Microbiological Improvement of the Physical Properties of Soil

Edward Kavazanjian, Jr., Ph.D., P.E., Associate Professor
and
Ismail Karatas, Graduate Student

Department of Civil and Environmental Engineering
Arizona State University

Symposium Honoring Professor James K. Mitchell
6th International Conference on
Case Histories in Geotechnical Engineering
14 August 2008 Arlington, Virginia
CONTRIBUTIONS OF JAMES K. MITCHELL (1)

- Clay Fabric and Compacted Soil Properties
- Rate Process Theory and Stress-Strain-Time Behavior
- Electro-Osmosis and Chemical Osmotic Effects
- Clay Sensitivity and Bonding, Effective Stress and Strength
- Lunar Soil Mechanics
- Waste Fills

Department of Civil and Environmental Engineering
CONTRIBUTIONS OF JAMES K. MITCHELL (2)

- Soil Liquefaction
- Stone Column Performance
- Aging in Clay and Sands
- CPT Interpretation
- Reinforced Soil Systems
- Soil Improvement by Blasting
- Seismic Risk Mitigation
CONTRIBUTIONS OF JAMES K. MITCHELL (3)

• BioGeotechnical Engineering

Biological Considerations in Geotechnical Engineering

James K. Mitchell, Hon.M.ASCE,¹ and J. Carlos Santamarina, M.ASCE²

Journal of Geotechnical and Geoenvironmental Engineering

Vol. 133, No. 10, pp. 1222 - 1233
BioGeotechnical Improvement Processes that Operate on a Geological Time Scale

- Cementation of Granular Soils
 - Carbonate Cementation
 - Transformation of Sand to Sandstone

- Mineral Transformations
 - Smectite to Illite at High Temperature and Pressure

- Formation of the Desert “Varnish” (Crust)
BioGeotechnical Processes that Cause Adverse Effects in Engineering Time Frames

- Clogging of Drainage Systems in Dams, Landfills, and Waste Dumps
- Clogging of Water Treatment Plant Filters
- Fouling of Well Screens
- Formation of Mineral Scale on Pipes
The BioGeotechnical Challenge

• Accelerate beneficial processes to occur in a time frame of interest and/or
• Induce adverse processes in a context where the effect is beneficial
BioGeotechnical Improvement Processes and Applications

- Mineral Precipitation
 - Bearing Capacity, Settlement Control, Liquefaction Mitigation, Excavation Stability, Tunneling, *Carbon Sequestration* (?)

- Mineral Transformation
 - Soil Expansion Potential, Slope Stability

- Biopolymer and Biofilm Growth
 - Seepage Control, Subsurface Barriers, Corrosion, Erosion Control
Application of Microbiological Mineral Precipitation Processes to Engineering

• Advantages
 – Non-destructive, Non-Disruptive
 – Sustainable
 – Cost Effective

• Challenges
 – Understanding the Complex Processes
 Geo….., Chem……, Micro….., Hydro…..
 – May Need to Develop Site Specific Approaches
Precipitation Mechanisms

• Carbonate Precipitation
 – Hydrolysis of urea
 – Oxidation of organic compounds by sulfate-reducing bacteria
 – Oxidation of organic compounds by denitrifying bacteria
 – Oxidation of organic compounds consisting of carbon and nitrogen in a well-buffered media
 – Oxidation of nitrogen-rich organic compounds in unbuffered media
 – Microbial fermentation of volatile fatty acids
 – Removal of CO$_2$ from bicarbonate-containing solutions
ASU Denitrification Experiments

• First-stage experiments (complete)
 – Proof of Concept and Basis for Biogeochemical Models for Optimization Studies
 – *Pseudomonas denitrificans* (ATCC 13867)
 – 150 ml and 2.0 L Batch Reactors with Liquid Media
 – Periodic Sampling to Monitor pH, alkalinity, \([\text{NO}_3^-]\), \([\text{NO}_2^-]\), \([\text{Ca}^{2+}]\), and Headspace Gas Composition (\(\text{O}_2\) and \(\text{CO}_2\))
 – Studies on Effect of Electron Donor Type, Nutrient Limitations, Salt concentration.
ASU Denitrification Experiments

- Second-stage experiments (in progress)
 - Soil Column Experiments with ASTM 20/30 Ottawa sand
 - Steady-state Flow through Sand Column
 - Periodic Sampling to Monitor pH, alkalinity, $[\text{NO}_3^-]$, $[\text{NO}_2^-]$, and $[\text{Ca}^{2+}]$
 - Continuous Monitoring of Shear Wave Velocity using Bender Elements
Mineral Transformation

• Smectite (Montmorillonite) to Illite (Kim et al., 2004)
 – May Just be Reduction of Fe$^{3+}$ to Fe$^{2+}$ in Iron-Rich Clays (e.g. Nontronite)

Effect of ex-situ treatment with *Shewanella oneidensis* on swelling clay (Fowler, 2008)
In situ Improvement by Mineral Transformation

- Potential Pore Size Constraints

Comparative sizes of microorganisms and soil particles (Mitchell and Santamarina, 2005)

Considerations:
- Pore Size at the Wetting Front in Expansive Clays
- Use of Starved Bacteria and Nano Bacteria
Biopolymer Improvement

- Permeability Reduction – Bonnie Silt Compacted with Xanthan Gum (Karimi et al., 1998)
Biopolymer Improvement

• Martin et al. (1996): Bonnie Silt Compacted with Xanthan Gum in Triaxial Compression
Biopolymer Improvement

- **Corrosion Protection**
 - Significant increase in corrosion of steel and aluminum when protective biofilm was suppressed (Ruo et al., 2004)

- **Erosion Control**
 - Desert crusts develop due to photosynthetic biopolymer growth (Garcia-Pichel, 2002)
Important Issues to Consider

- Permanence/Reversability of Microbial Processes
 - Reversibility may be Beneficial
- Stimulating Microbes In Situ vs. Introducing Microbes to the Environment
- The Need to Add Nutrients and Source Minerals
- Delivery of Necessary Microbes and Nutrients
- Energy Consumption
- Environmental Impacts / Unanticipated Side Effects
- Public Acceptance
Conclusions

• Many Potential Applications of BioGeotechnical Processes for Soil Improvement
• Much Work to be Done to Realize this Potential
THANK YOU

• To the Audience
 – for Your Attention

• To Jim Mitchell
 - for Being Jim