
Fastest Mixing Markov Chain on a Compact Manifold

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman

Abstract— In this paper, we address the problem of opti-
mizing the convergence rate of a discrete-time Markov chain,
which evolves on a compact smooth connected manifold without
boundary, to a specified target stationary distribution. This
problem has been previously solved for a discrete-time Markov
chain on a finite graph that converges to the uniform distribu-
tion. In contrast to this previous work, we consider arbitrary
positive target measures that are supported on the entire state
space of the system and are absolutely continuous with respect
to the Riemannian volume. Similar to the earlier work, we
pose the optimization problem in terms of maximizing the
spectral gap of the operator that pushes forward measures,
also known as the forward operator. Prior to formulating the
optimization problem, we prove the existence of a Kolmogorov
forward operator that can stabilize the class of measures that
we consider. In addition, we prove the existence of an optimal
solution to our problem. Lastly, we develop a numerical scheme
for solving the optimization problem and validate our approach
on a simulated system that evolves on a torus in R3.

I. INTRODUCTION

In this paper, we consider discrete-time Markov chains
(DTMC) that evolve on compact, smooth, connected man-
ifolds without boundary. We focus on stabilizing and opti-
mizing the convergence rate of a DTMC to target probability
measures that are positive almost everywhere on the mani-
fold and that are absolutely continuous with respect to the
Riemannian volume, with L∞ Radon-Nikodym derivatives
that are known as densities in simple terms. Our primary
motivation stems from applications in multi-agent control
systems; specifically, the problem of distributing an ensemble
of identity-independent agents on a state space of choice.

While there are numerous well-established methods for
control of multi-agent systems [4], [21], [23], many of these
control approaches do not scale well to very large agent
populations. When all agents follow the same control laws
and these control laws are independent of agents’ identities,
an alternative approach is to apply control techniques to a
fluid approximation of the swarm in the form of a mean-field
model [8], [9]. This approximation is justified by modeling
each agent’s dynamics as a DTMC, and then the mean-field
behavior of the population is determined by the Kolmogorov
forward equation corresponding to the DTMC. A standard
assumption in the literature on multi-agent control is that
the state space of the agents is Euclidean. However, the state
spaces of many mechanical systems are naturally represented
as manifolds [22]. Some works have extended multi-agent
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control approaches on Euclidean spaces to manifolds; for
example, consensus and coverage strategies on manifolds
are presented in [25] and [1], respectively. In this work, we
consider the problem addressed in our recent paper [2], the
stabilization of a class of discrete-time nonlinear systems that
describe agents evolving on a compact subset of a Euclidean
space, for agent state spaces that are manifolds. As we will
see, most of our results in [2] carry straightforwardly to our
results here. Our approach of analyzing the stability of a
dynamical system from a measure-theoretic point of view is
quite classical [18], and it is also extensively used in the
context of mean-field games [12], optimal transport theory
[29], and mean-field control [11]. We give a literature review
of significant works that have influenced research on the
stabilization and optimization of Markov processes in [2].

It is known that a DTMC admits a stationary distribution
under certain conditions of irreducibility, recurrency, and
aperiodicity. If it is feasible to make a desired distribution
invariant by choosing appropriate transition probabilities
for the DTMC, then it is possible to compute optimized
transition probabilities that maximize the rate of convergence
to the invariant distribution. One of the earliest works on this
problem is [3], which optimizes the transition probabilities
of a DTMC on a finite graph to stabilize the uniform
distribution. Our present paper generalizes this optimization
problem to continuous state spaces and non-uniform target
measures.

The problems addressed in this paper are posed in Section
III. We identify the types of target measures that can be
stabilized by DTMCs in Section IV. Instead of working with
arbitrary probability measures, we will specifically consider
those with L2 density functions so that we can conduct our
analysis on a Hilbert space. In Section IV, we construct a
forward operator, an analogue of the transition probability
matrix, which has a specified target L2 density as its fixed
point. We formulate an optimization problem that maximizes
the Markov chain’s convergence rate in Section V, prove the
existence of an optimal solution in Section VI, and solve
the problem numerically in Section VII. In Section VIII, we
apply our optimization approach to an example system and
confirm through simulations that the system converges to a
given target measure.

II. NOTATION

We first present notation that will be used throughout the
paper. We define R̄+ := [0,∞) and R+ := (0,∞). Similarly,
we define Z̄+ as the set of all non-negative integers and Z+

as the set of all positive integers.



We denote the state space byM, a d-dimensional smooth,
compact, connected manifold without boundary. Let TxM
denote the tangent space of the manifold at x ∈ M. We
assume that M is equipped with a bi-invariant Riemannian
metric of g : TM×TM→ R̄+, where TM = ∪x∈MTxM
denotes the tangent bundle of the manifoldM. In particular,
the natural measure associated with the Riemannian mani-
fold, known as the Riemannian volume, will be denoted by
mg . Let dg :M×M→ R̄+ denote the Riemannian distance
on M×M. For x ∈ M and h > 0, let Bg(x, h) = {y ∈
M; dg(x, y) ≤ h} denote the ball of radius h centered at
x. We denote the space of probability measures on M by
P(M).

