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Stabilization of Nonlinear Discrete-Time Systems to
Target Measures Using Stochastic Feedback Laws

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman

Abstract—In this paper, we address the problem of stabilizing
a discrete-time deterministic nonlinear control system to a target
invariant measure using time-invariant stochastic feedback laws.
This problem can be viewed as an extension of the problem
of designing the transition probabilities of a Markov chain so
that the process is exponentially stabilized to a target stationary
distribution. Alternatively, it can be seen as an extension of
the classical control problem of asymptotically stabilizing a
discrete-time system to a single point, which corresponds to
the Dirac measure in the measure stabilization framework. We
assume that the target measure is supported on the entire state
space of the system and is absolutely continuous with respect
to the Lebesgue measure. Under the condition that the system
is locally controllable at every point in the state space within
one time step, we show that the associated measure stabilization
problem is well-posed. Given this well-posedness result, we then
frame an infinite-dimensional convex optimization problem to
construct feedback control laws that stabilize the system to a
target invariant measure at a maximized rate of convergence. We
validate our optimization approach with numerical simulations
of two-dimensional linear and nonlinear discrete-time control
systems.

I. INTRODUCTION

IN this paper, we prove that a particular class of discrete-
time nonlinear control systems that evolve on a compact

subset of Rd can be stabilized to target probability measures
that are positive almost everywhere on this subset, and are
absolutely continuous with respect to the Lebesgue measure
with L∞ density. This result can be viewed as a generalization
of results on the stabilization of ordinary difference equations
to points which can be identified with Dirac measures. Since
the systems that we consider follow discrete-time Markov
chains (DTMC) on continuous state spaces, the problem of
stabilizing these systems can also be viewed as an extension
of the problem of designing the transition probabilities of a
Markov chain on a discrete state space to stabilize a target
stationary distribution.

The problem of stabilizing a nonlinear control system to
a target measure has many potential applications, including
the control of large-scale distributed systems. For example,
these measures could model the distribution of nodes in an
electric power grid [6] or a wireless network [43], or the
distribution of an ensemble of agents such as a swarm of robots
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(e.g. [1], [19]). Our main motivation is to address problems
in the control of very large multi-agent systems. When all
agents follow the same control laws and these control laws
are independent of the agents’ identities, it is possible to
apply control techniques to a fluid approximation of the multi-
agent system in the form of a mean-field model [20]. This
approximation is justified by modeling each agent’s dynamics
as a Markov process, and then the mean-field behavior of the
population is governed by the Kolmogorov forward equation
corresponding to the Markov process. The mean-field model
is independent of the number of agents, and consequently the
control approach scales well to very large agent populations.

The problem that we address is closely related to a class of
control problems that have been investigated in the context
of mean-field games [31], [7], [11] and optimal transport
theory [45], [40]. In mean-field games, the control problem
is to design a feedback control law that is a function of
the agent’s state, with the goal of optimizing an objective
functional that is a function of the agent’s state and the
probability density of its position over time. The mean-field
game problem for agent dynamics evolving in discrete time
and continuous space is considered in [39]. A few works
on mean-field games, including [34], [13], impose final time
constraints on the probability density representing the agents.
However, control problems in the mean-field games literature
usually do not include constraints on the long-time behavior
of this probability density, as we do in this paper.

Similar to mean-field games, optimal transport theory con-
siders a class of measure control problems where the goal is
to construct a map from the state space to itself that pushes
forward an initial measure to a target measure while optimiz-
ing a given cost function. According to the Benamou-Brenier
formulation of optimal transport, when the cost function is
quadratic, the problem can be framed as a control problem
for an advection equation with the velocity field as the control
input. For scenarios where the measure represents the distribu-
tion of a swarm of agents, this classical version of the optimal
transport problem corresponds to agents with single-integrator
dynamics. There has been some recent work on extending
results on optimal transport to agents that evolve in continuous
time with linear dynamics [27], [12] and nonlinear dynamics
[23], [36], [3]. For discrete-time nonlinear systems, a relaxed
version of the optimal transport problem was investigated in
[21], where stochastic feedback laws, instead of deterministic
feedback laws, were constructed to transport a system from a
given initial measure to a target measure. The problem in [21]
can be considered as the fixed-endpoint control version of the
problem addressed in this paper.
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Similar measure control problems have also been considered
outside the context of mean-field games and optimal trans-
port theory. In [33], piecewise-deterministic Markov processes
evolving on Rd are controlled to make a continuously differ-
entiable probability density invariant and stable. For the case
of DTMCs, probability distributions are stabilized on a finite
graph in [1], and the existence of a stationary distribution
is proven for a unicycle model in [29]. We have addressed
the problem of stabilizing measures that represent swarms of
agents with single-integrator dynamics perturbed by Brownian
motion in [19], [22]. Other recent works [44], [35], [15] extend
classical measure-theoretic studies of deterministic dynamical
systems [17], [30] to investigate the problem of stabilizing
a control system to an attractor set from a measure-theoretic
point of view. For the corresponding system evolving on the
space of measures/densities, this means that the goal is to make
the set of measures that are supported over the attractor set,
or a Dirac measure at the desired point, invariant. In contrast,
the objective in our paper is to asymptotically stabilize a given
measure that is subject to particular constraints. A similar
measure stabilization problem is addressed in [13], in which
the authors consider an optimal control problem that drives
a linear system evolving on Rd to target Gaussian measures.
Our approach differs from this work in that we consider both
the state space and the set of controls to be compact subsets
of Rd, and the set of target measures that can be stabilized is
infinite-dimensional rather than finite-dimensional.

In this paper, we first identify the types of target measures
that can be stabilized by the discrete-time nonlinear control
systems that we consider, using stochastic feedback laws.
In this case, the closed-loop system defines a DTMC on
the continuous state space Rd. For DTMCs on discrete state
spaces, the types of measures that can be stabilized are well-
understood [1]. This stabilizability result follows from the clas-
sical Perron-Frobenius theorem [26], which gives a sufficient
condition for the uniqueness of the stationary distribution of
a Markov chain. In order to generalize the results of [1] to
our type of system, we need an appropriate generalization of
the Perron-Frobenius theorem for infinite-dimensional vector
spaces. This generalization has been one of the motivating
forces in developing the theory of Banach lattices and positive
operators [41]. At present, this theory has been developed to
the point where the classical theorems of Perron-Frobenius are
known to hold under general hypotheses. A review of progress
in this field is surveyed in [26]. We use the Jentzsch-Perron
theorem, a generalization of the Perron-Frobenius theorem, to
prove our results on the stabilizability of measures.

Having obtained these stabilizability results, we next ad-
dress the problem of constructing feedback control laws that
maximize the system’s convergence rate to the target mea-
sure. For this, we exploit properties of geometrically ergodic
DTMCs, which converge exponentially fast to their target
distributions. It is known that a Markov chain is geometrically
ergodic if the forward operator that operates on the densities
of the process has a spectral gap in L2; the converse is
only true for reversible Markov chains [38]. Therefore, the
convergence rate of the Markov chain that describes our
system can be characterized using this spectral gap. Thus, to

compute feedback controllers that maximize the convergence
rate of our system, we first prove the existence of a spectral gap
in L2 and then define an optimization problem that maximizes
this spectral gap. Previous works have also addressed the
maximization of the convergence rate of DTMCs [10], [1]
and continuous-time Markov chains [8], [16] to stationary
distributions; however, these results are restricted to finite,
discrete state spaces.

II. PRELIMINARIES

In this section, we present notation that will be used
throughout the paper. We define R̄+ := [0,∞), R+ := (0,∞),
and C as the set of complex numbers. Similarly, we define Z̄+

as the set of all non-negative integers and Z+ as the set of all
positive integers. The closed ball in Rd of radius δ centered at
x will be denoted by Bδ(x). We define ∂E and int(E) as the
boundary and interior, respectively, of a set E. We let det(·)
stand for determinant.

We denote the state space by (Ω,B(Ω)), a measurable space.
Here, Ω ⊆ Rd is a compact set and B(Ω) represents the Borel
sigma algebra on Ω corresponding to the standard topology on
Rd. The set of admissible control inputs and its corresponding
Borel sigma algebra will be denoted by (U,B(U)). We will
assume that U is compact in Rd. The dimension of the set U
could be larger than d, but we are restricting it for notational
simplicity. We denote the spaces of probability measures on
Ω and U by P(Ω) and P(U), respectively. The Lebesgue
measure on Rd will be denoted by m. For a measure ν on
Rn, ν is said to be absolutely continuous with respect to m,
denoted by ν � m, if ν(E) = 0 whenever m(E) = 0. In this
case, there exists a function f : Rn → R such that dν = fdm;
this function is called the Radon-Nikodym derivative of ν with
respect to m [24]. The Dirac measure concentrated at a point
x is denoted as δx, where δx(E) = 1 if x ∈ E and δx(E) = 0
otherwise.

For a measure space (X , ν), we define Lp(X , ν), where
p ∈ [1,∞), as the space {f : X → R : f is measurable
and ‖f‖p < ∞}, where ‖f‖p = (

∫
|f |pdν)1/p. In addition,

we define L∞(X , ν) = {f : X → R : f is measurable and
‖f‖∞ <∞}, where ‖f‖∞ = ess supx∈X |f(x)|. C0(X ) is the
space of continuous functions f on X that vanish at infinity,
which implies that for every ε > 0, the set {x : |f(x)| ≥ ε}
is compact. For a function f : X → R, the support of f
is the closure of the set of points where f is nonzero. For
topological spaces X ,Y , if T : X → Y is an operator, it will
be understood that ‖T‖ stands for the operator norm, defined
as supx

‖Tx‖Y
‖x‖X . The characteristic function over a set A will

be denoted as χA(·).
For measurable spaces (X ,M) and (Y,N ), where M and
N are the respective sigma algebras, a transition kernel or
Markov kernel is a map T : X × N → [0, 1], where T (·, E)
is a Borel measurable function on X for each fixed E ∈ N
and T (x, ·) is a measure on Y for each fixed x ∈ X . The
transition kernel T induces an operator T : P(X )→ P(Y) as
follows. For each probability measure ν on X ,

(Tν)(E) =

∫
X
T (x,E) dν(x), E ∈ N
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defines a probability measure on (Y,N ). We will say that T
is regular if there exists a function h ∈ L∞(X × Y,m×m)
such that for each x ∈ X , the measure T (x, ·) is absolutely
continuous with respect to m and T (x, du) = h(x, u)dx. The
function h : X × Y → R̄+ will be called the kernel function
of the transition kernel T .

