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Abstract—This paper considers the relaxed version of the
transport problem for general nonlinear control systems, where
the objective is to design time-varying feedback laws that trans-
port a given initial probability measure to a target probability
measure under the action of the closed-loop system. To make
the problem analytically tractable, we consider control laws
that are stochastic, i.e., the control laws are maps from the
state space of the control system to the space of probability
measures on the set of admissible control inputs. Under some
controllability assumptions on the control system as defined on
the state space, we show that the transport problem, considered
as a controllability problem for the lifted control system on the
space of probability measures, is well-posed for a large class
of initial and target measures. We use this to prove the well-
posedness of a fixed-endpoint optimal control problem defined on
the space of probability measures, where along with the terminal
constraints, the goal is to optimize an objective functional along
the trajectory of the control system. This optimization problem
can be posed as an infinite-dimensional linear programming
problem. This formulation facilitates numerical solutions of the
transport problem for low-dimensional control systems, as we
show in two numerical examples.

I. INTRODUCTION
In this paper, we consider a variation of the optimal

transport problem [19]. The objective of this problem is
to construct a map such that a given probability measure
is pushed forward to a target probability measure in some
optimal manner. Initially motivated by resource allocation
problems in economics, this problem has potential applications
in many engineering problems involving the control of large-
scale distributed systems [7], in which these measures could
represent the distribution of an ensemble of agents such as a
swarm of robots [8] or the distribution of nodes in an electric
power grid [2] or a wireless network [18]. For example,
we have employed this modeling approach in the design
and experimental validation of stochastic coverage and task
allocation strategies for swarms of robots [6].

In the original formulation of optimal transport, the dynam-
ics of the agents are simplistic from a control-theoretic point of
view. There have been some recent efforts to extend classical
optimal transport theory to the case where the cost functions
and transport maps are subject to dynamical constraints arising
from control systems. Toward this end, [13] considers the
optimal transport problem for linear time-invariant systems
with linear quadratic cost functions. For a smaller class of cost
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functions, the case of linear time-varying systems is addressed
in [5]. There have also been efforts to extend the theory to
nonlinear driftless control-affine systems in the framework of
sub-Riemannian optimal transport [1], [10], [14]. See also [9],
in which we develop connections between computational opti-
mal transport over continuous-time nonlinear control systems
and optimal transport on finite state spaces. Closely related to
such optimal transport problems is the theory of mean-field
games and mean-field type controls [2], [7], [18].

The original optimal transport problem, i.e., the Monge
problem, searches for a deterministic map that maps a given
measure to a target measure. In view of the analytical
difficulties involved in this original formulation of Monge,
Kantorovich introduced a relaxed version of the problem in
1942, in which the map is allowed to be stochastic. This form
of relaxation, which is used to convexify nonlinear control
problems, has a rich history in control theory in the context
of Young measures or relaxed control [11]. Such a measure-
based convexification of optimization problems has been used
for numerical synthesis of control laws [12], [15], [17].

In this paper, we use a similar relaxation procedure to con-
sider the optimal transport problem for discrete-time nonlinear
control systems with a compact set of admissible controls.
Before considering the issue of optimality, we consider the
problem of controllability. First, we prove that controllability
of the original control system implies controllability of the
control system induced on the space of probability measures.
Next, we show that we can frame the control-constrained
optimal transport problem of controllable nonlinear systems
as a linear programming problem, as in the Kantorovich
formulation of the optimal transport problem. Unlike our
previous work [9], which focused on computational aspects
of optimal transport problems for nonlinear systems with
a particular control-affine structure, in this paper we solve
the optimal transport problem for general nonlinear control
systems in discrete time.

