Geometric Representations for Multi-Robot Systems

Website for Distributed Control of Robotic Networks, by Bullo, Cortés, and Martínez (2009)

- Deployment over a region
- Rendezvous at a common point
- Pattern formation
- Move in a synchronized manner
- Agents have no global knowledge of state of the network, can observe only their closest neighbors
- Focus on motion coordination algorithms with provably correct strategies
- Strong connection to certain geometric objects and geometric optimization problems
 - Proximity graphs, Voronoi cells, optimization problems induced by geometric objects

I. Basic Geometric Concepts

\[P, q \in \mathbb{R}^d \]
- Closed segment:
\[[P, q] = \{ \lambda P + (1-\lambda)q \mid \lambda \in [0,1] \} \]
- Closed halfspace of \(\mathbb{R}^d \) of points closer to \(P \) than \(q \):
 - (halfplane)
\[H_{P,q} = \{ x \in \mathbb{R}^d \mid \| x - P \|_2 \leq \| x - q \|_2 \} \]

- Set in \(\mathbb{R}^d \):
\[S \subset \mathbb{R}^d \]
- \(S \) is convex if for any \(P, q \in S \), \([P, q]\) is contained in \(S \).
- Convex hull of a set, \(\text{co}(S) \), is the smallest convex set that contains \(S \).
• \(S = \{ p_1, p_2, p_3 \} \)

• \(\text{co}(S) = \{ \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 \mid \lambda_i \geq 0, \sum \lambda_i = 1 \} \)

- Polygon: set in \(\mathbb{R}^2 \) whose boundary is the union of a finite number of closed segments.
 - Simple polytope: boundary is not self-intersecting

- Polytope: generalization of polygon to \(\mathbb{R}^d \), \(d \geq 3 \)
 - Convex polytope in \(\mathbb{R}^d \): convex hull of a finite set of points in \(\mathbb{R}^d \) / bounded intersection of a finite set of halfspaces

- A \(d-1 \) facet (or face) is the intersection between the polytope and the boundary of a closed halfspace that defines the polytope.

- Edges are facets of dimension 1
- Vertices are facets of dimension 0

- Partition of \(S \) is a collection of closed connected sets \(\{ W_1, W_2, ..., W_m \} \) for which:
 \(S = \bigcup_{i=1}^{m} W_i \) and \(\text{int}(W_j) \cap \text{int}(W_k) = \emptyset \) for \(j, k \in \{1, ..., m\} \).

- A Voronoi partition of a set \(S \) generated by a set of points \(P = \{ p_1, ..., p_n \} \) in \(S \) is defined as:
\[V(P) = \{ V_i(P), \ldots, V_n(P) \} \], where
\[V_i(P) = \{ \frac{\bar{z}}{f} \in S \mid \text{dist}(\bar{z}, f) \leq \text{dist}(\bar{z}, f) + \exists f_j \in P \setminus \{ f_i \} \}. \]

Voronoi cell of \(f_i \)
- Set of points of \(S \) that are closer to \(f_i \) than to any of the other points in \(P \).

Voronoi partition of the circle generated by 5 points:

* An \(r \)-limited Voronoi partition inside \(S \) is defined as: \(V_r(P) = \{ V_{i,r}(P), \ldots, V_{n,r}(P) \} \), where \(V_{i,r}(P) = V_i(P) \cap B(f_i, r) \)

closed ball in \(\mathbb{R}^2 \) centered at \(f_i \) with radius \(r \)

II. Proximity Graphs

* A proximity graph \(G \) at \(P = \{ f_1, \ldots, f_n \} \subset \mathbb{R}^d \), \(G(P) \), is an undirected graph with vertex set \(P \) and with edge set \(E_G(P) \subseteq \{ f_i, f_j \} \subset P \times P / f_i \neq f_j \}

- Edge set is a function of the relative locations of the points

* Different types of proximity graphs:

 1. \(r \)-disk graph: \(\{ f_i, f_j \} \in E_G(P) \) if \(\| f_i - f_j \| \leq r \).

