
Decentralized PD Control for Multi-Robot Collective
Transport to a Target Location Using Minimal Information

Hamed Farivarnejad and Spring Berman

Arizona State University, Tempe, AZ, USA

ABSTRACT

In this paper, we propose decentralized position controllers for a team of point-mass robots that must cooper-
atively transport a payload to a target location. The robots have double-integrator dynamics and are rigidly
attached to the payload. The controllers only require robots’ measurements of their own positions and velocities,
and the only information provided to the robots is the desired position of the payload’s center of mass. We
consider scenarios in which the robots do not know the position of the payload’s center of mass and try to
selfishly stabilize their own positions to the desired location, similar to the behaviors exhibited by certain species
of ants when retrieving food items in groups. We propose a proportional-derivative (PD) controller that does
not rely on inter-robot communication, prior information about the load dynamics and geometry, or knowledge
of the number of robots and their distribution around the payload. Using a Lyapunov argument, we prove that
under this control strategy, the payload’s center of mass converges to a neighborhood of the desired position.
Moreover, we prove that the payload’s rotation is bounded, and its angular velocity converges to zero. We show
that the error between the steady-state position of the payload’s center of mass and its desired position depends
on the robots’ distribution around the payload’s center of mass, with a uniform distribution resulting in the
lowest steady-state error. We validate our theoretical results with simulations in MATLAB.
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1. INTRODUCTION

Potential applications of cooperative payload manipulation by multi-robot systems include construction, manu-
facturing, assembly in space and underwater, search-and-rescue operations, and disaster response. Many of these
scenarios will take place in uncertain environments with unreliable inter-robot communication. In such scenar-
ios, decentralized control strategies that use limited data and communication and have provable guarantees on
performance will be needed to reliably achieve manipulation objectives. In this paper, we propose an approach
to this problem that is inspired by the phenomenon of group food retrieval in ants 1–3. This behavior is an
example of decentralized cooperative manipulation in which the transport teammates do not follow predefined
trajectories, use explicit communication, or have prior information about the payload, number and distribution
of teammates around it, and locations of obstacles in the environment 4. The specific actions of the ants during
collective transport are influenced by their locally perceived information as they navigate back to their nest.

Decentralized control strategies for cooperative manipulation have previously been proposed for scenarios
that are not subject to all of these constraints. These strategies, many of which apply to a team of robots with
identical sensing and actuation capabilities, are designed to improve the system’s robustness to errors, failures,
and disturbances. In the decentralized approach proposed in 5, robots push a large payload to a goal when their
line of sight to the goal is occluded by the payload. In other approaches, robots communicate their measurements
to each other in order to estimate unknown parameters of the payload 6,7. More recently, 8 proposes an event-
triggered communication strategy with distributed impedance control to improve the stability and robustness
of cooperative manipulation of unknown payloads in unknown environments. Other approaches do not require
inter-robot communication or prior information about the payload dynamics 9, but they rely on a supervisor to
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Figure 1: Illustration of a collective transport team with four point-mass robots and the associated coordinate systems.

define the robot and payload trajectories beforehand 10–12. In 13, a strategy inspired by formation control is
presented for a flexible payload that requires regulation of contact forces.

Recently, adaptive robust control approaches have been proposed for planar and three-dimensional cooperative
manipulation. These approaches combine a stabilizing term with a regression term in the controller in order to
achieve stabilization in the presence of parameter uncertainties. However, the approaches require either prior
information about the robots’ distribution around the payload or feedback on the payload’s motion 14–20. In 21,
a decentralized approach is proposed for cooperative manipulation in which the robots have a common reference
model for the desired payload motion and use an adaptive controller to compensate for the effect of friction on
the payload. Whereas this approach requires the robots to have access to measurements of the payload’s linear
and angular velocities, ours does not require any information on the payload’s motion.

Recently, learning schemes have also been proposed for cooperative manipulation. In 22, robots in a transport
team, which explicitly exchange information, jointly reach the same desired motion by running a time-varying
quadratic program which is solved online by a neural network scheme. A dynamic recurrent neural network is used
in 23 to solve a quadratic program, which computes cooperative kinematic controllers for redundant manipulators
using partially known information about the payload and the teammates. In addition, reinforcement learning is
used in 24 to design two distributed approaches to cooperative manipulation: the first applies Q-learning with
individual reward functions, and the second utilizes game-theoretic techniques. The first approach exhibits more
robustness to different reward structures than the second.