We define a continuous map F : Ω × U → Rd. We also
define Fx as the map from U → Rd when x ∈ Ω is held fixed,
and Fu as the map from Ω→ Rd when u ∈ U is held fixed.
We specify that F is non-singular, which means that for all
E ∈ B(Ω), m(F−1

u (E)) = 0 and m(F−1
x (E)) = 0 whenever

m(E) = 0.
The spectrum σ(T ) of a continuous linear operator T on

the Banach space X is the non-void compact set of complex
numbers λ for which T − λI does not have a continuous
inverse on X . If λ ∈ σ(T ) is such that T −λI is not injective,
then λ is called an eigenvalue of T and the set σp(T ) of all
eigenvalues is called the point spectrum of T . The spectral
radius of T will be denoted by r(T ) := sup{|λ| : λ ∈ σ(T )}.
We denote the complement of σ(T ) by ρ(T ) and call it the
resolvent set of T .

Given a Banach space X , if X ∗ is its dual space, then the
duality pairing will be denoted by 〈f, g〉(X ,X∗), where f ∈
X , g ∈ X ∗.

III. PROBLEM FORMULATION

Now we are ready to state the problems addressed in this
paper. We suppose that agent dynamics is governed by the
following nonlinear discrete-time control system:

xn+1 = F (xn, un), n = 0, 1, 2, ...

x0 ∈ Ω, (1)

where xn ∈ Ω for each n ∈ Z+, and (un)∞n=1 is a sequence
in U such that F (xn, un) ∈ Ω. Suppose that x0 is a random
variable with distribution µ0. Then (xn)∞n=1 is a Markov chain
with corresponding sequence of distributions (µn)∞n=1. In par-
ticular, the nonlinear control system (1) induces a controlled
flow on the space of measures P(Ω), given by

µn+1 = F (·, un)#µn, n = 0, 1, 2, ...

µ0 ∈ P(Ω), (2)

where F (·, un)# : P(Ω) → P(Ω) is the induced forward
operator corresponding to the deterministic map F (·, un).
This operator is defined as

F (·, un)#µn(E) = µn(F−1
un (E)) =

∫
Ω

χE(F (x, un))dx

(3)
for each E ∈ B(Ω).

We are interested in the problem of stabilizing system (2) to
a given target measure. Toward this end, we must determine
whether there exists a sequence of feedback laws such that
starting from any initial measure, the system (2) converges
to the target measure. However, in [21], a counterexample
was provided to show that using deterministic feedback laws,
the problem of reaching desired measures in finite time is
generally unsolvable. A similar argument shows that this
problem is unsolvable even without the finite-time convergence

requirement. Hence, we will instead address the relaxed ver-
sion of this problem, which is formulated as Problem III.1
below.

Problem III.1. (Stabilizability of target measures with
stochastic control) Given a target measure µd ∈ P(Ω)
and a non-singular continuous map F : Ω × U → Rd,
determine whether there exists a state-to-control transition
kernel K : Ω×B(U)→ [0, 1] such that the closed-loop system

µn+1 = Pµn, n = 0, 1, 2, . . . ; µ0 ∈ P(Ω) (4)

satisfies limn→∞ Pnµ0 = µd for all initial measures µ0 ∈
P(Ω), where the forward operator P that keeps P(Ω) invari-
ant is defined as,

(Pµ)(E) =

∫
Ω

∫
U

χE(F (x, u))K(x, du)dµ(x) (5)

for each E ∈ B(Ω).

This problem will be addressed in Section V, wherein an
explicit state-to-control transition kernel, also referred to here
as a stochastic feedback law, will be constructed for target
measures that satisfy certain properties. Additional constraints
will be imposed on F and Ω. Note that we will prove
convergence of measures in the L2 norm, which is a much
stronger form of convergence than convergence in the weak
topology, the Wasserstein metric, and the total variation norm.

Given that there exists such a state-to-control transition
kernel, we then address the problem of choosing the kernel
that optimizes the convergence rate (mixing rate) of system
(4) to the desired measure.

Problem III.2. (Optimization of convergence rate) Let K be
the set of all Markov kernels defined on Ω × B(U) → R+,
and define ‖µ‖TV := supE∈B(Ω) |µ(E)| as the total variation
norm. Given a target measure µd ∈ P(Ω), a non-singular
continuous map F : Ω× U → Rd, and a constant α ∈ (0, 1),
determine whether the following optimization problem admits
a solution:

min
K

α

such that ‖µn − µd‖TV ≤ αn for all n ∈ Z+, subject to the
constraint

µn+1 = Pµn,

where P is the forward operator (5).

Markov chains that satisfy the bound αn above are called
geometrically ergodic chains. Different definitions of geomet-
ric ergodicity can be posed in terms of the particular norm
(e.g., the L1, L2, or total variation norm) that is used to quan-
tify the distance between the target and initial measures. The
relationships among these definitions are discussed in [37]. In
addition, the spectral gap in L2 is often easier to formulate
than the total variation norm. Therefore, instead of framing
the optimization problem in terms of the total variation norm,
we shall pose it as the maximization of the L2(Ω,m) spectral
gap. In Section IV, we establish the existence of this gap. We
solve a relaxed version of the optimization problem in Section
VI, as explained at the beginning of that section. In Section
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VII, we solve this problem numerically. In Section VIII, we
apply our optimization approach to example control systems
and confirm through simulations that the systems converge to
specified target measures.

IV. ANALYTICAL PROPERTIES OF THE FORWARD
OPERATOR

In this section, we will establish a few properties of the
forward operator, the continuous state space analogue of the
transition probability matrix for a discrete state space DTMC.

Let µ ∈ P(Ω). Suppose that µ is absolutely continuous with
respect to the Lebesgue measure m (i.e., µ� m). Then, µ has
an L1(Ω,m) density fµ : Ω → R, that is, dµ = fµdm. Note
that since µ is restricted to be a probability measure, fµ is
naturally non-negative on Ω. We will further restrict fµ to be
square-integrable with respect to m; that is, fµ ∈ L2(Ω,m).
This restriction gives us the advantage of being able to analyze
the forward operator on the Hilbert space L2(Ω,m). Let K :
Ω × B(U) → [0, 1] be the transition kernel. We specify that
K is regular; that is, if its kernel function is denoted as k,
then k ∈ L∞(Ω × U,m × m). Furthermore, we impose the
following constraints on k:

k(x, u)

{
≥ 0, for m-a.e. x ∈ Ω, u ∈ U s.t. F (x, u) ∈ Ω

= 0, otherwise
(6)∫

u∈U
k(x, u)du = 1, for m-a.e. x ∈ Ω. (7)

These properties ensure that K is indeed stochastic.
Instead of working with P defined in (5), which acts on

the space of probability measures P(Ω), we will instead use
P to define two linear operators, P̄ and P̃ , that act on the
spaces L1(Ω,m) and L2(Ω,m), respectively. The operator P̄
on L1(Ω,m) is defined by restricting P to those measures
in P(Ω) that have L1(Ω,m) densities with respect to m,
or equivalently, are absolutely continuous measures (ac), i.e.,
P : P(Ω)|ac → P(Ω)|ac. Let L ⊆ L1(Ω,m) be defined such
that, if µ ∈ P(Ω)|ac and dµ/dm = f , then f ∈ L. Note
that since P(Ω) is not a vector space, L is a strict subset of
L1(Ω,m). Define P̄ : L → L such that d(Pµ)/dm = P̄ f .
By the linearity of P̄ , we extend it to the whole of L1(Ω,m),
so we can now define P̄ : L1(Ω,m) → L1(Ω,m). Similarly,
by restricting P(Ω) to measures that have square-integrable
densities with respect to m, we define P̃ : L2(Ω,m) →
L2(Ω,m). Shortly, we will establish that these operators are
well-defined, in the sense that P preserves absolute continuity
and square-integrability of the densities, and moreover is
bounded. The three operators P , P̄ , and P̃ are all referred
to as forward operators, since they describe the evolution
of measures/densities forward in time. We will primarily be
working with the operator P̃ , and the title of this section refers
to this operator. At this point, we cannot write an explicit
formula for P̃ f(·) for f ∈ L2(Ω) directly from (5). Finally,
the backward operator is defined to be the Banach adjoint
of the forward operator P̃ ; hence, we define the backward
operator P̃ ∗ on L2(Ω,m).

We will now explore properties of the operator P̄ . First, we
need to check whether P̄ is bounded, linear, and well-defined.
To establish these properties, we need the following definition.

Definition IV.1. [30] Let (X ,M, ν) be any measure space.
Any linear operator T : L1(X , ν) → L1(X , ν) that satisfies
the following two conditions is called a Markov operator:

(i) Tf ≥ 0 for f ≥ 0, f ∈ L1(X , ν);

(ii) ‖Tf‖1 = ‖f‖1 for f ≥ 0, f ∈ L1(X , ν).

The proofs of Lemma IV.2, Proposition IV.4, and Proposi-
tion IV.5 below are given in the Appendix.

Lemma IV.2. If F is non-singular and continuous, then the
operator P̄ is well-defined (it preserves L1(Ω,m)), Markov,
and bounded.

We will be using the following result, which is straightfor-
ward to prove, several times in this paper.

Lemma IV.3. Suppose that ν is a measure on Rd such that
ν � m. Further, suppose that ν(E) ≤ Cm(E) for any set
E ∈ B(Rd), where C ∈ R is a constant. Then the derivative
of ν with respect to m, dν/dm, is in L∞(Rd,m).

Using K, we define a closed-loop (regular) transition kernel
Q : Ω× B(Ω)→ [0, 1]. For E ∈ B(Ω),

Q(x,E) =

∫
U

χE(F (x, u))K(x, du). (8)

We can rewrite P in (5) in terms of Q as follows:

(Pµ)(E) =

∫
Ω

Q(x,E) dµ(x). (9)

Note that Q can also be expressed as

Q(x,E) = (Pδx)(E). (10)

Example 9.10 in [42] justifies evaluation of the integral in (9)
against a Dirac measure. It is straightforward to confirm that
Q is a well-defined transition kernel, and that Q(x,Ω) = 1.
This will aid us in proving our next result in Proposition IV.4,
which is at the heart of the analysis, in that it proves the
compactness of P̃ . This in turn guarantees that the spectrum
of P̃ is discrete and therefore that a spectral gap exists (which
is not true for operators with a continuous spectrum). This
follows from Theorem VII.7.1 in [14], which states that for a
compact operator T on an infinite-dimensional Hilbert space
H, the spectrum of T contains 0 and is discrete; furthermore, if
the eigenvalues λi exist, they can be arranged in a decreasing
order that tends to 0: |λ1| ≥ |λ2| ≥ . . . ≥ |λn| → 0. We will
also require F to satisfy Lusin’s property [9] in both the x
and u variables. For x ∈ Ω fixed, this condition is stated as
follows: for Fx : (U,m)→ (Rd,m), we say that Fx satisfies
Lusin’s property if m(Fx(E)) = 0 for every E ∈ B(U) with
m(E) = 0. Lusin’s property for Fu has a similar definition.