Let (X ,N ,m) be a measure space, where N is
the sigma algebra and m is a measure. We define
Lp(X ,m), where p ∈ [1,∞), as the space {f : X →
R; f is measurable and ‖f‖p < ∞}, where ‖f‖p =
(
∫
|f |pdm)1/p. We also define L∞(X ,m) = {f : X →

R; f is measurable and ‖f‖∞ < ∞}, where ‖f‖∞ =
ess supx∈X |f(x)|. For topological spaces X ,Y , if T : X →
Y is an operator, it will be understood that ‖T‖ stands for
the operator norm, defined as supx

‖Tx‖Y
‖x‖X .

A transition kernel or Markov kernel (or simply kernel) is
a map Q : X × N → [0, 1], where Q(·, E) is a measurable
function on X for each fixed E ∈ N and Q(x, ·) is a measure
on X for each fixed x ∈ X . Furthermore, for ν on P(X ), the
transition kernel Q induces an operator T : P(X )→ P(X )
defined as:

Tν(E) =

∫
X
Q(x,E) dν(x), E ∈ N . (1)

Similarly, Q can be used to define an operator on L2(X ,m).
Suppose that ν is absolutely continuous with respect to m,
denoted as ν � m, and the Radon-Nikodym derivative of
ν with respect to m, dν/dm, is given by dν/dm = fν ∈
L2(X ,m). In simple terms, fν is called the density of ν.
Then Q induces an operator T ∗ : L2(X ,m) → L2(X ,m),
the adjoint of T , defined as

T ∗f(x) =

∫
X
f(y)Q(x, dm(y)), x ∈ X , f ∈ L2(X ,m).

(2)
We say that Q is regular if there exists a function q ∈
L∞(X ×X ,m×m) such that for each x ∈ X , the measure
Q(x, ·) is absolutely continuous with respect to m and
Q(x, dy) = q(x, y)dm. The function q : X × X → R̄+

will be called the kernel function of the transition kernel Q.
The Borel sigma algebra on a measure space X will be

denoted as B(X ).
The spectrum σ(T ) of a continuous linear operator T on

the Banach space X is the non-void compact set of complex
numbers λ for which T − λI does not have a continuous
inverse on X . The spectral radius of T will be denoted by
r(T ) := sup{|λ| : λ ∈ σ(T )}.

A linear operator T on a real ordered vector space X is
said to be positive, denoted by T > 0, if for x ∈ X , x ≥ 0
implies that Tx ≥ 0.

Consider the Hilbert space of real-valued square integrable
functions L2(X ,m). The dual space of this space is itself.
For x, y ∈ L2(X ,m), 〈x, y〉 =

∫
xydm defines an inner

product on L2(X ,m). The weak topology on L2(X ,m),
denoted as w, is the topology defined by the family of
seminorms {px∗ : x∗ ∈ L2(X ,m)}, where px∗(x) =
|〈x, x∗〉|. The weak∗ topology, denoted as w∗, is defined
on the dual space L2(X ,m) by the family of seminorms
{px : x ∈ L2(X ,m)}, where px(x∗) = |〈x, x∗〉|. The weak
operator topology (WOT) on B(L2(X ,m)), the space of
linear bounded operators that map L2(X ,m) to L2(X ,m),
is defined by seminorms {px,y : x, y ∈ L2(X ,m)}, where
px,y(T ) = |〈Tx, y〉| for T ∈ B(L2(X ,m)). Convergence in
this topology is as follows:

(Ti)i
WOT−→ T ⇐⇒ 〈Tix, y〉 → 〈Tx, y〉, ∀x, y ∈ L2(X ,m).

III. PROBLEM FORMULATION

We begin by stating our assumptions. We consider mea-
sures in P(M) that have square integrable Radon-Nikodym
derivatives with respect to mg; this assumption gives us the
advantage of working on a Hilbert space, L2(M,mg), which
significantly simplifies the analysis. Consider the following
discrete-time flow on the space of probability densities
L2(M,mg):

fn+1 = Pfn, n = 0, 1, 2, ...

f0 ∈ L2(M,mg), (3)

where P : L2(M,mg) → L2(M,mg) is the induced
forward operator. To define P , let K :M×B(M)→ [0, 1]
be a transition kernel. To ensure that P preserves probability
densities, we impose the following property on K:∫

M
K(x,M)dmg(x) = 1, for mg-a.e. x ∈M. (4)

Using system (3), we define a discrete-time Markov chain
(DTMC) Φ = {Φ0,Φ1, . . .} on M that describes an agent’s
dynamics on the state space. The Markov chain induces a
probability measure P on M∞, defined as follows: P(E)
is the probability of the event {Φ ∈ E}, where E ∈∨∞
i=0 B(Mi) (the product sigma algebra) with Mi = M

for each i ∈ Z̄+. For every n ∈ Z+, we say that the
random variable Φn is distributed according to µn, the
measure corresponding to fn, if P(Φn ∈ E) = µn(E).
Suppose that Φn is the current agent state and is distributed
according to µn. Then the Markov property implies that
Φn+1 is distributed according to µn+1, where the density
fn+1 corresponding to µn+1 is given by (3).

