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Abstract. We present a survey on the application of fluid approximations,
in the form of mean-field models, to the design of control strategies in swarm
robotics. Mean-field models that consist of ordinary differential equations, partial
differential equations, and difference equations have been used in the swarm
robotics literature, depending on whether the state of each agent and the time
variable take values from a discrete or continuous set. These macroscopic models
are independent of the number of agents in the swarm, and hence can be used to
synthesize robot control strategies in a scalable manner, in contrast to individual-
based microscopic models of swarms that represent finite numbers of discrete
agents. Moreover, mean-field models are amenable to rigorous investigation
using tools from dynamical systems theory, control theory, stochastic processes,
and analysis of partial differential equations, enabling new insights and provable
guarantees on the dynamics of collective behaviors. In this paper, we survey the
applications of these models to problems in swarm robotics that include coverage,
task allocation, self-assembly, consensus, and environmental mapping.
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1. Introduction

There has been a significant amount of work on swarm
robotic systems over the last two decades. A major
challenge is to develop modeling and control techniques
for these large-scale multi-robot systems that are
scalable with the swarm population size [1]. One
approach to address this issue, inspired by modeling
methodologies used in the natural sciences such as fluid
dynamics [2], statistical mechanics [3], and biology [4,
5], is to treat the swarm as a continuum. The starting
point of this approach is the Kolmogorov forward
equation of a stochastic process, which describes the
spatio-temporal evolution of the probability density
associated with the process. For a finite number of
agents that are each modeled using such a stochastic
process, the state space of the forward equation, a
linear dynamical system, is dependent on the number
of agents N . On the other hand, in the limit as the
number of agents tends to infinity, one can approximate
the N -agent linear forward equation with a single,
possibly nonlinear, forward equation with parameters
that can be functions of the probability density. The
resulting equation, known as the mean-field model,
is defined on the set of probability densities that
determine the probability of an agent being in a given
state at a specific time. When the number of agents
in the swarm is large, this approximation is valid if all
agents follow the same control laws (i.e., the swarm
is homogeneous) and the control laws of each agent
are not dependent on other agents’ identities, but only
on the agent’s own state or the local density of the
swarm. This identity-invariance of the control laws
implies that the dimension of the state space of the
mean-field model depends on the dimension of the state
space of a single agent, and hence is independent of the
actual number of agents in the swarm. Therefore, the
scalability of any controller design methodology that
is based on mean-field models is dependent on the
number of admissible states of a single agent, rather
than on the total number of agents in the swarm.

In this paper, we survey the application of mean-
field models to different problems in swarm robotics
such as coverage, task allocation, self-assembly,
consensus, and mapping. Many of these problems
can be framed as problems of feedback stabilization
or parameter identification for the corresponding
mean-field model. Feedback is known to play an
important role in natural and synthetic collective

systems that demonstrate self-organizing behavior [6].
When studying self-organizing systems, a natural
scientist is interested in understanding the feedback
mechanisms that result in the observed self-organizing
behavior, such as a particular division of labor or a
consensus on a new nest site. On the other hand,
a swarm roboticist is interested in determining the
feedback mechanisms that should be programmed into
a swarm of robots in order to achieve a target self-
organizing behavior, such as a desired distribution of
robots among tasks or physical sites. The formal
design and analysis of feedback laws is a major focus
of the field of control theory. This field studies
solutions to control problems, which entail the selection
of suitable values for tunable parameters in a given
system that cause the system to exhibit a target
dynamical behavior.

Many existing works on robotic swarms approach
the task of programming a swarm to achieve
desired self-organizing behaviors as a control problem,
formulated in terms of a mean-field description of
the swarm. In this survey, we classify these works
according to the type of mean-field model that they
use within a control-theoretic framework. In Section
2, we describe swarm control problems that use finite-
dimensional mean-field models in the form of ordinary
differential equations and difference equations, in
which case each agent has a finite number of states and
the time variable is continuous or discrete. In Section
3, we discuss much more challenging swarm control
problems in terms of infinite-dimensional mean-field
models in the form of partial differential equations,
for which the agents’ state space is continuous and
the time variable is continuous. Due to the limited
amount of work on swarms in which the agents have a
continuous state space and time is a discrete variable,
we only briefly introduce the mean-field model for this
case in Section 4, where we also describe some potential
future research directions. Throughout the paper,
we organize the works in terms of the complexity of
their control problem, as determined by the amount of
information that is available to each robot in the swarm
to execute its controller. Types of information that
each robot could possibly access include the robot’s
own state or the state distribution of other robots
within its local sensing range.

While there have been several surveys on swarm
robotics [1, 7–9], multi-robot systems [10–12] and
the broader field of multi-agent systems [13], and
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networked computational devices [14], the contribution
of this paper is to provide a review of works that
specifically use mean-field models to predict and
control collective behaviors in robotic swarms. We
note that the use of mean-field models in robotic
swarm control has been previously discussed in
the literature under different terminology, including
macroscopic models [15], Rate Equation models [16],
and probabilistic swarm guidance [17]. To our
knowledge, the 2004 paper [18] is the earliest survey
of works on the application of mean-field models
(referred to as macroscopic models) to the analysis
and control of swarm robotic collective behaviors. The
more recent works [1, 8, 9] devote part of their surveys
to reviewing some prior works on mean-field models
of robotic swarms. Our use of the term mean-field
model connects the swarm control problems that we
discuss in this paper to the broader literature on mean-
field control theory [19], which has been a subject of
intensive research within the engineering and applied
mathematics communities in recent years.

2. Finite-Dimensional Mean-Field Models

In this section, we introduce finite-dimensional mean-
field models in which the time variable is continuous
(Section 2.1) or discrete (Section 2.2).

2.1. Continuous-time models

There are N autonomous agents whose states evolve
in continuous time according to a Markov chain with
a finite state space defined as the vertex set V =
{1, ...,M}. For example, the vertices in V can represent
a set of tasks that the agents must perform, or a
set of spatial locations obtained by partitioning the
agents’ environment. The edge set E ⊂ V × V defines
the pairs of vertices between which the agents can
transition. The directed graph G = (V, E) is assumed
to be strongly connected. The agents’ transition rules
are determined by the control parameters ue : [0,∞)→
R≥0 for each e ∈ E , and are known as the transition
rates of the associated continuous-time Markov chain
(CTMC). The state of each agent i ∈ {1, ..., N} at time
t is defined by a stochastic process Xi(t) that evolves
on the state space V according to the conditional
probabilities

P(Xi(t+h) = T (e)|Xi(t) = S(e)) = ue(t)h+o(h) (1)

for each e = (S(e), T (e)) ∈ E , where S(e) and T (e)
denote the source and target vertices of the edge e,
respectively. Here, P is the underlying probability
measure induced on the space of events Ω by the
stochastic processes {Xi(t)}Ni=1. Informally, ue(t)h is
the probability of an agent jumping from state i to