II. NOTATION AND TERMINOLOGY

Let X be a separable finite-dimensional manifold (for
example, the Euclidean space RM ) that is a metric space.
The set of admissible control inputs will be denoted by U .
We will assume that the set U is a compact subset of a
metric space. Note that X × U , equipped with the product
topology, is a metrizable and separable space under these
assumptions. We will denote by B(X), B(U), and B(X ×U)
the collection of Borel measurable sets of X , U , and X ×U ,
respectively. The space of Borel probability measures on
the sets X and U will be denoted by P(X) and P(U),
respectively. For a metric space Y , let Cb(Y ) be the set



of bounded continuous functions on Y . We will say that a
sequence of measures (µn)∞n=1 ∈ P(Y ) converges narrowly
to a limit measure µ ∈ P(Y ) if the sequence

∫
Y
f(y)dµn(y)

converges to
∫
Y
f(y)dµ(y) for every f ∈ Cb(Y ). The

topology on P(Y ) corresponding to this convergence will be
referred to as the narrow topology. For a set M ⊂ X and
p ∈ Z+, we will define the set Dp

M =
{∑p

i=1 ciδyi
; yi ∈

M, ci ∈ [0, 1] for i ∈ {1, ..., p},
∑p
i=1 ci = 1

}
,

where δx is the Dirac measure concentrated at the point
x ∈ X . We will also define the set DM = ∪p∈Z+

Dp
M .

The support of a measure µ ∈ P(X) will be denoted by
supp µ = {x ∈ X; x ∈ Nx implies that µ(Nx) >
0, where Nx is a neighborhood of x}. We define Y(X,U)
as the set of stochastic feedback laws, i.e., maps of the form
K : X × B(U) → R, where K(·, A) is Borel measurable
for each A ∈ B(U) and K(x, ·) ∈ P(U) for each x ∈ X .
For a continuous map F : Y → X , the pushforward map
F# : P(Y )→ P(X) is defined by

(F#µ)(A) = µ(F−1(A)) =

∫
Y

1A(F (y))dµ(y)

for each A ∈ B(X), where 1B denotes the indicator function
of the set B ∈ B(X) and µ ∈ P(Y ).

III. PROBLEM FORMULATION

Now we are ready to state the problems addressed in this
paper. Consider the nonlinear discrete-time control system

xn+1 = T (xn,un), n = 0, 1, ... ; x0 ∈ X, (1)

where xn ∈ X for each n ∈ Z+, (ui)
∞
i=0 is a sequence in

a compact set U , and T : X × U → X is a continuous
map with respect to the topologies T (X), T (U), and T (X)×
T (U) defined on X , U , and X × U , respectively. Then this
nonlinear control system induces a control system on the space
of measures P(X), given by

µn+1 = T (·,un)#µn, n = 0, 1, ... ; µ0 ∈ P(X). (2)

The first problem of interest is the following.

Problem III.1. (Controllability problem with deterministic
control). Let N ∈ Z+ be a specified final time. Given an initial
measure µ0 ∈ P(X) and a target measure µf ∈ P(X), does
there exist a sequence of feedback laws vn : X → U such
that the closed-loop system satisfies

µn+1 = T cl,n# µn, n = 0, 1, ..., N − 1; µN = µf ,

where T cl,n# : P(X) → P(X) is the pushforward map
corresponding to the closed-loop map T cl,n : X → X defined
by T cl,n(x) = T (x,vn(x)) for all x ∈ X?

This problem is unsolvable in general. For instance, consider
the case when X = R, U = [−1, 1], T (x,u) = x + u
for each (x,u) ∈ X × U , µ0 = δ0 is the Dirac measure
concentrated at the point 0 ∈ R, and µf = 1

2δ−1 + 1
2δ+1

is the sum of Dirac measures concentrated at −1 and 1,
respectively. This example does not admit any solutions to
the controllability problem because a deterministic map cannot
take the measure concentrated at the point 0 and distribute it

onto measures concentrated at −1 and +1. However, there
might be several important cases where the problem does
admit a solution. For example, when X = RM , U = RM
(which is not compact, in contrast to the assumptions made
in this paper), T (x,u) = u for all (x,u) ∈ X × U , and
N = 1, this problem is equivalent to the classical optimal
transport problem [19], for which solutions are known to exist
when the initial and final measures are absolutely continuous
with respect to the Lebesgue measure and have a finite second
moment. On the other hand, this problem is expected to
be highly challenging for general nonlinear control systems
without any further constraints on the control set U , which is
only assumed to be compact, given a final time N ≥ 1. Hence,
to make the problem analytically tractable, we consider the
following relaxed problem.