Proposition IV.4. If K is regular and F is C1 differentiable
and satisfies Lusin’s property, then P̃ : L2(Ω,m)→ L2(Ω,m)
is well-defined, bounded, and compact.
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From the statement of Proposition IV.4, it can be inferred
that there exists a q ∈ L∞(Ω× Ω,m×m) such that we can
define the forward operator P̃ : L2(Ω,m)→ L2(Ω,m) as:

(P̃ fµ)(y) =

∫
Ω

q(x, y)fµ(x)dx. (11)

Using the definition of the adjoint operator, the backward
operator P̃ ∗ : L2(Ω,m)→ L2(Ω,m) is,

(P̃ ∗f)(x) =

∫
Ω

q(x, y)f(y)dy. (12)

In the case of finite-dimensional Markov chains, 1 is the
largest eigenvalue of the transition probability matrix, and 1 is
its corresponding (right) eigenvector. Similarly, obtaining the
adjoint of P from (9), we evaluate (P ∗1)(x) =

∫
Ω
Q(x, dy) =

1. This is true for every x ∈ Ω, and therefore P ∗1 = 1. Thus,
1 is an eigenvalue of P (P ∗). Corresponding to 1, P must
have an eigenvector or stationary measure π ∈ P(Ω); that is,
Pπ = π. We assume that P is constructed such that π admits
a density function dπ

dm = fπ which is strictly positive a.e.
on Ω, and additionally, fπ, f−1

π ∈ L∞(Ω,m). The reason for
this choice will become clear shortly. Then, we must have
that fπ is an eigenvector of the operator P̃ corresponding
to eigenvalue 1. Therefore, from (11) and (12), we have the
following properties of q:∫

Ω

q(x, y)dy = 1 (13)∫
Ω

q(x, y)fπ(x)dx = fπ(y) (14)

We now show that 1 is the largest eigenvalue of P̃ . Toward
this end, one could prove that P̃ is a contraction, i.e. ‖P̃‖ ≤ 1,
using the fact that |λ| ≤ ‖T‖ for any bounded linear operator
T . However, P̃ is not necessarily a contraction in the L2 norm.
We introduce a new bounded operator P̂ on a Hilbert space
that is isomorphic to L2(Ω,m), such that P̂ is a contraction
on this new space. We will show that the spectrum of P̃ is
invariant under the transformation P̃ 7→ P̂ . Recall that π is
a stationary measure of P that satisfies both π � m and
m� π. We define P̂ : L2(Ω, π)→ L2(Ω, π). Since m and π
are mutually absolutely continuous, L2(Ω,m) ∼= L2(Ω, π) as
Hilbert spaces. To express P̂ as an integral operator, we carry
out the following computations. Let f̂µ = dµ

dπ . Then:

d(Pµ) = (P̃ fµ)dm =
(P̃ fµ)

fπ
fπ dm =

P̃ fµ
fπ

dπ = (P̂ f̂µ)dπ,

where the last equality follows from the fact that fµ
fπ

=
dµ
dm

dm
dπ = dµ

dπ . The operator P̂ is well-defined because π
and m are mutually absolutely continuous and because we
have assumed that fπ, 1

fπ
∈ L∞(Ω,m). Now we define

a multiplication operator Mfπ : L2(Ω,m) → L2(Ω, π),
Mfπg = fπg. The operator Mfπ is well-defined and bounded
according to Theorem II.1.5 of [24]. P̂ can be expressed as,

P̂ f̂µ =

(
P̃ fµ
fπ

)
dπ = M−1

fπ
(P̃ fµ) = M−1

fπ
P̃

(
fµfπ
fπ

)
.

From this, we conclude that

P̂ = M−1
fπ
P̃Mfπ . (15)

Finally, from (11), (15), and the definition of Mfπ , we are
able to express P̂ as an integral operator:

(P̂ f̂µ)(y) =

∫
Ω

1

fπ(y)
q(x, y)f̂µ(x)fπ(x)dx

=

∫
Ω

q(x, y)

fπ(y)
f̂µ(x)dπ(x). (16)

Note that the integral kernel for the above integral operator is
q(x,y)
fπ(y) .

Proposition IV.5. P̂ as defined in (16) is bounded with
‖P̂‖L2(π) = 1, and as a result, r(P̃ ) ≤ 1.

In fact, P̂ is bistochastic, which implies that 1 is both a right
and left eigenvector of P̂ . This follows from the equations
below:

P̂1 = M−1
fπ
P̃Mfπ1 = M−1

fπ
P̃ fπ = M−1

fπ
fπ = 1. (17)

The adjoint equation P̂ ∗1 = 1 follows from (45) in the
Appendix.

In conclusion, we showed that for a particular choice of K,
the forward operator (11) defined on L2(Ω,m) is compact and
its largest eigenvalue is 1.

V. EXISTENCE OF A SOLUTION TO PROBLEM III.1

In this section, we will construct the forward operator P :
P(Ω) → P(Ω) and the analogous operator on densities, P̃ :
L2(Ω,m)→ L2(Ω,m), that solve Problem III.1. This will be
achieved in several steps, which are enumerated below. The
proofs of the results presented in this section are reserved for
the Appendix.

We begin by stating our assumptions. Let the measure
µd ∈ P(Ω) in Problem III.1 be such that it has a density
function fd > 0 a.e. on Ω and satisfies fd, 1

fd
∈ L∞(Ω,m).

Suppose that we are given a map F : Ω×U → Rd that satisfies
the conditions stated in Problem III.1. Further, as noted in
Proposition IV.4, for compactness of the to-be-constructed
operator P̃ to hold, we require F to be C1 differentiable and to
satisfy Lusin’s property. Moreover, as we will see, this process
of construction will require us to impose additional restrictions
on Ω. Specifically, Ω must be path connected and satisfy the
cone condition, to be defined in this section. Lastly, for the
system (1) to be controllable, we need the following local
controllability condition.

Definition V.1. The system (1) is said to be locally con-
trollable if there exists r > 0 such that, for every x ∈ Ω,
Br(x) ∩ Ω ⊆ F (x, U).

From here on, we will consider r to be fixed as per this
definition.

The steps for constructing P and P̃ are as follows.
1) Construct a reference transition kernel, or stochastic feed-

back law, K : Ω×B(U)→ [0, 1]. See (18). Prove that K
is a well-defined Markov kernel; that is, it is a measurable
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function on Ω in the first variable and a measure on U
in the second variable. See Proposition V.2. Prove that K
is regular; that is, it has an L∞(Ω × U,m ×m) kernel
function. See Proposition V.3.

2) Using the constructed K, formulate an operator S̃ :
L2(Ω,m) → L2(Ω,m). By Proposition IV.4, S̃ should
be well-defined, bounded, and compact.

3) Prove that S̃ is irreducible and that r(S̃) = 1, and
moreover, that S̃∗1 = 1. See Propositions V.4 and V.5.
Corresponding to the eigenvalue 1, there must be an
eigenvector of S̃, say fπ . Prove that fπ is in L∞(Ω,m)
and is positive on Ω m-a.e. See Proposition V.6. Prove the
uniqueness of the eigenvalue 1, which in turn will guar-
antee that the eigenvector fπ is the unique equilibrium of
system (4). See Theorem V.8.

4) Using S̃, construct a new operator P̃ : L2(Ω,m) →
L2(Ω,m) such that the desired function fd is its eigen-
vector. See (19).

5) Obtain an expression for P : P(Ω)→ P(Ω) via a closed-
loop transition kernel that we will call Q̂ : Ω× B(Ω)→
[0, 1]. See (21)-(23).

6) Prove that the discreteness of the spectrum of S̃ is
preserved under the transformation of S̃ to P̃ . Further,
prove that 1 is the spectral radius and a unique eigenvalue
of P̃ . See Theorem V.11.

7) Prove that P̃ is primitive. This is to ensure that fd is the
unique asymptotically (exponentially) stable equilibrium
of the system (4). See Theorem V.12.

8) The final step is to confirm that there exists a state-to-
control transition kernel of P , which we will call K̂ : Ω×
B(U) → [0, 1], such that Q̂ is the closed-loop transition
kernel of P . See Theorem V.13.

Step 1: We now construct a suitable reference kernel K. Given
x ∈ Ω, define Ux := F−1

x (Ω). Since F is continuous in both
variables, it is clear that the set Ux is Borel measurable for
each x ∈ Ω. Let W ∈ B(U). Then K is defined as

K(x,W ) =
m(W ∩ Ux)

m(Ux)
. (18)

We note that in general, Ux 6= U . We illustrate this with the
following example. Let Ω = [−1, 1] and U = [−0.5, 0.5].
Suppose that F (x, u) = x + u. Then for x = 1 fixed, we
do not have that for all u ∈ U , F (1, u) ∈ Ω; in fact, any
u ∈ (0, 0.5] will result in F (1, u) ∈ (1, 1.5], which is outside
our defined Ω. Therefore, the appropriate subset of U that
ensures that F (1, u) ∈ Ω is Ux=1 = [−0.5, 0] ( U .

To check that K is well-defined, we must confirm that
m(Ux) is non-zero. This requires the concept of cone con-
dition (Definition 4.6, [2]). A domain D is said to satisfy the
cone condition if there exists a finite cone C such that each
x ∈ Ω is the vertex of a finite cone Cx that is contained in Ω
and congruent to C. Note that Cx need not be obtained from
C by parallel translation, but simply by rigid motion.

Proposition V.2. If Ω satisfies the cone condition and F is
a C1 function and satisfies Lusin’s property, then m(Ux) is
non-zero for all x ∈ Ω, and hence K in (18) is a well-defined
Markov kernel.

The following result ensures that K is regular; that is, it has
a kernel function in L∞(Ω× U,m×m).

Proposition V.3. The transition kernel K defined in (18) is
regular. We denote the kernel function by k : Ω × U → R+;
k ∈ L∞(Ω × U,m ×m). For each x ∈ Ω, kx : U → R+ is
such that K(x, du) = kxdm.

We note that the kernel function k satisfies the properties (6)-
(7).

Step 2: With the given map F and the constructed kernel K
in (18), we define a forward operator S : P(Ω) → P(Ω) as
per (5) as follows:

(Sµ)(E) =

∫
Ω

∫
U

χE(F (x, u))K(x, du)dµ(x), E ∈ B(Ω).

