_4} \]
\[+ \sqrt{\left[L_0 + R_0 + \frac{1 + v_3}{v_2 + v_4} \right]^2 - 4R_0 L_0} = L_0 + R_0. \]
This equation says that
\[L_0 + R_0 + \text{positive quantity} = L_0 + R_0, \]
which is obviously not true, and thus we conclude that
\(\sigma_+ \) cannot be the correct solution to the quadratic
equation.
In this fashion, we have now computed explicit expres-
sions for the steady-state values, in terms of
\(L_0, \quad R_0 \) and the parameters \(k_{ij} \). The dependence on the
kinetic constants \(k_{ij} \) is condensed into the three positive
constants \(v_2, \quad v_3 \) and \(v_4 \) (see Appendix A).
We are now interested in analysing the behavior of the
activity \(\dot{A} \) as a function of \(L_0 \). In order to do this, fix \(R_0 \)
and recall that \(v_2, \quad v_3 \) and \(v_4 \) are constant factors, as well
as \(a_1, \quad a_2, \quad a_3, \) and \(a_4 \). Define \(\sigma = \sigma(L_0) \) to be a function
of \(L_0 \) as given by Eq. (13), and define another function
\[\tau(L_0) \coloneqq \frac{\sigma(L_0)}{L_0 - (v_2 + v_4) \sigma(L_0)}. \]
and observe that

\[\mathcal{A}(L_0) = (a_1 + a_3 v_3) \tau(L_0) + (a_2 v_2 + a_4 v_4) \sigma(L_0). \]

For very small or very large amounts of \(L_0 \), the following limits may be computed:

\[\lim_{L_0 \to 0} \sigma(L_0) = 0, \quad \lim_{L_0 \to +\infty} \sigma(L_0) = R_0 \frac{1}{v_2 + v_4}. \]

The limit as \(L_0 \to 0 \) is immediate. To compute the limit as \(L_0 \to +\infty \) write

\[Z = L_0 + R_0 + \frac{1 + v_3}{v_2 + v_4} \Rightarrow \]

\[\sigma(L_0) = \frac{1}{2(v_2 + v_4)} \left[Z - \sqrt{Z^2 - 4R_0 L_0} \right] \]

and then multiply and divide \(\sigma \) by the quantity \(Z + \sqrt{Z^2 - 4R_0 L_0} \), use the identity \((a-b)(a+b) = a^2 - b^2 \) which is true for every pair of real numbers \(a, b \), to obtain

\[\lim_{L_0 \to +\infty} \sigma(L_0) = \lim_{L_0 \to +\infty} \frac{1}{2(v_2 + v_4)} \frac{Z^2 - (Z^2 - 4R_0 L_0)}{Z + \sqrt{Z^2 - 4R_0 L_0}} \]

\[= \lim_{L_0 \to +\infty} \frac{1}{2(v_2 + v_4)} \frac{Z^2 - (Z^2 - 4R_0 L_0)}{Z + \sqrt{Z^2 - 4R_0 L_0}} = \lim_{L_0 \to +\infty} \frac{1}{2(v_2 + v_4)} \frac{1}{4R_0} \frac{Z}{L_0} + \frac{(Z/L_0)^2 - 4R_0/L_0}{2} \]

\[= \frac{1}{2(v_2 + v_4)} \frac{4R_0}{2} = R_0 \frac{1}{v_2 + v_4}. \]

where we used the fact that \(\lim_{L_0 \to +\infty} Z/L_0 = 1 \). Similarly, we have

\[\lim_{L_0 \to 0} \tau(L_0) = R_0 \frac{1}{1 + v_3}, \quad \lim_{L_0 \to +\infty} \tau(L_0) = 0, \]

where the limit of \(\tau(L_0) \) as \(L_0 \to +\infty \) follows from the limit of \(\sigma(L_0) \), and the limit as \(L_0 \to 0 \) may be computed using the same technique as above:

\[\lim_{L_0 \to 0} \tau(L_0) \]

\[= \lim_{L_0 \to 0} \frac{1}{2(v_2 + v_4)} \frac{Z - \sqrt{Z^2 - 4R_0 L_0}}{L_0 - \frac{1}{2} \sqrt{Z^2 - 4R_0 L_0}} \]

\[= \lim_{L_0 \to 0} \frac{1}{2(v_2 + v_4)} \]
and if the weights are all equal, then the weighted average coincides with the usual notion of the average value. Observe that q may be written as

$$q = \frac{a_2v_2 + a_4v_4}{v_2 + v_4} / \frac{a_1 + a_3v_3}{1 + v_3}$$

and then, multiplying and dividing be the quantity σ, and recalling from Eq. (7) that $\sigma = \tilde{R}_1L$, $v_2\sigma = \tilde{C}_1$, $v_3\sigma = \tilde{R}_1L$ and $v_4\sigma = \tilde{C}_2$, we have

$$q = \frac{a_2v_2\sigma + a_4v_4\sigma}{v_2\sigma + v_4\sigma} / \frac{a_1\sigma + a_3v_3\sigma}{1\sigma + v_3\sigma}$$

$$= \frac{a_2\tilde{C}_1 + a_4\tilde{C}_2}{\tilde{C}_1 + \tilde{C}_2} / \frac{a_1\tilde{R}_1L + a_3\tilde{R}_2L}{\tilde{R}_1L + \tilde{R}_2L}. $$

