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Abstract— This paper proposes a novel decentralized ap-
proach to kinematic control of soft segmented continuum robots
based on a consensus strategy. The robots under consideration
deform in a plane according to a multi-segment Piecewise
Constant Curvature (PCC) kinematic model in which each
segment is represented as an equivalent rigid-link Revolute-
Prismatic-Revolute (RPR) mechanism. In our approach, we
assume that each segment of the robot is equipped with sensors
to measure joint variables in its local coordinate frame and can
communicate with its two adjacent segments. Our consensus-
based decentralized control strategy provides an alternative to
conventional control methods, which solve the inverse kinematic
problem by using computationally intensive numerical methods
to calculate the robot’s Jacobian matrix at each time instant. We
investigate the stability and convergence properties of proposed
controllers for position regulation and trajectory tracking
tasks and provide theoretical guarantees on the controllers’
performance. We evaluate the controllers in simulation for
scenarios in which the robot’s tip must reach a certain position
or follow a specified trajectory. We compare the performance
of the position regulator for different controller gains, and
we find that a simulated 15-link robot can track a complex
reference trajectory with an average root-mean-square error
of only 0.16% of the robot’s initial length.

I. INTRODUCTION

A. Motivation

Decentralized control approaches can be used to overcome
limitations of centralized control approaches when applied to
large-scale systems, such as high computational complexity,
delays, uncertainties, and a lack of robustness [1]. Re-
cently, decentralized approaches have attracted the attention
of robotics researchers as reliable methods for kinematic
and dynamic control of robotic systems. These approaches
have been extensively employed in the control of distributed
robotic systems such as groups of ground robots [2] and
Unmanned Aerial Vehicles (UAVs) [3], as well as hyper-
redundant soft [4] and continuum robots [5], [6].

Continuum robots in particular have been developed for a
variety of uses, including medical procedures (e.g., steerable
needles), remote inspection, search-and-rescue, and space
applications [8]. The hyper-redundancy of continuum robots
creates many challenges for conventional centralized control
strategies, e.g., the large number of solutions for the Inverse

This work was supported by Office of Naval Research Award N00014-
17-1-2117 and by the Arizona State University Global Security Initiative.

A. Salimi Lafmejani and A. Doroudchi are with the School of Electrical,
Computer and Energy Engineering, Arizona State University (ASU), Tempe,
AZ, 85287 {asalimil, adoroudc}@asu.edu. H. Farivarnejad
and S. Berman are with the School for Engineering of Matter, Transport
and Energy, ASU, Tempe, AZ 85287 {hamed.farivarnejad,
spring.berman}@asu.edu.

Revolute joint

Prismatic joint

Soft segment

Robot’s tip

Rigid-link equivalent model

(RPR mechanism)

𝛼𝑖
2

𝛼𝑖
2

𝐿𝑖
sin(

𝛼𝑖
2
)

𝛼𝑖
2

Fig. 1. Schematic of a continuum robot composed of soft segments, along
with its equivalent model as a serial configuration of multiple rigid-link
RPR mechanisms. Local coordinate frames (Frenet-Serret frames [7]) are
defined at the two ends of each soft segment.

Kinematic (IK) problem, which motivates the use of alter-
native control approaches. Existing alternative methods that
use centralized control have employed numerical methods [9]
and the pseudo-inverse Jacobian method [10], [11]. However,
these approaches are limited by their high computational
complexity, which make them inefficient for real-time ap-
plications. Moreover, centralized control of a continuum
robot requires the measurement of the robot’s joint variables
represented in the global coordinate frame, which makes
them unsuitable for autonomous control applications. The
computational effort of implementing such controllers is
likely to rise as the number of joints in the robot increases.

B. Related Work

The discrete method [12] is widely employed for kine-
matic modeling of soft continuum robots. In this method,
the robot is divided into multiple segments that each deform
in the shape of a circular arc, which is referred to as the
Constant Curvature (CC) assumption. Although soft contin-
uum robots generally can deform into shapes with variable
curvature, many existing soft robots are designed to conform
to the CC assumption [13], [14], which enables the derivation
of closed-form kinematics and Jacobian formulations [7]. In
the discrete method, each soft curved segment is modeled as
an equivalent rigid-link RPR mechanism, as shown in Fig. 1.

Several methods have been proposed for kinematic control
of segmented continuum robots. The fitting algorithm was
investigated in [15]. In [16], a modular control scheme was
proposed to control the configuration of a segmented contin-



uum robot, aiming at reducing the computational load of the
fitting algorithm by dividing the robot into multiple modules.
However, this work assumed that the desired backbone
curve configuration is given, which addresses the kinematic
control of the robot in a centralized fashion. Another widely-
used method for kinematic control of segmented continuum
robots is the pseudo-inverse Jacobian method, which utilizes
the Moore-Penrose pseudo-inverse of the robot’s Jacobian
matrix to generate minimum-magnitude joint velocities for
control [10]. The main drawback of this centralized method
is that the hyper-redundancy of the robot results in a large
rectangular Jacobian matrix whose pseudo-inverse is time-
consuming to compute, preventing the method from being
efficient in practice.