Let Q : Ω×B(Ω)→ [0, 1] be the closed-loop transition kernel
of S, defined as per (8). Since K is regular from Step 1, Q is
regular; denote the kernel function of Q by q. By restricting S
to those probability measures that have L2(Ω,m) derivatives
w.r.t m, we define S̃ : L2(Ω,m)→ L2(Ω,m) as per (11):

(S̃f)(y) =

∫
Ω

q(x, y)f(x)dx, f ∈ L2(Ω).

We can then apply Proposition IV.4 to establish that S̃ is
well-defined, bounded, and compact and that it preserves
L2(Ω). Moreover, q is in L∞(Ω × Ω,m × m) and satisfies
the properties (13)-(14).

Step 3: By the Perron-Frobenius theorem, the transition matrix
of a finite-dimensional Markov chain must be irreducible to
have a unique stationary distribution. Similarly, we establish
this important property for S̃. First, we present a few defini-
tions from [18]. A Banach lattice is a Banach space with an
order defined on it. In our case, L2(Ω,m) is a Banach lattice.
A linear subspace I of a Banach lattice is a lattice ideal if the
following condition holds: if |g| ≤ |h| pointwise and h ∈ I ,
then g ∈ I . A linear operator T on a real ordered vector space
X is said to be positive, denoted by T > 0, if for x ∈ X ,
x ≥ 0 implies that Tx ≥ 0 [26]. A positive operator T on a
Banach lattice X is called irreducible if the only T -invariant
closed lattice ideals of X are the trivial ones; that is, if I ⊆ X
is a closed lattice ideal, then T (I) ⊆ I implies that either
I = {0} or I = X . A topological space X is path connected
if any two points x, y ∈ X are connected by a path in X ,
which is a continuous map p : [0, 1] → X with p(0) = x,
p(1) = y.

Proposition V.4. If Ω is path connected and system (1) is
locally controllable, then S̃ is irreducible.

It is easy to see that S̃ is a positive operator. Next, we
present several properties of the spectrum of S̃ (S̃∗). The
following lemma is straightforward to prove.

Lemma V.5. S̃∗1 = 1.

Let fπ ∈ L∞(Ω,m) be the eigenvector of S̃ corresponding
to the eigenvalue 1, and let π ∈ P(Ω) be the measure
such that fπ is its density. It is easy to see that π must be
an eigenvector of S corresponding to the (uniform) measure
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defined by constant function 1. We establish properties of
π, fπ , and the eigenvalue 1 below.

Proposition V.6. We have that:

1) fπ, f−1
π ∈ L∞(Ω,m) and fπ is positive on Ω m-a.e.

2) The spectral radius r(S̃) is 1.

We now establish the simplicity of the eigenvalue 1, which
in turn will guarantee the uniqueness of the eigenvector
π. Toward this end, we now state the generalized Perron-
Frobenius theorem for infinite-dimensional compact operators.
First, we require the following definition. An element x of an
Lp space with p ∈ [0,∞) (our case) is called a quasi-interior
point if x > 0. A more general definition for quasi-interior
points on general Banach lattices is given in [41].

Theorem V.7. (Jentzsch-Perron)[26] Let T be a linear opera-
tor on a Banach lattice X . Suppose that T > 0 and compact. If
T is irreducible, then r(T ) is a positive eigenvalue of algebraic
multiplicity one and its eigenspace is spanned by x ∈ X , a
unique normalized quasi-interior point.

Finally, we summarize the above results in the following
theorem.

Theorem V.8. If Ω is path connected and satisfies the cone
condition, and F is a C1 function and satisfies Lusin’s
property, then the operator S̃ is irreducible, and its spectral
radius 1 is simple. Further, the eigenvector corresponding to
1, fπ , is positive on Ω m-a.e. and is in L∞(Ω,m).

Step 4: Our goal is to construct an operator that has fd as
its fixed point. Toward this end, we define a multiplication
operator D : L2(Ω,m) → L2(Ω,m) by D(g) = gfπ

fd
. Note

that fπ
fd
∈ L∞(Ω,m), and therefore D is well-defined and

bounded. Now we construct P̃ as,

P̃ = (S̃ − I)εD + I, 0 < ε << 1 (19)

Remark V.9. For ε small enough, P̃ is a positive operator.

Remark V.10. The transformation (19) is the discrete-time
analogue of a transformation of the Laplacian ∆, which is
the generator of a Brownian motion, into the generator ∆D
of a new stochastic process for which the target measure
µd is invariant. We previously used such a transformation to
construct stochastic coverage strategies for robotic swarms in
[19] and to stabilize a class of hybrid-switching diffusions to
target invariant measures in [22].

Step 5: Similar to the pair S, S̃, corresponding to P̃ we can
define an operator P that acts on P(Ω). We note that P̃ is
not compact, since the identity operator I is not compact, so
it cannot be represented as an integral operator with an L2

integral kernel as in (11). Instead, we will show that P can be
represented as (9) with a Markov kernel (that does not have
an L∞(·) density function). To obtain the Markov kernel, we
carry out the following computation.

Let µ ∈ P(Ω) be such that µ � m, and let fµ be its
derivative with respect to m. Let E ∈ B(Ω). We have that

(Pµ)(E) =
∫
E

(P̃ fµ)(x)dx. Using (19), we evaluate the right-
hand side of this equation:∫

E

∫
Ω

q(x, y)a(x)fµ(x)dydx+

∫
E

(1− a(x))fµ(x)dx, (20)

where a(x) = εfπ(x)
fd(x) .

We will also suppose that (Pµ)(E) =
∫

Ω
Q̂(x,E)dµ(x) for

some Q̂ : Ω × B(Ω) → R+. From (19), we will assume that
Q̂ is of the following form,

Q̂(x,E) =

∫
E

q(x, y)a(x)dy + (1− a(x))δx(E). (21)

This can be easily confirmed to be a Markov transition kernel.
Now we evaluate

∫
Ω
Q̂(x,E)fµ(x)dx, which equals:∫

Ω

∫
E

q(x, y)a(x)fµ(x)dydx+

∫
Ω

(1− a(x))fµ(x)δx(E)dx

=

∫
Ω

∫
E

q(x, y)a(x)fµ(x)dydx+

∫
E

(1− a(x))fµ(x)dx.

By applying Fubini’s theorem to the first term, we observe
that the above expression is exactly equal to (20). Hence, Q̂
is indeed the Markov kernel of P , and P can be represented
in a form similar to (9) as shown below. For all µ ∈ P(Ω)
and all E ∈ B(Ω),

(Pµ)(E) =

∫
Ω

Q̂(x,E)dµ(x) (22)

=

∫
Ω

∫
U

χE(F (x, u))K̂(x, du)dµ(x), (23)

where K̂ is the state-to-control kernel of P . The existence
of K̂ will be ensured by Theorem V.13 below. As we will
show in the next two theorems, Theorems V.11 and V.12,
this constructed P is our solution to Problem III.1 for µd
that satisfy the constraints mentioned at the beginning of this
section.
Step 6: We now use straightforward computations to demon-
strate that the constructed operator P̃ has 1 in its spectrum
with fd and 1 as the corresponding eigenvectors of P̃ and
P̃ ∗, respectively. Since S̃∗1 = 1, we have that P̃ ∗1 =
(εD∗(S̃∗ − I) + I)1 = 1. In addition, since S̃fπ = fπ ,
P̃ fd = ((S̃− I)εD+ I)fd = fd. It is also easy to see that for
P , we similarly have that P ∗1 = 1, where 1 is the uniform
measure, and Pµd = µd.

Theorem V.11. The operator P̃ defined in (19) has 1 as its
largest eigenvalue, and this eigenvalue is algebraically simple
and isolated (i.e., is not a limit point.).

Step 7: For (4) to be asymptotically stable, we need 1 to be the
only eigenvalue of P̃ that has modulus 1. Primitivity of P̃ is
precisely the condition that ensures this. A positive operator T
is called primitive if r(T ) is the only eigenvalue on the spectral
circle (the set {λ ∈ C : |λ| = r(T )}). Note that primitivity of
P̃ implies aperiodicity of the associated Markov chain.

Theorem V.12. For all ε small enough, if fπ , fd are bounded
from below, then P̃ in (19) is primitive.

Step 8: Finally, we prove that K̂, the state-to-control kernel
of P in (23), is well-defined.
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Theorem V.13. Let system (4) be locally controllable ev-
erywhere on Ω. Then there exists a Markov kernel K̂ :
Ω×B(U)→ [0, 1] such that Q̂ defined in (21) is the Markov
kernel of the corresponding closed-loop system, and hence the
equalities in (22)-(23) hold true.

VI. FORMULATION OF THE OPTIMIZATION PROBLEM

In this section, we present a solution to a relaxed version of
Problem III.2. The reason for this relaxation will be explained
shortly. In the previous section, we proved the existence of
an operator P that satisfies the following properties: it has a
spectral gap, the desired measure µd is its unique eigenvector,
and it makes µd an asymptotically stable equilibrium point for
the system (4). In this section, we investigate whether we can
pose an optimization problem to search for such an operator
P such that the system (4) converges exponentially fast to the
equilibrium µd. The spectral gap of P will determine the rate
of convergence of system (4); the larger the gap, the faster
the convergence. Recall the assumptions on µd as stated in
Section V: µd � m, with fd as its density, and fd, f

−1
d are

in L∞(Ω,m) and are strictly positive a.e. on Ω. Instead of P ,
we will formulate the optimization problem in terms of the
operator P̃ that acts on L2(Ω,m). Specifically, we formulate
an optimization problem that maximizes the spectral gap of P̃ .
Similar to [10], we can then formulate a convex optimization
problem that minimizes the second largest eigenvalue modulus
of the operator. We begin with the formulation of the objective
function in this problem.

We will pose the optimization problem for P̂ = M−1
fd
P̃Mfd

in (15), which has the same spectrum as P̃ . The advantage here
is that P̂ is bistochastic, as proved in (17), which simplifies
the formulation of the optimization problem as explained next.
We know that given an operator T on a Hilbert space H,
for all λ ∈ σ(T ), we have that |λ(T )| ≤ ‖T‖. Unless the
operator is self-adjoint or normal, there is no convex formula,
that we know of, to characterize the moduli of the eigenvalues.
Since we are not searching for a self-adjoint or normal operator
P̂ , the second largest eigenvalue modulus of P̂ can only be
bounded from above. We obtain this bound by restricting P̂ to
the subspace obtained after removing the eigenspace span(1)
corresponding to its largest eigenvalue 1:

λ2(P̂ ) = λ1(P̂ ◦ Proj1⊥) ≤ ‖P̂ ◦ Proj1⊥ ‖2,

where Proj(.) is the projection operator onto a subspace, and
‖ · ‖2 denotes the L2(Ω, µd) norm. The optimization objective
is then to minimize the right-hand side of the equation above,
knowing that it will be an upper bound for the moduli of all
eigenvalues of P̂ . This is the relaxation that we mentioned at
the beginning of the section.