In the second factor, the quantity L cancels out, so we finally obtain

$$q = \frac{a_2\tilde{C}_1 + a_4\tilde{C}_2}{\tilde{C}_1 + \tilde{C}_2} / \frac{a_1\tilde{R}_1L + a_3\tilde{R}_2L}{\tilde{R}_1L + \tilde{R}_2L}.$$

so we may view the affinity quotient as the ratio between the weighted average of the activity of bound receptors and the weighted average of the activity of free receptors. The equilibrium constants v_i play the role of weight factors for the activity coefficients a_i, thus “choosing” the level of contribution from each species to the final activity. For example, if $a_1 = a_2 = 0$ and $a_3 = a_4 = 1$ then

$$q = \frac{\tilde{C}_2}{\tilde{C}_1 + \tilde{C}_2} / \frac{\tilde{R}_2}{\tilde{R}_1 + \tilde{R}_2}. $$

The results of Theorem 1 hold for any two-state receptor model formulated according to the framework described in Section 2. Specifically, for a network consisting of the four elemental events $R_1 + L$, $R_2 + L$, C_1 and C_2, possible formulations of a two-state receptor model are:

(a) a cycle,

$$\begin{align*}
R_1 + L & \rightarrow R_2 + L \\
\uparrow & \downarrow \\
C_1 & \leftarrow C_2,
\end{align*}$$

(b) a (reversible) acyclic network

$$C_1 \rightleftharpoons R_1 + L \rightleftharpoons R_2 + L \rightleftharpoons C_2,$$

(c) any such representation that maintains the connectivity of the network.

Each of these models is characterized by a different matrix K, and hence the corresponding parameters v_i also have different values, but all the conclusions of Theorem 1 are unchanged.

3.2. Ligand affinity characterization

Part (iii) in Theorem 1 provides a complete characterization of the responses according to the values of the kinetic constants and activity coefficients. The different qualitative responses for the model can now be related to the ligand affinity classes mentioned earlier. For each set of kinetic constants k_{ij}, the affinity quotient q characterizes the affinity class in the following way

(a) Agonists: $q > 1$.
(b) Neutral Agonists (or antagonists): $q = 1$.
(c) Inverse Agonists: $q < 1$.

Thus, different agonist behavior is obtained depending on the relative values of the scaling factors v_2, v_3 and v_4 (for the meaning of these parameters, see Section 3.3 below), and also on the activity coefficients a_1, a_2, a_3, and a_4. These classes, when represented graphically, have the features of typical receptor–ligand binding curves (Bywater et al., 2002; Lauffenburger and Linderman, 1993; Shea et al., 2000; Woolf et al., 2001).

As an example, we consider the case already mentioned above when $\mathcal{A} = \tilde{R}_2 + \tilde{C}_2$ (see Bywater et al., 2001; Devreotes and Sherring, 1985). In this case, the quotient takes value (16), where the activity of free and bound receptors is measured, respectively, by a_3 (or \tilde{R}_2) and a_4 (or \tilde{C}_2).

In Fig. 3 it is immediate to see that

1. As $L_0 \to 0$: the concentration–response curve tends to a value which reflects the partition of receptors between the two possible states in the absence of ligand $(a_1 + a_3v_3)/(1 + v_3)$ (as the amount of ligand

![Graphs of $\mathcal{A}(L_0/R_0)$ vs. $\log L_0$, when $a_1 = a_2 = 0$ and $a_3 = a_4 = 1$. Examples of: (a) an agonist ($q = 1.21$), (b) a neutral agonist ($q = 1.0$), and (c) an inverse agonist ($q = 0.5217$).](image-url)
decreases to zero, the amount of receptor–ligand complexes also decreases to zero).

(2) As \(L_0 \to +\infty \): the concentration–response curve reflects the capacity of the ligand to saturate the receptors, \((a_2v_2 + a_4v_4)/(v_2 + v_4)\) (for large amounts of ligand, all the receptors tend to be bound).

Furthermore, the affinity quotient \(q \) relates to the following ratio (see Kenakin, 2002):
\[
\frac{\text{fraction of } R_2(L_0 \to +\infty)}{\text{fraction of } R_2(L_0 \to 0)} = \frac{\eta(1 + \kappa)}{1 + \eta \kappa}.
\] (17)

According to Kenakin (2002), in the case when a receptor exists only in two conformations (say \(R_1 \) and \(R_2 \)), the effect of a ligand on changing the ratio between the two conformations is given by Eq. (17), where \(\eta \) measures the affinity of ligand \(L \) for the conformation \(R_2 \), and \(\kappa \) is an allosteric constant
\[
\eta = \text{affinity of } L \text{ for } R_2, \quad \kappa = \text{active receptors}/\text{inactive receptors}.
\]

When ratio (17) is > 1 the presence of ligand enriches the conformation \(R_2 \), and when it is < 1, the presence of ligand leads to depletion of the conformation \(R_2 \). In this sense, ratio (17) is equivalent to our affinity quotient \(q \) and one can make the correspondence
\[
q = \frac{[v_4/v_2v_3](1 + v_3)}{1 + v_4/v_2}
\]
with
\[
k_\rightarrow v_3 = \frac{R_2L}{\sigma} = \frac{R_2L}{R_1L} = \frac{R_2}{R_1}
\]
and
\[
\eta \rightarrow \frac{v_4}{v_2v_3} = \frac{C_2/\sigma}{C_1/\sigma v_3} = \frac{\tilde{C}_2}{\tilde{C}_1} \frac{R_1}{R_2}
\]