Problem III.2. (Controllability problem with stochastic
control) Given a final time N ∈ Z+, an initial measure
µ0 ∈ P(X), and a target measure µf ∈ P(X), determine
whether there exists a sequence of stochastic feedback laws
Kn ∈ Y(X,U) such that the closed-loop system satisfies

µn+1 = T cl,n# µn, n = 0, 1, ..., N − 1; µN = µf , (3)

where the closed-loop pushforward map T cl,n# is given by

(T cl,n# µ)(A) =

∫
X

∫
U

1A(T (x,u))Kn(x, du)dµ(x). (4)

Problem III.2 can be considered a relaxation of Problem
III.1 in the sense that deterministic control laws v : X →
U are just special types of stochastic control laws identified
through the mapping v(x) 7→ δv(x).

After addressing Problem III.2, we will address the follow-
ing optimization problem.

Problem III.3. (Fixed-time, fixed-endpoint optimal control
problem) Suppose that c : X × U → R is a continuous map.
Given a final time N ∈ Z+, an initial measure µ0 ∈ P(X),
and a target measure µf ∈ P(X), determine whether the
following optimization problem admits a solution:

min
µm∈P(X)
Km∈Y(X,U)

N−1∑
m=0

∫
X

∫
U

c(x,u)Km(x, du)dµm(x) (5)

subject to the constraints

µn+1 = T cl,n# µn, n = 0, 1, ..., N − 1; µN = µf . (6)

Note that the control problem solved in this paper can be
considered an extension of the problem addressed in [17], in
which the target measure is a Dirac measure. On the other
hand, we consider more general target measures, but only
address a finite-horizon optimal control problem.

IV. CONTROLLABILITY ANALYSIS

In this section, we will address Problem III.2. Toward
this end, we present the following definitions, which will be
needed to define sufficient conditions under which Problem
III.2 admits a solution. Let Rx

1 = {T (x,u); u ∈ U} be the set
of reachable states from x ∈ X at the first time step. Then we



inductively define the set Rx
m = ∪y∈Rx

m−1
{T (y,u); u ∈ U}

for each m ∈ Z+ − {1}.
Instead of proving that we can always find a sequence of

stochastic feedback laws Kn such that the system of equations
(3) is satisfied, we will consider the alternative “convexified
problem” in which we look for measures νn in the space
P(X × U) such that, for given initial and target measures
µ0, µ

f ∈ P(X), the following constraints are satisfied:

µn+1 = T#νn, n = 0, 1, ..., N − 1; µN = µf , (7)

with νn(A×U) = µn(A) for all A ∈ B(X). We will first solve
Problem III.2 for the special case of Dirac measures, and then
extend the result to general measures using a density-based
argument that is standard in measure-theoretic probability.

Now we are ready to present several results that address
Problem III.2.

Proposition IV.1. Let µ0 = δx0
for some x0 ∈ X . Let µf ∈

Dp
M for a compact subset M of X , for some p ∈ Z+, such

that supp µf ⊆ Rx0

N . Then there exists a sequence of measures
(νm)N−1

m=0 ∈ P(X × U) such that

µn+1 = T#νn, n = 0, 1, ..., N − 1, (8)

with νn(A× U) = µn(A) for all A ∈ B(X) and µN = µf .

Proof. Let µf =
∑p
i=1 c

iδyi , where
∑p
i=1 c

i = 1, for some
yi ∈ X . By assumption, supp µf ⊆ Rx0

N . Hence, for each
i ∈ {1, ..., p}, there exists a sequence of inputs (ui)Nn=0 such
that the nonlinear discrete-time control system

xin+1 = T (xin,u
i
n), n = 0, 1, ..., N − 1; xi0 = x0 (9)

satisfies xN = yi for all i ∈ {1, ..., p}. We define νin =
δ(xi

n−1,u
i
n) ∈ P(X × U). Note that (T#ν

i
n)(A) = δxi

n
(A) for

all A ∈ B(X) and all i ∈ {1, ..., p}. Then the result follows
from the linearity of the operator T# : P(X × U) → P(X)
by setting νn =

∑p
i=1 c

iνin for all n ∈ {0, 1, ..., N − 1}.
In particular, for this choice of νn, we have that (T#νn) =∑p
i=1 c

iµin+1 for each n ∈ {0, 1, ..., N − 1}, and hence that
(T#νN−1) =

∑p
i=1 c

iδyi = µf .