 2. Delaunay graph: \(\ldots \) if \(V_i(P) \cap V_j(P) \neq \emptyset \).
3. r-limited Delaunay graph: \(\exists \{ i, j \} \in E_G(P) \) if
\[V_i \cap r(P) \cap V_j \cap r(P) \neq \emptyset \]

4. Visibility graph: "" if the closed segment in an environment \(\mathcal{Q} \subset \mathbb{R}^2 \)
\[\{ i, j \} \subset \mathcal{Q} \]

5. Complete graph: all pairs of points are edges.
(fully connected graph)

Given a set \(P = \{ p_1, \ldots, p_n \} \subset \mathbb{R}^d \) and a proximity graph \(G \), the set of neighbors of \(f_i \) according to \(G \) is:
\[N_{G, f_i}(P) = \{ q \in P \mid \{ f_i, q \} \in E_G(P) \} \]

III. Spatially Distributed Maps

- Given a set \(Y \) and a proximity graph \(G \), a map
\[T: (\mathbb{R}^d)^n \rightarrow Y^n \] is spatially distributed over \(G \) if the \(j \)-th component of \(T_j \), \(T_j \), evaluated at any \(P = \{ p_1, \ldots, p_n \} \subset (\mathbb{R}^d)^n \) is a function only of \(f_j \) and of the vertices in \(G(P) \) that are neighbors of \(f_j \).
- Each agent \(j \) has sufficient information to compute \(T_j(P) \).

- Given proximity graphs \(G_1 \) and \(G_2 \), \(G_1 \) is spatially distributed over \(G_2 \) if each agent, when informed about the location of its neighbors according to \(G_2 \), has sufficient info to determine its set of neighbors according to \(G_1 \).
IV. Encoding Coordination Tasks

- Aggregate behavior of agents is evaluated using objective functions: achieving a coordination task = moving agents and changing their states to maximize or minimize an objective function.

- Formulate coordination objectives using functions from geometric optimization.

Deployment

- Place a network of mobile agents in a given environment to achieve maximum coverage (can be defined in different ways).

- Consider a convex polytope (environment) \(Q \subset \mathbb{R}^d \).

Density function \(\phi : Q \rightarrow [0, \infty) \)

- \(\phi \) quantifies the relative importance of different points in the environment (e.g., probability that an event of interest takes place)

Performance function \(f : [0, \infty) \rightarrow \mathbb{R} \) describes the utility of placing an agent at a certain distance from a given location in \(Q \) (agent)

- Smaller distance \(\rightarrow \) larger value of \(f \) decreases as \(\phi \)

- \(\phi \) increases as \(\rho \) moves away from \(q \) (harder to detect the sound)

Goal is to maximize the expected value of the coverage performance by agents in \(Q \subset \mathbb{R}^d \), given \(\phi \) and \(f \).
Define the objective function as $H : Q^n \rightarrow \mathbb{R}$

$$H(p) = \max_{i \in \{1, \ldots, n\}} \int_{Q} f(||q - p_i||) \phi(q) dq$$

$p = \{p_1, \ldots, p_n\}$ H depends on all locations p_i.

Want to find local maximizers of H (set of p_i that maximize its value).

- f should be non-increasing, piecewise continuously differentiable function, possibly with finite jump discontinuities.

- Interpretation of H:
 - For each location $q \in Q$, consider the best coverage of q among those provided by each of the agents i, \ldots, n. This is the value $\max_{i \in \{1, \ldots, n\}} f(||q - p_i||)$.
 - Evaluate the importance $\phi(q)$ of the location q.
 - Sum this quantity over all locations in Q — this is $H(p)$, a measure of the overall coverage.