In this paper, we design decentralized position controllers for a collective transport task by a group of point-
mass robots that lack inter-robot communication and can only use on-board measurements of their own positions
and velocities as feedback. The controllers have a proportional-derivative (PD) structure and drive the robots to
transport the payload to a target destination. In our prior work 25, we addressed the problem of controlling the
velocity of the payload, rather than its position, for a multi-robot transport team subject to these constraints.
We analytically prove asymptotic convergence of the payload’s center of mass to a neighborhood of the target
position and study the parameters that influence the steady-state distance between the payload’s center of mass
and this goal position. We validate our control approach with numerical simulations.

2. PROBLEM STATEMENT

We consider a team of N identical point-mass robots that move on a planar surface and are rigidly attached
to a payload in an arbitrary configuration, as shown in Fig. 1. We assume that each robot has access to its
own position and velocity with respect to an inertial coordinate system, which is common to all the robots.
The robots do not communicate with one another and are not assigned predefined trajectories. They also lack



Figure 2: Illustration of the geometric parameters that express the position of a robot in the local coordinate frame of
the load.

information about the payload’s kinematics and dynamics, the number of robots in the transport team, and the
robots’ distribution around the payload.

We define xo = [xo yo]T ∈ R2 and θo ∈ R as the position of the payload’s center of mass, point O in Fig. 1, and
the payload’s orientation with respect to a global coordinate frame, respectively. We define xi = [xi yi]

T ∈ R2

as the position of robot i and xd = [xd yd]T ∈ R2 as the position of the target point in the global frame, as
shown in Fig. 2. The center of mass of the entire system, including both the load and the robots, is denoted by
point C in Fig. 1. Given that points O and C are not necessarily coincident, we define xc = [xc yc]

T ∈ R2 as
the position of C in the global frame and rc ∈ R2 as the vector from C to O, as shown in Fig. 1. We also define
ri = [rix riy]T ∈ R2 as the vector from C to the attachment point of robot i in the global frame.

Each robot i knows its own position xi and velocity ẋi and applies an actuating force ui = [uix uiy]T ∈ R2 to
the payload. The control objective is to design the forces ui, i = 1, ..., N , such that the robots drive the position
of the payload’s center of mass, xo, to the target position xd. The only sensor feedback available to the robots
consists of their on-board measurements of their own positions and velocities.

3. DYNAMICAL MODEL

To derive the dynamical model of the entire system, comprised of both the load and the robots, we use the
framework in our previous papers 25,26. We denote the mass of each robot and the mass of the payload by mr

and mo, respectively. We also define Io as the payload’s moment of inertia about the axis perpendicular to the
plane and passing through O. Considering the entire system as a rigid body and defining q := [xc yc θo]T ∈ R3

as the vector of generalized coordinates, we can write the equation of motion of the entire system as[
mI 0
0 I

]
q̈ =

[
I · · · I

r̂T1 · · · r̂TN

]
u, (1)

where m and I are the mass and moment of inertia of the entire system, given by:

m = mo +Nmr,

I = Io +mo ‖rc‖2 +mr

N∑
i=1

‖ri‖2 , (2)



and r̂i ∈ R2 and u ∈ R2N are defined as

r̂i = [−riy rix]T , (3)

u = [uT
1 · · · uT

N ]T . (4)

The matrix I ∈ R2×2 is the identity matrix.

4. CONTROLLER DESIGN

In this section, we present decentralized robot controllers for the system described by Eq. 1 that produce
asymptotic convergence of the payload’s center of mass to a neighborhood of the desired position xd. The
proposed control law has a proportional-derivative (PD) structure,

ui = −Kdẋi −Kp(xi − xd), (5)

in which Kp = KpI and Kd = KdI are gain matrices, where Kp and Kd are strictly positive constants. This
control law implies that each robot selfishly tries to stabilize its own position to the target position. Since the
robots are attached to distinct points on the payload’s boundary, convergence of all the robots’ positions to
the target position is impossible. However, by each applying the decentralized controller in Eq. 5, the robots
produce a collective transport behavior that approximately achieves the control objective defined in Section 2.
We analyze and discuss this behavior in the next section.

5. MOTION ANALYSIS

To analyze the collective behavior of the entire system of the payload and robots with the proposed controller, we
first derive the dynamics of the closed-loop system and then investigate the stability and convergence properties
of this system.