The action of P on a function f ∈ L2(M,mg) can be
represented as follows: for E ∈ B(M),∫

E

(Pf)(x)dmg(x) =

∫
M
K(x,E)f(x)dmg(x). (5)

If K is regular, then we can obtain an explicit expression
for P , rather than defining P through (5). Defining k :M×
M → R+ as the kernel function of K, we have that k ∈



L∞(M×M,mg×mg). From (5), we obtain the following:
for y ∈M and f ∈ L2(M,mg),

Pf(y) =

∫
M
k(x, y)f(x)dmg(x). (6)

Operators of this form are called integral operators [6]. The
function k is called the kernel of the integral operator.

We will first consider the problem of stabilizing system
(3) to a target density.

Problem III.1. Given a target density fd ∈ L∞(M,mg),
determine whether there exists a transition kernel K :M×
B(M) → [0, 1] such that (3) satisfies limn→∞ Pnf0 → fd
for all initial densities f0 ∈ L2(M,mg), where the forward
operator P is defined in (5).

This problem will be addressed in Section IV. When the
state space M is a Lie group, we can in fact show the
existence of a regular transition kernel K, in which case
P is defined in (6).

Given that there exists such a transition kernel, we then
address the problem of choosing the transition kernel that
optimizes the convergence rate (mixing rate) of system (3)
to the target density. DTMCs that converge exponentially
fast to their stationary distributions are called geometrically
ergodic. A Markov chain is geometrically ergodic if the
forward operator that operates on the densities of the process
has a spectral gap in L2; the converse is only true for
reversible Markov chains [24]. Therefore, the convergence
rate is characterized by the L2 spectral gap. Toward this goal,
we will prove the existence of a spectral gap for P . Further,
we will prove in the next section that 1 is the unique largest
eigenvalue of P , which implies that P is stochastic, as in
the case of DTMCs that evolve on a discrete state space.
Let λ2(P ) be the eigenvalue of P with the second-largest
modulus.

Problem III.2. (Optimization of convergence rate) Let K be
the set of all Markov kernels defined onM×B(M)→ [0, 1]
that each correspond to a well-defined bounded operator
on L2(M,mg). Given a target density fd ∈ L∞(M,mg),
determine whether the following optimization problem admits
a solution:

min
K
|λ2(P )|

subject to the constraint Pfd = fd, where P is the forward
operator (5).

IV. EXISTENCE OF A SOLUTION TO PROBLEM III.1
Let a target density fd be given that is strictly positive al-

most everywhere on M and satisfies fd, 1
fd
∈ L∞(M,mg).

In this section, we will prove the existence of an operator P
that has fd as its fixed point, i.e., Pfd = fd.

We will first address the problem for the case where the
state space is M, a compact manifold as defined in Section
II. We define a regular kernel K associated with a kernel
function k as

K(x, dmg(y)) = k(x, y)dmg(y) =
χ
Bg(x,h)

mg(Bg(x, h))
dmg(y)

(7)

for all x, y ∈ M, where χ(·) is the characteristic function.
This transition kernel induces the Markov chain known as
the “ball walk” [19]. Let S : L2(M,mg)→ L2(M,mg) be
the operator defined by this transition kernel as per (6),

Sf(y) =

∫
M
k(x, y)f(x)dmg(x), f ∈ L2(M,mg).

The resulting Markov chain has the invariant measure
mg(Bg(x, h))dmg(y), i.e., Sfπ = fπ with fπ(x) =
mg(Bg(x, h)) for all x ∈ M. Note that in the case when
M is a Lie group, S is a self-adjoint operator.

For Markov chains on discrete state spaces, the types of
stabilizable measures can be characterized using the classical
Perron-Frobenius theorem [14]. In order to extend these
results to continuous state spaces, we require an appropriate
generalization of the Perron-Frobenius theorem for infinite-
dimensional vector spaces. This generalization has motivated
the theory of Banach lattices and positive operators [26],
which has now been developed to the point where the
classical theorems of Perron-Frobenius are known to hold
under very general conditions. Here, we present several
definitions from this theory that will be used to characterize
S. A Banach lattice is a Banach space with an order defined
on it. Let X be a Banach lattice. A linear subspace I of a
Banach lattice is a lattice ideal if the following condition
holds: if |g| ≤ |h| pointwise and h ∈ I, then g ∈ I. A
positive linear operator T : X → X is said to be irreducible
if there exists no closed T -invariant lattice ideal distinct to
0 and X . A positive operator T is called primitive if the
spectral radius r(T ) is the only eigenvalue on the spectral
circle, defined as the set {λ ∈ C : |λ| = r(T )}. Primitivity
of P implies aperiodicity and irreducibility of the associated
Markov chain; see [26].

We will now establish some fundamental spectral proper-
ties of the operator S. For small h > 0, these results were
demonstrated in [19] using the theory of pseudodifferential
operators, along with precise quantitative estimates of λ2(S).
Here we sketch an alternative proof, using basic functional
analytic principles, that S has a spectral gap for arbitrary
h > 0. The following generalized Perron-Frobenius theorem
will be used to establish the simplicity of the eigenvalue 1.