Decentralized control methods can be used to avoid
the aforementioned limitations of centralized control ap-
proaches for kinematic control [17], cooperative control [18],
and fault-tolerant control [19] of multi-segment contin-
uum robots. Moreover, decentralized control approaches can
significantly reduce the computational complexity of the
control strategy. Recently, decentralized approaches have
been employed for the control of multi-segment continuum
robots with soft segments. In [20], a decentralized control
mechanism with local feedback was developed for a multi-
segment millipede-like robot. In [21], a soft multi-segment
shape-changing robot was developed with integrated sensing,
actuation, and process modules, and a distributed controller
was designed for shape control of the robot. A reinforcement
learning-based approach was proposed in [22] to control
serpenoid locomotion of a snake-like continuum robot. Fur-
thermore, a decentralized method for shape control of a
rigid-link continuum manipulator was proposed in [23] and
verified in simulations and experiments. In [17], the authors
were inspired by the analogy between the heat and wave
equations to propose a decentralized control approach for
hyper-redundant robots. The work [24] proposed a modular
decentralized control approach for a general N -segment
single-DoF continuum robot that exploited its stable con-
figurations. In [25], a decentralized control approach was
presented for a 1D soft robot arm composed of segments
with local sensing, actuation , and control, and was validated
in simulation. Novel morphological observation and decen-
tralized control approaches were presented in [26] for pas-
sive shape adaptation, geometrical disturbance rejection, and
task space anisotropic stiffness regulation of a 3D-printable
thermoactive helical interface on a continuum manipulator.

C. Contributions

Most consensus protocols in robotics are designed for mul-
tiple mobile robots, such as in [27], [28]. In these consensus
strategies, the robots reach an agreement on the value of an
information state through computations on their own state
and those communicated by other robots [29]. In this paper,
we define a consensus protocol for a multi-segment contin-
uum robot by considering the segments’ local measurements
of their own configurations as the shared information states.
The segments communicate these measurements to adjacent

segments, as illustrated in Fig. 2. Similar inter-segment com-
munication is present in the decentralized nervous system in
octopus arms; this nervous system is organized as segments
along the length of each arm, and sensorimotor information
is propagated between neighboring segments [30]. Thus, our
decentralized, consensus-based strategy for kinematic control
can be viewed as a bio-inspired control strategy for soft
multi-segment continuum robots.

In this paper, we present a multi-segment kinematic model
for a soft continuum robot in which each segment is mod-
eled as a rigid RPR mechanism, described in Section II.
As depicted in Fig. 2, we assume that each segment can
measure and communicate to adjacent segments the po-
sition of its equivalent rigid-link prismatic joint and the
relative orientation between this link’s two revolute joints
in its local coordinate frame. In Section III, we propose
decentralized controllers that utilize a consensus protocol
on these measurements for the objectives of driving the
robot’s tip to reach a target position and to track a reference
trajectory. Using this novel controller design, it is not nec-
essary to calculate the Jacobian matrix of the multi-segment
continuum robot, which in turn reduces the complexity of
the controller implementation and improves its efficiency.
We analyze the stability and convergence properties of the
controllers in Section IV for the general case of a robot
with N segments. In Section V, we validate our position
regulation and trajectory tracking controllers in simulation
on 5-segment and 15-segment robots and illustrate the effect
of the controller gain.

II. RIGID-LINK MODEL OF SOFT CONTINUUM ROBOT

The kinematics of the soft continuum robot are discussed
in this section. The robot is composed of a set of segments
connected to each other in a series configuration. The soft
segments of the robot are replaced by equivalent rigid-link
RPR mechanisms [31].

Figure 1 depicts a soft continuum robot with soft seg-
ments, which is equivalently modeled with multiple rigid-
link RPR mechanisms connected in a series. To clarify the
details of the model, Figs. 2 and 3 show the soft segmented
robot and its equivalent rigid-link robot, respectively. Fig-
ure 2 illustrates a planar segmented soft continuum robot
with N bending segments, each conforming to the constant-
curvature (CC) assumption. The kinematic model of the
continuum robot is defined by the kinematic equations of the
multi-segment N -RPR rigid-link robot in Fig. 3. Since we
assume that each segment of the robot is equipped with local
sensors and actuators, it is able to measure the position of
its prismatic joint and relative rotations of its revolute joints
in its local coordinate frame. Furthermore, the i-th segment
can communicate these local measurements to the adjacent
(i− 1)-th and (i+ 1)-th segments, as shown in Fig. 2.

