
Go-CHART: A miniature remotely accessible self-driving car robot

Shenbagaraj Kannapiran and Spring Berman

Abstract— The Go-CHART is a four-wheel, skid-steer robot
that resembles a 1:28 scale standard commercial sedan. It is
equipped with an onboard sensor suite and both onboard and
external computers that replicate many of the sensing and
computation capabilities of a full-size autonomous vehicle. The
Go-CHART can autonomously navigate a small-scale traffic
testbed, responding to its sensor input with programmed con-
trollers. Alternatively, it can be remotely driven by a user who
views the testbed through the robot’s four camera feeds, which
facilitates safe, controlled experiments on driver interactions
with driverless vehicles. We demonstrate the Go-CHART’s
ability to perform lane tracking and detection of traffic signs,
traffic signals, and other Go-CHARTs in real-time, utilizing
an external GPU that runs computationally intensive computer
vision and deep learning algorithms.

I. INTRODUCTION

In this paper, we propose a miniature mobile robot that can
emulate sensing and computation capabilities of a full-size
autonomous vehicle, with the aid of an external GPU for
computationally intensive tasks. The Go-CHART can also
be driven remotely by a user with first-person views of the
robot’s environment through video feeds from its cameras.
The Go-CHART can be used to conduct studies on conditions
and challenges that are likely to be experienced by real
autonomous vehicles, but are too difficult to realistically
replicate in a driving simulator (e.g., crash scenarios with
complex vehicle dynamics and impacts on surroundings,
dynamic lighting and weather conditions) and too risky to
physically implement at full scale. The Go-CHART can be
used to investigate interactions between human drivers and
driverless vehicles; perform studies on cooperative driving
strategies; and test computer vision, deep learning, and
control algorithms for autonomous vehicles. It can also be
used to collect a wide range of data sets in scenarios that are
difficult to reproduce on full-size vehicles for training deep
learning algorithms.

Deep learning and computer vision play a crucial role
in controlling autonomous vehicles and are essential for
the vehicle to exhibit higher levels of autonomy. However,
existing miniature driving testbeds lack the capabilities to
support an external GPU. In this work, our contributions
include the design and development of the Go-CHART, a
small four-wheel skid-steer robot that resembles a standard
commercial sedan. It is equipped with an ultra-wide night
vision front camera, side-view and rear-view cameras, an ul-
trasonic sensor, and a 2D LiDAR sensor. The Go-CHART is

This work was supported by the ASU Global Security Initiative.
Shenbagaraj Kannapiran and Spring Berman are with the School

for Engineering of Matter, Transport and Energy, Arizona State
University (ASU), Tempe, AZ 85281, USA {shenbagaraj,
spring.berman}@asu.edu

Fig. 1. Small-scale driving testbed and a Go-CHART robot (inset).

modular and can be upgraded with updated microcontrollers
and microprocessors, as well as stereo cameras. It utilizes a
system architecture that supports an external GPU capable
of handling computationally intensive deep learning and
machine learning algorithms. In autonomous mode, the Go-
CHART is controlled by on-board Raspberry Pi computers
and Teensy microcontrollers, and external computers that
replicate many of the sensing and computation capabilities of
a full-size AV; for example, lane tracking and object detec-
tion using deep learning algorithms. We have also developed
a graphical user interface that enables a user to remotely
drive the Go-CHART using a steering wheel and responsive
pedals. Additionally, we have developed a small-scale testbed
that resembles a U.S. driving environment, including roads,
traffic lights, signs, and other miniature scenery such as trees,
which not only increase the realism of the testbed for human-
robot interaction experiments, but also provide feature points
in the environment for performing experiments on monoc-
ular simultaneous localization and mapping (SLAM). In
this paper, we experimentally demonstrate the lane-tracking,
object detection, and decision-making capabilities of the Go-
CHART on this testbed.

II. EXISTING PLATFORMS

The recently accelerated development of self-driving cars
has motivated the need to validate controllers for these vehi-
cles on experimental testbeds. Several full-scale testbeds with
5G-enabled infrastructure have been implemented for testing
connected and autonomous vehicles, including University
of Michigan’s Mcity [18], South Korea’s K-City [19], and
UK’s Millbrook Proving Ground [20]. In addition, Google

has created a miniature Google Street View in tiny realistic
reproductions of various international sites and cities [17].

