Understanding the Future of Energy Efficiency in Multi-Module GPUs

Akhil Arunkumar*, Evgeny Bolotin#, David Nellans#, Carole-Jean Wu*

*Arizona State University, #NVIDIA
Multi-Module GPUs

On-package Integration

On-board Integration

Hybrid Integration

On-package Integration
Utilize organic package / interposer
• Arunkumar et al., ISCA ‘17
• Vijayaraghavan et al., HPCA ‘17

On-board Integration
Utilize PC board
• Milic et al., ISCA ‘17
• NVIDIA DGX, HGX

Hybrid Integration
Utilize package and PC board
• Dally et al., VLSI ’18

Prior works have focused only on the performance aspect.
Energy Cost of Multi-Module Scaling

- Energy cost per task could double!
 - 32 GPMs integrated on-board consumes 2x the energy of 1 GPM 😞

- What are the energy efficiency limitations?

- Where are the bottlenecks?
Outline

• Introduction and background
• GPU energy estimation framework – GPUJoule
• Energy efficiency scaling metric – EDPSE
• Energy efficiency trends in future multi-module GPUs
• Conclusion
GPU Energy Estimation – Prior Work

• Bottom-up GPU energy estimation$^{[1][2][3]}$:
 • Estimate energy cost of each microarchitectural component
 • Hard to keep current as GPUs evolve

• Top-down instruction-based energy estimation$^{[4][5][6]}$:
 • Estimate energy cost of instruction operations executed
 • Flexible and agile as microarchitecture evolves

Top-down energy model is well suited for GPUs

$^{[1]}$ Hong and Kim, “An integrated GPU power and performance model”, ISCA ’10
$^{[2]}$ Leng et al., “GPUWattch: Enabling energy optimizations in GPUs”, ISCA ’13
$^{[3]}$ Guerreiro et al., “GPGPU power modeling for multi-domain voltage-frequency scaling”, HPCA ’18
$^{[4]}$ Kestor et al., “Quantifying the energy cost of data movement in scientific applications”, IISWC ’13
$^{[5]}$ Pandiyan et al., “Quantifying the energy cost of data movement for Emerging Smartphone Workloads on Mobile Platforms”, IISWC ’13
$^{[6]}$ Shao et al., “Energy characterization and instruction-level energy model of Intel’s Xeon Phi Processor”, ISLPED ’13
Our Contribution: The GPUJoule Framework

• Key Idea:
 • Estimate the energy-per-instruction (EPI) for each compute instruction type
 • Estimate the energy-per-transaction (EPT) for each memory transaction type
 • GPU-Energy (per-application):
 \[\text{GPU-Energy} = \sum(N_i \times EPI_i) + \sum(Txn_j \times EPT_j) + \text{idle_energy} \]
GPUJoule Energy Modeling Methodology

Microbenchmarks
- Stress
- Compute and Memory Insts

GPUJoule Energy Model

\[
\text{Est. Energy} = \sum(N_i \times \text{EPI}_i) + \sum(Tx_{n_j} \times \text{EPT}_j) + \text{idle energy}
\]

uBench Validation

\[
\text{Error} = (S_i) \text{ Measured Energy} - \text{Est. Energy}
\]

Compute Instruction Microbenchmarks

For \(i = 0\) to \(i < \text{num_iterations}\) do:

\[
\text{__asm_volatile} (\ "fma.rn.f32 \%r3, \%r1, \%r3, \%r2;"
\]

Memory Instruction Microbenchmarks

For \(i = 0\) to \(i < \text{num_iterations}\) do:

\[
\text{ptr} = (\text{void **})(\text{array[index]})
\]

\[
\text{ptr} = (\text{void**})(\ast\text{ptr})
\]
GPUJoule Validation

• GPU platform
 • Nvidia Tesla K40 GPU
 • 15 SMs, 16 – 48 KB L1 cache,
 • 1.5 MB L2 cache, 12 GB, 280 GB/s GDDR5 Memory
 • On-board power sensors for power measurement

• Workloads
 • Validation microbenchmarks ➔ compute instruction + data movement operations
 • Real GPU applications from Rodinia, CORAL & Stream suites
Tesla K40 Energy Characteristics

<table>
<thead>
<tr>
<th>Inst or Op</th>
<th>EPI (nJ)</th>
<th>EPT (pJ/bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DADD, FFMA</td>
<td>0.15, 0.05</td>
<td>-</td>
</tr>
<tr>
<td>IADD, IMAD</td>
<td>0.07, 0.15</td>
<td>-</td>
</tr>
<tr>
<td>LOG2, SINE</td>
<td>0.03, 0.10</td>
<td>-</td>
</tr>
<tr>
<td>Shd Mem -> Reg, L1 -> Reg</td>
<td>-</td>
<td>5.32, 5.85</td>
</tr>
<tr>
<td>L2 -> L1</td>
<td>-</td>
<td>15.48</td>
</tr>
<tr>
<td>DRAM -> L2</td>
<td>-</td>
<td>30.55</td>
</tr>
</tbody>
</table>