As shown in Fig. 1, the angular difference between the
tangential local coordinate frames attached to the base and
end-effector of the i-th segment and the orientation of the
equivalent RPR rigid-link mechanism is defined as αi

2 . Fur-
thermore, we denote the arc length of the i-th soft segment
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Fig. 2. Schematic of information propagation between segments of the
continuum robot. (a) Each segment i ∈ {1, ..., N} communicates with its
adjacent segment(s) in order to share its measurements of the position vector
ipi and rotation matrix i�1Ri, which are represented in its local coordinate
frame. (b) Graph of the robot’s communication network, where each blue
node represents a segment and each red edge represents a bidirectional
communication channel.
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Fig. 3. Illustration of an equivalent N -RPR rigid-link model for the soft
continuum robot in Fig. 2. The x-axis of each local coordinate frame is
aligned with the corresponding prismatic joint.

by Li. Accordingly, as in [31], the position vector that is
aligned with the prismatic joint of the i-th segment can be
represented in the segment’s local coordinate frame as the
following vector ipi:

ipi =

[
Li

sin(αi)

αi
Li

1− cos(αi)

αi
0

]T

. (1)

Thus, given the arc parameters Li and αi of each soft
segment, the position vector ipi of the equivalent RPR
mechanism is readily obtained.

III. CONTROLLER DESIGN

In this section, we propose a novel decentralized method
for kinematic control of soft segmented continuum robots.
This control method utilizes a consensus strategy among the
segments of the robot, which can communicate measure-
ments to each other according to a chain network topology.

A. Position Regulation Controller

Here, we define a control law that drives the tip of the
robot to a target 3D position in the global frame G, denoted
by Gpd. We assume that the end-effector segment of the
robot, segment N , knows the target position Gpd and is
equipped with a localization sensor that can measure Gptip,
the 3D position of the tip of the segment in the global
frame. The other segments do not have information about
Gpd. Segment N can be considered a “leader” agent in
that it knows Gpd and moves toward this position, whereas
the other segments are “follower” agents that reconfigure
themselves in a coordinated fashion such that the tip of the
robot is regulated to Gpd.

The configuration of each rigid segment can be character-
ized by the joint variables that describe its linear and angular
displacements, which are denoted by pi ∈ R and θi ∈ R,
respectively. Given the joint variables, the local position
vector of the prismatic joint is written as ipi = pi

iei,
where iei ∈ R3 is the unit vector along the prismatic
joint expressed in the segment’s local frame. The angular
velocity of the segment in the global frame can be written
as ωi = [0 0 θ̇i]

T ∈ R3. We denote the vector of generalized
coordinates of the i-th segment as qi ∈ R6, which is given
by:

qi = [ ipTi 0 0 θi ]
T . (2)

The position regulation controller is defined as:

q̇i = G†i

−∑
j∈Ni

(ipi − iRj
jpj) +BiE

. (3)

The components of the controller are defined as follows.
The matrix G†i denotes the Moore-Penrose inverse of Gi ∈
R3×6, which is given by:

Gi = [ I3×3 − ip̂i ], (4)

where ip̂i ∈ R3×3 is the skew-symmetric matrix representa-
tion of ipi. Defining the graph G = (V, E), where the vertex
set V = {1, ..., N} contains the segment identities and the
edge set E contains pairs of segments that can communicate
with each other, also referred to as neighboring segments,
the set Ni is defined as the neighbors of the i-th segment.
The matrix iRj ∈ R3×3 is the rotation matrix from the local
coordinate system of segment j to that of segment i. The
matrix Bi ∈ R3×3 is defined as:

Bi =

{
03×3, i = 1, 2, . . . , N − 1,

−GR−1N K, i = N,
(5)

where K is a tunable positive gain and GRN is the rotation
matrix from the local coordinate system of segment N to
the global frame. The vector E ∈ R3 is defined as the error
between the position of the tip of the robot and its target
position, both in the global frame:

E = Gptip − Gpd. (6)

Remark III.1. The controller in Eq. (3) is completely
decentralized, in the sense that each segment only requires



measurements of its own configuration and the configurations
of its neighboring segments. Note that the controller requires
only segment N to measure a position error in the global
frame (the error vector E).

B. Trajectory Tracking Controller

We define a reference trajectory for the robot’s tip in
the global frame and discretize it into a set of m points.
Adopting a switching strategy, we use the decentralized
position regulator in Eq. (3) to drive the tip of the robot
to a position within a radius γ ∈ R>0 of each point, which
represents the acceptable tracking error.