The paper [1] includes a list of robots costing less than
US $300 that were developed within the last 10 years from
the date of its publication. The work proposed a small
educational robot that can drive autonomously through a
traffic testbed. However, the robot lacks the sensors and
processing capabilities that facilitate the implementation of
decentralized robot controllers and computation-intensive
deep learning algorithms.

The University of Delaware Scaled Smart City [8] is a
small-scale testbed that has been used to replicate real-life
traffic scenarios and optimize control strategies on mobile
systems. The testbed uses a Vicon motion capture system
to localize and coordinate 35 vehicles simultaneously in a
centralized manner.

The paper [3] proposes a traffic testbed with a fleet of
miniature vehicles with Ackermann steering. The testbed
supports cooperative driving studies and multi-vehicle navi-
gation and trajectory planning. This paper includes a list of
miniature robots that also use Ackermann steering. However,
the robotic platform used in [3] does not incorporate vision
or range sensors and lacks the processing capacity to run
computationally intensive algorithms.

Several open-source and commercially available miniature
autonomous vehicle robots with onboard GPUs and vision-
based control have been developed in recent years. The
MIT Racecar [5], MuSHR [21], and Donkey Car [23] are
open-source self-driving race car platforms with a range of
onboard processors and sensors. The AWS DeepRacer [22]
and NVIDIA Jetbot [24] are commercially available robots
with Ackermann and differential-drive steering, respectively.
However, all of these platforms lack 360◦ camera views, and
their restricted onboard processing capabilities preclude the
implementation of complex deep learning techniques.

In [9], it was demonstrated that small differential-drive
robots [2] can exhibit certain autonomous functions on
a driving testbed such as lane tracking and traffic light
detection. However, the limited onboard processing power
of the robot caused delays in image processing, resulting in
errors in navigation. Other differential-drive robots such as
[6], [7] can also emulate particular functions of autonomous
vehicles, but lack the processing power necessary for real-
time navigation and object detection.

III. GO-CHART DESIGN AND CAPABILITIES

A. Mechanical design and circuit boards

Figures 2 and 3 show SolidWorks renderings of the Go-
CHART, with its components labeled in the exploded view
in Fig. 2. The Go-CHART is built from both off-the-shelf
and custom-built components such as custom PCBs, 3D
printed parts, and laser cut acrylic parts. As described in
Section III-D, we use the GPU on the NVIDIA Jetson
TX2 module, which costs around US $500. However, the
choice of GPU is flexible, depending on the application.
Table I lists the primary internal components of the robot
and their costs, which total to about US $264. Table II lists

TABLE I
INTERNAL COMPONENTS OF GO-CHART ROBOT

Components Number
of Units

Total Cost
(US$)

Raspberry Pi 3B 1 32
Raspberry Pi Zero 3 15
RPLIDAR A1 2D LiDAR 1 99
Raspberry Pi camera 3 15
Raspberry Pi ultra-wide angle
night vision camera

1 11

Teensy 3.2 1 20
TB6612 Adafruit motor driver 2 10
Polulu mini motors with encoders 4 36
SD cards (16GB) 4 16
Miscellaneous components - 10

TABLE II
EXTERNAL COMPONENTS OF GO-CHART ROBOT

Components Number
of Units

Total Cost
(US$)

External GPU (1 per robot) 1 500
LAN cables (2 ft) (1 per robot) 1 3
Miscellaneous components (per
robot)

- 10

Dual-band router (1 per ∼60
robots)

1 200

the external hardware components of the Go-CHART, which
cost approximately US $513 in total (excluding the network
router, which can be used with multiple robots).

The body of the Go-CHART is a 1:28 model of a
standard commercial sedan and features a modular design,
allowing for easy replacement and addition of components
as necessary. The main body, labeled 3 in Fig. 2, is a single
3D-printed piece, while the remaining parts of the frame are
made from laser cut acrylic.

Custom printed circuit boards (PCBs) were designed in
order to densely populate all the circuitry within the limited
volume of the Go-CHART. The PCBs provide several voltage
levels (3.3V, 5V, and 12V) that can accommodate a wide
variety of sensors, microcontrollers, and microprocessors.
The PCBs have open ports for additional sensors, motor
drivers, and microcontrollers as needed. Four custom PCBs
were fabricated: (1) a power supply board, which includes
the voltage regulators and the microcontroller board; (2) a
motor driver board, which includes the motor drivers and
all sensors; and (3) front and (4) back LED boards, which
control the headlights, tail lights, and turn indicator lights.