The next result follows immediately from Proposition IV.1.

Lemma IV.2. Let µ0 ∈ Dp
A and µf ∈ Dq

A for a compact
subset A of X , for some p, q ∈ Z+, such that supp µf ⊆
Rx
N for each x ∈ supp µ0. Then there exists a sequence of

measures (νm)N−1
m=0 ∈ P(X × U) such that

µn+1 = T#νn, n = 0, 1, ..., N − 1, (10)

with νn(A× U) = µn(A) for all A ∈ B(X), and µN = µf .

Proof. Let µ0 =
∑p
i=1 c

iδyi , where
∑p
i=1 c

i = 1, for
some yi ∈ X . By assumption, supp µf ⊆ ∩pi=1R

yi

N . From
Proposition IV.1, there exist measures νin ∈ P(X × U) such
that if ηi0 = µ0, then

ηin+1 = T#ν
i
n, n = 0, 1, ..., N − 1, (11)

with νin(A × U) = ηin(A) for all A ∈ B(X), and ηiN = µf .
The result follows by setting νn =

∑p
i=1 c

iνin for all n ∈
{0, 1, ..., N − 1}.

In order to prove the next proposition, we recall a well-
known result, which follows from [16][Proposition 2.5.7],
that probability measures can be approximated using linear
combinations of Dirac measures.

Theorem IV.3. Let Y be a locally compact Hausdorf space
Y . Then the set of elements in P(Y ) with support contained in
a compact subset M ⊆ Y is a convex and narrowly compact
subset of P(Y ). Additionally, the set DM is narrowly dense
in the subset of P(Y ) with supports contained in M .

Proposition IV.4. Let µ0, µ
f ∈ P(X) be Borel probability

measures with compact supports, such that supp µf ⊆ Rx
N for

each x ∈ supp µ0. Then there exists a sequence of measures
(νm)N−1

m=0 ∈ P(X × U) such that

µn+1 = T#νn, n = 0, 1, ..., N − 1, (12)

with νn(A× U) = µn(A) for all A ∈ B(X), and µN = µf .

Proof. Let A = ∩x∈supp µ0R
x
N ∪ supp µ0. Clearly, the set

A is compact. From Theorem IV.3, we know that there
exist sequences of measures (µi0)∞i=1, (µ

f,i)n∞i=1 ∈ DA such
that (µi0)∞i=1 and (µf,i)∞i=1 narrowly converge to µ0 and µf ,
respectively. Then it follows from Lemma IV.2 that there exists
a sequence of probability measures (νin)∞i=1 in P(X×U) such
that

µin+1 = T#ν
i
n, n = 0, 1, ..., N − 1, (13)

with νin(A×U) = µin(A) for all A ∈ B(X) and µiN = µf,i for
all i ∈ Z+. Since the map T : X ×U → X is continuous, the
support of the measures (µin+1, ν

i
n) is contained in a compact

set for all n ∈ {0, 1, ..., N − 1} and all i ∈ Z+. Therefore,
it trivially follows that there exists a compact set Q such that
µin+1(Q) > 1−ε and νin(Q×U) > 1−ε. This implies that the
set of measures that satisfy the constraints νin(A×U) = µin(A)
for all A ∈ B(X) and all i ∈ Z+ is tight [3], and therefore is
relatively compact, i.e, every sequence of measures (µin+1, ν

i
n)

contains a narrowly converging subsequence, also denoted by
(µin+1, ν

i
n), for each n ∈ {0, 1, ..., N − 1}. Since the map T :

X×U → X is continuous, the map T# : P(X×U)→ P(X)
is narrowly continuous. Hence, for each n ∈ {0, 1, ..., N −
1}, there exists a limit measure νn ∈ P(X × U) such that
T#ν

i
n narrowly converges to a unique limit T#νn as i→∞.

Moreover, it also follows that the subsequence of marginal
measures νin(· × U) = µjn narrowly converges to the unique
limit µn for each n ∈ {0, 1, ..., N − 1}.

From the above proposition, we obtain one of the main
results of this paper.