3.3. Biochemical significance of the scalars \(v_2, v_3, v_4 \)

The constants \(v_2, v_3, v_4 \) can be regarded as a concise parametrization of the biochemical networks being considered. Consider the case where the reactions
\[
R_1 + L \rightleftharpoons C_1, \quad \text{with dissociation constant } K_{D12}
\]
and
\[
R_2 + L \rightleftharpoons C_2, \quad \text{with dissociation constant } K_{D34}
\]
are uncoupled. Remembering that \(v_1 \) is set to unity, the constants \(v_2, v_3 \) and \(v_4 \) satisfy (from Appendix A)
\[
K_{D12} = v_1 = \frac{1}{v_2}, \quad \text{and } K_{D34} = v_3 = \frac{v_3}{v_4}.
\]

Using the experimental evidence (see Lauffenburger and Linderman, 1993, Chapter 2) that the forward binding constants (such as \(k_{21} \) and \(k_{43} \) in Fig. 1) are much larger (of order \(10^8, 10^7 \)) than comparable dissociation constants (of order \(10^{-1}, 10^{-2} \)), we can obtain estimates for the \(v_i \). The equation for \(dR_1/dt \), at steady-state, is
\[
-(k_{21} + k_{31}) \frac{dR_1}{dt} + k_{12} \frac{dC_1}{dt} + k_{13} \frac{dR_2}{dt} = 0,
\] (18)

and using the fact that \(k_{21} \gg k_{31} \) we obtain
\[
-k_{21} \frac{dR_1}{dt} + k_{12} \frac{dC_1}{dt} + k_{13} \frac{dR_2}{dt} \approx 0.
\]

Since the model is symmetric with respect to \(R_1, R_2 \), without loss of generality, we can assume that \(\tilde{R}_1 \approx \tilde{R}_2 \), and again using \(k_{21} \gg k_{13} \):
\[
k_{21} \tilde{R}_1 \tilde{L} \gg k_{13} \tilde{R}_2 \tilde{L}.
\]

So, Eq. (18) is reduced to
\[
-k_{21} \tilde{R}_1 \tilde{L} + k_{12} \tilde{C}_1 \approx 0,
\]
and yields
\[
\frac{\tilde{C}_1}{\tilde{R}_1 \tilde{L}} \approx \frac{k_{21}}{k_{12}} = \frac{1}{\mathcal{A}_{D12}}.
\]

We also have, from Eq. (7), that
\[
v_2 = \frac{\tilde{C}_1}{\tilde{R}_1 \tilde{L}} \approx \frac{k_{21}}{k_{12}}.
\]

Next, using the equations that provide the nullspace of \(K \) (see Appendix A), we may obtain expressions for \(v_3 \) and \(v_4 \) from \(v_2 \):
\[
-(k_{21} + k_{31}) + k_{12} v_2 + k_{13} v_3 = 0,
\]
\[
-(k_{21} + k_{31}) + k_{21} + k_{13} v_3 = 0 \Rightarrow v_3 = \frac{k_{31}}{k_{13}}
\]
and
\[
k_{21} - (k_{12} + k_{42}) v_2 + k_{24} v_4 = 0,
\]
\[
k_{21} - k_{21} - k_{42} \frac{k_{21}}{k_{12}} + k_{24} v_4 = 0 \Rightarrow v_4 = \frac{k_{42} k_{21}}{k_{24}}
\]

So the constants \(v_i \) may be estimated from dissociation constants as
\[
\frac{1}{\mathcal{A}_{D12}} = \frac{k_{21}}{k_{12}} = v_2, \quad \frac{1}{\mathcal{A}_{D13}} = \frac{k_{31}}{k_{13}} = v_3
\]
and
\[
\frac{1}{\mathcal{A}_{D24} \mathcal{A}_{D12}} = v_4,
\]

which can be measured.

Under these circumstances (namely, (a) the order of magnitude of \(k_{21} \) and \(k_{43} \) is much larger than the order of magnitude of the other kinetic constants, and (b) \(\tilde{R}_1 \approx \tilde{R}_2 \), meaning that \(\mathcal{A}_{D12} \) is the dissociation constant associated to the more abundant conformation of \(R_1 \)), the affinity quotient \(q \), associated with the final activity \(\mathcal{A} = R_2 + \tilde{C}_2 \), becomes:
\[
q = \frac{v_4 + v_3}{v_3 v_2 + v_4} \approx \frac{1/(\mathcal{A}_{D12} \mathcal{A}_{D24})}{1/\mathcal{A}_{D13}} \times \frac{1 + 1/\mathcal{A}_{D12}}{1/\mathcal{A}_{D12} + 1/(\mathcal{A}_{D12} \mathcal{A}_{D24})} = \frac{\mathcal{A}_{D13} + 1}{\mathcal{A}_{D24} + 1}.
\]
This expression indicates that the affinity class of the ligand is ultimately decided by the balance between the final distribution of free and bound receptors among the two states, since
\[\mathcal{K}_{D13} \approx \frac{R_1}{R_2} \quad \text{and} \quad \mathcal{K}_{D24} \approx \frac{C_1}{C_2}. \]

An inverse agonist is characterized by \(\mathcal{K}_{D24} > \mathcal{K}_{D13} \), or equivalently \(\bar{C}_1/\bar{C}_2 > R_1/R_2 \), while an agonist is characterized by \(\bar{C}_1/\bar{C}_2 < R_1/R_2 \). For instance, the inverse agonist in Fig. 3 was obtained with \(k_{43} = k_{21} = 5, k_{24} = 4, k_{31} = 3 \) and all other kinetic constants equal to 1, corresponding to \(\mathcal{K}_{D12} = 0.2, \mathcal{K}_{D13} = 0.33 \) and \(\mathcal{K}_{D24} = 4 \); while the agonist was obtained with \(k_{43} = k_{21} = 5, k_{42} = 2, k_{13} = 1.99 \) and all other kinetic constants equal to 1, corresponding to \(\mathcal{K}_{D12} = 0.2, \mathcal{K}_{D13} = 1.99 \) and \(\mathcal{K}_{D24} = 0.5 \).