B. Drive mechanism

The Go-CHART uses a four-wheel skid steering system,
which is powered by four standard micro metal gear motors
with a 51.45:1 gear ratio. The motors drive 32-mm-diameter
wheels and have Hall effect encoders with a linear resolution
of 0.163 mm/tick, enabling the Go-CHART to move at
speeds between 4 cm/s and 42 cm/s. Two Adafruit TB6612
motor drivers control each motor separately, using a PD
controller to limit the overshoot and dampen the oscillations
in the robot’s heading angle.

Fig. 2. Exploded SolidWorks rendering of Go-CHART, with components labeled.

Fig. 3. SolidWorks renderings of isometric view, top view, and front view
of Go-CHART.

C. Power supply

The Go-CHART has a custom-built battery pack with
four 18650 batteries that deliver 7.4V at 7000 mAh, which
provides enough power to drive the robot for almost an hour.
The battery pack circuit is composed of four batteries, a 2S
battery management system (BMS), the battery protection
circuit, voltage regulators, a buck converter, fuses, and 3.5
mm barrel connectors.

D. Computational capabilities

The Go-CHART is equipped with commercially available
microprocessors and microcontrollers that are supported by
extensive online resources. High-level control and front-view
camera video streaming are performed by one Raspberry Pi
3 Model B (RPi3B) computer (1.2 GHz quad-core ARM
Cortex-A53 with 1GB LPDDR2) onboard the robot and
three RPi Zero W computers (1 GHz single-core CPU, 512
MB RAM) dedicated for video streaming from the side and
rear-view cameras. The RPi3B runs Ubuntu MATE with the

Robot Operating System (ROS) and the OpenCV library [16]
installed. The RPi Zero boards run the Raspbian OS and
are upgraded with external dual band USB wireless network
adapters, soldered directly to the motherboard, to enhance
video streaming performance. Low-level control of actuation
and sensor data processing are performed by a Teensy 3.2
microcontroller (MK20DX256VLH7 processor with ARM
Cortex-M4 core running at 96 MHz with 64kB RAM), which
can accommodate a large number of PWM and digital pins.

In addition to these onboard components, an external GPU
is used to train and implement the neural network models for
the deep learning algorithms described in Section V. The
external GPU’s capacity can be varied as needed, based on
the testing requirements. We used a GeForce RTX 2080 Ti
GPU to train the neural network models. To keep the system
low-cost and portable, we used a low-power NVIDIA Jetson
TX2 module with 256-core PascalTM GPU architecture to
execute the deep learning algorithms using the trained model.

E. Communication capabilities

Experiments on cooperative driving and multi-robot con-
trol will often require ad hoc communication between pairs
of Go-CHARTs. To implement this communication, the
RPi3B onboard the Go-CHART can act as a Wifi router node,
enabling limited-bandwidth, two-way information transfer
with a nearby robot. Since this is a short-range weak signal
with limited bandwidth, usage of the external GPU is not
possible (higher bandwidth is required for video streaming
with minimal latency), which prevents the implementation
of deep learning algorithms that require the GPU. The Go-
CHART can also operate independently, without communi-
cating with other Go-CHARTs. In this case, the robot must
have access to the external GPU in order to run controllers
that utilize deep learning algorithms.

In addition, multiple Go-CHARTs can be connected to a
common dual band router (multiple routers in the case of
a large testbed environment), which are in turn connected
to the same LAN network and operate at different channels
between 2.4 GHz and 5 GHz so as to reduce interference
between the routers and increase bandwidth to accommodate
multiple video streams from the Go-CHARTs. The external
Jetson TX2 GPU (one for each Go-CHART) is manually
connected to the routers through the LAN to reduce wireless
network traffic, and the video stream is processed on the
external GPU.