Theorem IV.1. (Jentzsch-Perron)[14] Let T be a linear
operator on a Banach lattice X . Suppose that T is positive
and compact. If T is irreducible, then r(T ) is a positive
eigenvalue of algebraic multiplicity one.

We can now state the following theorem.

Theorem IV.2. The operator S is compact and Sfπ = fπ ,
where fπ ∈ L∞(M,mg) is given by

fπ(x) = Cmg(Bg(x, h)) (8)

for all x ∈ M. Here, C is a normalizing constant such
that

∫
M fπ(x)dmg(x) = 1. Moreover, r(S) = 1 is a simple

eigenvalue of the operator S, and |λ2(S)| < 1.

Proof. The operator S is a compact operator since it is an
integral operator with an essentially bounded integral kernel



k ([6], Proposition II.4.7). Let π denote a measure that
is absolutely continuous with respect to mg with density
fπ . In addition, let Mfπ : L2(M,mg) → L2(M, π) be
a multiplication operator, defined as Mfπg = fπg. Since
fπ ∈ L∞(M,mg), Mfπ is bounded and well-defined ([6],
Theorem II.1.5). Consider the operator Ŝ : L2(M,mg) →
L2(M, π) that is given by

Ŝ = M−1fπ SMfπ . (9)

The operator Ŝ is an integral operator with integral kernel q̂,
defined as

q̂ =
k(x, y)fπ(x)

fπ(y)
. (10)

Then it follows from the proof of Proposition IV.5 in [2] that
Ŝ is a contraction, and hence r(S) = r(Ŝ) = 1.

To establish that |λ2(S)| < 1, we consider the set
Ux0 = {x} for each x ∈ M and inductively define the
sets Uxm = ∪y∈Uxm−1

Bg(y, h) for each m ∈ Z+. Since the
manifoldM is compact, there exists n ∈ Z+, independent of
x ∈M, such thatM = Uxn . From this, it follows that if f ∈
L2(M,mg) is a non-zero non-negative function, then Snf
is positive almost everywhere on M. Hence, from Theorem
6.1 of [14], it follows that the operator S is primitive, and
the only eigenvalue of S with modulus 1 is r(S). This
last observation can also be concluded from the fact that
Ŝ is self-adjoint. Using the fact that Snf is positive almost
everywhere on M if f ∈ L2(M,mg) is a non-zero non-
negative function, we can conclude that S is irreducible. We
can now invoke Theorem IV.1 to conclude that the eigenvalue
1 is simple, and hence that |λ2(S)| < 1.

In the case thatM is a Lie Group [20], [17], the invariant
measure characterized by fπ can be described explicitly
under a particular condition on the metric g. Let x · y
denote the right-translation of x ∈M by y. Similarly, y · x
denotes the left-translation of x by y. If the metric g is bi-
invariant, then the distance dg is invariant under translations,
i.e., dg(x · y, y · z) = dg(x, y) = dg(z · x, z · y) for all
x, y, z ∈ M. In this case, the invariant measure coincides
with the Riemannian volume mg , or more specifically, the
Haar volume. Due to the bi-invariance of the metric, it
follows that for each x, y ∈M, Bg(x·y, h) = Bg(x, h)·y :=
{z · y, z ∈ Bg(x, h)}. Similarly, for each x, y ∈ M,
Bg(y · x, h) = y · Bg(x, h) := {y · z, z ∈ Bg(x, h)}.
Hence, we have that mg(Bg(x, h)) = mg(Bg(e, h)) = x−1 ·
mg(Bg(x, h)) = mg(Bg(x, h)) · x−1 for all x ∈ M, where
e ∈ M is the unique identity element of M. Therefore,
Theorem IV.2 can be rewritten for Lie groups as follows.

Theorem IV.3. Let M be a Lie Group such that the metric
g is bi-invariant. Then S : L2(M,mg) → L2(M,mg) is a
compact operator, and S1 = 1. Moreover, S has a spectral
gap, and hence |λ2(S)| < 1.

Our goal is to construct an operator P that has fd as
its fixed point. Toward this end, we define a multiplication
operator D : L2(M,mg) → L2(M,mg) as D(g) = gfπ

fd
.

Since fπ
fd
∈ L∞(M,mg) (note that fd is bounded from

below), D is well-defined and bounded. We define P as

P = (S − I)εD + I, 0 < ε << 1, (11)

where I is the identity operator on L2(M,mg).

Remark IV.4. For ε small enough, P is a positive operator.

We note that since the identity operator I is not compact,
P is not compact, and therefore it cannot be represented as
an integral operator (6) with an L2 kernel. Instead, we will
show that P can be represented as (5) with a Markov kernel
Q :M×B(M) → [0, 1]. Unlike the kernel K in (7), Q is
not regular. From (11), we can write this kernel as follows:

Q(x,E) =

∫
E

k(x, y)a(x)dy + (1− a(x))δx(E), x ∈M,

(12)
where E ∈ B(M), a(x) = εfπ(x)

fd(x)
, and δ(·) is the Dirac mea-

sure. This can be easily confirmed to be a Markov transition
kernel. Next, we establish properties of the spectrum of the
new operator P . The proof of the result closely follows the
proofs of Theorems V.11 and V.12 in our paper [2], and
hence we will omit the proof here.