The set of target points along the reference trajectory is
denoted by P and is defined as

P =
{
Gp

(1)
d ,Gp

(2)
d , . . . ,Gp

(m)
d

}
, (7)

where Gp(1)
d is the position of the start point on the trajectory,

and Gp
(m)
d is the position of the end point. The other

elements of P are intermediate points along the trajectory. A
γ-neighborhood of point Gp(l)

d is defined as a ball of radius γ
centered at this point and is denoted by B(l)γ . The controller
first drives the position of the robot’s tip toward the start
point Gp(1)

d . Once the tip enters the ball B(1)γ , the controller
redefines the target point as the second point, Gp(2)

d , and
drives the tip toward this point until it enters the ball B(2)γ .
This procedure is repeated for each successive point in P
until the robot’s tip enters the γ-neighborhood of Gp

(m)
d .

This switching control strategy can be written as:

q̇i =

{
G†
i

(
−
∑
j∈Ni

(ipi−
iRj

jpj)+BiE
(l)
)
, Gptip /∈B

(l)
γ

G†
i

(
−
∑
j∈Ni

(ipi−
iRj

jpj)+BiE
(l+1)

)
, Gptip∈B

(l)
γ

(8)

where l ∈ {1, 2. . . . ,m}, and E(l) is the vector of the error
between the robot’s tip and the l-th point on the reference
trajectory:

E(l) = Gptip − Gp
(l)
d . (9)

Note that from Eq. (5), segment N is the only segment that
requires E(l) in its controller, and the term BiE

(l) is the
zero vector for the other segments.

IV. STABILITY AND CONVERGENCE ANALYSIS

In this section, we analyze the motion of the robot with
the proposed controller. We first study the reconfiguration
of each individual segment, and then investigate the stability
and convergence properties of the closed-loop system that
describes the kinematics of the robot’s tip.

Lemma IV.1. Let Gpi denote the local position vector ipi of
segment i in the global frame G. The decentralized control
law in Eq. (3) establishes a consensus protocol for the
vectors Gpi, with an input term defined by the error E
between the robot’s tip and the target position.

Proof. The vector Gpi can be written as

Gpi =
GRi

ipi, (10)

and its time derivative is given by

Gṗi =
GRi

iṗi +
GṘi

ipi. (11)

The time derivative of the rotation matrix is GṘi =
GRi

iω̂i,
where iω̂i ∈ SO(3) is the skew-symmetric matrix represen-
tation of the i-th segment’s angular velocity expressed in
its local coordinate system [32]. Hence, the second term in
the right-hand side of Eq. (11) can be written as GṘi

ipi =
GRi

iω̂i
ipi. Moreover, we know that

iω̂i
ipi =

iωi × ipi = −ipi × iωi = −ip̂iiωi. (12)

Thus, Eq. (11) can be rewritten as

Gṗi =
GRi

(
iṗi − ip̂i

iωi
)
, (13)

and from Eq. (2) and Eq. (4), it can be simplified to

Gṗi =
GRiGiq̇i. (14)

Furthermore, substituting the control law in Eq. (3) for q̇i,
we obtain

Gṗi =
GRiGiG

†
i

−∑
j∈Ni

(ipi − iRj
jpj) +BiE

 .

(15)
Using the identity GiG

†
i = I and the fact that GRi

ipi =
Gpi, Eq. (15) is reduced to

Gṗi = −
∑
j∈Ni

(Gpi − Gpj) +
GRiBiE. (16)

Equation (16) is in the form of a consensus protocol on Gpi
with an input term GRiBiE [33]. If we also define P ∈
R3N and B ∈ R3N×3 as

P = [GpT1
GpT2 . . . GpTN ]T , (17)

B = [(GR1B1)
T (GR2B2)

T . . . (GRNBN )T ]T , (18)

we can write the concatenated representation of Eq. (16) for
all segments as

Ṗ = −LP +BE, (19)

where L ∈ R3N×3N is defined as

L = L⊗ I3×3, (20)

in which L ∈ RN×N is the Laplacian matrix of the
graph associated with the communication network of the
robot’s segments, illustrated in Fig. 2b, and ⊗ represents the
Kronecker product. Hence, Eq. (19) is a linear consensus
system [34] driven by the signal E.

The next theorem characterizes the stability of the closed-
loop system.

Theorem IV.2. The decentralized control law in Eq. (3)
ensures that the position of the robot’s tip, Gptip, is globally
exponentially stable to the target position, Gpd. Moreover,
the magnitudes of all the position vectors Gpi converge to a
common value, and the directions of these vectors converge
to the direction of Gpd.