F. Onboard sensors

The Go-CHART integrates a variety of vision and range
sensors, shown in Fig. 4, to enable lane tracking, object
detection, collision avoidance, and mapping. There are four
RPi cameras (Sony IMX219 8-megapixel sensor) on the
robot: one ultra-wide angle front-view camera with night
vision, one camera on each side of the robot, and one rear-
view camera. The front-view camera, which has a viewing
angle of 160◦, is mounted 9 cm above the bottom of the
Go-CHART main body and is tilted downward by an angle
of 30◦. This placement was chosen so that the camera’s field
of view contains the entirety of a 30-cm-tall traffic light
when the robot is at least 20 cm from the light, so that
the robot can still detect the light when it drives forward
about one-third of the way into an intersection on the testbed.
An HC-SR04 ultrasonic distance sensor with a range of
2–400 cm and a resolution of 0.3 cm is mounted on the
front of the robot, and a 2D 360◦ LiDAR (RPLIDAR A1)
is mounted on top. The measurements from the ultrasonic
sensor and LiDAR are used to detect nearby obstacles and
initiate collision avoidance maneuvers, and the LiDAR also
enables 2D mapping of the local environment. In addition,
the Go-CHART includes an LDR (Light Dependent Resistor)
sensor for brightness correction of the front-view camera
images, an IMU (Inertial Measurement Unit) with a 3D
accelerometer, 3D compass, and 3D gyroscope, and Hall
effect encoders on each motor for odometry.

IV. DRIVING MODES AND CONTROL ARCHITECTURE

A. Driving modes

The Go-CHART can drive in two modes: Autonomous and
Remote-Control. In Autonomous mode, the robot navigates
through the testbed environment without any human inter-
vention by tracking lanes and recognizing and responding to
particular objects that it detects with its sensors. In Remote-
Control mode, a user remotely drives the Go-CHART around
the testbed using the driving station shown in Fig. 6, which
includes a Logitech G920 steering wheel with an accelerator
and brake pedals. The monitor in the driving station displays
the video feeds from all four cameras on the Go-CHART,
providing a nearly 360◦ view of the environment in real-
time with low latency (as low as 50 µs). The monitor
also displays odometry readings, which are scaled down
to mph. The deviations of the steering wheel and pedals
from their neutral positions are transmitted remotely using

socket communication protocol to the RPi3B onboard the
Go-CHART, which controls the Teensy board to steer the
robot in real-time (see next section). A demonstration of
driving the Go-CHART in Remote-Control mode is shown in
the supplementary video, which can also be viewed at [24].

B. Control architecture

The control architecture of the Go-CHART is illustrated
in Fig. 5. The RPi3B and Teensy boards transfer informa-
tion wirelessly using a two-way USB serial communication
protocol. The Teensy board controls the two motor drivers,
each of which drives two motors. All sensors are connected
to the Teensy board, which transmits the sensor data in real-
time to the RPi3B. The steering angle values obtained by the
external computer, either from the lane-tracking algorithm in
Autonomous mode or the steering wheel inputs in Remote-
Control mode, are sent wirelessly to the RPi3B, which
transmits the commands to the Teensy board to drive the
motors. The RPi3B wirelessly transmits sensor data in real-
time, including the camera feeds, to the external GPU for
processing. The GPU runs the deep learning algorithms
in Section V for lane tracking and object detection. The
GPU then reports the commanded Go-CHART heading and
identified objects of interest in the environment to the RPi3B
for further processing. This is done by employing ROS
running on the RPi3B with ROS publishers and subscribers.

V. NAVIGATION AND OBJECT IDENTIFICATION

This section describes the algorithms used by the Go-
CHART for lane tracking and object detection. The outer
control loop of the robot performs line and obstacle detection
using techniques from the OpenCV library. The 2D LiDAR
and ultrasonic sensors detect obstacles, and if an obstacle is
detected, the Go-CHART stops immediately and yields until
the obstacle moves away. The robot also detects lines on
the ground in front of it by defining a region of interest in
its front-view camera image and performing color masking
and blob detection. If a line is detected, the robot moves
according to the class of a detected object nearby, such as a
right-only sign or a stop sign.

A. Lane tracking algorithms

The Go-CHART can use two methods for lane tracking:
(1) techniques from the OpenCV library [16] that apply
Gaussian blur, canny edge detection, color masking, and
the Hough transform to a region of interest in the front-
view camera image; or (2) end-to-end behavioral cloning
(NVIDIA neural network model) [12], which imitates human
driving behaviors. The second method is more computation-
ally intensive than the first, but more robust to environmental
changes if it is trained with sufficiently diverse data sets.

In the first method, each camera on the Go-CHART is
initially calibrated individually to obtain its intrinsic and
extrinsic parameters. In addition, LDR sensor readings are
obtained to perform brightness correction, making the sys-
tem robust to changing lighting conditions (particularly a
change in brightness, which affects OpenCV edge detection

Fig. 4. Vision and range sensors on the Go-CHART.