Thus, the scalars \(v_i \) can be seen to generalize the concept of the equilibrium constants in the context of biochemical networks. They capture, in addition to direct reversibility between reactants and their products, all other network routes that achieve the same outcome and are present in the stoichiometry.

3.4. Comparison with experimental data

Devreotes and Sherring (1985) identify two receptor conformations for the cAMP receptor of *Dictyostelium*. Assuming that the interactions between cAMP (ligand) and its receptors can be described by the model depicted in Fig. 1, and that the concentration–response curve is determined as \([\bar{R}_2 + \bar{C}_3] \), as a function of \(L_0 \), the authors measured the dissociation constants:
\[\mathcal{K}_{D12} = \frac{k_{12}}{k_{21}} = 15 \times 10^{-9} \text{M}, \]
\[\mathcal{K}_{D34} = \frac{k_{34}}{k_{43}} = 30 \times 10^{-9} \text{M}, \]
\[k_{31} = 0.012 \text{min}^{-1}, \quad k_{13} = 0.104 \text{min}^{-1}, \]
\[k_{42} = 0.222 \text{min}^{-1}, \quad k_{24} = 0.055 \text{min}^{-1}. \]

Also from the experimental concentration–response curve, the values
\[\frac{[\bar{R}_2 + \bar{C}_3]}{R_0} (0) \approx 0.15, \quad \frac{[\bar{R}_2 + \bar{C}_3]}{R_0} (\infty) \approx 0.804 \quad (19) \]

can be obtained. We may now compute the values of our constants \(v_3, v_4 \) (as estimated in Section 3.3) from the \(k_{ij} \) obtained in this experiment, and then compare the ratios \(v_3/(1 + v_3) \) and \(v_4/(v_2 + v_4) \) with values (19). We have
\[v_2 = 6.67 \times 10^7 \text{M}^{-1}, \quad v_3 = 0.115, \]
\[v_4 = 2.69 \times 10^8 \text{M}^{-1} \]

and
\[\frac{v_3}{1 + v_3} = 0.103, \quad \frac{v_4}{v_2 + v_4} = 0.806, \]

which are in agreement with values (19).

4. Application of HJF networks to a classical model

As further illustration of the flexibility of the theory described in Section 2, we now apply the HJF networks formalism to analyse a classical model in the literature, a model that was studied in great detail by Segel et al. (1986), and is depicted in Fig. 4.

There are two essential differences between the models of Figs. 1 and 4:

1. In the model of Fig. 4, the amount of ligand \(L \) is assumed to be constant, i.e.
\[L \equiv L_0 \equiv \bar{L}, \]

and thus \(L \) is a parameter, but not a variable of the system, while in our two-state model (Fig. 1) the amount of ligand is allowed to change, as it binds to the cell receptors, and therefore \(L \) is a variable of the system.

2. In the model of Segel et al. (1986) (and also other references such as Lauffenburger and Linderman 1993, Chapter 2), the exchange between receptor conformations occurs independently of the presence of ligand, whereas in our model (Fig. 1), from the discussion of elemental events, the exchange between receptor conformations may occur only in the presence of ligand. This leads to the appearance of nonlinear terms \(R(t)L(t), R(t)L(i) \) in the differential equations (1).

The HJF networks formalism also allows the rigorous analysis of the model in Fig. 4. The equations that describe this model are (recall that \(L \) is assumed to be constant, and thus \(dL/dt = 0 \), as opposed to our model (1))
\[\frac{dR_1}{dt} = -k_1 R_1 + k_{-1} R_2 - k_r L R_1 + k_{-r} C_1, \]

Fig. 4. The model studied in Segel et al. (1986).
\[\frac{dR_2}{dt} = k_1R_1 - k_{-1}R_2 - k_dLR_2 + k_{-d}C_2, \]
\[\frac{dC_1}{dt} = -k_2C_1 + k_{-2}C_2 + k_rC_1 - k_{r-C}C_1, \]
\[\frac{dC_2}{dt} = k_2C_1 - k_{-2}C_2 + k_dLR_2 - k_{-d}C_2. \]

(These are equations (1a–d) in Segel et al. (1986) and, in their notation, \(R_1 \rightarrow R, R_2 \rightarrow D, C_1 \rightarrow X \) and \(C_2 \rightarrow Y \).)

There is only one conservation equation:
\(\dot{R}_1 + \dot{R}_2 + \dot{C}_1 + \dot{C}_2 = R_0. \)

Since the elemental events are simply \(R_1, R_2, C_1 \) and \(C_2 \), the positive steady-states of the system are given by
\(\dot{R}_1 = \sigma, \quad \dot{C}_1 = \sigma \dot{v}_2, \quad \dot{R}_2 = \sigma \dot{v}_3, \quad \dot{C}_2 = \sigma \dot{v}_4. \)

One can solve for \(\sigma \), using the conservation equation, to obtain
\[\sigma = R_0 \frac{1}{1 + \dot{v}_2 + \dot{v}_3 + \dot{v}_4}. \]

