Coordinated Construction by a Distributed Multi-Robot Sys. (Ph.D. of Seung-hook Yun, MIT)

- Groups of robots that complete a complex assembly task using the maximal amount of parallelism, in a way that can adapt to the amount of construction material.

- 2 types of robots: part delivery robots that locate & deliver parts, and assembly robots that join the parts into desired objects.

- The target structure is given by a blueprint, a material-density function that encodes the object geometry and is known to all robots.

- The assembly robots partition the structure adaptively into subassemblies, and each robot is responsible for completion of a partition region.
 - Robots locally compute a Voronoi partition, weighted by the mass of all parts in the partition, and perform a gradient descent algorithm to balance the masses of the regions.

- The delivery robots locate parts in a cache and bring them to the assembly robots.
 - Want the assembly robots to work at approx. the same pace.
 - Delivery occurs according to the demand of mass for each subassembly, the amount of remaining work (measured in the # of components that have to be added).
Proposed solution using Voronoi cells:

- Each robot travels the entire blueprint (slow)
- Requires knowledge of exact construction plan & placement of each part before execution
- Each assembly robot builds within its own Voronoi cell.

- Decentralized controllers are proposed for (1) partitioning, (2) part delivery, and (3) assembly.

- Construction involves discrete components.
 - ex) Truss structure:
 - Can be modeled as a graph

Problem Formulation

\[N_a = \# \text{ of } D \quad N_e = \# \text{ of } A \]

- Robots can communicate locally with other robots within their communication range.
- The domain is $Q \subset \mathbb{R}^N$ (N=2 or 3) or a graph $G = (V, E)$.

(a) **Domain is $Q \subset \mathbb{R}^N$:***

- Robots are given a target density fn. $\phi_t : Q \rightarrow \mathbb{R}$

 Density of construction material

- If components can be built independently + an assembling robot is capable of assembling all of them, then:

 $$\phi_t = \sum_{u=1}^{z} \beta_u \psi_u$$

 (β_u weights the importance of uth component, the piece, time until piece is needed in the assembly, etc.)

- To represent truss structures, ϕ_t is defined point-wise on the grid that corresponds to the truss. Point density $\propto \#$ of possible truss connections at the point.

(b) **Domain is $G = (V, E)$:**

- $p_i \in V$ is the position node of robot i

- $d(\cdot, \cdot) : E \rightarrow \mathbb{R}^+ =$ shortest distance measure between 2 vertices [$d(s, t) = \infty$ when $(s, t) \notin E$]

- $\phi_t(v) =$ vertex weight denoting the importance of a task at vertex v (target density fn.)

- Divide G into graph Voronoi partitions:

 $$V_i = \{ v \in V | d(v, p_i) < d(v, p_j), \forall j \neq i \}$$
The nearest robot to \(v \) will execute the task at \(v \). Each robot is allocated the task that includes its Voronoi partition \(V_i \) in \(G \).

- Need to clarify assignment of a vertex with same distance to multiple robots; give priority to robot with the minimum ID:
 \[v \in V_i \Rightarrow i = \min \{ j \mid d(v, p_i) = d(v, p_j) \} \]
- Let \(w_i \) be a weight; larger \(w_i \) ⇒ larger region

Generalized Voronoi partition:

\[V_i = \{ v \in V \mid (d(v, p_i) - w_i) < (d(v, p_j) - w_j), \forall j \neq i \} \]

Assumptions:
1. \(G \), \(\phi_t(v) \) is given to each robot
2. \(\phi_t(v) \) is fixed
3. robots do not know locations of other robots \(\Rightarrow \) can't precompute the optimal config.
4. robots precompute the distance matrix \(D \) of \(G \) as a \(|V| \times |V| \) symmetric matrix where

\[D_{ij} = d(v_i, v_j) \].

Construction Algorithm:

1. Deploy \(A \) in \(Q \) or \(V \)
2. Place \(A \) at optimal task locations in \(Q \) or \(V \) (uses a distributed controller)

Repeat until task completed or out of parts:
3. carry source parts to \(A \) with max. demand, \(w_i \) mass
4. assemble delivered parts after determining the optimal placement of the part in the assembly
Equal-mass partitioning

\[\phi_t : Q \rightarrow R \]

\(p_i = \) position of \(A \)

Mass of robot \(i \) = size of total shaded region in its Voronoi region

\(\rightarrow_v \) = direction of motion of robot;
component of normal to edge of Voronoi region
(combine to get resultant direction of robot's motion)

\[\Delta M_{V_i}^+ = 4 \quad \Delta M_{V_2}^- = 0 \]

\[\Delta M_{V_3}^+ = 2 \quad \Delta M_{V_4}^+ = 1 \]

\[\blacksquare = \) completed assembly
\[\Delta M_{V_i}^- = \) demanding mass of region \(i \)
\[= \) area of \(\blacksquare \) in region \(i \)
\[- \) area of \(\) in region \(i \)

\(\bullet \) is in \(V_4 \): among the neighboring regions \((V_2, V_3) \),
\(V_3 \) has a higher demanding mass

\[\Rightarrow \bullet \) moves to \(V_3 \).