Proof. The position of the robot’s tip in the global frame can
be written as the vector sum of all position vectors Gpi (see
Fig. 3):

Gptip =

N∑
i=1

Gpi. (21)

Taking the time derivative of this equation and following the
same procedure that was used to obtain Eq. (10)–(16), the
velocity of the robot’s tip is derived as:

Gṗtip =

N∑
i=1

−∑
j∈Ni

(Gpi − Gpj)

+

N∑
i=1

GRiBiE. (22)

We can confirm that the double summation on the right-
hand side of Eq. (22) is equal to the sum of the rows of the
product −LP . This, in turn, can be written as the product
of the row sum of −L and the matrix P . We know that
the sum of the rows of a Laplacian matrix is a zero row
vector [33]. Invoking Lemma IV.1 and considering Eq. (20),
we can conclude that the sum of the rows of L is a zero
row vector, and consequently, the double summation in Eq.
(22) is zero. Also, from the definition of the matrix Bi in
Eq. (5), the second summation is equal to I . Therefore, Eq.
(22) is reduced to

Gṗtip = −KE. (23)

Using the fact that the target position is fixed, i.e. Gṗd = 0,
Eq. (23) can be rewritten as

Ė +KE = 0, (24)

which is globally exponentially stable to the equilibrium, i.e.
E = 0, for any positive K.

Furthermore, the system in Eq. (19) is a linear time-
invariant system and can therefore be solved for P as follows
[35]:

P (t) = P 0e
−Lt +

∫ t

0

e−L(t−τ)BE(τ)dτ, (25)

where P 0 is the matrix P at the initial time, t = 0. We can
also solve Eq. (24) for E as

E(t) = E0e
−Kt, (26)

where E0 is the initial error at time t = 0. Substituting the
solution for E(t) from Eq. (26) into Eq. (25), and using
spectral factorization of the matrix L as in [36], Eq. (25)
can be rewritten as:

P (t) =

3N∑
j=1

e−λjt(uTj P 0)uj

+

∫ t

0

 3N∑
j=1

e−λj(t−τ)(uTj BE0e
−Kτ )uj

 dτ,

(27)

where λj ∈ R≥0 for j ∈ {1, 2, . . . , 3N} are the eigenvalues
of L ordered from smallest (λ1) to largest (λ3N ), and uj ∈

R3N are their corresponding normalized eigenvectors. Calcu-
lating the integral term, we obtain the following expression1

P (t) =

3N∑
j=1

e−λjt
(
uTj P 0

)
uj

+

3N∑
j=1

(
e−Kt − e−λjt

)
λj −K

(
uTj BE0

)
uj . (28)

We know that the first eigenvalue of the Laplacian matrix
L is λ1(L) = 0, and the other eigenvalues are strictly
positive [33]. Consequently, the first three eigenvalues of L
are λ1(L), λ2(L), λ3(L) = 0, and the 3N − 3 remaining
eigenvalues are strictly positive. Thus, we can write

lim
t→∞

P (t) =

3∑
j=1

(
uTj P 0

)
uj +

1

K

3∑
j=1

(
uTj BE0

)
uj , (29)

since the exponential terms associated with the positive
eigenvalues converge to zero as t → ∞. Also, we can
confirm that the three normalized eigenvectors associated
with the three zero eigenvalues of L are:

u1 =
1√
N

[1 0 0 1 0 0 . . . 1 0 0]T ,

u2 =
1√
N

[0 1 0 0 1 0 . . . 0 1 0]T ,

u3 =
1√
N

[0 0 1 0 0 1 . . . 0 0 1]T . (30)

Substituting these vectors into Eq. (29), and using the def-
initions in Eq. (17) and Eq. (18), Eq. (29) can be rewritten
as

lim
t→∞

P (t) = 1N ⊗

(
1

N

N∑
i=1

Gpi(0)

)
+ 1N ⊗

(
− 1

N
E0

)
,

(31)
where 1N ∈ RN is the vector of all ones, and Gpi(0) denotes
the initial value of Gpi at time t = 0. Finally, using Eq. (21)
and the definition of the error, E = Gptip−Gpd, we obtain:

lim
t→∞

P (t) =
1

N

(
1N ⊗ Gpd

)
, (32)

which means that

lim
t→∞

Gpi(t) =
1

N

(
Gpd

)
, ∀ i ∈ {1, 2, . . . , N} . (33)

This shows that the Gpi vectors all converge to the same
magnitude and direction, and this direction is that of the
vector Gpd.

Note that the final configuration of the robot, which is a
straight line, is not singular, since the prismatic joints can
still move the end-effector along that line, and the revolute
joints can still rotate the segments of the robot.

1A special case is when K is set equal to a positive eigenvalue λj of L
(j > 3). Then the term e�λjte(λj�K)τ in Eq. (27) equals e�λjte0 =
e�λjt and integrates to

∫ t
0 e

�λjtdτ = te�λjt in the second summation
of Eq. (28), with no denominator (λj −K) in this summation. The term
te�λjt converges to zero as t→∞, and thus Eq. (29) still holds true.



This section concludes with the following corollary, which
characterizes the stability of the switching controller pro-
posed for trajectory tracking. The corollary can be derived
from the result that the closed-loop system described by Eq.
(24) is globally exponentially stable.