Figure 1. Bidirected graph with 3 vertices, representing agent
states.

state j within an infinitesimally small time interval h.
The little-o notation o(h) indicates that as h tends

to 0, the term o(h)
h converges to 0. Let P(V) =

{y ∈ RM≥0;
∑
v yv = 1} be the set of probability

densities on V, and let int P(V) := {y ∈ P(V); yv >
0 for all v ∈ V} be the interior of the set P(V),
that is, the set of probability densities y for which all
entries yv are positive. Corresponding to the CTMC
is a system of ordinary differential equations (ODEs)
that determines the time evolution of the probability
densities P(Xi(t) = v) = xv(t) ∈ R≥0. If Xi(0) are
independent and identically distributed (IID), then the
processes {Xi(t)}Ni=1 are also IID, and the Kolmogorov
forward equation can be represented by a single linear
system of ODEs,

ẋ(t) =
∑
e∈E

ue(t)Bex(t), t ∈ [0,∞), (2)

x(0) = x0 ∈ P(V),

where x0 represents the initial distribution of the
random variables Xi(0) and Be ∈ RM×M are control
matrices whose entries at row i and column j are given
by

Bije =


−1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

For example, consider a 3-state Markov chain, for
which the corresponding graph G is illustrated in Fig.
1. The system of ODEs (2) in this case is given by:

ẋ1(t) = −u12(t)x1(t) + u21(t)x2(t) (3)

ẋ2(t) = −(u21(t) + u23(t))x2(t) + u12(t)x1(t)

+u32(t)x3(t)

ẋ3(t) = −u32(t)x3(t) + u23(t)x2(t)

x1(0) = x0
1, x2(0) = x0

2, x3(0) = x0
3.

From this perspective, it can be seen that the
structure of the matrix Be enforces the conservation
of agents in the swarm: for each edge e ∈ E , the
rate of decrease ue(t)xS(e)(t) in the population fraction
xS(e)(t) of agents at vertex S(e) equals the rate of
increase in the population fraction xT (e)(t) of agents
at the adjacent vertex T (e). Note that the control
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parameter ue(t) determines this rate of change in agent
population at the source and target vertices of edge e.

Let χv : V → {0, 1} represent the indicator
function of the vertex v. As N → ∞, the
population fraction of agents at a vertex v, given
by 1

N

∑N
i=1 χv(Xi(t)), converges to xv(t) for each

t ∈ [0,∞). This follows from the law of large
numbers due to the random variables Xi(t) being IID.
Thus, by modeling a swarm using the approximation
N → ∞, swarm control problems can be posed
in terms of the deterministic quantity x(t) rather
than the random variables Xi, enabling control of
the mean-field behavior of the swarm. Therefore,
control or estimation problems where the objectives are
functions of the population fractions 1

N

∑N
i=1 χv(Xi(t))

can be replaced by problems where the objectives are
functions of the probability distribution or population
density x(t). An instance of this mean-field control
problem [19] is when the goal is to design the control
inputs ue(t) such that x(T ) = xd for a target
distribution xd ∈ P(V) and time T > 0. Another
example of this type of control problem is the mean-
field stabilization problem, where the goal is to design
non-negative, possibly time-varying parameters ke
such that ue(t) = ke for all t ≥ 0 and a given xd ∈ P(V)
is an asymptotically stable equilibrium point of system
(2). When the control inputs ue(t) are independent
of time and the population density x(t), we will say
that they are in state-feedback form. Here, the term
state-feedback refers to the fact that agent i requires
only knowledge of its current state Xi(t) to execute
the control action, and not the mean-field term x(t).

The regulation of division of labor in biological
swarms such as social insect colonies [20], as well
as problems of task allocation [16] and spatial
coverage [21] in swarm robotics, are all instances
of the mean-field stabilization problem. Social
insects are hypothesized to maintain a division of
labor in their colonies through cooperation [20] and
heterogeneity of colony members [22, 23]. However,
in robotic swarms, it can be challenging to control
multiple robots to perform cooperative tasks and
to coordinate heterogeneous robots with different
capabilities. Therefore, it is of interest to determine
whether the mean-field stabilization problem can be
solved by a swarm of non-interacting homogeneous
agents that are each cognizant only of its own current
state. Phrased another way, is mean-field stabilization
possible using state-feedback laws? This section
surveys some works that have addressed this question.

The following result is fundamental in analyzing
the long-time behavior of Markov chains and has
therefore also played an important role in the
solvability of the mean-field control and stabilization
problems. It follows from the Perron-Frobenius

theorem [24] and plays an important role in the
stabilization of the mean-field model (2) using time-
independent state-feedback laws.

Theorem 2.1 Consider the mean-field model (2), for
which the corresponding graph G = (V, E) is strongly
connected. Suppose that ue(t) = ke is a (time-
independent) state-feedback law and is positive for
each e ∈ E. Then 0 is an eigenvalue of the
matrix

∑
e∈E keBe, and it has the largest real part

of all the eigenvalues of this matrix. Moreover, this
eigenvalue is simple. Hence, the solution x(t) of system
(2) exponentially converges to a unique limit x∞ ∈
int P(V), which is a vector with all elements positive.

In the above theorem, exponential convergence
refers to the property that the distance between the
solution x(t) and the limiting distribution x∞ is
bounded by Me−λt for some constants M,λ > 0
that are independent of the initial distribution x0.
Using this theorem, the problem of designing state-
feedback laws with the goal of achieving exponential
stabilization with maximal decay rate λ is considered
in [25] for a multi-robot stochastic task allocation
scenario. It was shown that this problem can be framed
as a convex optimization problem. A drawback of
using state-feedback laws is that the control inputs
ue(t) remain non-zero at equilibrium, and hence
agents might continue switching between states at
equilibrium; i.e., the system being in macroscopic
equilibrium does not imply that it is in microscopic
equilibrium. To reduce the frequency of switching
at equilibrium, [26] introduced biologically-inspired
control laws that are functions of the population
density x(t). We will refer to such control laws as
mean-field feedback laws. In particular, a mean-field
feedback law is a family of functions ke : P(V) →
[0,∞) such that the control inputs are defined as
ue(t) = ke(x(t)) for all t ≥ 0 and all e ∈ E . Mean-
field feedback laws can describe the mechanism of
quorum sensing in biological swarms such as bacterial
colonies [27] and house-hunting ants [28], whereby
individuals’ assessment of population density triggers
a change in their behavior and gives rise to coordinated
collective phenomena. In [26], the following mean-field
feedback law ke, referred to as “ensemble feedback,” is
considered:

ke(x) = k∗e + σS(e)(xS(e), qS(e))(α− 1)k∗e , (4)

where k∗e is a baseline transition rate, qS(e) is a prede-
fined quorum fraction of the desired agent population
at vertex S(e), σS(e) = (1 + exp [γ(qS(e) −

xS(e)

xd
S(e)

)])−1 ∈
[0, 1] is an analytic switching function, and γ and α
are suitably chosen constants. If the quorum at ver-
tex S(e) is exceeded, then the control law (4) increases
the transition rate to adjacent vertex T (e) up to αk∗e ;
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i.e., overpopulation at S(e) triggers agents to leave the
vertex more quickly. It was shown in [26] that for
xd ∈ int P(V), i.e. the set of probability distributions
that are positive everywhere on V, the solutions of sys-
tem (2) with mean-field feedback law (4) converge to
xd as t→∞.