Comparing Figs. 1 and 4, there is the following correspondence between kinetic constants:
\(k_{12} = k_{-r}, \quad k_{21} = k_rL, \quad k_{13} = k_{-1}, \quad k_{31} = k_1, \)
\(k_{24} = k_{-2}, \quad k_{42} = k_2, \quad k_{34} = k_{-d}, \quad k_{43} = k_dL, \) \hspace{1cm} (20)

so in this case the scalars \(\dot{v}_i \) depend on \(L \). Nevertheless, we may still define the steady-state activity and the affinity quotient as before, by carefully computing the limits \(\mathcal{A}(L \rightarrow 0) \) and \(\mathcal{A}(L \rightarrow +\infty) \). Following the expressions in Appendix A and correspondence (20), the scalars \(\dot{v}_i \) have the form
\[\dot{v}_3 = \frac{k_{-2}k_1(k_{-d}L + k_d) + k_{-d}k_1(k_rL + k_1)}{k_{-2}k_1(k_{-d}L + k_1) + k_{-d}k_2(k_rL + k_1)} \]
and
\[\dot{v}_2 = -\frac{k_{-r}}{k_{-r}} \dot{v}_3 + \frac{k_rL + k_1}{k_{-r}} \dot{v}_4 = \frac{k_{-1} + k_dL}{k_{-d}} \dot{v}_3 - \frac{k_1}{k_{-d}}. \]

Then
\[\mathcal{A}(L) = R_0 \frac{a_1 + a_2 \dot{v}_2 + a_3 \dot{v}_3 + a_4 \dot{v}_4}{1 + \dot{v}_2 + \dot{v}_3 + \dot{v}_4} = R_0 \frac{a_1 + a_2 \frac{k_dL + k_1}{k_{-d}} - a_4 \frac{k_1}{k_{-d}} + \dot{v}_3 \left(a_3 - a_2 \frac{k_{-2}k_1}{k_{-r}} + a_4 \frac{k_1}{k_{-d}} - \frac{k_1}{k_{-d}} \right)}{1 + \frac{k_dL + k_1}{k_{-d}} - \frac{k_1}{k_{-d}} + \dot{v}_3 \left(1 - \frac{k_{-2}k_1}{k_{-r}} + \frac{k_{-1} + k_dL}{k_{-d}} \right)}. \]

Now, it is not difficult to see that
\[\lim_{L \rightarrow 0} \dot{v}_3 = \frac{k_1}{k_{-1}}, \quad \lim_{L \rightarrow +\infty} \dot{v}_3 = \frac{k_1k_dk_{-d}}{k_{-r}k_{-2}k_d}, \]
and, upon substitution into \(\mathcal{A}(L) \), standard limit computations yield
\[\lim_{L \rightarrow 0} \mathcal{A}(L) = \frac{a_1 + a_3k_1/k_{-1}}{1 + k_1/k_{-1}}, \quad \lim_{L \rightarrow +\infty} \mathcal{A}(L) = \frac{a_2 + a_4k_2/k_{-2}}{1 + k_2/k_{-2}}. \]

Thus the affinity quotient for the model developed in Segel et al. (1986) is
\[q = \frac{a_2K_2 + a_4}{K_2 + 1} \bigg/ \frac{a_1K_1 + a_3}{K_1 + 1}, \] \hspace{1cm} (21)
where \(K_1 = k_{-1}/k_1 \) and \(K_2 = k_{-2}/k_2 \). As a final remark, we point out that this affinity quotient in some sense expresses the concept of “sensory adaptation” introduced in Segel et al. (1986). This concept of adaptation involves choosing the activity coefficients \(a_i \) so that the final steady-state activity is always equal to the basal activity or, in other words, so that \(\mathcal{A}(L_1) = \mathcal{A}(L_0) \), for every pair of values \(L_0, L_1 \). Equivalently, the choice of coefficients should satisfy
\[\mathcal{A}(0) = \mathcal{A}(\infty) \iff q = 1, \]
and, indeed, setting \(q = 1 \) in Eq. (21), yields precisely Eq. (26a) of Segel et al. (1986), for exact adaptation.

5. Extension to multi-state receptor models

The versatility of the approach summarized in Eq. (2), where the receptor–ligand model is analyzed as an HJF network, can be seen in its extension to more complex systems. For example, consider the model in Fig. 5, where a single ligand binds to multiple receptor states.

The results in Section 2 extend very naturally to the model of Fig. 5. Now the vector of concentrations takes the form \(x = (R_1, R_2, \ldots, R_p, L, C_1, C_2, \ldots, C_p)^T \). The two conservation laws become
\[\dot{L} + \dot{C}_1 + \dot{C}_2 + \ldots + \dot{C}_p = L_0, \]
\[\dot{R}_1 + \dot{R}_2 + \ldots + \dot{R}_p + \dot{C}_1 + \dot{C}_2 + \ldots + \dot{C}_p = R_0, \]

Fig. 5. A “ladder” receptor–ligand network, incorporating \(p \) receptor conformations.
while the matrix of reaction nodes \(B \) and the matrix of kinetic constants \(K \) extend in the obvious way, and the vector of elemental events becomes

\[
\theta_B(x) = \begin{pmatrix} R_1L \\ C_1 \\ R_2L \\ C_2 \\ \vdots \\ R_pL \\ C_p \end{pmatrix} = \begin{pmatrix} 1 \\ v_2 \\ v_3 \\ v_4 \\ \vdots \\ v_{2p} - 1 \\ v_{2p} \end{pmatrix}.
\]