Corollary IV.3. The decentralized switching controller in
Eq. (8) drives the tip of the robot to a γ-neighborhood of
each point in the set P , defined in Eq. (7), in finite time if
γ is chosen sufficiently small.

Using the control law in Eq. (8), the trajectory tracking
task is performed as m position regulation tasks, which are
indexed by l and executed sequentially from l = 1 to l = m.
We proved that the equation for the closed-loop system in a
position regulation task is given by Eq. (24). Therefore, the
closed-loop system for the trajectory tracking task behaves
like a switching system, in which each subsystem is:

Ė
(l)

+KE(l) = 0, l = 1, 2, . . . ,m (34)

with E(l) defined in Eq. (9). Equation (34) is linear and so
can be solved for E(l) as:

E(l)(t) = E
(l)
tl
e−K(t−tl), ∀ t ∈ [tl, tl+1), (35)

where tl is the time at which subsystem l becomes active, and
E

(l)
tl

denotes the value of E(l)(t) at time t = tl. This solution
converges exponentially to the target equilibrium E(l) = 0,
which implies that the robot’s tip will converge in finite time
to a neighborhood of the desired point Gp(l)

d and that the
trajectories of the tip are bounded. Equation (35) also holds
for the norm of the error:

||E(l)(t)|| = ||E(l)
tl
||e−K(t−tl), ∀ t ∈ [tl, tl+1). (36)

The dwell time for the l-th subsystem to reach B(l)γ is defined
as Tl := tl − tl−1 [37], which can be computed by setting
||E(l)(t)|| = γ in Eq. (36) and solving this equation for Tl:

Tl = −
1

K
log

(
γ

||E(l)
tl
||

)
, l = 1, ...,m. (37)

This equation shows that the parameter γ and the interme-
diate points of the reference trajectory must be chosen such
that γ ≤ ||E(l)

tl
|| for each subsystem. Otherwise, tl < tl−1,

which implies the stability of the system backward in time,
and consequently, its instability forward in time.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present and discuss the performance
of the proposed controllers in simulation. We implemented
the position regulation controller in Eq. (3) for the rigid-
link equivalent of a 5-segment continuum robot, and we
implemented the trajectory tracking controller in Eq. (8) for
the rigid-link equivalent of a 15-segment continuum robot.
We set γ = 0.01 cm in all simulations.

The position regulation control problem was simulated
for two different values of the controller gain K. From
Eq. (26), it is evident that the gain K determines the rate
at which the position of the robot’s tip converges to the

Fig. 4. Length of prismatic joints over time for a simulated 5-link serial
robot, equivalent to a 5-segment soft continuum robot, that is controlled by
the position regulator (3) with gain K = 0.0382.

Fig. 5. Length of prismatic joints over time for a simulated 5-link serial
robot, equivalent to a 5-segment soft continuum robot, that is controlled by
the position regulator (3) with gain K = 0.764.

𝐾 = 0.0382

𝐾 = 0.764

Fig. 6. Plots of tracking error ||E(t)||2 over time during the position
regulator simulations. The gain K = 0.764 results in faster convergence of
the robot’s tip to the target point than the gain K = 0.0382.

target position. Equation (28) shows that this gain also affects
the convergence rate of consensus among the Gpi vectors.
Moreover, we know that the smallest positive eigenvalue of
the Laplacian matrix, λ2(L), determines the convergence
rate of a consensus system [33]. We consider a 5-segment
continuum robot for which λ2(L) = 0.382, and we simulate
its motion under the position regulation controller for cases
where K > λ2(L) and K < λ2(L).

In the first simulation of the position regulator, we set
K = 0.0382. Figure 4 shows that the convergence rate of
consensus among the lengths of the five prismatic joints



Initial configuration

Intermediate configuration

Final configuration

Target point

t = 0 s

t = 155 s

Prismatic joint

Revolute joint

Fig. 7. Configuration over time of the simulated 5-link robot when
controlled by the position regulator (3) with gain K = 0.0382. The robot
reconfigures from its initial configuration to approach the target point with
its tip. Intermediate configurations are shown in gray.

Initial configuration

Intermediate configuration

Final configuration

Target point

t = 0 s

t = 6.1 s

Prismatic joint

Revolute joint

Fig. 8. Configuration over time of the simulated 5-link robot when
controlled by the position regulator (3) with gain K = 0.764. The robot
reconfigures from its initial configuration to approach the target point with
its tip. Intermediate configurations are shown in gray.

to their steady-state value is relatively slow. Since K <
λ2(L) in this case, K governs the asymptotic convergence
rate of the consensus dynamics. The rate of convergence
of the tracking error to zero is also determined by the
value of K, and the red plot in Fig. 6 confirms that the
robot’s tip converges slowly to the target position. Figure 5
plots snapshots of the robot’s configuration over time and
illustrates that the links of the robot undergo similar changes
in their lengths and orientations as the robot’s tip gradually
approaches the target point.