Note that, when the control inputs ue(t) are func-
tions of the agent population fractions, which converge
to the mean-field distribution x in the limit N → ∞,
the random variables Xi are not IID. Therefore, the va-
lidity of the limit limN→∞

1
N

∑N
i=1 χv(Xi(t)) = xv(t)

does not follow from the law of large numbers. Instead,
one can apply the dynamic law of large numbers, which
is proved in [29].

Theorem 2.2 (Mean-field/Fluidic Limit) [29]
Suppose that the transition rates ue(t) of each agent
are given by

ue(t) = ve

(
1

N

N∑
i=1

χ1(Xi(t)), ...,
1

N

N∑
i=1

χM (Xi(t))

)
,

(5)
where ve : P(V) → [0,∞) is a differentiable function
for each e ∈ E. Consider the solution x(t) of the
following system of ordinary differential equations,

ẋ(t) =
∑
e∈E

ve(x1, ..., xM )Bex(t), t ∈ [0,∞), (6)

x(0) = x0 ∈ P(V).

Then for every t ≥ 0,

lim
N→∞

sup
s≥t
|YN (s)− x(s)| = 0 almost surely (7)

where for each s ≥ 0, the random variable YN (s) is
given by

YN (s) =

[
1

N

N∑
i=1

χ1(Xi(t)) ...
1

N

N∑
i=1

χM (Xi(t))

]T

and for each y ∈ RM , |y| :=
∑M
i=1 |yi|.

There has been an extensive amount of work on
generalizing the above result to cases where the
functions ve are possibly discontinuous [30, 31] or
where the mean-field model is a hybrid system with
continuous as well as discrete states [32].

In their most general form, mean-field feedback
laws require that agents can measure the population
density vector x(t). Given the typical sensing and
communication constraints on agents in a swarm, it is
desirable that the mean-field feedback laws are local;
that is, the control inputs ue are functions of the
population density only at the source vertex S(e) (i.e.,
the agent’s current state), the target vertex T (e), or
both. The problem of reducing agent fluctuations at
equilibrium is framed as a variance control problem

in [33], using local mean-field feedback laws of the
form ue(x) = αe + βe

xS(e)

xT (e)
for suitable choices of the

parameters αe and βe. The works [26, 33] emphasize
the fact that while state-feedback laws are sufficient
to solve the mean-field stabilization problem, mean-
field feedback laws can produce improved performance
in terms of reducing the variance of the swarm
distribution about the target equilibrium distribution.

Before one proceeds to design control laws, it is
important to know which distributions are stabilizable.
The works [25, 26, 33] require the assumption that
xd ∈ int P(V). When G is bidirected, it follows by
construction from [34] that, if xd ∈ int P(V), then
there exists a state-feedback law that asymptotically
stabilizes xd. From Theorem 2.1, it can be seen that
the assumption that G is bidirected can be relaxed in
order for the stabilization result to still hold. Suppose
that G is strongly connected, the parameters ke are
positive, and x∞ is the unique (up to a scaling factor)
eigenvector of the matrix

∑
e∈E keBe corresponding

to 0. Then for the state-feedback law k̃e = ke
x∞
S(e)

xd
S(e)

,

we have that xd is the unique eigenvector of the
matrix

∑
e∈E k̃eBe =

∑
e∈E keBeD , where D is the

diagonal matrix diag(
x∞
1

xd
1
,
x∞
2

xd
2
, ...,

x∞
M

xd
M

). Thus, xd is

the globally asymptotically stable equilibrium point of
system (2). In order to relax the assumption that
xd ∈ int P(V), [35, 36] considered the problem of
which elements of P(V) are reachable asymptotically
or in finite time, and can be stabilized using state-
feedback laws and local mean-field feedback laws. In
particular, it was shown that any element of int P(V)
can be reached in finite time, and any element of P(V)
can be reached asymptotically in infinite time, using
time-varying feedback laws. It was additionally shown
that probability distributions with strongly connected
supports could be stabilized using state-feedback laws
and local mean-field feedback laws. We say that
a probability distribution has a strongly connected
support if the sub-graph induced by the vertices on
which the probability distribution is positive is strongly
connected. For example, for the graph shown in Fig.
1, the probability distribution x = [0.5 0.5 0]T has
a strongly connected support, whereas the probability
distribution x = [0.5 0 0.5]T has a support that is not
strongly connected.

The assumption that the probability distribution
must have a strongly connected support is relaxed
in [37]. State-feedback laws cannot be used to
stabilize arbitrary probability distributions, since the
graph associated with the corresponding CTMC is
disconnected, resulting in the mean-field model having
multiple equilibrium distributions. In [37], it is proved
that mean-field feedback laws are needed to stabilize
arbitrary probability distributions. In particular, it
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is shown that if xd ∈ P(V) is a target equilibrium
distribution, then by defining the control inputs ue(t)
as

ue(t) = fe(xS(e)(t)), (8)

where fe is any non-decreasing differentiable function
such that fe(y) = 0 if and only if y = xdS(e), the system

(2) is asymptotically stable about the equilibrium xd.
This control law is based on the principle, “Leave
the current vertex with a positive probability if the
agent population at the vertex is above the target
population.” This control law has the important
property that agents do not switch between vertices
at equilibrium.

A method for computing optimal time-varying
state-feedback laws in order to achieve a target
distribution in finite time is shown in the work [38]
on computational optimal transport. For certain cost
functions, this optimal control problem can be treated
in a convex optimization framework. For example, for
a given T > 0 and xd ∈ P(V), consider the following
optimization problem:

inf
ue(t)≥0,xv≥0

∑
e∈E

∫ T

0

u2
e(t)xS(e)(t)dt (9)

subject to the bilinear constraints defined by system
(2), with

x(T ) = xd. (10)

This optimization problem is non-convex. However,
it can be transformed into the following equivalent
convex optimization problem:

inf
re(t)≥0,xv(t)≥0

∑
e∈E

∫ T

0

r2
e(t)

xS(e)(t)
dt (11)

subject to the linear constraints

ẋ(t) =
∑
e∈E

re(t)Be1, t ∈ [0,∞), (12)

x(0) = x0, x(T ) = xd,

where 1 ∈ RM is the vector with all elements equal
to 1. This approach of convexifying optimization
problems with objective functions such as the one in
(9) and constraints (2), (10) was introduced in [38]
in order to adapt the fluid-dynamic version of the
optimal transport problem [39], where the state space
is continuous, to the case of discrete state spaces. See
Section 3 for more details. We note that the cost
function in (9) has a simpler structure than the one
considered in [38].