Can also define $H(p)$ in terms of the Voronoi partition of Q generated by $p = \{p_1, \ldots, p_n\}$ (no repeated points p_i)

$$H(p) = \sum_{i=1}^{n} \int_{V_i(p)} f(||q - p_i||) \phi(q) dq$$

- It can be proved that the Voronoi partition $V(p)$ yields the maximum (optimal) value of $H(p)$ among all partitions of Q.

- Could use W_i from any partition.
The gradient of $H(P)$ is spatially distributed over the Delaunay graph.

Application: Visibility-Based Deployment

Nonconvex polytope $Q \subset \mathbb{R}^d$, $f \in \mathbb{Q}$

$S(f) = \{q \in Q | \exists f, f \in Q\}$ is the visible region in Q from the location f.

$L_s(q) = \begin{cases} 1, & q \in S \\ 0, & \frac{q}{f} \notin S \end{cases}$ indicator function

$H_{vis}(P) = \int_{Q} \max_{i \in \{1, \ldots, n\}} L_s(p_i)(q) dq$

- In 2D, H_{vis} measures the area of the subset of Q composed of points that are visible from at least one of the agents located at f_i.
- A density $f: Q \rightarrow [0, \infty)$ could be included in H_{vis} to assign varying levels of importance throughout the environment.

Application: Rendezvous (a spatial version of consensus)

Agreement over location of agents

$V_{diam}(P) = \max \{\|f_i - f_j\|_1 | i,j \in \{1, \ldots, n\}\}$ objective function

$= 0$ iff $f_i = f_j \forall i,j \in \{1, \ldots, n\}$.
Application: Cohesion and Collision Avoidance

\[H_{\text{coh}, G}(p) = \sum_{i \neq j} h(||r_i - r_j||) \quad G \text{ is a proximity graph} \]

\[h : (0, \infty) \rightarrow \mathbb{R} \text{ is a repulsion/attraction function} \]

\[h(r) \quad \text{(constant)} \quad \text{example } h \]
Designing Motion Coordination Algorithms

- Identical agents that can communicate
- Can design coordination algorithm from the objective function:
 1. Identify an objective fn. \(H(p) \) that is relevant to the desired coordination task.
 2. Analyze smoothness properties of \(H \) and compute its gradient or generalized gradient.
 3. Characterize the critical pts of \(H \), which encode the desired network configurations.
 4. Identify proximity graphs \(G(p) \) to facilitate computation of the gradient of \(H \) in a spatially distrib. manner: if at least one of these graphs is spatially dist. over the agents' communication graph, then a control law for each agent consists of following the gradient of \(H \).

- Closed-loop network trajectories will converge to set of critical pts of \(H \) (accordin to an invariance principle)

Execution of control laws:
- In each communication round, each agent: 1) transmits its position + receives its neighbor positions; 2) computes a notion of the geometric center of its own cell, determined according to some partition of the environment.
- Between commun. rounds, each robot moves toward this center.
Step 1 for different coordination tasks.

\[H(P) = \sum_{i=1}^{n} \int_{V_i(P)} f(\|q - f_i\|_2) \phi(q) dq \quad P = \{f_1, \ldots, f_n\} \]

(a) Distortion problem: \[f(x) = -x^2 \]

\[H(P) = -\sum_{i=1}^{n} \int_{V_i(P)} \|q - f_i\|_2^2 \phi(q) dq \]

- In signal compression, \(-H\) is called the distortion function; "distortion" refers to the average deformation (weighted by \(\phi(q)\)) caused by reproducing \(q\) with the location \(f_i\), where \(q \in V_i(P)\).