Proposition IV.5. The operator P defined in (11) satisfies
P ∗1 = 1, Pfd = fd. The eigenvalue 1 is algebraically
simple, isolated (i.e., is not a limit point), and coincides with
the spectral radius of P . Furthermore, for ε small enough,
and with fπ, fd bounded from below, P is primitive.

The construction of P concludes our discussion on the
existence of an operator that has a unique fixed point at fd.
We note that such an operator P is not necessarily unique.
Next, we move on to optimizing over all such operators in
order to maximize the convergence rate of system (3) to fd.

V. FORMULATION OF THE OPTIMIZATION PROBLEM

In this section, we present a solution to a relaxed version
of Problem III.2. The reason for this relaxation will be
explained shortly. In the previous section, we proved the
existence of an operator P with the following properties: P
has a spectral gap, the desired density fd is its unique eigen-
vector, and P makes fd an asymptotically stable equilibrium
point for the system (3). In this section, we investigate
whether we can pose an optimization problem to search
for such an operator P such that the system (3) converges
exponentially fast to the equilibrium fd. The spectral gap of
P will determine the rate of convergence of system (3); the
larger the gap, the faster the convergence [24]. Recall our
assumptions that fd is in L∞(M,mg) and is a.e. strictly
positive on M. Let µd be a measure that is absolutely
continuous with respect to mg with density fd.

Instead of constructing P , we will pose this optimization
problem for P̂ = M−1fd PMfd , defined as in (9), which has
the same spectrum as P . The advantage here is that P̂ is
doubly stochastic, which simplifies the formulation of the
optimization problem. We know that given an operator T on
a Hilbert space H, for all λ ∈ σ(T ), we have that |λ(T )| ≤



‖T‖. Unless the operator is self-adjoint or normal, there is no
convex formula, that we know of, to characterize the moduli
of the eigenvalues. Since we are not searching for a self-
adjoint or normal operator P̂ , the second largest eigenvalue
modulus of P̂ can only be bounded from above. We obtain
this bound by restricting P̂ to the subspace obtained after
removing the eigenspace span(1) corresponding to its largest
eigenvalue 1:

λ2(P̂ ) = λ1(P̂ ◦ Proj1⊥) ≤ ‖P̂ ◦ Proj1⊥ ‖2, (13)

where Proj(.) is the projection operator onto a subspace,
and ‖ · ‖2 denotes the L2(M, µd) norm. The optimization
objective is then to minimize the right-hand side of the
equation above, knowing that it will be an upper bound for
the moduli of all eigenvalues of P̂ . This is the relaxation that
we mentioned at the beginning of the section.

The projection of an arbitrary vector v ∈ L2(M, µd) onto
the eigenspace 1 is Proj1(v) = 〈v,1〉

‖1‖22
1, and the projection

of v onto 1⊥ is Proj1⊥(v) = (I−Proj1)(v). Therefore, we
calculate that(

P̂ ◦ Proj1⊥
)
v = P̂

(
v − 〈v,1〉

‖1‖22
1

)
= P̂ v − 〈v,1〉

‖1‖22
1.

We now formulate the optimization problem. The opti-
mization variable is the transition kernel function K in the
definition (5) of P . The relationship between P̂ and P
is enforced as constraint (15) in the optimization problem,
defined below.

min
K

∥∥∥P̂ (K) ◦ Proj1⊥
∥∥∥ (14)

subject to

P̂ = M−1fd PMfd , (15)

K(x,E) ≥ 0 ∀x ∈M, E ∈ B(M), (16)∫
M
K(x,M)dx = 1 ∀x ∈M, (17)∫

M
fd(y)K(x, dy) = fd(x) ∀x ∈M, (18)

K(x,M\Bg(x, r)) = 0, ∀x ∈M. (19)

The constraints (16), (17) ensure that K is indeed a transition
kernel. Constraint (18) ensures that fd is the stationary distri-
bution of P . Equation (19) imposes a localization constraint
on the corresponding Markov chain; that is, starting from
any point x ∈ M, the probability of choosing a point lying
outside a ball of specified radius r is zero. This constraint
captures physical limitations on an agent’s motion as it
traverses the state space, which restrict the agent to moving
a distance bounded by r in a single time step.

We will discuss the convexity of the optimization problem
in the next section.

VI. OPTIMAL SOLUTION

In this section, we show that an optimal solution to the
optimization problem (14)-(19) exists. In order to show this,
we must prove that the set of decision variables, which will
be defined shortly, is compact in some topology and that the

objective function (14) is continuous on this set with respect
to the chosen topology.

We begin with a definition. Operators that are described by
expression (2), where the kernel is not necessarily regular, are
called pseudo-integral operators [27]; integral operators form
a subset. Suppose that (X ,N , µ) is a finite Borel measure
space.