Numerical construction of mean-field feedback
laws is a much more computationally challenging task,
in comparison with the synthesis of state-feedback
laws. Computational approaches based on Linear
Matrix Inequalities [40] and Sum-of-squares methods

[41] are used to numerically construct decentralized
mean-field feedback laws in [42]. Execution of
mean-field feedback strategies requires knowledge of
the distribution of robots in each state. One
approach to estimate the robot distribution is to use
a centralized observer, such as an overhead camera
[42]. An alternative approach, which does not rely
on a centralized authority to observe the swarm, is
to use encounter rates between agents to estimate
population densities, as observed in natural swarms
such as ant colonies [28, 43]. A model for estimating
population densities of swarms as a function of inter-
agent encounter rates is proposed and experimentally
validated in [44]. This encounter rate model was used
in [45] to implement mean-field feedback laws for a
swarm task allocation problem.

The work [46] considers the effect of heterogeneity
in the robot populations on the optimal robot control
policies. In this work, V denotes not only the
states that robots can occupy, but also the types
of different robots. The problem of identifying the
minimum number of robots of each type in order to
achieve a given goal is framed as an optimization
problem. There have also been efforts to develop mean-
field models of heterogeneous collectives comprised
of both autonomous robots and living organisms
[47, 48]. For instance, the work [49] experimentally
validates a mean-field model of a mixed group of robots
and cockroaches that influence each other during a
collective decision-making process to choose a common
shelter.

In some scenarios, it is useful to consider mean-
field models where different types of agents or agents in
different states interact at particular probability rates
and then physically bond or change their states. Such
models are commonly used to describe the dynamics of
chemical reaction networks (CRNs) [50, 51], and have
been adopted in several works in swarm robotics. A
CRN model of a swarm represents agents of different
types or in different states as distinct species that
are analogous to chemical species. A reaction occurs
when a combination of reactant species converts into
a combination of product species at a certain reaction
rate constant. Suppose that a reaction r in a CRN
has reactants ai ∈ R>0, i = 1, ..., n, that combine
with probability kr(t)∆T in an infinitesimally small
amount of time ∆T to form products bj ∈ R>0, j =
1, ...,m. Here, kr(t) is the reaction rate constant. We
denote this reaction by r = [(a1, ..., an), (b1, ..., bm)].
Let M be the total number of reactant and product
species in the entire CRN; then the vector of agent
population densities in each species is given by x ∈ RM .
Define a vector field fr : RM → RM associated with
reaction r that has entries (fr(x))ai = −

∏n
i=1 xai for

i ∈ {1, ..., n}, (fr(x))bj =
∏n
i=1 xai for j ∈ {1, ...,m},
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and 0 otherwise. Then the resulting mean-field model
can be written as follows, where R is the set of all
reactions in the CRN:

ẋ(t) =
∑
r∈R

kr(t)fr(x(t)), t ∈ [0,∞), (13)

x(0) = x0 ∈ RM≥0,

The system of equations (13) simplifies to the form
of system (2) when only unimolecular reactions are
admissible; i.e, all reactions in the CRN are of the form
r = [a, b], where a, b ∈ V.

The first application of this type of mean-field
model to simulating the behavior of a robotic swarm
was in [52], which introduced a CRN model for a stick-
pulling experiment performed by a swarm of robots
that do not explicitly communicate or coordinate with
one another. Using the mean-field model, the authors
identify optimal state-dependent control parameters
to improve the system’s performance. In [18], the
authors study the application of these types of models
to a number of tasks performed by a swarm of
robots, including collaborative pulling, foraging, and
aggregation. In [53], the authors use a mean-field
model to study the effect of spatial interference on
the performance of robots in a collective foraging
task. A mean-field model based on a CRN is used
in [54] for a task in which a swarm of robots must
assemble a collection of parts into target amounts
of final products using stochastic control policies
determined by the reaction rate constants. The
authors optimize the reaction rate constants to improve
the system’s rate of convergence to the target numbers
of products. In [55], the authors use a CRN-
based mean-field model to design stochastic robot
attachment-detachment policies that drive a swarm to
specified spatial distributions around multiple payloads
for a collective transport task. A CRN is used
to model a stochastic self-assembly task in [56],
and methods are developed to estimate the reaction
rates in the CRN model using high-fidelity physics-
based simulations. In [57], the authors present an
optimization-based method to maximize the yield of a
stochastic self-assembly process by finding the optimal
reaction rates, and validate the method using a CRN
model. These authors also introduce an integral
feedback controller in [58] to stabilize a CRN model
of another stochastic self-assembly process. In [59],
the authors develop a CRN model of a scenario in
which robots collaboratively screen an environment for
undesirable agents, and use this model to find the
optimal parameters to achieve the goal.

CRN models have also been used extensively to
model collective decision-making problems in swarm
robotics, where a group of robots must collectively de-
cide among a number of available options using lim-
ited information and interactions. Collective decision-

making leads to stabilization problems that differ from
classical formulations: the target probability distribu-
tion to which the agents should stabilize is not prede-
fined by a centralized authority, and this distribution
is a non-local function of the states or the agent pop-
ulations in the states, while the robot control laws are
constrained to be local. In [60], the authors consider
a modified form of the majority rule opinion dynam-
ics, studied in the literature on opinion dynamics [61],
for a scenario where a swarm of robots must decide
between two different actions with different execution
times, but without any prior knowledge of the execu-
tion times. Similarly, CRN models that have been used
to describe honeybee nest site selection strategies [62]
have found applications in swarm robotics [63]. In [64],
the authors add stochastic disturbances to a mean-field
model of collective decision making, introduced in [65],
and compare simulations of the model to data obtained
from an experiment in which a swarm of robots col-
lectively decide between two spatially distributed fea-
tures. This work showed how spatial effects due to
inter-agent collisions and inhomogeneity in the distri-
bution of the swarm can reduce the predictive power of
the mean-field model. In [66], CRN models of honeybee
nest site selection are used to design unmanned aerial
vehicle control policies for non-uniform spatial cover-
age. In this work, the states represent spatial sites as
well as tasks. See [67, 68] for extensive surveys on the
topic of collective decision-making problems in swarm
robotics with some applications of mean-field models.