In the second simulation of the position regulator, we
set K = 0.764. The green plot in Fig. 6 shows that the
robot’s tip converges very quickly to the target position.
Since λ2(L) < K in this case, λ2(L) = 0.382 governs
the asymptotic convergence rate of the consensus dynamics.
As Fig. 5 shows, the fact that λ2(L) > 0.0382 causes the
prismatic joints to converge to their common steady-state
value more quickly than in the first simulation, in which

Initial configuration

Final configuration

End point

Start

point

Tracked path

Desired path

Intermediate 

configuration

t = 0 s

t = 52 s

t = 89 s

t = 126 s

t = 144 s

t = 0 s

t = 173 s

t = 184 s

t = 206 s

t = 221 s

t = 274 s

t = 319 s

t = 343 s

Tracking direction

Fig. 9. Configuration over time of a simulated 15-link robot, equivalent
to a 15-segment soft continuum robot, when controlled by the trajectory
tracking controller (8) with gain K = 0.25. The robot reconfigures such
that its tip moves between a series of points defined along a trajectory that
spells ASU. Intermediate configurations and their corresponding times are
shown in gray. The average RMSE of tracking is 0.024 cm.

K = 0.0382. However, since K = 0.764 governs the
convergence rate of the tracking error and λ2(L) < 0.764,
the tracking error in Fig. 6 converges at a faster rate than
the consensus dynamics in Fig. 5. As a result, the lengths of
the prismatic joints are still changing significantly, two with
large overshoots (see Fig. 5), even after the robot’s tip enters
the γ-neighborhood of the target position. The snapshots
in Fig. 8 illustrate the disparities in the links’ lengths and
orientations during the robot’s quick reconfiguration to reach
the target point. The fifth link undergoes a large elongation,
which could exceed its prismatic joint limit in practice.

The simulation results for the position regulator suggest
qualitative guidelines for selecting the gain K in the con-
troller. K should be sufficiently large to drive the robot’s
tip quickly to the target point, but not much larger than
λ2(L) if it is important to maintain fairly consistent changes
in all link lengths and orientations throughout the robot’s
reconfiguration. For the trajectory tracking problem, we
simulated a 15-link robot and defined the reference trajectory
as the sequence of letters “ASU.” Figure 9 shows snapshots
of the robot’s configuration over time as its tip tracks a
sequence of points defined along the reference trajectory. We
evaluated the trajectory-tracking performance of the robot
by computing the average root-mean-square error (RMSE)
between the reference trajectory and the trajectory of the
robot’s tip. This value is 0.024 cm, which is 0.16% of the
initial length of the robot (15 cm). This very low error
demonstrates the effectiveness of the control strategy.

VI. CONCLUSION

In this paper, we proposed a decentralized approach to
kinematic control of soft segmented continuum robots that
deform within a plane. The kinematics of the soft segments
comply with the CC condition assumption, which enables
us to model each segment as an equivalent rigid-link RPR
mechanism. Decentralized controllers were defined for posi-
tion regulation and trajectory tracking objectives, utilizing a
consensus protocol in which adjacent segments share local



measurements of changes in the length and orientation of
their equivalent rigid link. The controllers were validated
with simulations of 5-link and 15-link robots, and the effect
of the controller gain was investigated.

This decentralized control approach has the potential to be
implemented on a variety of distributed robotic systems that
are composed of multiple connected components or multiple
freely-moving agents. Possible future work includes: (1)
deriving similar consensus-based decentralized controllers
for dynamic models of continuum robots; (2) extending the
controllers to continuum robots that move in 3D space;
(3) identifying bounds on the controller gain, K, to satisfy
mechanical constraints such as limits on displacements of the
robot’s joints; and (4) incorporating secondary objectives into
the controller design such as obstacle avoidance, joint torque
reduction, joint limits, and increased manipulability.
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[9] H. Ananthanarayanan and R. Ordóñez, “Real-time inverse kinematics
of (2n+1) DOF hyper-redundant manipulator arm via a combined
numerical and analytical approach,” Mechanism and Machine Theory,
vol. 91, pp. 209–226, 2015.

[10] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial,” Journal of Intelligent and Robotic Systems, vol. 3, no. 3, pp.
201–212, 1990.

[11] A. Salimi Lafmejani, A. Doroudchi, H. Farivarnejad, X. He, D. Aukes,
M. M. Peet, H. Marvi, R. E. Fisher, and S. Berman, “Kinematic
modeling and trajectory tracking control of an octopus-inspired hyper-
redundant robot,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 3460–3467, 2020.

[12] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots
for medical applications: A survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, 2015.

[13] K. Xu and N. Simaan, “An investigation of the intrinsic force sensing
capabilities of continuum robots,” IEEE Transactions on Robotics,
vol. 24, no. 3, pp. 576–587, 2008.