5.1 Closed-Loop Dynamics

There is a holonomic kinematic constraint between the position of robot i and the position of the system’s center
of mass (see Fig. 2), given by

xi = xc + ri. (6)

Taking the time derivative of Eq. 6, we obtain

ẋi = ẋc + r̂iθ̇o, (7)

where r̂i is given by Eq. 3. We define ec := xc − xd, where ėc = ẋc and ëc = ẍc, since xd is constant.
Substituting the expressions for xi and ẋi in Eqs. 6 and 7 into Eq. 5, we obtain

ui = −Kd(ėc + r̂iθ̇o)−Kp(ec + ri). (8)

We now incorporate the decentralized control law for ui in Eq. 8 into the dynamical model in Eq. 1 to derive
the equation of motion of the closed-loop system as

Mëc = −Kd

N∑
i=1

(ėc + r̂iθ̇o)−Kp

N∑
i=1

(ec + ri),

Iθ̈o = −Kd

N∑
i=1

r̂Ti (ėc + r̂iθ̇o)−Kp

N∑
i=1

r̂Ti (ec + ri), (9)



where M = mI. Taking into account the facts that ri × ri = 0 and [rTi 0]T × [aT 0]T = [0 0 r̂Ti a]T , where a
is an arbitrary vector in R2, the closed-loop system in Eq. 9 can be rewritten as

Mëc = −NKdėc −Kd

N∑
i=1

r̂i θ̇o −NKpec −Kp

N∑
i=1

ri,

Iθ̈o = −Kd

N∑
i=1

r̂Ti ėc −Kd

N∑
i=1

‖ri‖2 θ̇o −Kp

N∑
i=1

r̂Ti ec. (10)

For notational simplicity, we define % :=
∑N

i=1 ri, which implies that %̂ :=
∑N

i=1 r̂i, and ρ :=
∑N

i=1 ‖ri‖
2
. Note

that while the direction of % changes with the payload’s rotation, its magnitude remains unchanged since the
robots are rigidly attached to the payload and C is a fixed point on the payload.

5.2 Convergence Analysis

The equilibrium state of the closed-loop system in Eq. 10 is obtained by setting ëc = ėc = 0 and θ̈o = θ̇o = 0,
which results in the following equations:

Ne∗c + %∗ = 0, (11)

(%̂∗)
T
e∗c = 0, (12)

in which the superscript * denotes the equilibrium state. Solving Eq. 11 for e∗c , we obtain e∗c = − 1
N %∗. Since %̂

is perpendicular to % by definition, this shows that Eq. 12 is redundant. Also, since % has a constant norm, the
steady-state error e∗c has a constant magnitude. The set of equilibrium states E is therefore obtained as

E =

{
ec, ėc ∈ R2, θo, θ̇o ∈ R | ec = − 1

N
%, ėc = 0, θ̇o = 0

}
. (13)

Note that the payload’s orientation θo is not specified in E , which means that E is a manifold in the state space
and not an isolated equilibrium point. To analyze the convergence of the closed-loop system’s trajectories to E ,
we consider the following quadratic positive semidefinite function,

V =
1

2
ėTc Mėc +

1

2
Iθ̇2o +

1

2N
(Nec + %)TKp(Nec + %), (14)

which is zero in the set E and positive everywhere else. The time derivative of V is calculated as

V̇ = ėTc Mëc + Iθ̇oθ̈o +
1

N
(Nec + %)TKp(N ėc + %̇)

= ėTc (−NKdėc −Kd%̂ θ̇o −NKpec −Kp%) + θ̇o(−Kd%̂
T ėc −Kdρθ̇o −Kp%̂

Tec)

+NeTc Kpėc + eTc Kp%̇ + %TKpėc +
1

N
%TKp%̇. (15)

We see that many terms in the above expression cancel out. Moreover, since we can confirm that %̇ = −%̂θ̇o and
%T %̂ = 0, the last term in the right-hand side of Eq. 15 is zero. Hence, V̇ is simplified to

V̇ = −N ėTc Kdėc −NKdρθ̇
2
o − ėTc Kd%̂θ̇o − θ̇oKd%̂

T ėc, (16)

which can be rewritten in the following quadratic form:

V̇ = −
[
ėTc θ̇o

] [NKd Kd%̂

Kd%̂
T NKdρ

]
︸ ︷︷ ︸

Q

[
ėc
θ̇o

]
. (17)

The matrix Q ∈ R3×3 is the same matrix Q in our previous work [25, Theorem 3.1, Eq. (12)], which we proved
is positive definite. This shows that V̇ is negative semidefinite, and henceforth V remains bounded throughout



the motion of the entire system. Furthermore, invoking LaSalle’s invariant principle, we can conclude that the
trajectories of the closed-loop system in Eq. 10 converge to a set that is characterized by V̇ ≡ 0, for which ėc ≡ 0
and θ̇o ≡ 0. This is the set E in Eq. 13. Convergence of the closed-loop system’s trajectories to E implies that
as t→∞, the center of mass of the entire system (C) converges to a neighborhood of the target position xd and
the payload’s angular velocity θ̇o converges to zero. The uniform continuity of θo implies the convergence of θo
to a bounded value, which depends on its initial value.