Definition VI.1. A bounded linear operator T : L2(X , µ)→
L2(X , µ), where µ is a kernel, is called a pseudo-integral
operator if T is given by the expression

(Tf)(x) =

∫
f(y)µ(x, dy), m-a.e. (20)

for every f ∈ L2(X , µ).

Remark VI.2. In fact, the kernel is uniquely determined by
the operator in the sense that if ν(x, dy) satisfies (20), then
µ(x, ·) = ν(x, ·) for m-almost every x.

The following result ([27], Theorem 3.1) will be used in
our upcoming discussion.

Theorem VI.3. Let T be defined as in (20). Then T is a
pseudo-integral operator with a positive kernel if and only
if T is a positive operator.

The decision variable in the optimization problem is the
transition kernel K. However, in view of the remark and
theorem above, we shall instead define a set of operators
that satisfy the optimization constraints and identify the
transition kernels with these operators. This formulation will
significantly simplify our analysis. To begin, we define the
following set.

P =
{
P : L2(M,mg)→ L2(M,mg) is a pseudo-

integral operator with a kernel K :M×B(M)→
[0, 1], P1 = 1, P ∗fd = fd for fd ∈ L2(M,mg),

Pf(x) =

∫
Bg(x,r)

f(y)K(x, dmg(y)) for x ∈M
}
. (21)

Here, the constraint Pf(·) =
∫
Bg(·,r) fK(·, dmg) is equiv-

alent to the condition K(x,M\Bg(x, r)) = 0 in (19).
For sufficiency, we obtain this condition by choosing f
to be the constant function 1. The necessary direction is
straightforward to prove. Note that the set P is defined
in terms of operators that are of the form (2) due to the
statement of Theorem VI.3, which involves operators of the
form (20).

Proposition VI.4. The set P is closed in the WOT topology.

Proof. Let (Pi)i be a sequence in P , and suppose that
(Pi)i converges to P in WOT. We will show that P ∈ P .
WOT convergence implies that 〈Pif, g〉

i→∞−→ 〈Pf, g〉 for all
f, g ∈ L2(M,mg). In particular, take f = 1. Since Pi1 = 1
for all i, we have that 〈P1, g〉 = 〈1, g〉 for all g 6= 0, which
implies that P1 = 1. Similarly, P ∗fd = fd. We now show
that P is a positive operator. Suppose that f, g ∈ L2(M,mg)
are positive functions. Then, Pif is non-negative for every i.



Since R̄+ is closed, the limit 〈Pf, g〉 must be non-negative,
which implies that P must be a positive operator. From
Theorem VI.3 and the condition P1 = 1, we conclude
that P must be a pseudo-integral operator with a kernel K
taking values in [0, 1]. We now consider the last constraint
in the set (21). Let f, g ∈ L2(M,mg) be positive functions.
Again, from the definition of the WOT topology, we have that
limi〈(Pi−P )f, g〉 = 0; that is, limi

∫
M(Pi−P )fgdmg = 0.

Since Pi, P are positive operators, this implies that (Pi −
P )fg → 0 in L1. Therefore, there exists a subsequence such
that limj((Pi)j − P )fg = 0 a.e. [10]. Since g is positive,
this implies that limj((Pi)j −P )f = 0 a.e. Finally, for all i
and fixed x ∈M, (Pif)x is non-zero over the set Bg(x, r),
and since f is positive, we conclude that the limit Pf(x)
must be zero everywhere outside the ball Bg(x, r). Hence,
P ∈P .

Remark VI.5. We note that P is a set of operators of the
form (2), whereas we are interested in the adjoints of these
operators, which are of the form (1). Therefore, we require
that P∗ := {T ∗, T ∈ P} be closed in the WOT topology,
which follows from the fact that the map P → P ∗ is WOT
continuous.

Since the optimization problem is a minimization problem,
it is sufficient for us to prove that the objective function is
only lower-semicontinuous, rather than continuous. We prove
this in the following proposition.

Proposition VI.6. The map P 7→ ‖M−1fd PMfd ◦Proj11 ‖ is
lower-semicontinuous on P and convex.

Proof. It is clear that the map P → M−1fd PMfd ◦ Proj1⊥
is continuous. Further, by Problem 109 in [15], the op-
erator norm is weak∗ lower-semicontinuous on the dual
space L2(M,mg). We observe that the objective function
is a composition of a lower-semicontinuous function and a
continuous function, and is therefore a lower-semicontinuous
function on P . Convexity follows from the fact that the
objective function is defined as a norm function.

We can now state the following result, which proves the
existence of an optimal solution.

Theorem VI.7. The optimization problem (14)-(19) has an
optimal solution.

Proof. We know that the unit ball in B(H) is compact
in WOT ([16], Theorem 5.1.3). In addition, Theorem IV.2
guarantees the existence of an operator P that satisfies the
constraints of the optimization problem, and is therefore an
element of P and is bounded. The optimization algorithm
will hence generate bounded operators with norms that do not
exceed the norm of P . Accordingly, these operators will form
a bounded subset of P , which we will refer to as P ′. Since
P is closed in WOT by Proposition VI.4, we conclude that
P ′ is closed and bounded in WOT, and is therefore compact
in WOT. By Theorem VI.3, we can identify a positive kernel
K with each pseudo-integral operator P . Therefore, the set
of kernels K that satisfy the constraints of the optimization

problem is compact in the topology induced by this bijective
identification. We denote this set by K′.