The projection of an arbitrary vector v ∈ L2(Ω, µd) onto
the eigenspace 1 is Proj1(v) = 〈v,1〉

‖1‖22
1, and the projection of

v onto 1⊥ is Proj1⊥ = I − Proj1. Therefore, we have(
P̂ ◦ Proj1⊥

)
v = P̂

(
v − 〈v,1〉

‖1‖22
1

)
= P̂ v − 〈v,1〉

‖1‖22
1.

We now formulate the optimization problem. The optimiza-
tion variable is the state-to-control transition kernel K. Using

the variable K, the operator P from (5) is defined in constraint
(26) below. The relationship between P̂ and P̃ is enforced as
constraint (25) in the optimization problem, defined as follows:

min
K

∥∥∥P̂ (K) ◦ Proj1⊥
∥∥∥ (24)

subject to

P̂ = M−1
fd
P̃Mfd , (25)

(Pµ)(A) =

∫
Ω

∫
U

χA(F (x, u))K(x, du)dµ (26)

∀A ∈ B(Ω), µ ∈ P(Ω),

K(x,E) ≥ 0 ∀x ∈ Ω, ∀E ∈ B(U), (27)∫
Ω

K(x, U)dx = 1 ∀x ∈ Ω, (28)

QK(x,A) =

∫
U

χA(F (x, u))K(x, du) ∀A ∈ B(Ω), (29)∫
Ω

fd(y)QK(x, dy) = fd(x) ∀x ∈ Ω. (30)

The constraints (27)-(28) ensure that K is indeed a Markov
kernel. Constraint (29) defines the closed-loop transition kernel
QK in terms of K, and constraint (30) ensures that fd is the
stationary distribution of P̃ .

We end this section by showing that the optimization
problem posed above is convex. Let K be the set of closed-
loop transition kernels, defined as follows:

K =
{
K : Ω× B(U)→ R̄+ :

∫
Ω

K(x, U)dx = 1,∫
Ω

fd(y)QK(x, dy) = fd(x) ∀x ∈ Ω
}
.

Then K is the set of decision variables. We note that each
constraint in this set is convex, therefore making K a convex
set. Furthermore, the objective function is a norm of an
operator, which makes it convex.

Finally, we note that it is not immediately clear whether
an optimal solution to this problem exists. We reserve this
investigation for future work.

VII. NUMERICAL OPTIMIZATION

In this section, we present a numerical approach to solving
the optimization problem (24)-(30). Our approach can be
applied to control systems of the form (1), in which the
state space Ω and the control set U are compact subsets
of R2. The subset Ω is partitioned into nx ∈ Z̄+ sets,
Ω̃ = {Ω1, . . . ,Ωnx}, where Ω = ∪nxi=1Ωi and the sets Ωi have
intersections of zero Lebesgue measure. The set of control
inputs U is approximated as a set of nu ∈ Z̄+ discrete
elements, Ũ = {v1, . . . , vnu}, where vi ∈ U for each i. Define
index sets I = {1, . . . , nx} and J = {1, . . . , nu}. We define
an equivalent of the state-to-control transition kernel K, with
kernel function k, in the discrete-time case. Let k̃il be the
probability of choosing the control variable vl, given that the
system state is in Ωi. This probability is given by,

k̃il =

∫
Ωi

k(x, vl)dx.
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Fig. 1. Simulation of the additive system (39) in Example 1 at three times n.

Let K be the matrix [k̃il]i∈I,l∈J . Using this definition, we
construct an approximating controlled Markov chain on the
finite state space I. For i ∈ I, when the system state is in the
set Ωi, we will consider the Markov chain state to be i. We
use Ulam’s method [17] to construct this approximation. In the
uncontrolled setting, Ulam’s method is a classical technique
to construct approximations of the pushforward map (Perron-
Frobenius operators) induced by dynamical systems. Let plij
denote the probability of the system state being in the set
Ωj in the next time step, given that the system state is
uniformly randomly distributed over the set Ωi and the selected
control input is vl. We define the transition probabilities of the
controlled Markov chain as follows:

plij =
m(Ωi ∩ F−1

l (Ωj))

m(Ωi)
, (31)

where Fl(·) = F (·, vl).
Let µ ∈ P(Ω̃) and j ∈ I. Let P be the equivalent expression

for the operator P , defined in (5), in matrix form. Then P is
given by:

(Pµ)(j) =
∑
i∈I

∑
l∈J

k̃il p
l
ijµ(i). (32)

Let µd ∈ P(Ω̃) be a desired distribution that is positive on Ω̃,
and define a diagonal matrix Md = diag(µd).

We can now formulate the finite-dimensional quadratic pro-
gram that is equivalent to optimization problem (24)-(30). We
define a bistochastic matrix P̂ according to (15). This equation
is enforced as constraint (34) in the quadratic program, defined
as follows:

min
K

∥∥∥∥P̂− 11T

nx

∥∥∥∥ (33)

subject to

P̂ = M−1
d PMd, (34)

(Pµ)(j) =
∑
i∈I

∑
l∈J

k̃il p
l
ijµ(i) ∀j ∈ I, ∀µ ∈ P(Ω̃), (35)

k̃il ≥ 0 ∀i ∈ I, ∀l ∈ J , (36)
K1 = 1, (37)
Pµd = µd. (38)

The constraint (35) above is written from (32), where plij ,
i, j ∈ I, l ∈ J , is obtained via Ulam’s method as per (31).

Note that 1 in (33) is a vector in Rnx . We observe that this
problem is convex and similar to the optimization problem
solved in [10].

VIII. SIMULATION RESULTS

In this section, we apply the numerical optimization proce-
dure to two control systems of the form (1) evolving in R2.
To solve the optimization problem (33)-(38), we used CVX,
a MATLAB package for solving convex programs [25]. Since
the optimization problem is a quadratic program, it becomes
computationally intractable for very fine discretizations of
the domain Ω. Therefore, in the examples in Subsections
VIII-A and VIII-B, we use a relatively coarse discretization. In
Subsection VIII-C, we solve a feasibility problem for which a
finer discretization is possible. In all three cases, the quadratic
program (33)-(38) was solved to obtain a state-to-control
transition probability matrix K. Defining P from the resulting
K according to (35), we simulated system (4) with the initial
measure µ0 set to be a Dirac measure concentrated at the
lower left corner of the domain. To quantify the degree of
convergence of the simulated measure µn to the target measure
µd, we computed the 2-norm γn = ||µn − µd||2 at selected
times n.

A. Example 1: Additive Model

We first consider a linear additive vector field F in system
(1):

xn+1 = xn + un, (39)

where xn = [x1
n x2

n]T ∈ Ω and un = [u1
n u2

n]T ∈ U . The
state space is Ω = [0, 1]2, and the set of control inputs is
U = [−1, 1]2. The target measure is set to µd = sin2(2πx1)+
sin2(2πx2) + ε, where [x1 x2]T ∈ Ω and ε > 0 is chosen to
ensure a strictly positive measure over Ω. We use a 10×10 grid
for Ω (nx = 100) and a 20×20 grid for U (nu = 400). Figures
1a-1c show snapshots of the simulation of system (4) at three
times. Figure 4 plots the natural logarithm of the error metric
γn during the simulation. It is evident from the time evolution
of the snapshots, along with the accompanying decrease in
γn, that the measure converges asymptotically to the target
measure.
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Fig. 2. Simulation of the unicycle system (40) in Example 2 at three times n.
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(b) n = 10
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(c) n = 15
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(d) n = 20

Fig. 3. Simulation of the unicycle system (40) in Example 3 at four times n.

B. Example 2: Unicycle Model

We next consider a nonlinear vector field F in system (1)
that represents a unicycle model:

x1
n+1 = x1

n + u1
n cos(u2

n),

x2
n+1 = x2

n + u1
n sin(u2

n). (40)

In this case as well, xn = [x1
n x

2
n]T ∈ Ω and un = [u1

n u
2
n]T ∈

U . The state space is Ω = [0, 1]2, and the set of control inputs
is U = [−1, 1]× [0, 2π]. The target measure in this case is set
to µd = cos2(2πx1) + cos2(2πx2) + ε, where [x1 x2]T ∈ Ω
and ε > 0 is chosen to ensure a strictly positive measure over
Ω. We use a 10 × 10 grid for Ω (nx = 100) and a 20 × 20
grid for U (nu = 400). Figures 2a-2c show snapshots of the
simulation of system (4) at three times, and Figure 4 plots the
natural logarithm of the error metric γn over time. Again, the
measure converges asymptotically to the target measure.

C. Example 3: Feasibility Problem

In the two previous cases, the optimization problem (33)-
(38) was found to be computationally intractable for grid sizes
nx > 100, due to the fact that the problem is quadratic
in nature. Here, instead of optimizing the convergence rate
of system (4), we solve the feasibility problem. This en-
tails searching for any matrix K such that the steady-state
distribution of system (4) is µd; i.e., any K that satisfies
the constraints (34)-(38). This serves to demonstrate that the
feasibility problem can be solved for larger grid sizes than
nx = 100. The simulated system (1) is defined as the unicycle
model (40) in Example 2. We use a 40 × 40 grid for Ω
(nx = 1600) and a 45× 45 grid for U (nu = 2025). Figures
3a-3d and 4 show snapshots of the simulation of system (4) at
four times and the natural logarithm of the error metric γn over

2 4 6 8 10 12 14 16 18 20

n

-10
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-8

-7
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-4

-3

-2

-1

0

Example 1

Example 2

Example 3

Fig. 4. The time evolution of the natural logarithm of the error between the
simulated and target measures in each example.

time. We see that the measure again converges asymptotically
to the target measure.

Figure 4 shows that the system in this case exponentially
converges to the target distribution at a rate close to the rates
observed in Examples 1 and 2. Note that the convergence
rate of Example 3 cannot be directly compared to those of
Examples 1 and 2, since the grid sizes nx and nu in Example
3 are much larger than in those two examples. We also make
note of the fact that in Examples 1 and 2, we are only solving
a relaxation of the optimization problem, as mentioned at the
beginning of Section VI. The relaxation is due to the fact that
we are only optimizing the norm of the operator, which is
an upper bound on the moduli of all the eigenvalues of the
operator.