The nullspace of \(K \) is now the set

\[
\text{nullspace}(K) = \{ \sigma(1, v_2, v_3, \ldots, v_{2p}) : \sigma \in \mathbb{R} \},
\]

where \(v_2, v_3, \ldots, v_{2p} \) are still positive scalars, given in terms of the \(k_{ij} \) only. Solving the new equations for the steady-state of the system, we find that, for each \(\sigma > 0 \),

\[
\tilde{C}_1 = v_2 \sigma, \quad \tilde{C}_2 = v_4 \sigma, \ldots, \tilde{C}_p = v_{2p} \sigma,
\]

\[
L = L_0 - (v_2 + v_4 + \cdots + v_{2p}) \sigma,
\]

\[
\tilde{R}_1 = \frac{L_0 - (v_2 + v_4 + \cdots + v_{2p}) \sigma}{v_3 \sigma},
\]

\[
\tilde{R}_3 = \frac{L_0 - (v_2 + v_4 + \cdots + v_{2p}) \sigma}{v_{2p-1} \sigma},
\]

\[
\tilde{R}_p = \frac{L_0 - (v_2 + v_4 + \cdots + v_{2p}) \sigma}{v_{2p} \sigma}
\]

And finally, \(\sigma \) satisfies a quadratic polynomial very similar to the two state case (we only need to replace the sums of odd indexed \(v_i \) and even indexed \(v_i \)):

\[
1 + v_3 \to S_0 = 1 + v_3 + v_5 + \cdots + v_{2p-1},
\]

\[
v_2 + v_4 \to S_e = v_2 + v_4 + v_6 + \cdots + v_{2p},
\]

so that

\[
\sigma(L_0) = \frac{1}{2S_e} \times \left[L_0 + R_0 + \frac{S_0}{S_e} - \sqrt{\left[L_0 + R_0 + \frac{S_0}{S_e} \right]^2 - 4R_0L_0} \right]
\]

and

\[
\tau(L_0) = \frac{\sigma(L_0)}{L_0 - S_e \sigma(L_0)}.
\]

For this extended model, the final steady-state activity measurements would be given by

\[
\mathcal{A} = a_1 \tilde{R}_1 + a_2 \tilde{C}_1 + \cdots + a_{2p-1} \tilde{R}_p + a_{2p} \tilde{C}_p
\]

as a function of \(L_0 \), and the affinity quotient is

\[
q = \frac{a_2 v_2 + \cdots + a_{2p} v_{2p}}{a_1 + \cdots + a_{2p-1} v_{2p-1}} \frac{S_0}{S_e}.
\]

Under these conditions, the results in Theorem 1 are still valid, for any choice of constants \(a_i \geq 0 \), with \(a_2 + a_4 + a_{2p} > 0 \).

As before, the affinity classes are characterized by the affinity quotient, which can again be interpreted as

\[
q = \frac{a_2 \tilde{C}_1 + \cdots + a_{2p} \tilde{C}_p}{\tilde{C}_1 + \tilde{C}_2 + \cdots + \tilde{C}_p} = \frac{\langle \text{activity of bound receptors} \rangle}{\langle \text{activity of free receptors} \rangle},
\]

the ratio between the weighted averages of the activity of bound and free receptors, where the \(v_i \)’s play the role of weight factors. Another interpretation for the affinity quotient is in terms of the distribution of the receptor conformation states (referred to as “allosteric constants” in [Kenakin, 2002]):

\[
k_i = \frac{\text{receptors in state } i}{\text{receptors in inactive state}} = \frac{L \tilde{R}_i}{L \tilde{R}_1} = \frac{\sigma v_{2i-1}}{\sigma v_1} = v_{2i-1}
\]

(note that \(k_1 = 1 \)) and the relative affinity of ligand for each conformation:

\[
\eta_i = \frac{v_{2i}}{v_2(a_1 + a_3 v_3 + \cdots + a_{2p-1} v_{2p-1})}
\]

\[
= \frac{\tilde{C}_i}{\frac{C_i}{a_1 L \tilde{R}_1 + a_3 L \tilde{R}_2 + \cdots + a_{2p-1} L \tilde{R}_p}}
\]

Then

\[
q = \frac{(a_2 \eta_1 + a_4 \eta_2 + \cdots + a_{2p} \eta_p)(1 + k_2 + k_3 + \cdots + k_p)}{1 + (\eta_1 + \eta_2 + \cdots + \eta_p)(a_1 + a_3 k_2 + \cdots + a_{2p-1} k_p)}
\]

or, in a more compact notation,

\[
q = \frac{(\sum a_2 \eta_i)(1 + \sum k_i)}{1 + (\sum \eta_i)(\sum a_{2i-1} k_i)}
\]

Fig. 6. A “star” receptor–ligand network.
generates expression (17)
\[
\frac{\text{fraction of } R_2(L_0 \to + \infty)}{\text{fraction of } R_2(L_0 \to 0)} = \frac{\eta(1 + \kappa)}{(1 + \eta \kappa)}
\]
which is indeed recovered for the particular case of the two-state model, with \(\eta = \eta_2, \kappa = \kappa_2 \) and \(a_1 = a_2 = 0, a_3 = a_4 = 1 \) (as we saw in Section 3.2).

As noted in Section 3, Theorem 1 implies that any number of reactions among the nodes may be added or removed (as long as the reversibility property of the network is maintained), causing the values of the \(v_i \)’s to change, but the general results and conclusions still hold. Consider, for instance a “star” network, as in Fig. 6, in which only the “basic” receptor conformation \((R_1) \) is allowed to change to other conformations \((R_2, R_3, R_4) \). In this case, the nullspace of \(K \) is very simple to compute and the following values are obtained:
\[
\begin{align*}
v_2 &= k_{21}^{-1}, & v_3 &= k_{31}^{-1}, & v_4 &= k_{43} k_{31}^{-1}, & v_5 &= k_{51}^{-1}, \\
v_6 &= k_{52} k_{51}^{-1}, & v_7 &= k_{71}^{-1}, & v_8 &= k_{87} k_{71}^{-1},
\end{align*}
\]
so, in this “star” example the \(v_i \) are exactly given by dissociating constants, which is consistent with the notion that all receptors in the network are accessible via \(R_1 \).