[14] S. Neppalli and B. A. Jones, “Design, construction, and analysis of a
continuum robot,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2007, pp. 1503–1507.

[15] S. B. Andersson, “Discrete approximations to continuous curves,” in
IEEE International Conference on Robotics and Automation. IEEE,
2006, pp. 2546–2551.

[16] C. Nho Cho, H. Jung, J. Son, and K. Gi Kim, “A modular control
scheme for hyper-redundant robots,” International Journal of Ad-
vanced Robotic Systems, vol. 12, no. 7, p. 91, 2015.

[17] K. Ishimura, M. Natori, and M. Wada, “Decentralized control of redun-
dant manipulator based on the analogy of heat and wave equations,”
in Distributed Autonomous Robotic Systems 5. Springer, 2002, pp.
227–236.

[18] Y.-H. Liu and S. Arimoto, “Decentralized adaptive and nonadaptive
position/force controllers for redundant manipulators in cooperations,”
The International Journal of Robotics Research, vol. 17, no. 3, pp.
232–247, 1998.

[19] S. Kimura, S. Tuchiya, and Y. Suzuki, “Decentralized autonomous
mechanism for fault-tolerant control of a kinematically redundant
manipulator,” in IEEE International Conference on Systems, Man and
Cybernetics. Intelligent Systems for the 21st Century, vol. 3. IEEE,
1995, pp. 2540–2545.

[20] T. Kano, K. Sakai, K. Yasui, D. Owaki, and A. Ishiguro, “De-
centralized control mechanism underlying interlimb coordination of
millipedes,” Bioinspiration & Biomimetics, vol. 12, no. 3, p. 036007,
2017.

[21] M. A. McEvoy and N. Correll, “Shape-changing materials using
variable stiffness and distributed control,” Soft Robotics, vol. 5, no. 6,
pp. 737–747, 2018.

[22] G. Sartoretti, W. Paivine, Y. Shi, Y. Wu, and H. Choset, “Dis-
tributed learning of decentralized control policies for articulated mo-
bile robots,” IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1109–
1122, 2019.

[23] H. Mochiyama, E. Shimemura, and H. Kobayashi, “Control of serial
rigid link manipulators with hyper degrees of freedom: shape control
by a homogeneously decentralized scheme and its experiment,” in
IEEE International Conference on Robotics and Automation, vol. 3.
IEEE, 1996, pp. 2877–2882.

[24] T. Vittor and R. Willgoss, “Motion analysis for decentralized control
of N-module hyper-redundant manipulators,” in Australian Conference
on Robotics and Automation, 2005.

[25] A. Doroudchi, S. Shivakumar, R. E. Fisher, H. Marvi, D. Aukes, X. He,
S. Berman, and M. M. Peet, “Decentralized control of distributed
actuation in a segmented soft robot arm,” in IEEE Conference on
Decision and Control. IEEE, 2018, pp. 7002–7009.

[26] S. H. Sadati, L. Sullivan, I. D. Walker, K. Althoefer, and
T. Nanayakkara, “Three-dimensional-printable thermoactive helical
interface with decentralized morphological stiffness control for con-
tinuum manipulators,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2283–2290, 2018.

[27] J. Alonso-Mora, E. Montijano, M. Schwager, and D. Rus, “Distributed
multi-robot formation control among obstacles: A geometric and opti-
mization approach with consensus,” in IEEE International Conference
on Robotics and Automation. IEEE, 2016, pp. 5356–5363.

[28] S. Feng and H. Zhang, “Formation control for wheeled mobile robots
based on consensus protocol,” in IEEE International Conference on
Information and Automation. IEEE, 2011, pp. 696–700.

[29] K. D. Listmann, M. V. Masalawala, and J. Adamy, “Consensus for
formation control of nonholonomic mobile robots,” in IEEE Interna-
tional Conference on Robotics and Automation. IEEE, 2009, pp.
3886–3891.

[30] F. W. Grasso, “The octopus with two brains: how are distributed
and central representations integrated in the octopus central nervous
system?” Cephalopod Cognition, pp. 94–122, 2014.

[31] C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus, “Dy-
namic control of soft robots interacting with the environment,” in IEEE
International Conference on Soft Robotics. IEEE, 2018, pp. 46–53.

[32] R. M. Murray, A mathematical introduction to robotic manipulation.
CRC Press, 2017.

[33] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[34] R. O. Saber and R. M. Murray, “Consensus protocols for networks of
dynamic agents,” in American Control Conference, vol. 2, 2003, pp.
951–956.

[35] R. L. Williams and D. A. Lawrence, Linear state-space control
systems. Hoboken, N.J.: John Wiley and Sons, Inc., 2007.

[36] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[37] D. Liberzon, Switching in systems and control. Springer Science &
Business Media, 2003.