To analyze the convergence of the payload’s center of mass (O) to the target position, we define ri,o as the

vector from point O to robot i and %o :=
∑N

i=1 ri,o. We also define eo = xo − xd. We can confirm that for a
group of robots attached rigidly to a payload,

rc = −mr

mo
% = −mr

m
%o. (18)

Moreover, since xc = xo − rc, we can write
ec = eo − rc. (19)

Substituting Eq. 18 for rc into Eq. 19 and then incorporating the result into Eq. 11, we obtain

e∗o = − 1

N
%∗
o, (20)

which gives the position error of the payload’s center of mass at equilibrium. Like %, %o has a constant magnitude,
since the robots are rigidly attached to the payload and O is a fixed point on the payload. Eq. 20 shows that
the steady-state distance between the payload’s center of mass and the target position depends on the number of
robots N and their distribution around the payload. This distance decreases as N is increased, and for payloads
with a homogeneous mass density, it decreases as the distribution of robots around the payload’s center of mass
approaches a uniform distribution. For non-homogeneous payloads, this distance is reduced by allocating the
robots in accordance with the payload’s mass distribution; e.g., increasing the number of robots around sections
of the payload with high mass density. The direction of e∗o depends on the steady-state value of the payload
orientation θo through %∗

o; the steady-state orientation depends on the initial value of θo, as stated earlier.

6. SIMULATION RESULTS

We validate our analysis with simulation results for collective transport by a team of identical robots that are
arranged in three different distributions around a circular payload. For each simulation, we observe the time
evolution of the payload’s orientation, angular velocity, and the position and velocity of its center of mass. We
also study the effect of the robot distribution on the steady-state error of the payload’s center of mass with
respect to the target position.

The load is modeled as a homogeneous circular ring with mass mo = 1 kg and moment of inertia Io = 0.33
kg·m2. Six point-mass robots, each with mass mr = 0.05 kg, are rigidly attached to the load. The controller
gain are Kp = 0.8 and Kv = 0.3. The payload’s center of mass is initially located at xo(t = 0) = [3 − 1.5]T m.
The simulations were each run for 40 s.

Figs. 3-5 show snapshots of the payload over time for each robot distribution. The robot locations are marked
as red points on the perimeter of the load in its initial and final configurations. The target position is shown as
a green star at the origin, and the actual trajectory of the payload’s center of mass is plotted in dashed green.
The red dashed line on the load indicates its orientation. The gray circles and the orange dashed lines on them
show the payload and its orientation, respectively, in intermediate states. In addition, Figs. 6-7 show the time
evolution of the position and velocity of the payload’s center of mass for the three distributions. Also, Fig. 8
plots the corresponding time evolution of the load’s angular position and velocity.

In the first simulation (Fig. 3), the robots have an equally-spaced distribution, and the load is transported
to the target position with zero steady-state error. This happens because ||%o|| = 0, which results in Eq. 20
yielding ||e∗o|| = 0. The position and velocity of the payload’s center of mass converge to zero quickly after
around 7 s (the blue lines in Figs. 6 and 7). Also, the payload shows zero rotation and angular velocity during
the entire transport (the blue lines in Fig. 8). In the second simulation (Fig. 4), the robots have a nonuniform
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Figure 3: Snapshots of the payload over time with an equally-spaced distribution of robots around its perimeter (Distri-
bution 1).

distribution for which ||%o|| = 1.058 m. Using Eq. 20, we can obtain ||e∗o|| = 0.176 m. The position and velocity
of the payload’s center of mass converge to their steady-state values after around 10 s (the orange lines in Figs.
6 and 7), which is a little slower than in the first simulation. In addition, the load undergoes a total rotation of
approximately θo = 85◦ (the orange lines in Fig. 8). In the third simulation (Fig. 5), the robots are clustered
within about a quarter of the load’s perimeter. For this case, ||%o|| = 1.477 m, and the steady-state error has
increased to ||e∗o|| = 0.246 m. We also see that the system convergence to equilibrium is much slower than in
the first and second simulations. The payload’s position and velocity converge to their steady-state values after
about 25 s (the green lines in Figs. 6 and 7). The load undergoes a large rotation of about θo = 248◦, and
its angular velocity converges to zero after around 35 s (the green lines in Fig. 8). Thus, a highly nonuniform
distribution of robots significantly affects the system’s steady-state error and convergence characteristics.

7. CONCLUSION

We have proposed a decentralized PD control strategy for a team of identical point-mass robots to collectively
transport a payload to a target position. The controller only requires the robots’ local measurements and does
not rely on predefined trajectories and explicit communication between the robots. We proved that with the
proposed controller, the robots drive the payload to a neighborhood of the destination, where the steady-state
distance between the payload’s center of mass and the target position is only a function of the number of the
robots and their distribution around the payload. In ongoing work, we are considering environments with convex
obstacles and modifying the controller to enable the robots to transport the payload to the destination while
avoiding collisions with the obstacles.
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