6. Concluding remarks

Receptor–ligand interactions can be represented as HJF biochemical networks, in the form of Eq. (2), consisting of three essential objects (see also (Horn and Jackson, 1972)): The vector \(\theta_{gf}(x) \) containing the elemental events; The matrix \(K \) of kinetic constants; And the matrix \(B \) that relates the nodes of the network to the rate of change of the individual species’ concentrations. Formulated in this way, the conservation laws for this system are a consequence of the matrix \(B \) and establish a set of invariant subspaces for the system. The nullspace of the matrix \(K \) then identifies the set of steady-state points in these subspaces, using a minimal set of parameters. From our analysis, it becomes clear that this minimal set of parameters generalizes the role of the equilibrium constants in the context of biochemical networks, by incorporating the effect of the network as a whole (while it is often the case that the network is decoupled, for the purpose of computing the equilibrium constants of the “receptor + ligand ↔ complex” reactions). With this minimal set of parameters, a detailed analysis of the steady-state activity of the two-state model is achieved, under general assumptions on the available biochemical pathways (which are identified by the non-zero entries of the matrix \(K^{\text{in}} \)).

Experimentally, steady-state measurements are a linear combination, of contributing species, e.g. all sources of a receptor, both free and bound to ligand (see also (Segel et al., 1986)). This steady-state activity can also be expressed in terms of the minimal set of parameters, and depends on the activity coefficients and on the total amount of ligand present. The quotient concisely relating the final activity at the limiting conditions of zero and infinite amounts of ligand, summarizes the distribution of the species in the model. This affinity quotient can also be interpreted as the ratio of the weighted averages of, respectively, the activity of bound receptors and the activity of free receptors. The weight factors are, in fact, the set of minimal parameters, which are responsible for selecting the appropriate contribution from each species to the steady-state activity. The classification of the ligand as agonist, neutral agonist or inverse agonist is then readily determined from the value of this affinity quotient. And finally, the flexibility of this formalism can be appreciated through its extension to multi-state receptor systems. All of the concepts can be directly generalized, and the characterizations of the steady-state activity and the corresponding affinity quotient are similarly preserved.

It is now well recognized that a single mass action interaction between ligand and receptor is not the typical event initiating cell signaling. Rather, the response to ligand activation is a complex process that can eventuate in different receptor states and lead to a variety of functional consequences. The economic use of a single receptor type to initiate elaborate downstream signaling can be seen, for example, in the selective and sensitive response of cells to chemotactic factors and in the shifting responses to growth factors during different time points in development. Because of the potential for complex biological systems to be represented by equally complex sets of equations, significant progress in mathematical descriptions of these elaborate signaling processes will be best achieved with concise expressions that still capture the dynamics of the essential biochemical events taking place.

Despite their complexity, biochemical pathways still operate under the principles of mass action and stoichiometry. Additionally, metabolic networks and signaling pathways have been intuitively, but not formally, understood to be weakly reversible. Taken together, these basic concepts can lead to the formalism that has been presented here, in which brevity and flexibility are achieved through a minimal set of parameters that can ultimately be regarded as equilibrium constants for the signaling network. This generalization leads to the characterization of multiple receptor states in terms of weighted averages of its respective activities, with the generalized parameters as weighting factors. How these parameters can be further exploited
to character drug receptor interactions and signaling in more complex biochemical networks is the subject of further investigations.

Appendix A. The nullspace of \(K \)

\(A.1. \) Computing the scalars \(v_2, v_3, v_4 \)

Consider the model in Fig. 1 and the corresponding matrix \(K \). The vectors in the nullspace of \(K \) satisfy \(K v = 0 \). The vector \(v = (1, v_2, v_3, v_4)^T \) can be determined from the equations:

\[
\begin{align*}
- (k_{21} + k_{31}) + k_{12} v_2 + k_{13} v_3 &= 0, \\
- (k_{12} + k_{42}) v_2 + k_{24} v_4 &= 0, \\
- (k_{13} + k_{43}) v_3 + k_{34} v_4 &= 0,
\end{align*}
\]

which yield

\[
v_3 = \frac{k_{31} k_{12} (k_{24} + k_{34}) + k_{34} k_{42} (k_{21} + k_{31})}{k_{12} k_{24} (k_{13} + k_{43}) + k_{13} k_{34} (k_{12} + k_{42})},
\]

and from this expression both \(v_2 \) and \(v_4 \) can then be computed by

\[
\begin{align*}
v_2 &= -\frac{k_{13}}{k_{12}} v_3 + \frac{k_{21} + k_{31}}{k_{12}} \\
v_4 &= \frac{k_{13} + k_{43}}{k_{34}} v_3 - \frac{k_{31}}{k_{34}}.
\end{align*}
\]

\(A.2. \) Characterization of the nullspace of \(K \)

We review here some standard facts about irreducible matrices. By construction, \(K \) is irreducible and it has negative entries only on its diagonal. So there is a constant \(\gamma > 0 \) such that \(M = K + \gamma I \) has all entries nonnegative. Thus \(M \geq 0 \) and \(M \) is also irreducible. For such matrices, the Perron-Frobenius Theorem states that

1. the spectral radius of \(M \), \(\rho \), is an eigenvalue of \(M \) of multiplicity one;
2. an eigenvector, \(v_\rho \), corresponding to the eigenvalue \(\rho \) (so that \(M v_\rho = \rho v_\rho \)) may be chosen with all entries positive.