(b) Area problem: \[f(x) = \mathbb{1}_{[0,a]}(x) \], \(a > 0\)

\[T_S(x) = \begin{cases} 1, & x \in S \\ 0, & x \notin S \end{cases} \quad \text{indicator function} \]

\[H(P) = \sum_{i=1}^{n} \int_{V_i(P)} T_S(\|q - f_i\|_2) \phi(q) dq \]

\[= \sum_{i=1}^{n} \int_{V_i(P) \cap \overline{B}(f_i,a)} \phi(q) dq \]

\[= \sum_{i=1}^{n} A_{\phi}(V_i(P) \cap \overline{B}(f_i,a)) \]

where \(A_{\phi}(S) = \int_S \phi(q) dq\) is the area of \(S\) weighted according to \(\phi(q)\).
$H(p) = A \bigcap_{i=1}^{n} B(p_i, a) = \text{area of the union of } n \text{ balls, weighted according to } \phi(q)$

Step 2 for different coordination tasks

- Characterize the smoothness of $H(p)$

For a performance function $f : [0, \infty) \rightarrow \mathbb{R}$, let $\text{Dscn}(f)$ denote the (finite) set of points where f is discontinuous.

For each $a \in \text{Dscn}(f)$, we define:

\[
\begin{align*}
 f_-(a) &= \lim_{x \to a^-} f(x), \\
 f_+(a) &= \lim_{x \to a^+} f(x)
\end{align*}
\]

\(x\) approaches from the left \(\xrightarrow{\text{from the left}} \) \(x \to a^- \)

\(x\) approaches from the right \(\xrightarrow{\text{from the right}} \) \(x \to a^+ \)

- Given a set $Q \subset \mathbb{R}^d$ that is bounded and measurable, a density $\phi : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, and a performance function $f : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$, the objective fn. $H : Q^n \rightarrow \mathbb{R}$ is:

1. **Globally Lipschitz on Q^n**
 - Given $S \subset \mathbb{R}^k$, a function $f : S \rightarrow \mathbb{R}^k$ is globally Lipschitz if there exists $K > 0$ such that $\|f(x) - f(y)\|_2 \leq K \|x - y\|_2$ for all $x, y \in S$.

2. **Continuously differentiable on $Q^n \setminus \text{Pcoin}c$**

 $\text{Pcoin}c = \{ (f_1, \ldots, f_n) \in (\mathbb{R}^d)^n | f_i = f_j \text{ for some } i \neq j \}$

 where for $i \in \{1, \ldots, n\}$.
\[
\frac{\partial H}{\partial f_i}(p) = \int_{V_i(p)} \frac{\partial}{\partial f_i} f(\mathbf{q}) \cdot (-\mathbf{p} \cdot \mathbf{n}) \phi(q) dq \\
+ \sum_{a \in \text{Dscn}(f)} \left(f^-(a) - f^+(a) \right) \int_{V_i(p) \cap \partial B(f_i,a)} n_{\text{out}}(q) \phi(q) dq \\
\cdot n_{\text{out}} \text{ is the outward normal vector to } B(f_i,a)
\]

- The gradient of \(H \) is spatially distributed over the Delaunay graph (for which \(\{ f_i, p_j \} \in E_G(p) \text{ if } V_i(p) \cap V_j(p) \neq \emptyset \)).
- The motion of \(f_i \) affects \(V_i(p) \) and \(V_j(p) \), \(\{ f_i, p_j \} \in E_G(p) \).

- **Distortion problem**, \(f(x) = -x^2 \)
- \(f(x) \) has no discontinuities \(\Rightarrow \) 2nd term in \(\frac{\partial H}{\partial f_i} \) is zero
- Centroid of \(V_i(p) \) with respect to \(\phi \):
 \[
 CM_\phi(V_i(p)) = \frac{1}{A_\phi(V_i(p))} \int_{V_i(p)} \phi(q) dq \\
 A_\phi(V_i(p)) = \int_{V_i(p)} \phi(q) dq
 \]
- Area of \(V_i(p) \) weighted according to \(\phi \):
 \[
 A_\phi(V_i(p)) = \int_{V_i(p)} \phi(q) dq
 \]
- Polar moment of inertia of \(V_i(p) \) about \(f_i \in V_i(p) \):
 \[
 \int_\phi(V_i(p), f_i) = \int_{V_i(p)} \| \mathbf{q} - \mathbf{p} \|^2 \phi(q) dq
 \]
Parallel axis theorem:
\[J_\phi(V_i(P), \phi_i) = J_\phi(V_i(P), CM_\phi(V_i(P))) + A_\phi(V_i(P)) \| \phi_i - CM_\phi(V_i(P)) \| ^2 \]