Theorem IV.5. Let µ0, µ
f ∈ P(X) be Borel probability

measures with compact supports, such that supp µf ⊆ Rx
N for

each x ∈ supp µ0. Then there exists a sequence of stochastic
feedback laws (Kn)N−1

m=1 ∈ Y(X,U) such that the system of
equations (3) is satisfied, and hence the measure µf can be
reached from the measure µ0.

Proof. Note that X and U are separable. Hence, the product σ-
algebra on X×U is equal to B(X×U). Then, given a measure
ν ∈ P(X×Y ), from the disintegration theorem [11][Theorem



3.2] there exists a measure µ ∈ P(X) and stochastic feedback
law K ∈ Y(X,U) such that∫

A×B
dν(x,u) =

∫
A

∫
B

K(x, du)dµ(x) (14)

for all A ∈ B(X) and all B ∈ B(U). Then the result
follows from Proposition IV.4. In particular, using the mea-
sures (νm)N−1

m=0 ∈ P(X ×U), by disintegration, the stochastic
feedback laws (Km)N−1

m=0 ∈ Y(X,U) can be constructed such
that the system of equations (3) holds true.

Remark IV.6. (Conservatism of controllability result) Theo-
rem IV.5 gives a sufficient, but not necessary, condition on
system (1) for Problem III.2 to admit a solution: namely,
that each point in the support of the target measure be
reachable from each point in the support of the initial measure.
The controllability result in Theorem IV.5 is conservative
because we do not, in general, require this condition. To see
this explicitly, consider the trivial example where X = R,
U = {0}, and T (x, u) = x+ u. Suppose we define the initial
and target measures as µ0 = µf = 1

2δx1
+ 1

2δx2
for some

x1 6= x2 in R. Then it is straightforward to see that the target
measure is reachable from the initial measure. However, the
system is nowhere controllable in R. More specifically, the
points x1 and x2 are not reachable from each other.

V. OPTIMAL CONTROL

This section addresses Problem III.3. As in the proof of
the controllability result in Theorem IV.5, we will apply
the disintegration theorem [11][Theorem 3.2] to the corre-
spondence between elements of Y(X,U) and elements of
P(X × U) with a given marginal. Hence, the optimization
problem (5)-(6) can be convexified by replacing stochastic
feedback laws Kn ∈ Y(X,U) with elements νn ∈ P(X ×U)
and by enforcing appropriate constraints on the marginals
of the measures νn. These modifications allow us to frame
the optimization problem in Problem III.3 as an equivalent
infinite-dimensional linear programming problem:

min
µm+1∈P(X),
νm∈P(X×U)

N−1∑
m=0

∫
X×U

c(x,u)dνm(x,u) (15)

subject to the constraints

µn+1 = T#µn, n = 0, 1, ..., N − 1; µN = µf ,

π#νn = µn, (16)

where π : X × U → X is the projection map defined by
π(x,u) = x for all x ∈ X and all u ∈ U . Here, the constraints
π#νn = µn ensure that, for each n ∈ {0, 1, ..., N−1}, νn(A×
U) = (π#νn)(A) = µn(A) for all A ∈ B(X). Hence, we have
the following result.

Theorem V.1. Let µ0, µ
f ∈ P(X) be Borel probability

measures with compact supports, such that supp µf ⊆ Rx
N for

each x ∈ supp µ0. Then the optimization problem (15)-(16)
has a solution (µn+1, νn), n = 0, 1, ..., N − 1.

Proof. The proof follows the standard compactness-based
arguments in optimization. From Theorem IV.5, we know that

the set of measures satisfying constraints (16) is non-empty.
Moreover, the map c : X × U → R is continuous. Since T
is continuous, measures with compact support are pushed
forward to measures with compact support. This implies
that for any choice of measure νn, supp µn+1 is contained
in a compact set since supp µ0 is contained in a compact
set. Therefore,

∑N−1
m=0

∫
X×U c(x,u)dνm(x,u) is bounded

from below on the set of admissible measures. Hence, there
exists a minimizing sequence of measures (µin+1, ν

i
n)∞i=1, with

(µin+1, ν
i
n) ∈ P(X)×P(X×U) for each n ∈ {0, 1, ..., N−1},

that satisfies the constraints (16). By minimizing, we
mean that the sequence of measures (µin+1, ν

i
n)∞i=1

satisfies limi→∞
∑N−1
m=0

∫
X×U c(x,u)dνim(x,u) =

infµm+1∈P(X), νm∈P(X×U)