Finally, in view of Proposition VI.6, the infimum of the
map K 7→ ‖M−1fd P (K)Mfd ◦ Proj11 ‖ over the set K′ can
indeed be achieved; that is, there exists an optimal (minimal)
solution.

A. Special Case

In the case where M is a Lie group and fd corresponds
to 1, the uniform distribution, we know that there exists
a regular transition kernel K, defined in (7). Then, the
optimization problem (14)-(19) can be posed in terms of the
kernel function k. In this case, i.e. when M is a Lie group
and fd = 1, we can expect an exact minimization of the
second largest eigenvalue modulus of P̂ . This is because the
inequality in (13) is in fact an equality when the operator
P̂ is self-adjoint, and we have shown that there exists at
least one solution to the optimization problem, the operator
S constructed in Section IV, that is self-adjoint. In this
subsection, we outline a proof of the existence of the optimal
solution in this case.

Let c be a positive constant and r be the radius in
constraint (19). In contrast to our approach for the general
case, in which we identified the kernels K (the decision
variables) with a set of operators P , here we can directly
define a set of L∞ kernel functions, denoted by K, that
satisfy the constraints of the optimization problem:

K =
{
k ∈ L∞(M×M,mg ×mg) :

0 ≤ ‖k‖∞ ≤ c,
∫
M k(x, z)dmg(z) = 1,∫

M k(z, y)dmg(z) = 1,

k(x, y) = 0 if dg(x, y) > r ∀x, y ∈M
}
. (22)

Now, K is the set of decision variables.

Proposition VI.8. K is compact in the weak∗ topology and
is convex.

Proof. Since M has finite measure, we have that K ⊆
L∞(M×M,m×m) ⊆ L2(M×M,m×m). First, we will
show that K is closed and bounded in the topology induced
by the ‖ · ‖2 norm. Let (ki)i ∈ K be such that ki

‖·‖2−→ k̄.
That is,

∫
|ki − k̄|2 → 0. We will show that k̄ ∈ K. It

is straightforward to show that the limit k̄ must satisfy 0 ≤
‖k̄‖∞ ≤ c. Next, we observe that

∣∣∫ (ki − k̄)
∣∣ ≤ ∫ |ki−k̄| ≤

‖ki − k‖2 (by Holder’s inequality). Therefore, we have that∣∣∫ (ki − k̄)
∣∣ → 1, which implies that

∫
k̄ = 1. We now

consider the last constraint in (22). Note that ki(x, y) = 0
for all x, y ∈ M such that dg(x, y) > r. Since ki → k̄ in
‖ · ‖2, there exists a subsequence (kij)j that converges to k̄
mg-a.e. It then follows that k̄(x, y) = 0. Hence, K is closed
in the ‖ · ‖2 norm. The boundedness of K follows trivially
from the condition ‖k(·, ·)‖∞ ≤ c.

The convexity of K follows from brief algebraic compu-
tations which show that the constraints in (22) are convex.
An application of Mazur’s theorem ([7], Proposition 12.2)



proves that K is closed in the weak topology. On the real-
valued function space L2, this implies that K is in fact
closed in the weak∗ topology. Finally, we obtain our result
by applying Alaoglu’s theorem ([5], Corollary 3.15), which
states that a set that is weak∗ closed and bounded is also
weak∗ compact.

In the proposition below, we will prove lower-
semicontinuity of the map considered in Proposition VI.6.

Proposition VI.9. The map k 7→ ‖M−1fd P (k)Mfd ◦Proj11 ‖
is weakly lower-semicontinuous on K and convex.

Proof. Let (ki)i ∈ K be such that (ki)i → k ∈ K in
the weak∗ topology. Let Pi, P ∈ B(L2(M,mg)) be the
corresponding operators defined by ki and k, respectively.
Consider the WOT topology on B(L2(M,mg)). We will
show that Pi → P in WOT. Convergence in WOT en-
tails showing that 〈Pif, g〉

i→∞−→ 〈Pf, g〉 for all f, g ∈
L2(M,mg), which implies that:∫

M

∫
M
ki(x, y)f(x)g(y)dmg(x)dmg(y)

i→∞−→∫
M

∫
M
k(x, y)f(x)g(y)dmg(x)dmg(y).

The tensor product for functions f, h ∈ L2(M,mg) is
denoted by f ⊗ h : M × M → R, which is defined
as f ⊗ h(x, y) := f(x)h(y). By exercise 1.4.25 of [28],
f ⊗ h ∈ L2(M×M,mg × mg). Therefore, the equation
above can also be written as∫
M×M

ki(z)(f ⊗ g)(z)dz
i→∞−→

∫
M×M

k(z)(f ⊗ g)(z)dz.

This is exactly the definition of convergence of (ki)i to k in
weak∗. Therefore, we have that (Pi)i → P in WOT. The rest
of the proof is similar to the proof of Proposition VI.6.