- EPI influenced by bit width, and functional unit
- EPT influenced by the level of memory hierarchy
 - DRAM -> Register costs 9x more than L1 -> Register
 - DRAM -> Register costs 80x more than floating point compute
GPUJoule Accuracy

Average accuracy of 90% across GPU applications compared to real silicon measurements
Outline

• Introduction and background
• GPU energy estimation framework – GPUJoule
• Energy efficiency scaling metric – EDPSE
• Energy efficiency trends in future multi-module GPUs
• Conclusion
Quantifying Energy Efficiency: EDP Scaling Efficiency

- EDP and ED2 well suited for comparing systems with similar resources
- For strong scaled systems: Energy-Delay-Product Scaling Efficiency (EDPSE)

$$EDPSE = \frac{EDP_1}{N} \times \frac{1}{EDP_N}$$

- Evaluates performance, energy costs, and resource scaling together
- Systems can be expected to achieve an EDPSE threshold in the future
 - 50% EDPSE \Rightarrow “Energy efficiency scales to 50% of the ideal with strong scaling”
Outline

• Introduction and background
• GPU energy estimation framework – GPUJoule
• Energy efficiency scaling metric – EDPSE
• Energy efficiency trends in future multi-module GPUs
• Conclusion
Methodology

- **Performance Simulations:**
 - Model GPUs with 1 – 32 GPU modules
 - Distributed CTA scheduling, first touch page placement, ring interconnect

<table>
<thead>
<tr>
<th>BW Config Name</th>
<th>I/O BW</th>
<th>DRAM BW</th>
<th>I/O to DRAM BW Ratio</th>
<th>Integration Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x-BW</td>
<td>128 GB/s</td>
<td>256 GB/s</td>
<td>1:2</td>
<td>On-Board</td>
</tr>
<tr>
<td>2x-BW</td>
<td>256 GB/s</td>
<td>256 GB/s</td>
<td>1:1</td>
<td>On-Package</td>
</tr>
<tr>
<td>4x-BW</td>
<td>512 GB/s</td>
<td>256 GB/s</td>
<td>2:1</td>
<td>On-Package</td>
</tr>
</tbody>
</table>

- **Energy Modeling:**
 - EPI and EPT values from GPUJoule
 - Augmented with HBM Memory & Inter-GPM data movement energy costs

<table>
<thead>
<tr>
<th>Energy Cost</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Package Inter-GPM<sup>[2]</sup></td>
<td>0.54 pJ/bit</td>
</tr>
<tr>
<td>On-Board Inter-GPM<sup>[3]</sup></td>
<td>10 pJ/bit</td>
</tr>
</tbody>
</table>

EDP Scaling Efficiency of Future GPUs

- EDPSE reduces drastically with increase in GPMs
- Multi-Module GPUs face energy efficiency limitations at scale
Diminishing Trend in Energy Efficiency Scaling

- Speedup reduces as number of modules increase
- NUMA-effects lead to performance loss and energy increase
On-package integration and constant energy amortization

- Multi-module GPUs suffer from high constant energy overheads
 - VRMs, power delivery network, system I/O etc.

- On-package integration allows amortization of these overheads

Higher link BW and tighter integration yields better energy efficiency scaling
Speedup & Energy Consumption

- Speedup is dependent on bandwidth
- Energy consumption drops with speedup
- Only increasing GPMs might not help
 - 16-GPM with 2xBW has same performance as 32-GPM with 1xBW
 - Consumes only half the energy!
- Path to an efficient 32-GPM GPU
 - Increase bandwidth to 4x-BW.
 - Utilize on-package integration
 - Reduce energy consumption by 45%
Conclusions

• Developed GPUJoule Instruction level GPU energy estimation framework
 • Achieves 90% accuracy compared to real silicon energy measurements
 • Open sourced at github.com/akhilarunkumar/GPUJoule_release

• Identify key energy efficiency trends in future GPUs
 • Energy efficiency scaling reduces as number of modules increase
 • NUMA effects lead to suboptimal performance and energy consumption
 • Inter-module bandwidth and tighter integration of components (on package integration) lead to higher energy efficiency
Understanding the Future of Energy Efficiency in Multi-Module GPUs

Thank you

Akhil Arunkumar*, Evgeny Bolotin#, David Nellans#, Carole-Jean Wu*

*Arizona State University, #NVIDIA
Impact of On-Board Switch

![Graph showing the impact of on-board switch integration on EDPSE (%)](image-url)