∑N−1
m=0

∫
X×U c(x,u)dνm(x,u),

with the infimum taken over the constraint set (16). We now
confirm that there exist measures (µ∗n+1, ν

∗
n) that achieve

this infimum. We recall that the support of the measures
(µn+1, νn) is compact for all n ∈ {0, 1, ..., N−1} and that the
set of measures that satisfy the constraints (16) is relatively
compact, i.e, every sequence of measures (µin+1, ν

i
n) contains

a narrowly converging subsequence (µin+1, ν
i
n). The map

γ 7→
∫
X×U c(x,u)dγ(x,u), a map from P(X × U) to R,

is narrowly continuous. Hence, there exist limit measures
(µ∗n+1, ν

∗
n) such that

∑N
m=0

∫
X×U c(x,u)dν∗m(x,u) =

infµm+1∈P(X), νm∈P(X×U)

∑N−1
m=0

∫
X×U c(x,u)dνm(x,u),

subject to the constraints 16. This concludes the proof.

By disintegration of the measures νm in Theorem V.1, it is
straightforward to conclude the following result.

Theorem V.2. Let µ0, µ
f ∈ P(X) be Borel probability

measures with compact supports, such that supp µf ⊆ Rx
N for

each x ∈ supp µ0. Then the optimization problem in Problem
(III.3) has a solution (µn+1,Kn), n = 0, ..., N − 1.

VI. NUMERICAL OPTIMIZATION

In this section, we briefly describe a numerical approach
to solving the optimization problem in Problem III.3. In both
the examples that we consider in Section VII, the state space
X is taken to be a compact subset of R2. This subset X is
partitioned into nx ∈ Z+ sets, X̃ = {Ω1, ...,Ωnx

}, whose
union is X and whose intersections have zero Lesbesgue
measure. The set of control inputs U is approximated as a
set of nu ∈ Z+ discrete elements, Ũ = {γ1, ..., γnu

}, where
γi ∈ U for each i. We then use the Ulam-Galerkin method
[4] to construct an approximating controlled Markov chain
on a finite state space V = {1, ..., nx}. In the uncontrolled
setting, this method is a classical technique used to construct
approximations of pushforward maps induced by dynamical
systems, also known as Perron-Frobenius operators.

We define the controlled transition probabilities for the
Markov chain on V as follows:

p̃kij =
m̃(T−1

k (Ωj) ∩ Ωi)

m̃(Ωi)
,

where m̃ is the Lebesgue measure and Tk = T (·, γk). The
quantity p̃kij is the probability of the system state entering the
set Ωj in the next time step, given that this state is uniformly



(a) n = 0 (Initial measure) (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8 (f) n = 10 (Final measure)

Fig. 1: Solution of the optimal transport problem at several times n for unicycles in a double-gyre flow model

randomly distributed over the set Ωi (identified with i ∈ V )
and the control input is chosen to be γk. We also define an
equivalent of the stochastic feedback law Kn in the discretized
case that we consider. Toward this end, we denote by λk,in
the probability of choosing the control input γk, given that
the system state is in Ωi at time n. We define the variables
ν̃k,in = µ̃inλ

k,i
n , where µ̃in is the probability of the state being in

Ωi at time step time n. Additionally, let c̃i,k =
∫

Ωi
c(x, γk)dx

be the average cost of the state being in Ωi and the control
input given by γk.

Given these parameters and specified initial and target
measures µ̃0, µ̃

f ∈ P(X̃), we can define the finite-dimensional
equivalent of the linear programming problem (15)-(16) as
follows:

min
µ̃i
m+1,ν̃

k,i
m ∈R≥0

N−1∑
m=0

nx∑
i=1

nu∑
k=1

c̃i,kν̃
k,i
m (17)

subject to the constraints

µ̃jn+1 =
∑nu

k=1

∑nx

i=1 p̃
k
ij ν̃

k,i
n ,

µ̃jN = (µ̃f )j ,∑nx

i=1 µ̃
i
n+1 = 1,

∑nu

k=1 ν̃
k,j
n = µ̃jn, (18)

for n ∈ {0, ..., N − 1} and j ∈ {1, ..., nx}.
After solving this linear programming problem, we can

extract the control laws λk,in by setting λk,in =
ν̃k,i
n

µ̃i
n

if µ̃in 6= 0

and λk,in = 0 otherwise. The resulting Markov chain evolves
according to the equation µ̃jn+1 =

∑nu

k=1

∑nx

i=1 p̃
k
ijλ

k,i
n µ̃in.