In conclusion, the objective function is weak∗ lower-
semicontinuous on the compact set K, and therefore the
infimum of the objective function can indeed be achieved.

VII. NUMERICAL OPTIMIZATION

In this section, we present a numerical approach to solving
the optimization problem (14)-(19). As stated in Section II,
we assume that the state space M is a compact smooth
connected manifold, without boundary, of dimension d.
The subset M is partitioned into N ∈ Z̄+ sets, M̃ =
{M1, . . . ,MN}, where M = ∪Ni=1Mi and the sets Mi

have intersections of zero Riemannian volume. We define an
equivalent of the transition kernel K for this discretized state
space. Let k̃ij be the probability of jumping to Mj , given
that the system state is in Mi. This probability is given by,

k̃ij =

∫
Mi

K(x,Mj)dx.

We define K as the matrix [k̃ij ]i,j∈I , where I = {1, . . . , N}.
We use K to construct an approximating Markov chain on
the finite state space I. Let G = (I, E) be a graph defined
on I with edge set E = {(i, j) : i, j ∈ I, k̃ij > 0}, which

specifies the transitions of the Markov chain. An edge (i, j)
is in the edge set E if the distance between the centers of
Mi and Mj does not exceed r, as per the constraint (19).

Let µ ∈ P(M̃) and P ∈M(RN ), the space of real-valued
matrices. Then P defined below is equivalent to the operator
defined in (5):

(Pµ)(j) =
∑
i∈I

k̃ijµ(i), j ∈ I. (23)

Let µd ∈ P(M̃) be a desired distribution that is positive on
M̃, and define a diagonal matrix Md = diag(µd).

We can now formulate a finite-dimensional quadratic pro-
gram that is equivalent to optimization problem (14)-(19) as
follows:

min
K

∥∥∥∥P̂− 11T

N

∥∥∥∥ (24)

subject to

P̂ = M−1d PMd, (25)

(Pµ)(j) =
∑
i∈I

k̃ijµ(i) ∀j ∈ I, ∀µ ∈ P(M̃), (26)

k̃ij ≥ 0 ∀i, j ∈ I, (27)
K1 = 1, (28)
µdK = µd, (29)

k̃ij = 0 ∀(i, j) /∈ E . (30)

Note that 1 in (24) is a vector in RN . The constraint in (25)
ensures that the matrix P̂ is bistochastic. The constraint (30)
is equivalent to (19). Observe that this optimization problem
is convex and is similar to the optimization problem solved
in [3].

VIII. SIMULATION RESULTS

In this section, we apply our numerical optimization
procedure to an example system evolving on a torus in R3.
For graphs of modest sizes (e.g., 103 edges), the convex
optimization problem (24)-(30) can be solved using the
semidefinite programming (SDP) techniques described in [3],
which can be implemented with the MATLAB package CVX
[13]. For much larger graphs (e.g., 105 edges), the problem
can be solved using a subgradient method [3]. Since our
focus is on the theoretical formulation of the optimization
problem rather than its efficient solution, we make use of
CVX to compute an approximate solution of our example.
We recall that, as described in Section V, we are solving a
relaxation of the optimization problem in Problem III.2.

The state space M in our example is the torus in R2

embedded in R3. This state space is discretized into a 15×15
grid (N = 225). We define the initial and target measures
on the discretized space as shown in Figs. 1a and 1d,
respectively. The value of r in constraint (19) is chosen to be
0.2, a number greater than the partition size 1/15. We solve
the optimization problem (24)-(30) to obtain a transition
probability matrix K. Defining P from the resulting K, we
simulate the following version of system (3):

µn+1 = Pµn. (31)
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(a) Initial measure µ0 at time n = 0
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(b) Measure at time n = 10
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(c) Measure at time n = 35
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(d) Target measure µd

Fig. 1. Simulation of the system (31) at different times n.

Figures 1a-c show snapshots of the simulation of system
(31) at three different times. It is evident from the time
evolution of the snapshots that the simulated measure µn
converges asymptotically to the target measure µd. To quan-
tify this degree of convergence, we computed the 2-norm
error metric γn = ||µn−µd||2 at the times of the snapshots.
The corresponding values of γn for n = 0, 10, and 35 are
0.7611, 0.0824, and 6.7382×10−4, which clearly shows that
µn is tending toward µd.

IX. CONCLUSION

In this paper, we presented an approach to optimizing
the convergence rate of a discrete-time Markov chain that
evolves on a compact, smooth, connected manifold without
boundary to a target probability measure. The target measure
must satisfy certain properties; namely, it must be absolutely
continuous with respect to the Riemannian volume with L∞

derivatives and positive almost everywhere on the manifold.
We proved the existence of a solution to this problem, and we
explicitly constructed an operator that stabilizes any measure
that satisfies these properties. We also proved the existence
of an optimal solution and presented a numerical approach
to solving the optimization problem. A possible direction for
future work is to extend these results to nonlinear dynamical
systems evolving on manifolds, as we did in our paper [2]
for nonlinear discrete-time systems evolving on Rd.
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