Other recent work that uses a CRN-based mean-
field framework for swarm applications considers the
problem of keeping individual robot types private
[69]. A privacy model that uses notions from
differential privacy is developed to understand the
privacy preservation capabilities of the swarm as a
function of the reaction parameters.

2.2. Discrete-time models

In discrete-time mean-field models, the state of each
agent i ∈ {1, ..., N} is defined by a discrete-time
Markov chain (DTMC) Xi(n), n ∈ Z+, that evolves
on the state space V according to the conditional
probabilities

P(Xi(n+ 1) = T (e)|Xi(n) = S(e)) = ue(n) (14)

with control parameters ue(n) ∈ [0, 1] that satisfy the
constraint ∑

e∈E,S(e)=v

ue(n) = 1 (15)

for all v ∈ V and all n ∈ Z+. The parameters ue(n)
are the transition probabilities that are associated with
each edge E . The probability distribution x(n) ∈ RM
of the DTMC Xi(n), given by P(Xi(n) = v) = xv(n) ∈
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R≥0 for all v ∈ V, evolves according to the mean-field
model

x(n+ 1) =
∑
e∈E

ue(n)Bex(n), n ∈ Z+, (16)

x(0) = x0 ∈ P(V),

where the entries of Be ∈ RM×M are given by

Bije =

{
1 if i = T (e), j = S(e),

0 otherwise.

The above model is the discrete-time analogue of
model (2). The problem of stabilizing the solution
x(n) of the system (16) for swarm models was first
considered in [70]. In this work, the authors develop
an iterative scheme to construct a (time-independent)
state feedback law ue such that limn→∞ x(n) = xeq,
where xeq ∈ int P(V) is a target stationary probability
distribution. In [71], the authors use a discrete-time
mean-field model of the form (16), with experimentally
identified parameters, to model a swarm of robots
that inspect a turbine system. This model is used to
optimize the performance of the robotic swarm for the
inspection task in [72].

In [17], the authors investigate general conditions
on the graph G under which time-independent state
feedback laws ue ≥ 0 can be designed such that
the solution of the system (16) converges to a given
stationary distribution xeq. The authors construct
a DTMC using a variant of the Metropolis-Hastings
algorithm [73] and show that if the vector xeq has
a strongly connected support and the graph G is
symmetric, then one can find parameters ue ≥ 0
such that this stabilization problem can be solved.
The authors also provide a Linear Matrix Inequality
based method for computing the parameters ue such
that a target xeq is exponentially stable with a given
decay rate. The following theorem is the discrete-time
version of Theorem 2.1, and it provides a theoretical
foundation for the results proved in [17].

Theorem 2.3 Consider the mean-field model (16),
for which the corresponding graph G = (V, E)
is strongly connected. Suppose that the transition
probabilities ue are positive and constant. Additionally,
suppose that there exists a time n ∈ Z+ such that,
for each v, w ∈ V, there exists a directed path of
length n from v to w. Then 1 is the eigenvalue of the
matrix

∑
e∈E ueBe with the largest modulus. Moreover,

this eigenvalue is simple. Hence, the solution x(t) of
system (16) exponentially converges to a unique limit
x∞ ∈ int P(V) for which all the elements are positive.

A drawback of using time-independent state-
feedback laws is that, as for the case of CTMCs, the
agents do not stop transitioning between states once
the mean-field model (16) reaches equilibrium. In order

to resolve this issue, the authors in [74] consider the
problem of constructing time-varying parameters ue(n)
such that limn→∞ ue(n) = 1 for all e = (v, v) ∈ E ,
v ∈ V. This problem is framed as a linear programming
problem that each agent i must solve in order to
compute its own optimal transition probabilities uie(n)
at each time n so that the swarm reaches the target
distribution while minimizing a particular objective
functional. Strictly speaking, this linear programming
approach is not a mean-field approach, since the
problem is formulated for a finite number of agents and
it is not clear whether the transition probabilities ue(n)
have well-defined limits asN →∞. The state-feedback
laws constructed in [74] depend on the distance of
the swarm from the target distribution, and hence
require global knowledge of the swarm distribution at
each time n. This requirement is then relaxed by
implementing a filtering algorithm that each agent uses
to estimate the distribution of the swarm over all the
states through local measurements (also known as local
sampling) of the agent distribution in its current state.

To our knowledge, a similar approach for
stabilizing a swarm modeled using DTMCs to a target
distribution with local mean-field feedback laws, such
as those designed for CTMCs in [37], has not been
considered in the literature so far. However, the result
for CTMCs that is given in Theorem IV.8 in [37] can
be extended to DTMCs, as stated in the following
theorem. The proof of this theorem is similar to the
proof of Theorem IV.8 in [37] and is omitted here for
brevity.

Theorem 2.4 Suppose that the graph G is strongly
connected and has self-edges at every vertex. Addition-
ally, suppose that xeq ∈ P(V). For each e ∈ E, let
ke : [0, 1] → [0, 1] be a continuous function such that
ke is non-zero over the interval (xeqS(e), 1], and

∑
e∈E;S(e)=v,T (e) 6=v

ke(z) ≤
z − xeqv

z
,

∑
e∈E;S(e)=v

ke(y) = 1

(17)
for each v ∈ V and for all z < xeqv and all y ∈ [0, 1].
Additionally, if e is not a self-edge, then the function
satisfies ke(z) = 0 for all z < xeqS(e). Then xeq ∈ P(V)

is a globally asymptotically stable equilibrium point for
the system

x(n+ 1) =
∑
e∈E

ke(xS(e)(n))Bex(n), n ∈ Z+, (18)

x(0) = x0 ∈ P(V).

In [75], the authors address a swarm stabilization
problem in which the control laws must satisfy certain
density constraints on the solution of the mean-field
model. The authors adapt classical Markov decision
process (MDP) theory [76] to construct stochastic or
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randomized state-feedback laws with constraints on the
probability distribution of the stochastic process that
models agent motion, such as constraints on robot
densities.