VII. SIMULATION EXAMPLES
In this section, we apply the numerical optimization pro-

cedure described in the previous section to two examples.
Neither example can be solved by classical optimal trans-
port methods, due to the nonlinearity of the control system

(Example 1) or the bounds on the control set (Examples 1
and 2). In both examples, we define the cost function as
c(x,u) = ‖x‖2 + ‖u‖2, where ‖ · ‖ represents the 2-norm.

A. Example 1: Unicycles in a Time-Periodic Double Gyre

We consider the system

xn+1 = F (xn) +G(u), (19)

where xn = [xn yn]T ∈ X , u = [u1 u2]T ∈ U , and G(u) =
[u1 cos(u2) u1 sin(u2)]T . The phase space is X = [0, 2] ×
[0, 1], and the set of control inputs is U = [−1, 1]×[0, 2π]. The
final time is set to N = 10. To define the map F : X → X ,
we consider the double-gyre system [9]:

ẋ = −πA sin(πf(x, t)) cos(πy), (20)

ẏ = πA cos(πf(x, t)) sin(πy)
df(x, t)

dx
, (21)

where f(x, t) = β sin(ωt)x2 + (1− 2β sin(ωt))x is the time-
periodic forcing in the system. The map F is defined by setting
F (x) equal to the solution of equations (20)-(21), integrated
over the time period τ . In this example, we define A = 0.25,
β = 0.25, and ω = 2π, which results in τ = 1. The set
X is not invariant for all choices of control inputs in U .
Hence, since this set must be approximatable by a finite set,
we define F (x) + G(u) , x if F (x) + G(u) /∈ X for some
(x,u) ∈ X×U . The initial and target measures are chosen to
be uniform over certain almost-invariant sets [4] in the left and
right halves of the domain, respectively. The optimal transport
shown in Fig. 1 exploits lobe dynamics, i.e., the control inputs
push the initial measure onto regions bounded by stable and
unstable manifolds. As a result, the measure is transported into
the right half of the domain under the action of F .



(a) n = 4 (b) n = 8 (c) n = 12 (d) n = 15

Fig. 2: Solution of the optimal transport problem at several times n for a double-integrator system

B. Example 2: Double-Integrator System

In this example, we consider the following system:

xn+1 = xn + 0.15yn, yn+1 = yn + u, (22)

with [xn yn]T ∈ X = [0, 1]2 and u ∈ U = [−0.25, 0.25]. The
final time is set to N = 15. For unbounded control inputs, this
control system can be verified to be globally controllable using
the Kalman rank condition. For compact control sets, control-
lability is harder to verify without numerical computation. The
initial measure is taken to be the Dirac measure concentrated
at [0 0]T ∈ X . The target measure is a linear combination
of Gaussian distributions that are centered at [0.8 0.1]T and
[0.8 0.8]T , as shown in Fig. 2d. Measures at three intermediate
times are shown in Fig. 2a-2c. The control map adds a “drift”
term 0.15yn to xn+1 in equation (22), which makes the system
controllable despite the fact that it is underactuated. Figure 2
confirms that this drift drives the initial measure exactly to the
target measure at N = 15.

VIII. CONCLUSIONS

In this paper, we have presented a relaxed version of the
optimal transport problem for discrete-time nonlinear systems.
We showed that under mild assumptions on the controllability
of the original system, the extended system on the space
of measures is controllable. This enabled us to prove the
existence of solutions of an optimal transport problem for
discrete-time nonlinear systems. One direction for future work
is to explore conditions under which deterministic feedback
maps exist for the optimal transport problem. Another in-
teresting question is whether one can provide guarantees on
the performance of the controllers obtained by solving the
numerical optimization problem when these controllers are
implemented on the original nonlinear system.
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