11

IX. CONCLUSION

In this paper, we presented an approach to stabilizing a
class of discrete-time nonlinear systems that evolve on a
compact subset of Rd to target probability measures that are
absolutely continuous with respect to the Lebesgue measure,
have L∞ derivatives, and are positive almost everywhere on
this compact set. We also presented a method to optimize the
convergence rate of the system to this target measure and
validated our method in simulation. Possible directions for
future work are to extend our stabilization result to arbitrary
discrete-time nonlinear systems that are n-step controllable
and to prove the existence of an optimal solution to the
optimization problem that we have posed. In addition, we
plan to extend our results to continuous-time nonlinear systems
evolving on continuous state spaces.

APPENDIX A

Proof of Lemma IV.2. We begin by proving that P preserves
those measures that are absolutely continuous with respect to
the Lebesgue measure. Given that µ ∈ P(Ω) is such that
µ � m, we must show that Pµ � m. Indeed, if E ∈ B(Ω)
is such that m(E) = 0, then µ(E) = 0, which further implies
that (µ×m)(F−1(E)) = 0. The last equality holds true due
to the non-singularity of F with respect to both variables x, u.
Therefore, we have that χE(F (x, u)) = χ

F−1(E)(x, u) = 0
m-a.e. x ∈ Ω, u ∈ U. From (5), we have

(Pµ)(E) =

∫
Ω

∫
U

χE(F (x, u))k(x, u)dm(u)dµ(x)

≤ ‖k‖∞
∫

Ω

∫
U

χE(F (x, u))dm(u)dµ(x) = 0.

Therefore (Pµ)(E) = 0, and we obtain Pµ � m. Since
P preserves absolutely continuous probability measures, P̄
preserves L1(Ω,m).

Next, we prove that P̄ is Markov. Condition (i) of Definition
IV.1 follows from property (6), and accordingly the integrand
in (5) is non-negative. Condition (ii) follows from the fact that
P preserves probability measures P(Ω) that are absolutely
continuous with respect to m. Thus, P̄ is Markov. Also, from
condition (ii), it follows that ‖P̄‖1 = 1. �

Proof of Proposition IV.4. The proof will be divided into the
following key steps.

1. Prove that the closed-loop kernel Q defined in (10) is
regular; that is, its kernel function is in L∞(Ω×Ω,m×
m).

2. Prove that the operator P̃ is an integral operator, as
defined in [14], on L2(Ω× Ω,m×m).

3. Apply Proposition II.4.7 of [14] to prove that P̃ indeed
satisfies all the properties stated in the proposition.

Fix z ∈ Ω and E ∈ B(Ω). Setting µ = δz in (5), we obtain:

(Pδz)(E) =

∫
Ω

∫
U

χE(F (x, u)) k(x, u) du dδz

=

∫
U

χE(F (z, u)) k(z, u) du (41)

≤ ‖k‖∞
∫
U

χE(F (z, u)) du (42)

= ‖k‖∞ m(F−1
z (E)). (43)

The equality (41) follows from Fubini’s theorem [24]. We note
that by the non-singularity of F , m(F−1

z (E)) = 0 if µ(E) =
0. Therefore, (Pδz)(E) is an absolutely continuous measure
with respect to m. Recall the generalized version of the change
of variables theorem (Theorem 5.8.30, [9]) Since the change
of variables theorem can only be applied to an open set, we
restrict F to int(U) (i.e., F |int(U)). The boundary ∂U can be
excluded, since by Lusin’s property, the fact that the measure
of ∂U is 0 implies that m(Fz(∂U)) = 0. Since Fx is C1

differentiable, the derivative of Fx with respect to u, denoted
by Du(Fx), is bounded on U uniformly over all x ∈ Ω. Hence,
the quantity |detDuFx| has both upper and lower bounds,
both positive. Let c1 = infx,u |detDuFx|. The integral in
(42) can be bounded from above as follows:∫

U

χE(F (z, u))du ≤ c1

∫
U

χE(F (z, u))|detDuFz|du.

Since Fz satisfies Lusin’s property, we can now apply the
change of variables theorem to the right-hand side of the above
inequality to obtain,∫

U

χE(F (z, u))du ≤ c1
∫
Fz(U)

χE(y)dy = c1

∫
E∩Fz(U)

dy

= c1 m(E ∩ Fz(U)) ≤ c1 m(E).

Combining this result with (42), we obtain Q(z, E) =
(Pδz)(E) ≤ ‖k‖∞ c1 m(E). The constant c1 is independent
of z ∈ Ω and E ∈ B(Ω). Therefore, Q is regular.

Let P̃ fµ be the density function of Pµ with respect to the
Lebesgue measure. Therefore we have,

(Pµ)(E) =

∫
E

(P̃ fµ)(x)dx =

∫
Ω

Q(x,E)fµ(x)dx (44)

≤
∫

Ω

‖k‖∞c1m(E)fµ(x)dx = Cm(E),

where C is a constant. The second equality follows from (9),
and the inequality follows from computations above. Hence,
we have achieved a uniform bound on (Pµ)(E), which by
Lemma IV.3 means that P̃ in fact takes L2(Ω,m) functions
to L∞(Ω,m). Now we can apply Theorem 1.3 of [4], which
claims that if X is any σ-finite measure space, any bounded
operator from Lp(X ) (1 ≤ p <∞) into L∞(X ) is an integral
operator. This proves that our P̃ is indeed an integral operator.

By Lemma IV.3, the kernel function of Q is in L∞(Ω×Ω,m×
m) ⊆ L2(Ω × Ω,m ×m). Denote the kernel function of Q
by q : Ω × Ω → R+. For each x, qx : Ω → R+ is such that
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Q(x, dy) = qxdm. We can now give an integral representation
of P̃ . From (44), we have∫

E

(P̃ fµ)(x)dx =

∫
Ω

∫
E

q(x, y)fµ(x)dydx.

Using Fubini’s theorem and comparing the integrands of the
two integrals over E yields (P̃ fµ)(y) =

∫
Ω
q(x, y)fµ(x)dx.

Since P̃ is an integral operator on L2(Ω,m) with its integral
kernel, as defined in [14], given by q ∈ L∞(Ω× Ω,m×m),
we can apply Proposition II.4.7 of [14] to obtain our result,
namely, that P̃ is well-defined, bounded, and compact. �

Proof of Proposition IV.5. We will use Theorem 6.18 of [24]
to prove the first part of the proposition. In order to check the
conditions of this theorem, we need the kernel q(x,y)

fπ(y) to be
in L1(Ω, π) with respect to each variable x and y when the
other variable is fixed. First, we fix x and evaluate the integral∫

Ω
q(x,y)
fπ(y) dπ. By property (13), we have∫

Ω

q(x, y)dy =

∫
Ω

q(x, y)

fπ(y)
fπ(y)dy =

∫
Ω

q(x, y)

fπ(y)
dπ(y) = 1.

(45)
Next, we evaluate the integral

∫
Ω
q(x,y)
fπ(y) dπ(x). Using property

(14), we have∫
Ω

q(x, y)fπ(x)dx = fπ(y) =⇒
∫

Ω

q(x, y)

fπ(y)
dπ(x) = 1.

Therefore, the constant C in Theorem 6.18 of [24] is 1 in this
case, and therefore ‖P̂‖L2(π) ≤ 1. This implies that r(P̂ ) ≤
‖P̂‖L2(π) ≤ 1. Recall that P̂ = M−1

fπ
P̃Mfπ . If λ ∈ σ(P̃ ),

then (P̃−λI) is not invertible, and further, M−1
fπ

(P̃−λI)Mfπ

is not invertible, which implies that λ ∈ σ(P̂ ). From this, we
also note that the converse holds true; that is, if λ ∈ σ(P̂ ) then
λ ∈ σ(P̃ ). As a consequence, we conclude that r(P̂ ) ≤ 1. �

Proof of Proposition V.2. Let x be an arbitrary point in Ω.
In order to show that m(Ux) is non-zero, we will use the
fact that F−1

x (Br(x) ∩ Ω) ⊆ Ux = F−1
x (Ω) and show that

m(F−1
x (Br(x) ∩ Ω)) cannot be arbitrarily small. For clarity

in the expressions below, we denote Br(x) ∩ Ω by Bx. We
note that by the non-singularity of Fx, m(F−1

x (Bx)) > 0 if
m(Bx) > 0.

There are two possible conditions under which
m(F−1

x (Bx)) is arbitrarily small. First, m(Bx) could
be arbitrarily small. To show that this is not true, we estimate
the lower bound of m(Bx) using the cone condition as
follows. According to this condition, there is a cone C
that is completely contained in Ω with x at its vertex.
Accordingly, the intersection of this cone and Bx has a
positive measure. Denoting this intersection by CB , we have
that m(CB) ≤ m(Bx). Note that the lower bound m(CB) is
independent of x.

The second way in which m(F−1
x (Bx)) could be arbitrarily

small is if the measure of F−1
x of a set of positive measure is

arbitrarily small. We show that this is not true by obtaining a
lower bound on m(F−1

x (Bx)), given that m(Bx) is bounded
from below. By definition,

m(F−1
x (Bx)) =

∫
U

χBx(F (x, u))du.

Since F is C1, the determinant of its derivative with respect
to each variable is bounded; let supx,u |det(DuFx)|)−1 =
c2 < ∞. We bound the integral from above and apply the
generalized change of variables formula [9], as was done in
the proof of Proposition IV.4, to obtain the following lower
bound on m(F−1

x (Bx)):∫
U

χBx(F (x,u))du ≥ c2
∫
U

χBx(F (x, u))|det(DuFx)|du

= c2

∫
Fx(U)

χBx(y)dy = c2 m(Bx ∩ Fx(U))

= c2 m(Bx) ≥ m(CB) (46)

Therefore, m(F−1
x (Bx)) is non-zero, and consequently m(Ux)

is non-zero, for all x ∈ Ω.
Next, we confirm that K is a well-defined Markov kernel.

Toward this end, we first fix W ∈ B(U) and check whether
K(·,W ) is a measurable function on Ω. Let G = {(x, u) ∈
Ω × W : F (x, u) ∈ Ω}. G is Borel measurable because
F is continuous in both variables. Since χG is a Borel
measurable function, the Tonelli theorem [24] implies that
(χG)x is Borel measurable for each x ∈ Ω, and therefore
that x 7→

∫
U

(χG)xdu is Borel measurable. Since (χG)x(u) =
χG(x, u), we have that

∫
U

(χG)xdu = m(F−1
x (Ω)) = m(Ux).

That is, x 7→ m(Ux) is Borel measurable, which implies that
x 7→ m(W ∩ Ux)/m(Ux) = K(x,W ) is Borel measurable.
Next, we check that K(x, ·) is a measure on (U,B(U)) for
each fixed x ∈ Ω. This is a straightforward consequence of
the fact that the Lebesgue measure restricted to Ux, m|Ux , is
a measure on U . This concludes the proof. �

A. Proof of Proposition V.3

We need a lemma before presenting the proof. To begin, let
the transition kernel K induce an operator, say A : P(Ω) →
P(U), as follows. For each measure µ on Ω,

(Aµ)(W ) =

∫
Ω

K(x,W )dµ(x), W ∈ B(U) (47)

defines a measure on (U,B(U)). Similar to our definition of
P̄ , we define Ā : L1(Ω,m)→ L1(U,m).