Note that for this problem,
\[H(P) = - \sum_{i=1}^{n} J_\phi(V_i(P), \phi_i) \]

- It can be shown that:
\[\frac{\partial H}{\partial \phi_i}(P) = 2 A_\phi(V_i(P)) (CM_\phi(V_i(P)) - \phi_i) \]

\[\Rightarrow \text{the } i\text{th component of the gradient points in the direction of the vector from } \phi_i \text{ to the centroid of its Voronoi cell.} \]

(b) Area problem, \(f(x) = 1_{[0,a]}(x), \ a > 0 \)

- \(f(x) \) is differentiable everywhere except at the discontinuity \(x = a \), and its derivative is 0.

\[\Rightarrow \text{1st term in } \frac{\partial H}{\partial \phi_i} \text{ is zero} \]

\[\Rightarrow \frac{\partial H}{\partial \phi_i}(P) = (f(a) - f_+(a)) \int_{V_i(P) \cap \partial B(\phi_i,a)} \omega_0(q) \phi(q) dq \]

This gradient is the average of the normal at each point of \(V_i(P) \cap \partial B(\phi_i,a) \).

Ex) \(\phi(q) \) is constant:

By moving along the gradient directions (arrows), the agents decrease overlap and cover new regions of space.
Step 3 for different coordination tasks

(a) Distortion problem:
- Critical points of \(f(p) \) are the set of centroidal Voronoi configurations in \(Q \): each point is the centroid of its own Voronoi cell \(f_i = \text{CM} \phi(V_i(p)) \).

(b) Area problem:
- Critical points of \(H(p) \) are the set of \(a \)-limited area-centered Voronoi configurations in \(Q \): each \(f_i \) is a local maximum for the area of \(V_i(p) \cap \overline{B(f_i,a)} \) at fixed \(V_i(p) \).

Step 4

(a) Distortion problem: The gradient of \(H \) is spatially distributed over the Delaunay graph.

(b) Area problem: The gradient of \(H \) is spatially distributed over the \(2a \)-limited Delaunay graph \(\{ f_i, f_j \} \in \mathcal{E} \cap \mathcal{G}(p) \) if \(V_i, a(p) \cap V_j, a(p) \neq \emptyset \).

- Robots with range-limited interactions can compute the gradients of \(H \).

Coordination algorithm:

(a) Move toward the centroid of own Voronoi cell [Distortion]

(b) Move in the direction of the weighted normal to the boundary of own cell (Area)
Algorithms for Coverage Control

- Definition of a robotic network $S = (I, R, E_{cm})$:
 1. $I = \{1, ..., n\}$: set of unique identifiers
 2. $R = \{R^i \mid i \in I\} = \{(X^i, U^i, X_0^i, f^i)\}_{i \in I}$ is a set of mobile robots, where:
 - $X^i = \text{d-dimensional state space}$
 - $U^i \subseteq \mathbb{R}^m$, $0 \in U^i$; U^i = input space
 - X_0^i = set of allowable initial states; $X_0^i \subseteq X^i$
 - $f^i : X^i \times U^i \rightarrow \mathbb{R}^d$ is a continuously differentiable control vector field on X^i that determines the robot motion according to:
 - $\dot{x}(t) = f(x(t), u(t))$
 - $x(t)$ = physical state of robot (ex. $\begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$)
 - $u(t)$ = control input
 3. E_{cm} = communication edge map: map from $X^1 \times X^2 \times ... \times X^n$ to the subsets of $I \times I$.

- If all robots are identical, then the robot network is uniform.