Recall that the spectral radius of \(M \) is defined as the largest absolute value of all the eigenvalues of \(M \). \(\rho \) is an eigenvalue of \(M \).

In addition,

3. any vector in the nullspace of \(M \) is an eigenvector of \(M \), corresponding to the eigenvalue \(\gamma \):

\[
M v = K v + \gamma I v = \gamma v;
\]

4. the columns of \(K \) add up to zero, a fact that can be written as \(I K = 0 \) where \(I = (1 \ 1 \cdots 1) \).

Then we have

\[
\tilde{1} M v_\rho = \tilde{1} (\rho v_\rho) = \rho (\tilde{1} v_\rho), \tag{A.1}
\]

where \(\tilde{1} v_\rho \) is a positive scalar, because all the entries of \(v_\rho \) are positive. On the other hand, because \(I K = 0 \),

\[
\tilde{1} M v_\rho = \tilde{1} K v_\rho + \gamma (\tilde{1} v_\rho) = \gamma (\tilde{1} v_\rho). \tag{A.2}
\]

Comparing Eqs. (A.1) and (A.2), it turns out that

\[
\rho (\tilde{1} v_\rho) = \gamma (\tilde{1} v_\rho) \iff \rho = \gamma
\]

Therefore,

\[
\rho v_\rho = M v_\rho = K v_\rho + \gamma v_\rho = K v_\rho + \rho v_\rho \iff K v_\rho = 0,
\]

meaning that \(v_\rho \) is a vector in the nullspace of \(K \). Conversely, point (3) above shows that any element in the nullspace of \(K \) must be an eigenvector of \(M \), corresponding to the eigenvalue \(\gamma = \rho \). This is exactly what we wanted to conclude: the nullspace of \(K \) has dimension one and is spanned by a positive vector \((v_\rho) \).

Appendix B. Proof of Theorem 1

To show that \(\sigma \) is a strictly increasing function of \(L_0 \), we only need to compute its derivative and check that it is always positive. From expression (13) we see that

\[
\frac{d\sigma}{dL_0} = \frac{1}{2(v_2 + v_4)} \left[1 - \frac{2[L_0 + R_0 + \frac{1 + v_3}{v_2 + v_4} - 4R_0]}{2\sqrt{(L_0 + R_0 + \frac{1 + v_3}{v_2 + v_4})^2 - 4R_0L_0}} \right]
\]

\[
= \frac{1}{2(v_2 + v_4)} \times \left[1 - \frac{L_0 - R_0 + \frac{1 + v_3}{v_2 + v_4}}{\sqrt{(L_0 - R_0)^2 + \left(\frac{1 + v_3}{v_2 + v_4}\right)^2 + 2(L_0 + R_0)\frac{1 + v_3}{v_2 + v_4}}} \right].
\]

If \((L_0 - R_0) + (1 + v_3)/(v_2 + v_4) \leq 0 \), then \(d\sigma/dL_0 \) is clearly a positive quantity. Otherwise, if \((L_0 - R_0) + (1 + v_3)/(v_2 + v_4) > 0 \), then notice that the negative term is of the form \((a + b)/\sqrt{a^2 + b^2 + c}\), with \(c > 2ab \), and so

\[
\left(\frac{a + b}{\sqrt{a^2 + b^2 + c}}\right)^2 = \frac{a^2 + b^2 + 2ab}{a^2 + b^2 + c} < 1
\]

implying that \(d\sigma/dL_0 \) is a positive quantity. Therefore, \(\sigma \) is an increasing function of \(L_0 \). Next, recall the conservation equation (9), which may be written as

\[
(1 + v_3)\pi(L_0) + (v_2 + v_4)\sigma(L_0) = R_0.
\]

Note that \(v_2, v_3 \) and \(v_4 \) are constant factors, and that the left-hand side of this equation is to remain constantly equal to \(R_0 \). Taking derivatives with respect to \(L_0 \) on both sides of this equation yields

\[
\frac{d\sigma}{dL_0} = -\frac{v_2 + v_4}{1 + v_3} \frac{d\pi}{dL_0}.
\]
From (i) we know that \(\frac{d\tau}{dL_0} > 0 \) for all \(L_0 \), so it follows that \(\frac{d\tau}{dL_0} < 0 \) for all \(L_0 \). This proves part (ii).

Finally, to prove part (iii), observe that
\[
\frac{dA}{dL_0} = (a_1 + a_3v_3) \frac{dr}{dL_0} + (a_2v_2 + a_4v_4) \frac{d\sigma}{dL_0}
\]
\[
= -\left((a_1 + a_3v_3) \frac{v_2 + v_4}{1 + v_3} + (a_2v_2 + a_4v_4) \right) \frac{d\sigma}{dL_0}.
\]
Assume first that \(q < 1 \). Then,
\[
\frac{a_1 + a_3v_3}{a_2v_2 + a_4v_4} \frac{v_2 + v_4}{1 + v_3} > 1 \Rightarrow
\]
\[
(a_1 + a_3v_3) \frac{v_2 + v_4}{1 + v_3} > (a_2v_2 + a_4v_4) \Rightarrow \frac{dA}{dL_0} < 0
\]
and therefore \(A \) is a strictly decreasing function of \(L_0 \). Assuming that \(q > 1 \), we can conclude by a similar argument that \(\frac{dA}{dL_0} \) is positive and hence the function is strictly increasing. Finally, whenever \(q = 1 \), it is clear that \(\frac{dA}{dL_0} \equiv 0 \), and so the function is constant.

References