3. Infinite-Dimensional Mean-Field Models

In this section, we describe infinite-dimensional mean-
field models in which the time variable is continuous.
We start with the case where the state space Ω
of each agent, indexed by i ∈ {1, 2, ..., N}, is a
subset of the Euclidean space Rn. The position of
each agent i evolves according to a stochastic process
Zi(t) ∈ Ω, where t denotes time. We initially assume
that the agents are non-interacting. Therefore, the
random variables Zi(t) are independent and identically
distributed, and we can drop the subscript i and define
the problem in terms of a single stochastic process
Z(t) ∈ Ω. The deterministic motion of each agent is
defined by a velocity vector field v(x, t) ∈ Rn, where
x ∈ Ω. This motion is perturbed by an n-dimensional
Wiener process W(t), which models noise. This
process can be a model for stochasticity arising from
inherent sensor and actuator noise. Alternatively, noise
could be actively programmed into the agents’ motion
[77] to implement more exploratory agent behaviors
[78] and to take advantage of the smoothening effect of
the process on the agents’ probability densities. Given
the velocity field v(x, t) and a diffusion coefficient
D > 0, the position of each agent evolves according
to a diffusion process Z(t) that satisfies the following
stochastic differential equation (SDE) [79]:

dZ(t) = v(Z(t), t)dt+
√

2DdW(t),

Z(0) = Z0. (19)

Given a final time T > 0, the Kolmogorov forward
equation or Fokker-Planck equation [80] corresponding
to the SDE (19) is given by:

yt = D∆y −∇ · (v(x(t), t)y) in Ω× [0, T ],

y(·, 0) = y0 in Ω. (20)

The solution y(x, t) of this equation represents the
probability density of a single agent occupying position
x ∈ Ω at time t, or alternatively, the density of a
population of agents at this position and time. The
PDE (20) is related to the SDE (19) through the
relation P(Z(t) ∈ Γ) =

∫
Γ
y(x, t)dx for all t ∈ [0, T ]

and all measurable Γ ⊂ Ω. In [81], the authors use the
model (20) with a constant velocity field v to simulate
a swarm of miniature robots performing an inspection
task and validate the model experimentally. In [82],
the authors design swarm strategies mimicking fluid
flow behavior [2] by constructing state-feedback laws v
that are piecewise constant with respect to space for
the model (20) with D = 0, using the Helmholtz-Hodge
decomposition of a vector field.

The work [83] considers a PDE model of the form

yt(x,v) = − v · ∇x · (y(x,v))− λ(x,v)y((x,v)) (21)

+

∫
Tv′(v, v′)λ(x,v)y(x,v′, t)dv′,

where x denotes the position coordinates and v
denotes the velocity coordinates. The parameter
λ denotes the rate at which a robot jumps to a
random value of v according to the parameter Tv′ ,
a function known as the jump pdf. Inspired by
chemotaxis behavior observed in bacterial colonies [84],
the authors design suitable λ and Tv′ such that the
robots converge to a target probability density that
is positive everywhere. This result is generalized to a
larger class of controllable nonlinear systems in [85].

There have been a number of works on numerical
construction of state-feedback laws for a swarm of
agents that follow the dynamics (19). In [86], the
authors consider the problem of designing a time-
varying, state-dependent velocity u1(x, t) and turning
rate u2(x, t) with the vector field v in (20) given by

v(x, t) =

u1(x, t) cos(x1)
u1(x, t) sin(x2)

u2(x, t)

 .
The authors use optimal control to compute the
control inputs u1(x, t) and u2(x, t) that transport a
swarm from an initial probability density to a target
density. The optimal control of PDEs that govern
stochastic processes has received considerable attention
in the mathematics literature [87–90]. Similar optimal
control problems have also been investigated in the
mathematics and control theory literature on mean-
field games [19, 91–94]. The application of mean-field
games to swarm robotics problems has begun only
recently [95]. A promising approach to numerically
constructing state-feedback laws comes from optimal
transport theory. While this approach has thus far not
been applied to control swarms of robots, we mention
it here due to its applicability in this domain. Consider
the following optimization problem:

inf
v

∫ T

0

∫
Ω

|v(x, t)|2y(x, t)dxdt (22)

subject to the constraints

yt = −∇ · (v(x, t)y),

y(0) = y0, y(T ) = yd, (23)

where y0 and yd are the initial and target probability
densities, respectively. The optimization problem (22)-
(23) was introduced to develop a computationally
tractable approach to calculating the 2-Wasserstein
distance [96]. In swarm robotics applications, this can
be viewed as an optimal control problem that computes
a state-feedback law v(x, t) which drives a swarm from
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an initial probability density y0 to a target probability
density yd in time T . However, this optimization
problem is non-convex in the decision variables v and
ρ. If we perform the change of variable m = v

ρ , we can
instead consider the equivalent convex optimization
problem,

inf
m,ρ≥0

∫ 1

0

∫
Ω

|m(x, t)|2

y(x, t)
dxdt (24)

subject to the constraints

yt = −∇ · (m(x, t)),

y(0) = y0, y(1) = yd. (25)

Due to this convexification, one can guarantee that any
locally optimal solution of the optimization problem
(24)-(25) is also globally optimal. This offers an
advantage over objective functionals that are more
commonly used in optimal control of PDEs [97], for
which global optimality of locally optimal solutions is
much more difficult to guarantee.

The work [98] considers the problem of stabilizing
the PDE (20) to a target probability density y∞. It
is shown that if the diffusion coefficient is defined
as the spatially-dependent function c/

√
y∞ for any

positive constant c, then the solution of the PDE
converges to ρ∞. The effectiveness of this control law is
experimentally verified with robot experiments in [99].
This strategy is extended to the case where agents
evolve on compact manifolds in [100]. An alternative
approach to stabilize a swarm to a target distribution is
to set D to a positive constant and v = D∇ρ∞ρ∞

, which

also results in the solution converging to ρ∞ [101–105].
The long-time behavior of SDEs with gradient drift
has been extensively treated in the mathematics and
physics literature. In applications beyond swarm
robotics, the problem of controlling the PDE (20) to
a target probability density using a time-dependent
state-feedback law v(x, t) has been investigated in
optimal transport theory [39] and stochastic control
[106] for the case where Ω = Rn, in work on control of
PDEs [105] when Ω is a bounded subset of Rn, and in
the theory of mean-field games [107] when Ω is a torus.

While models of the form (20), with control
parameters that are functions of the swarm density,
have been extensively analyzed in the mathematics
literature [108–112], there has been very little work
on using such models to construct mean-field feedback
laws for stabilization of robotic swarms. In [113],
the authors design mean-field feedback laws where the
vector field v in (20) is set to a suitable integral
functional of the density so that the agents achieve
consensus. A similar approach for the analysis of
consensus in swarms is also considered in [114]. In
[115], the authors construct a mean-field feedback law
by interpreting the linear heat equation as a nonlinear

advection equation with a density-dependent velocity
field as follows. The diffusion coefficient D is set
to zero, and the control law is defined as v(x, t) =

−∇e(x,t)y(x,t) for all x ∈ Ω and all t ≥ 0, where e(x, t) =

y(x, t)− yd(x) and yd is the target probability density.
Then model (20) becomes

et = ∆e in Ω× [0, T ],

e(·, 0) = e0 in Ω. (26)

Using the relation between models (20) and (26), one
can show that the swarm density y(·, t) converges to
the target probability density yd as t→∞. Similarly,

one can see that if v(x, t) = ∇(y(x,t)/yd(x))
y(x,t) for all x ∈ Ω

and all t ≥ 0, then (20) becomes

yt = ∆

(
y

yd

)
in Ω× [0, T ],

y(·, 0) = y0 in Ω. (27)

While the analysis of the closed-loop systems (26)-(27)
is straightforward due to their linearity, the solutions of
these PDEs make sense only for initial conditions that
are positive everywhere on Ω; otherwise, the control
law v is unbounded. An alternative is to set v(x, t) =

−b(x)∇y(x,t)
yd(x,t)

, where b(x) is a positive function. The

resulting closed-loop system is a weighted variation of
a well-known nonlinear PDE called the porous media
equation [116]. According to results established in
the mathematics literature [117], it is known that
under particular technical assumptions on b(x) and
yd(x), the swarm density y(·, t) converges to the target
probability density yd as t → ∞. These types
of control laws are used for stabilizing swarms to
target probability densities in the recent works [100],
for robots evolving on compact manifolds without
boundary, and [118], for robots evolving on a subset
of a Euclidean space with boundary.