- $G^c = (I, E_{cm}) = (V, E)$, the communication graph of the network. This is defined by a proximity graph (defined earlier).
Planar models for robots, $\dot{x}(t) = f(x(t), u(t))$

$\mathbf{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$

$\dot{x} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \omega \end{bmatrix}$

$v = \text{forward linear velocity}$
$\omega = \text{angular velocity}$

$u = \begin{bmatrix} v \\ \omega \end{bmatrix}$

Different types of models:

1. Unicycle: $v, \omega \in [-1, 1]$
2. Differential drive robot:

 $v = \frac{1}{2} (v_{\text{right}} + v_{\text{left}}), \quad \omega = \frac{1}{L} (v_{\text{right}} - v_{\text{left}})$

 $v_{\text{right}}, v_{\text{left}} \in [-1, 1]$
3. Reeds-Shepp car: $v \in \{-1, 0, 1\}, \quad \omega \in [-1, 1]$
4. Dubins vehicle: $v = 1, \omega \in [-1, 1]$

For the 4-wheeled robot:

- (x, y) is midpoint of rear axle
- θ is orientation of rear axle
 - $v = \text{forward linear velocity of rear axle}$

- $\omega = \frac{v}{L} \tan \phi$, ϕ is vehicle steering angle
Examples of robotic networks

1. \(S_D \): uniform network of robots moving according to the 1st-order model: \(\dot{x} = u \), \(u \in [-\text{u max}, \text{u max}]^d \), \(x \in \mathbb{R}^d \) (omnidirectional robot)
 - can move in any direction

 - Each robot can sense its own position and communicate with its neighbors, as defined by the Delaunay graph.

2. \(S_{LD} \): same as \(S_D \), except the communication graph is the \(r \)-limited Delaunay graph.

3. \(S_{vehicles} \): uniform network of robots moving according to:
 \[
 \begin{bmatrix}
 \dot{x} \\
 \dot{y} \\
 \dot{\theta}
 \end{bmatrix} =
 \begin{bmatrix}
 v \cos \theta \\
 v \sin \theta \\
 \omega
 \end{bmatrix}
 \]
 - Each robot can sense its own position.
 - Communication graph is the Delaunay graph.

Execution of control laws:

In each communication round, each agent:

1. Transmits its position to receive its neighbors' positions.
2. Computes a notion of the geometric center of its own cell, determined according to some partition of the environment \(Q \) (\(S_D, S_{LD}: Q \) is a polytope; \(S_{vehicles}: Q \) is a convex polygon)

Between comm. rounds, each robot moves toward this center.
Control law for distortion problem on network S_D

\[
\begin{align*}
V &= Q \cap (\cap \{ H_p \mid \text{prevd} \}) \\
\mathbf{\dot{p}} &= C M \phi(V) - \mathbf{p} \\
\text{Use: } \mathbf{p}(t+1) &= \mathbf{p}(t) + \mathbf{u}(t) \quad \text{(discrete-time motion model)}
\end{align*}
\]

H_p is the half-space of points $q \in \mathbb{R}^d$ with the property that $\| q - p \|_2 \leq \| q - x \|_2$.

Control law for distortion problem on S-vehicles

\[
\begin{align*}
V &= Q \cap (\cap \{ H_p \mid \text{prevd} \}) \\
\mathbf{\dot{v}} &= K \begin{bmatrix} \cos \Theta & \sin \Theta \end{bmatrix} \cdot (\mathbf{p} - C M \phi(V)) \\
\omega &= 2K \tan^{-1} \left(\frac{[\sin \Theta \cos \Theta] \cdot (\mathbf{p} - C M \phi(V))}{[\cos \Theta \sin \Theta] \cdot (\mathbf{p} - C M \phi(V))} \right)
\end{align*}
\]

$k \in (0, \frac{1}{\max[\pi, \text{diam}(Q)]})$ so that $V, \omega \in [-1, 1]$ (can be implemented in unicycle and differential drive models)

\[\text{diam}(Q) = \text{maximum distance between any 2 points in } Q\]