\(\bullet \) is in \(V_3 \): among the neigh. regions \((V_1, V_4) \),
\(V_1 \) has a higher demanding mass

\[\Rightarrow \bullet \) moves to \(V_1 \).
Decentralized equal-mass partitioning controller

- Given \(q \in Q \), the nearest robot to \(q \) will execute the assembly task at \(q \).
- Each robot is allocated the assembly task in its Voronoi partition:
 \[
 V_i = \{ q \in Q | \| q - p_i \| \leq \| q - p_j \|, \forall j \neq i \} \]
 \(\phi_t = \) density of parts
 \[
 M_{Vi} = \int_{V_i} \phi_t(q) \, dq
 \]

 \[
 \text{Cost function: } H_0 = \sum_{i=1}^{n} \int_{V_i} \frac{1}{2} \| q - p_i \|^2 \phi(q) \, dq
 \]
 [for max sensor coverage]

- Want each robot to have the same amount of assembly work (same # of truss elements)
 \[
 H_0 = \left(\frac{1}{n} \sum_{i=1}^{n} M_{Vi} \right)^n \quad H = H_0 - \sum_{i=1}^{n} M_{Vi}
 \]

- \(H \) is continuously differentiable
- Minimizing \(H \) leads to equal-mass partitioning:
 \[
 \left(\text{arithmetic mean} \right) \quad \frac{1}{n} \sum_{i=1}^{n} M_{Vi} \geq \left(\prod_{i=1}^{n} M_{Vi} \right)^{\frac{1}{n}} \quad \left(\text{geometric mean} \right)
 \]
 \(\geq \) is only if all \(M_{Vi} \) are the same (then \(H = 0 \))

- Can guarantee that \(H \) converges to a local minimum under
 the controller
The robot controller continuously decreases the cost \mathcal{H}:

$\mathcal{H} \leq 0, \ t > 0$.

$\dot{\mathcal{H}} = \sum_{i=1}^{n} \frac{\partial \mathcal{H}}{\partial \mathbf{p}_i} \dot{\mathbf{p}}_i \quad \mathbf{p}_i = \text{position of robot } i$

$\mathcal{N}_i = \text{set of neighbors of robot } i$

Can derive $\dot{\mathcal{H}}$ as:

$\dot{\mathcal{H}} = -\sum_{i=1}^{n} \prod_{l \not\in \mathcal{E}_i, \mathcal{N}_i} M_{vl} \sum_{j=1, \mathcal{N}_i} \frac{\partial M_{vj}}{\partial \mathbf{p}_i} \prod_{k \in \mathcal{E}_i, \mathcal{N}_i, k \neq j} M_{vk} \dot{\mathbf{p}}_i$

- Decentralized controller:

$\dot{\mathbf{p}}_i = k \frac{\mathbf{J}_i}{\|\mathbf{J}_i\|^2 + \lambda^2}$

$k = \text{positive control gain}$

$\lambda = \text{constant to stabilize controller even around singularities where } \|\mathbf{J}_i\|^2 = 0$.

- Only depends on variables of neighboring robots.

The controller guarantees that $\dot{\mathcal{H}}$ converges to either a local maximum or a global maximum:

$\dot{\mathcal{H}} = -k \sum_{i=1}^{n} \frac{\|\mathbf{J}_i\|^2}{\|\mathbf{J}_i\|^2 + \lambda^2} \prod_{l \not\in \mathcal{E}_i, \mathcal{N}_i} M_{vl}$

$k > 0, \ M_{vl} > 0 \Rightarrow \text{each term of } \dot{\mathcal{H}} \text{ is negative}$
Also, H is differentiable, and robot trajectories are bounded in Q.

Controller keeps H decreasing until all $J_i = 0$ (relocating the robots does not change H).

Equal-mass partitioning with locational optimization

Although the controller above leads robots to regions with equal masses, the region shapes may not be desirable in terms of robot travel time and communication range.

- **Add locational optimization property to the controller.**
 - A solution of loc. optim. is to locate robots at the centroids:

 $$CV_i = \frac{1}{Mv_i} \int_{V_i} q \phi_t(q) dq$$

 - Redefine H_0 as:
 $$H_0 = \sum_{i=1}^{n} Mv_i \| CV_i - \hat{p}_i \|^2$$
 - New cost function:
 $$\hat{H} = H + \gamma H_0 \quad (\gamma > 0 \text{ can be tuned})$$
 - Can redefine \hat{p}_i to produce same convergence prop. for \hat{H}.

Locational optimization: Optimization problems in operations research for placing facilities to minimize costs in terms of distance (transportation costs).