In models of robotic swarms, it is useful to
consider hybrid variants of the SDE (19) to account for
the fact that each robot, in addition to a continuous
spatial state Z(t), can be associated with a discrete
state Y (t) ∈ V at each time t. For such scenarios,
we can define a hybrid switching diffusion process
(Z(t), Y (t)) as a system of SDEs of the form

dZ(t) = v(Y (t),Z(t), t)dt+
√

2D · dW(t),

Z(0) = Z0, (28)

where v : V × Ω × [0, T ] → Rn is the state- and
time-dependent velocity vector field, and D ∈ RM+ is a
vector of positive elements Dk, the diffusion coefficient
associated with discrete state k ∈ V. Let vk denote
the velocity field associated with discrete state k ∈ V
and y = [y1 ... yM ]T denote the the probability density
of the process (Z(t), Y (t)). Then the forward equation
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for this system of SDEs is given by the system of PDEs

(yk)t = Dk∆yk −∇ · (vk(x, t)yk) + Fk in Ω× [0, tf ],

yk(·, 0) = y0
k in Ω, (29)

where k ∈ V and Fk =
∑
e∈E

∑
j∈V ue(t)B

kj
e yj , with

Be defined as in Subsection 2.1. The PDE (29) is
related to the SDE (28), for each k ∈ V, through the
relation P(Y (t) = k,Z(t) ∈ Γ) =

∫
Γ
yk(x, t)dx for all

t ∈ [0, T ] and all measurable Γ ⊂ Ω.
The class of models (29) is used in [119] to model

microscopic robots that reside in a fluid. In this
work, some components of the vector y are used to
model robot densities, and some model them densities
of chemicals that the robots follow. In [120, 121],
the authors consider a 3-state model for a coverage
task, with diffusion coefficients equal to 0, in which
the time-dependent transition rates are optimized
using infinite-dimensional optimal control theory [122].
Each state is associated with an uncontrolled velocity
vector field, corresponding to left-translation, right-
translation, and remaining stationary. In [123, 124],
these models are applied to study collective migration
and collective perception tasks in swarms. To simulate
the phenomenon of emergent taxis, the authors
construct mean-field feedback laws in the sense that the
velocity fields and diffusion coefficients are functions
of the population densities, as in biological models of
chemotaxis.

In [125], the authors use model (29) to simulate
the coverage activity of a swarm of robotic bees in
a commercial pollination problem. The framework
presented in [125] is used in [126] to optimize time-
dependent (and state-independent) robot velocities
and state transition rates using optimal control theory
of PDEs [97]. Additionally, [126] considers the problem
of identifying the spatial distribution of resources in
the environment from temporal robot data and frames
this as a problem of identifying coefficients in model
(29) using PDE-constrained optimization. Following
a similar approach, [127] addresses the problem of
mapping the boundaries of regions of interest in an
environment from temporal robot data. In [105], the
authors analytically construct control laws vk(x, t) and
ue(t) to transport a swarm modeled by (29) from an
initial probability density to a target density, thus
establishing the controllability of the system (29).

When the parameters vk(x, t) and ue(t) are
independent of the density y, the convergence of the
solution of the mean-field model (29) to the density of
a finite-size swarm with agents that follow the SDEs
(28) can be concluded from the law of large numbers.
However, such convergence results thus far have been
mostly qualitative. A more quantitative convergence
analysis of the model presented in [126] is performed
in [128], where the density of the finite-agent model
is shown to converge to the solution of the mean-

field model as the number of agents tends to infinity.
Using this convergence result, performance bounds
are derived in [128] for the optimal control strategies
constructed in [126] as a function of the approximation
error due to the finiteness of the agent population.

Finally, another type of infinite-dimensional
mean-field model is a delay differential equation (DDE)
that describes the time evolution of a finite number
of moments of the density of a swarm. In [129],
the authors derive this type of model to describe
the acceleration of the center of mass of a swarm of
agents that interact through pairwise potentials. The
model shows that for inter-agent coupling strength and
communication time delays above certain thresholds,
a sufficiently high noise intensity causes the swarm to
transition from a misaligned state to an aligned state.

4. Future Opportunities

The previous sections discussed a wide range of
applications of mean-field models in swarm robotics.
However, there remain various challenges that must
be overcome in order for this modeling and control
methodology to be developed into a broadly applicable
tool for designing swarm robotic control strategies.

One of the main challenges is the issue of develop-
ing efficient computational methods for designing robot
control laws. While it is true, as stated in the Intro-
duction, that the scalability of computational methods
using mean-field models is a function of the dimen-
sionality of a single agent’s state space and not the
number of agents, this does not necessarily mean that
these methods are not computationally intensive. For
example, consider the case where the mean-field model
is a PDE. Since the state space is a continuum and
analytical solutions of PDEs are available only for a
small number of special cases, the state space needs
to be approximated as a finite set using a numerical
discretization process such as gridding. To obtain an
approximation with acceptable numerical accuracy, the
number of states in the approximation could be very
large, even though this number does not depend on the
population size of the swarm.

Even when the mean-field model is finite-
dimensional, efficient numerical computation of control
laws can be a challenge if the goal is to construct
mean-field feedback laws, since the resulting closed-
loop system is nonlinear. When the mean-field model
is a PDE, this computation becomes an even greater
challenge due to the large dimensionality of the set of
possible mean-field feedback laws.