Lemma A.1. The operators A and Ā are well-defined; that
is, they preserve probability measures on U and L1(U,m),
respectively. Moreover, A and Ā are bounded, and Ā :
L1(Ω,m)→ L∞(U,m).

Proof. Let µ ∈ P(Ω) such that µ� m. We will first show that
Aµ ∈ P(U) and Aµ � m. A straightforward computation
shows that Aµ defines a measure and (Aµ)(U) = 1, and
therefore Aµ ∈ P(U). We now check absolute continuity of
Aµ with respect to m. Let W ∈ B(U) be such that m(W ) = 0.
Then we have that,

(Aµ)(W ) =

∫
Ω

K(x,W )dµ(x) =

∫
Ω

m(W ∩ Ux)

m(Ux)
dµ = 0.

Hence, Aµ � m. This shows that A, and therefore Ā, is
well-defined.

To prove the boundedness of A, we carry out the following
computation. Recall that we used the cone condition in the
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proof of Proposition IV.4 to establish that, for any x ∈ Ω,
there exists a cone Cx, congruent to a cone C, that is completely
contained in Ω with x at its vertex. The intersection of Cx and
Br(x)∩Ω, denoted by CB , has a positive measure. In Lemma
V.2, we showed that m(Ux) > m(F−1

x (Br(x)∩Ω)) > m(CB);
that is, m(Ux) is lower-bounded by a constant m(CB) that is
independent of x. Further, since W ∩Ux ⊆W , m(W ∩Ux) ≤
m(W ). Combining these results, we obtain the following
inequality:

(Aµ)(W ) =

∫
Ω

m(W ∩ Ux)

m(Ux)
dµ(x) ≤

∫
Ω

m(W )

m(CB)
dµ(x)

≤ m(W )

m(CB)
.

This shows that Aµ is equivalent to the Lebesgue measure,
and therefore A is bounded. Consequently, Ā is also bounded.
Finally, since Aµ has a uniform upper bound, by Lemma IV.3,
the operator Ā takes L1(Ω,m) to L∞(U,m).

Proof of Proposition V.3. The proof follows from an applica-
tion of Theorem 1.3 of [4] in combination with the approach
used in Proposition IV.4. �

B. Proof of Proposition V.4

Before presenting the proof, we need the following char-
acterization of ideals on a finite-dimensional measure space
from [18]. On a finite-dimensional measurable space (X ,M),
for 1 ≤ p < ∞, each closed lattice ideal I ⊆ Lp(X ) has the
form IE shown below for some E ∈M:

IE :=
{
g : E ⊆

{
g = 0

}}
(48)

Proof of Proposition V.4. For the sake of contradiction, let S̃
be reducible. Then, let I be an S̃-invariant, non-trivial, closed
ideal of S̃; that is, S̃(I) ⊆ I . Furthermore, I must have the
form (48) for some non-trivial E ∈ B(Ω), with m(E) > 0.
Let g = χEc . Then g ∈ L2(Ω,m) and g = 0 on E. Therefore,
g ∈ I . Now, let dµ = gdm. Then µ = m on Ec and µ = 0 on
E. By our claim, S̃g ∈ I . The idea of the proof is to prove
existence of a non µ-null set in Ec from which the measure
gets push-forwarded to E, thereby obtaining a contradiction.

According to our claim, S̃g ∈ I , and so we have that for
all y ∈ E, (S̃g)(y) =

∫
Ec
q(x, y)g(x)dx = 0. Since g(x) = 1

only if x ∈ Ec, this computation implies that q(x, y) = 0 for
almost all y ∈ E. This further implies that

Q(x,E) = (Sδx)(E) =

∫
U

χE(F (x, u))k(x, u)du = 0

for µ-a.e. x ∈ Ec (49)

Next, we examine the two possible ways that the integral
in (49) can be zero; namely, when m(U) = 0 or when the
integrand is zero.

First, we show the existence of a subset A ⊆ Ec of positive
measure, such that for all x ∈ A, there exist u ∈ U such that
F (x, u) ∈ E. Since Ω is compact, there exists a finite number
of points x1, . . . , xN ∈ Ω, such that Ω can be covered by a
finite number of balls, each with positive radius δ and centered
at xi, i ∈ {1, . . . , N}. Therefore, we have that Ω = E ∪Ec ⊆

Fig. 5. Illustration of the subset A (shaded region) used in the proof of
Proposition V.4.

∪Ni=1Bδ(xi). We choose δ small enough such that for every
i, Bδ(xi) ∩ Ω ( Br(z) ∩ Ω for all z ∈ Bδ(xi). Since Ω is
path connected, these balls cannot be disjoint, and furthermore,
there exists at least one ball which intersects both E and Ec in
sets of positive measure. That is, there exists j ∈ {1, . . . , N}
such that m(Bδ(xj)∩E) > 0 and m(Bδ(xj)∩Ec) > 0. By our
choice of δ, for any point x within Bδ(xj), Br(x)∩Ω strictly
contains Bδ(xj)∩Ω. Thus, as illustrated in Figure 5, Br(·) of
all points in Bδ(xj)∩Ec must also contain Bδ(xj)∩E, which
has a strictly positive measure. Define A := Bδ(xj) ∩ Ec, as
shown in Figure 5.

Returning to the integral (49), if the measure of the domain
of integration is zero, then the integral evaluates to zero. In this
case, although m(U) > 0, it is not true that F (x, u) ∈ E for all
u ∈ U and all x ∈ Ec. Fix y ∈ A. Then Br(y) ∩ Ω contains
Bδ(xj) ∩ E. Because F is non-singular, m(F−1

y (Bδ(xj) ∩
E)) > 0. Letting V := F−1

y (Bδ(xj) ∩ E) and restricting the
domain of integration in (49) to V , observe that Q(y,E) ≥∫
V
χE(F (y, u))k(y, u)du > 0. Since y ∈ A and m(A) > 0,

we arrive at a contradiction with (49), and hence S̃ is indeed
irreducible. �

Proof of Proposition V.6. (1) We have that,

(S̃fπ)(y) = fπ(y) =

∫
Ω

q(x, y)fπ(x)dx

≤ ‖q‖∞
∫

Ω

fπ(x)dx ≤ ‖q‖∞

for m-a.e. y ∈ Ω. The last inequality follows from the fact that
since fπ is the density of a probability measure, its integral
over Ω is 1. Therefore, fπ is bounded uniformly by ‖q‖∞.
Hence, fπ ∈ L∞(Ω,m).

The irreducibility of S̃ (proven in Proposition V.4) guar-
antees that fπ is positive almost everywhere on Ω. How-
ever, there could be cases where, for some x ∈ Ω,
limε→0 π(Bε(x))/m(Bε(x)) = 0, which would lead to f−1

π /∈
L∞(Ω,m). To show that this is indeed not the case, it is
sufficient to prove that for x ∈ Ω, there exists a measurable
set N (x) of positive measure, containing x, and a constant
c > 0 such that, for all z ∈ N (x),

(Sδz)(Bε(x)) ≥ cm(Bε(x)). (50)
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First, we will assume that (50) is true. To see why this is a
sufficient condition, we compute the following. Fix x ∈ Ω.
We evaluate

π(Bε(x)) = (Sπ)(Bε(x)) =

∫
Ω

Q(z,Bε(x))dπ(z)

=

∫
Ω

(Sδz)(Bε(x))dπ(z) ≥
∫
N (x)

cm(Bε(x))fπ(z)dz

= cm(Bε(x))

∫
N (x)

fπ(z)dz = ca(x)m(Bε(x)),

where a(x) ∈ (0, 1] is the integral of fπ over N (x). Com-
bining the constants ca(x) into one constant cx, we see that
π(Bε(x)) ≥ cxm(Bε(x)). This implies that it will never be
true that limε→0 π(Bε(x))/m(Bε(x)) = 0. Therefore, this
shows that f−1

π ∈ L∞(Ω,m).
Now we show that the condition (50) indeed holds true for

every x ∈ Ω. Let x ∈ Ω and 0 < ε < r/2. Choose N (x)
to be Br(x) ∩ Ω. Then N (x) is measurable and has positive
measure. Further, for all z ∈ N (x), Bε(x) ∩ Ω ⊆ Br(z) ∩ Ω.
This follows from Definition V.1.

From (18), we note that k(·, ·) is lower bounded by 1/m(U)
on its support, and we denote this lower bound as c3. Fix
z ∈ N (x). For notational simplicity, denote Bε(x)∩Ω by Bε.
The computations below closely follow those preceding (46);
hence, we have omitted a few steps here.

(Sδz)(Bε) =

∫
U

χBε(F (z, u))k(z, u)du (from (41))

≥ c3
∫
U

χ
Bε(x)(F (z, u))|detDuFz|du

= c3

∫
Fz(U)

χ
Bε(x)(y)dy = c3m(Bε(x))

This shows that for every x ∈ Ω, (Sδz)(Bε(x)) ≥
c3m(Bε(x)). This proves that (50) holds true, and thus it is
indeed true that f−1

π ∈ L∞(Ω,m).
(2) The proof follows from the discussion in Section IV and

Proposition IV.5. �

C. Proof of Proposition V.11

We require the following definitions from [28] for this
proof. Let T be a bounded, linear operator on a Hilbert space
H with a nonempty resolvent set ρ(T ). An operator A is
called relatively T -compact if ART (z) := A(T − zI)−1 is
compact for some z ∈ ρ(T ). The essential spectrum σess
of T is defined as the complement of σp(T ) in σ(T ). The
operator T is said to be closed if its graph Γ(T ), defined as
Γ(T ) := {(x,Ax) : x ∈ H}, is a closed subset of H×H.

Proof of Proposition V.11. First, we prove that the eigenvalue
1 is not an accumulation point. The resolvent of D, RD(z), is
bounded for all z ∈ ρ(D) by definition. Further, S̃ is compact,
and since the product of a compact operator and a bounded
operator is always compact, S̃RD(z) is compact; this implies
that S̃ is relatively D-compact. Moreover, by the well-known
closed graph theorem, D is a closed operator. Now, we can
apply Weyl’s theorem (Theorem 18.8, [28]), which states that
if T is a closed operator on a Hilbert space H and A is a

relatively T -compact operator, then σess(T ) = σess(T + A).
Accordingly, we have that σess(D) = σess(S̃D−D). Since D
is a multiplication operator, its spectrum is the essential range
of fπ/fd. Recall our assumption that fd, f−1

d ∈ L∞(Ω,m),
and Proposition V.6 ensures that fπ, f−1

π ∈ L∞(Ω,m). Let
σess(D) ⊆ [a, b], for a, b > 0. Therefore we have,

σess(S̃D − εD + I) ⊆ [1− εa, 1− εb].