In addition, mean-field models assume that the
number of agents is infinite, whereas swarms have
a finite number of agents in practice. Since mean-
field formulations do not account for correlations
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and fluctuations that are captured by stochastic
formulations [130], there needs to be further work
on quantitative, rather than just qualitative, error
analysis of mean-field models, such as bounds on
the variance of agent population densities about
the target distribution as a function of the number
of agents. Moreover, it is not clear how mean-
field models can capture microscopic effects, such as
inter-robot collisions, without introducing additional
nonlinearities into the model. The quantitative
characterization of error is especially relevant for many
applications in swarm robotics, in which the number of
robots in the swarm is much smaller than the number
of discrete entities (e.g., molecules, particles) in other
types of large-scale collective systems with dynamics
that are typically approximated by mean-field models.
Mean-field models of robotic swarms should also
account for the effects of disturbances and uncertainty
in system parameters on the swarm dynamics. The
modeling of disturbances may be especially relevant
in cases where rare events significantly affect the
performance or stability of the swarm [131]. Mean-field
models can also have limited predictive power when
they have multiple locally stable equilibria [132]. In
this case, the mean-field model can fail to capture the
long-time behavior of a swarm with a small number of
agents. Accounting for such inaccuracies in mean-field
models during the controller design process is another
challenging avenue of future research.

There are also various control-theoretical chal-
lenges associated with mean-field models, such as es-
tablishing the controllability of mean-field models with
state-feedback laws and the stabilizability of these
models with mean-field feedback laws. While a num-
ber of works have initiated some research on this topic,
numerous open problems remain, especially for PDE
mean-field models, which can require highly compli-
cated techniques for analysis. Even fundamental prop-
erties such as existence and uniqueness of solutions of
PDEs, which are necessary to prove before develop-
ing a full-fledged analysis of the stability properties of
the system, are difficult to guarantee. An alternative
approach is to assume the existence of solutions that
are suitably differentiable in time and space, and then
proceed with a formal stability analysis that is not nec-
essarily mathematically rigorous. This is a suitable al-
ternative only if the end goal is purely computational
in nature, such as the numerical construction of con-
trol laws. However, such assumptions on the existence
and uniqueness of solutions can lead to erroneous con-
clusions, such as establishing the asymptotic stability
of a system that is not in fact asymptotically stable
about an equilibrium point. This is a well-known is-
sue in mathematics. See Example IV.7 in [37] for an
instance where this assumption can lead to such incor-

rect results when applying an ODE mean-field model
to a swarm coverage problem.

Another interesting direction of future work is the
quantitative investigation of relative benefits of mean-
field feedback laws versus state-feedback laws. One
advantage of mean-field feedback laws is that they can
achieve microscopic equilibrium at the same time as
macroscopic equilibrium. On the other hand, state-
feedback laws can be more robust to robot failures than
mean-field feedback laws: if robots cannot distinguish
between functional and non-functional robots, then
their estimates of the swarm population density will be
too high, and this error will affect mean-field feedback
laws (and the resulting collective performance of the
swarm) but not state-feedback laws.

In addition, there is potential for using discrete-
time mean-field models of agents evolving on a contin-
uous state space for swarm robotic applications. Like
PDEs, these models are more accurate descriptions of
swarm behavior than their discrete-state space coun-
terparts, due to the continuity of their state space. On
the other hand, since time is discrete-valued in these
models, they are much easier to treat mathematically
than PDEs. A DTMC evolving on a continuous state
space Ω can be constructed using a kernel function
k : Ω × Ω → R≥0. The time evolution of ρn(y), the
probability density of the DTMC at time n, is then
given by

ρn+1(y) =

∫
Ω

k(x,y)ρn(x)dx, n ∈ Z+ (30)

for all y ∈ Ω. The function k represents a stochastic
state-feedback law that must be designed so that ρn
reaches a target density either at a given n ∈ Z+, or
as n → ∞. Here, k(x,y)dy denotes the probability
of an agent jumping to the point y, given that the
agent is at x. More precisely, the probability of an
agent jumping to a set A ⊆ Ω, given that the agent
is initially at x, is

∫
A
k(x,y)dy. Such models and

their generalizations have been studied extensively in
the mathematics literature on the long-time behavior
of Markov chains on continuous state spaces [133,134].
Inverse problems that are of interest in swarm robotics,
like the design of robot control laws from macroscopic
specifications on the swarm collective behavior, have
been considered only very recently in the control theory
literature [135,136].

For discrete-time, continuous-state space mean-
field models of swarms in which the agents interact
with one another, it is necessary to define a density-
dependent kernel or stochastic mean-field feedback law,
k : P(Ω)× Ω× Ω→ R≥0, where P(Ω) denotes the set
of probability densities on Ω. In this case, the time
evolution of the probability density ρn(y) is given by

ρn+1(y) =

∫
Ω

k(ρn,x,y)ρn(x)dx, n ∈ Z+ (31)
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for all y ∈ Ω. This type of model has been used
to describe opinion dynamics [137], and it has many
potential applications in swarm robotics, as is evident
from the related literature cited in Sections 2 and 3.

5. Conclusion

In summary, this survey has presented an overview of
the large number of works on the use of mean-field
models to solve control problems in swarm robotics.
As we discuss in the previous section, there remain
significant open challenges in extending the current use
of these models in designing robot control laws to a
general controller synthesis methodology for achieving
a variety of swarm collective behaviors. Many of these
challenges will likely require solutions that are highly
interdisciplinary in nature, cutting across disciplines
such as robotics, control theory, mathematics, and
physics. We hope that this survey paper will foster
further research in these directions.
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Optimotaxis: A stochastic multi-agent optimization
procedure with point measurements International
Workshop on Hybrid Systems: Computation and
control (Springer) pp 358–371

[84] Wu M, Roberts J W, Kim S, Koch D L and DeLisa M P
2006 Appl. Environ. Microbiol. 72 4987–4994

[85] Mesquita A R and Hespanha J P 2012 IEEE Transactions
on Automatic Control 57 2588–2598

[86] Foderaro G, Ferrari S and Wettergren T A 2014
Automatica 50 149–154

[87] Annunziato M and Borz̀ı A 2010 Mathematical Modelling
and Analysis 15 393–407

[88] Annunziato M and Borz̀ı A 2013 Journal of Computational
and Applied Mathematics 237 487–507

[89] Annunziato M and Borz̀ı A 2018 EMS Surveys in
Mathematical Sciences 5 65–98

[90] Fleig A and Guglielmi R 2017 Journal of Optimization
Theory and Applications 174 408–427

[91] Lasry J M and Lions P L 2007 Japanese Journal of
Mathematics 2 229–260

[92] Huang M, Caines P E and Malhamé R P 2007 IEEE
Transactions on Automatic Control 52 1560–1571

[93] Caines P E, Huang M and Malhamé R P 2017 Mean field
games Handbook of Dynamic Game Theory ed T Basar
G Z e (Springer) pp 1–28

[94] Carmona R and Delarue F 2018 Probabilistic Theory of



Mean-Field Models in Swarm Robotics: A Survey 15

Mean Field Games with Applications I-II (Springer)
[95] Liu Z, Wu B and Lin H 2018 A mean field game approach

to swarming robots control 2018 Annual American
Control Conference (ACC) (IEEE) pp 4293–4298

[96] Villani C 2008 Optimal transport: old and new vol 338
(Springer Science & Business Media)
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