Note that 1 ∈ σp(P̃ ). The computation above proves that there
is a strict gap between σess(P̃ ) and 1. By Remark 1.5 (2)
of [28], for a linear operator T on a Banach space, σess(T )
and σp(T ) form a complete decomposition of the spectrum.
Further, by definition [28], the eigenvalues, constituting the
discrete spectrum, are isolated points. Therefore, 1 must be an
isolated eigenvalue.

Second, we show that 1 is the spectral radius and an isolated
eigenvalue of P̃ . As per Proposition 4.1 of [41], for a positive
operator T on a Banach lattice X , the spectral radius r(T ) is
an eigenvalue of T . Moreover, Theorem 2.1 of [32] guarantees
that there exists at least one eigenvector x0 in the positive cone
(a subset X+ = {x ∈ X : x ≥ 0}) corresponding to r(T ) :
Tx0 = r(T )x0, x0 6= 0. In addition, there exists at least
one eigenfunction x′0 in the positive dual cone corresponding
to r(T ) : T ∗x′0 = r(T )x′0, x

′
0 6= 0. In our case, since P̃

is a positive operator on L2(Ω,m), we therefore have that
r(P̃ ) ∈ σ(P̃ ), and the eigenvector corresponding to r(P̃ ) is
positive. Let r̄ be the spectral radius of P̃ , and define fr as
the corresponding positive eigenvector. Since the eigenvector
fr is known to be positive, by renormalizing, we can assume
that the integral of fr over Ω is 1. Let µr be the measure on
Ω defined by fr. Then it follows that µr(Ω) = 1. Note that
1 is also an eigenvalue for P . We then have that r̄µr(Ω) =∫

Ω
Q̂(x,Ω)dµr(x) = 1, which implies that r̄ = 1. Thus, we

conclude that 1 is the largest eigenvalue of P̃ and that fr = fd.
Finally, we show that 1 is algebraically simple, which will

enable us to conclude that fd is indeed the unique eigenvector
of P̃ (up to a normalization) corresponding to 1. Theorem
5.2 of [41] states that if a positive, irreducible operator T
on a Banach lattice X with r(T ) = 1 has a non-void point
spectrum and x0 = T ∗x0 for some x0 ∈ X , then 1 is the
unique eigenvalue of T and is algebraically simple. We note
that P̃ satisfies all these properties, and thus we have the result
that 1 is a simple eigenvalue of P̃ , and therefore fd is its
unique positive fixed point.

Second, we show that 1 is the spectral radius and an isolated
eigenvalue of P̃ . As per Proposition 4.1 of [41], for a positive
operator T on a Banach lattice X , the spectral radius r(T ) is
an eigenvalue of T . Moreover, Theorem 2.1 of [32] guarantees
that there exists at least one eigenvector x0 in the positive cone
(a subset X+ = {x ∈ X : x ≥ 0}) corresponding to r(T ) :
Tx0 = r(T )x0, x0 6= 0. In addition, there exists at least
one eigenfunction x′0 in the positive dual cone corresponding
to r(T ) : T ∗x′0 = r(T )x′0, x

′
0 6= 0. In our case, since P̃

is a positive operator on L2(Ω,m), we therefore have that
r(P̃ ) ∈ σ(P̃ ), and the eigenvector corresponding to r(P̃ ) is
positive. Let r̄ be the spectral radius of P̃ , and define fr as
the corresponding positive eigenvector. Since the eigenvector
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fr is known to be positive, by renormalizing, we can assume
that the integral of fr over Ω is 1. Let µr be the measure on
Ω defined by fr. Then it follows that µr(Ω) = 1. Note that
1 is also an eigenvalue for P . We then have that r̄µr(Ω) =∫

Ω
Q̂(x,Ω)dµr(x) = 1, which implies that r̄ = 1. Thus, we

conclude that 1 is the largest eigenvalue of P̃ and that fr = fd.
Finally, we show that 1 is algebraically simple, which will

enable us to conclude that fd is indeed the unique eigenvector
of P̃ (up to a normalization) corresponding to 1. Theorem
5.2 of [41] states that if a positive, irreducible operator T
on a Banach lattice X with r(T ) = 1 has a non-void point
spectrum and x0 = T ∗x0 for some x0 ∈ X , then 1 is the
unique eigenvalue of T and is algebraically simple. We note
that P̃ satisfies all these properties, and thus we have the result
that 1 is a simple eigenvalue of P̃ , and therefore fd is its
unique positive fixed point. �

D. Proof of Proposition V.12

To prove that P̃ is primitive, we require the following
theorem from [26]. Let X be a Banach lattice and T > 0
be an operator on X . Suppose there exists a positive linear
functional φ ∈ X ∗ such that T ∗φ = φ. Then T is primitive if
for each x > 0, there exists a d ∈ N such that T dx is a quasi-
interior point in X [41]. Here, the fact that T dx is a quasi-
interior point implies that T dx > 0. In the proof below, for
ν ∈ P(Ω), ν > 0 indicates that the Radon-Nikodym derivative
of ν with respect to m, if one exists, is positive m-a.e. on Ω.
Proof of Proposition V.12. We first check whether S is
primitive. This is true if for any x ∈ Ω, there exists an n0 ∈ N
such that for all n ≥ n0, Snδx > 0 m-a.e. on Ω. Here, we
require a uniform n0 that satisfies this condition for all x ∈ Ω,
so that we can extend the condition to arbitrary probability
measures on Ω, which in turn could be constructed from Dirac
measures.

We denote the open ball of radius δ centered at z by Vδ(z).
Since Ω is compact, there exists a finite set {x1, . . . , xN} ⊆ Ω
such that Ω ⊆ ∪Ni=1Vr/2(xi). Fix x ∈ Ω and let µ1 := Sδx.
Then µ1 � m and dµ1/dm = fµ1 ∈ L∞(Ω,m) by
the proof of Proposition IV.4. Furthermore, the support of
fµ1 contains Br(x). Now, we must have x ∈ Vr/2(xi)
for some i ∈ {1, . . . , N}. Without loss of generality, let
x ∈ Vr/2(x1). Then µ1 > 0 a.e. on Vr/2(x1). Since Ω is path
connected, the sets {Vr/2(xi)}Ni=1 cannot be pairwise disjoint;
therefore, there exists another open ball, say Vr/2(x2), that
intersects Vr/2(x1). Choose y ∈ Vr/2(x1) ∩ Vr/2(x2). Note
that y ∈ Br(x). Now let µ2 := Sµ1 = S2δx. Then µ2 � m
and dµ2/dm = fµ2 ∈ L∞(Ω,m). Furthermore, the support
of fµ2 is E := ∪z∈Br(x)Br(z). We have that Vr/2(x2) ⊆
Br(y) ⊆ E. Therefore, µ2 > 0 a.e. on Vr/2(x2). Repeating
this procedure of evaluating µj := Sµj−1 at each iteration j,
we observe that µj is positive a.e. on Vr/2(xj). Since there
are only N such balls that cover Ω, this iterative procedure
must stop at N , at which point we have that µN := SNδx is
positive a.e. on Ω. Hence, we have proved that S is primitive,
which implies the same for S̃. From this discussion, we have
demonstrated how S acts on Dirac measures. Extending this
argument, we can show how S acts on any measure in P(Ω) by

noting that, for any x ∈ Ω, Q(x, ·) = (Sδx)(·). In particular,
we have that (Snµ)(·) =

∫
Ω
Snδx(·)dµ(x).

Finally, we establish the primitivity of P̃ . Let µ ∈ P(Ω).
From the definition of P̃ in (19), we have that

P̃n = ((S̃ − I)εD + I)n = (εS̃D + (I − εD))n.

Consider the second expression for P̃n above. Since S̃ is
primitive, the product S̃D preserves primitivity. In addition,
by choosing a small enough ε, we can ensure strict positivity
of the term I− εD (also see Remark V.9). This in turn shows
that P̃n is a strictly positive operator for all n ≥ N . Thus, the
operator P̃ is primitive. �

Proof of Proposition V.13. Consider the identity map G :
Ω → Ω given by G(x) = x for all x ∈ Ω. We will also
need the set-valued map F̂ : Ω ↪→ U defined as F̂ (x) = U
for all x ∈ Ω. The map F̂ is a measurable set-valued map in
the sense of Definition 8.1.1 in [5]. Since system (4) is locally
controllable everywhere, we have that F (x, F̂ (x))∩{G(x)} is
non-empty for every x ∈ Ω. Hence, from Theorem 8.2.8 in [5],
it follows that there exists a measurable function v : Ω → U
such that F (x, v(x)) = G(x) = x for every x ∈ Ω. Then, we
define K̂ : Ω× U → R̄+ as follows. For all W ∈ B(U),

K̂(x,W ) = a(x)K(x,W ) + (1− a(x))δv(x)(W ), (51)

where a(x) = εfπ(x)
fd(x) . For a fixed x ∈ Ω, it is easy to see

that all terms in (51) are Borel measurable functions on Ω,
except for the term δv(x)(W ). The map x → δv(x)(·) can be
written as a composition of two Borel measurable functions,
x → v(x) → δv(x)(W ), making it measurable in turn.
Therefore, x→ K̂(x,W ) is a Borel measurable function on Ω.
Furthermore, it is straightforward to show that W → K̂(x,W )
is a measure on U for each x ∈ Ω.

Now we evaluate (Pµ)(E) for some E ∈ B(Ω):

(Pµ)(E) =

∫
Ω

∫
U

χE(F (x, u))K̂(x, du)dµ(x)

=

∫
Ω

(∫
U

χE(F (x, u))a(x)K(x, du) +∫
U

χE(F (x, u))(1− a(x))dδv(x)(u)
)
dµ(x)

=

∫
Ω

(Q(x,E)a(x) + (1− a(x))δx(E)) dµ(x) (†)

=

∫
Ω

(∫
E

q(x, y)a(x)dy + (1− a(x))δx(E)

)
dµ(x)

=

∫
Ω

Q̂(x,E)dµ(x)

We obtained the first term in the integral (†) by using (41)
as follows:

∫
U
χE(F (z, u))K(z, du) = (Pδz)(E) = Q(z, E).

We obtained the second term in this integral by noting that for
fixed x, v(x) is the set of u such that F (x, u) = x. Hence,
we have our required result. �
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