Fig. 5. Go-CHART control architecture.

techniques). The image obtained from the front-view camera
is converted to gray-scale, and a Gaussian blur of kernel size
5×5 is performed on a trapezium-shaped region of interest,
defined on the lower half of the image. Canny edge detection
is applied to this region to detect sharp changes in adjacent
pixel intensity. Following this step, the Hough transform is
performed to accurately detect the boundaries of the lanes
in the image, which are used to compute the steering angle
required for the Go-CHART to stay within the lanes.

In the second method, a deep learning technique called
end-to-end behavioral cloning (NVIDIA model) is used to
perform lane tracking. The Go-CHART is remotely driven
around the testbed, and the front-view camera images and
corresponding steering wheel error values are recorded. The
neural network is trained with these error values as inputs.
Once trained, the network can replicate the same input
behavior exhibited by the driver. Then, for an input camera
image, the network outputs an error value that is used in the

Fig. 6. Top: Driving station setup for Remote-Control driving mode.
Bottom: Monitor in the driving station displaying video streams from the
front-view, side-view, and rear-view cameras onboard the Go-CHART.

PD steering controller (see Section III-B).

B. Object detection algorithms

To enable the Go-CHART to perform real-time detection
of objects in the testbed, such as other Go-CHARTs and
traffic signs and signals, we tested YOLOv3 [10], Tiny
YOLO [11], ResNet [15], and Faster RCNN [13]. Ultimately,
YOLOv3 [10] and Tiny YOLO [11] were selected since they
detected objects with high accuracy at considerably higher
frame rates than the other algorithms, given limited GPU
processing power (128 CUDA cores), and performed well
on low-resolution live video streams with varying latency.
This enabled their use for real-time object detection, which
was critical for the Autonomous driving mode. Low detection
rates and low identification accuracy can cause the robot
to miss critical environmental features, potentially causing
accidents.

VI. EXPERIMENTS

In this section, we demonstrate the capabilities of the Go-
CHART on the small-scale driving testbed shown in Fig. 1
and evaluate the performance of its lane tracking and object
identification algorithms.

A. Lane tracking

Demonstrations of the two lane-tracking methods de-
scribed in Section V-A are shown in the supplementary
video. When the Go-CHART uses the first lane-tracking
method, the blue lines in the video indicate the lane sections
that the robot tracks. This method performs lane tracking
in real-time at 30 FPS without any latency. To implement
the second lane-tracking method, the neural network was
trained as described in Section V-A. Each camera image in
the training data set was preprocessed as follows in order
to meet the requirements of the NVIDIA neural network.
First, a trapezium-shaped region of interest is defined in
the image, and this region is converted to YUV color
space. The trapezium image is stretched and resized into a
rectangular image. Three regions of dimensions 352 × 288
pixels are selected from this rectangular image and then are
translated by 25 pixels and rotated by 1◦ with respect to
each other. Around 3000 images and steering error values
were collected; 80% were utilized as training data, and
the remaining 20% were used as validation data. Since the
available data set was limited, the images were subjected
to data augmentation techniques to improve learning and
significantly reduce the training loss. Using the RTX 2080 Ti
GPU, the neural network required around 8 min to train per
epoch. The network was trained for a total of 300 epochs.
The trained model can be used to predict the Go-CHART
steering angle for the given input image using the external
GPU. When implemented on the Jetson TX2, the network
predicts the steering angle at a rate of approximately 5-7
angle values per second for the given input image size.

B. Object detection

In order to run both the YOLOv3 and Tiny YOLO
object detection algorithms, the video feed from the front-
view camera (frame size 320 × 240 pixels) was wirelessly
streamed at 30 FPS over the wireless network to the GPU
on which the trained neural network model is executed to
predict the object classes of interest.

To detect U.S. traffic signs and signals and other Go-
CHARTs, we needed to create a custom data set of images.
Both YOLOv3 and Tiny YOLO were trained on custom
data by transfer learning from the pre-trained COCO data
set [14], which consists of around 200,000 labeled images
and around 91 different object classes. We trained the neural
network on 10 custom object classes, shown at the bottom of
Fig. 7: speed limit sign, stop sign, pedestrian crossing sign,
traffic light sign, traffic signal (red, yellow, and green), T
intersection sign, turning vehicles yield sign, and Go-CHART
robot. The custom data set was collected from the front-
view camera wireless video stream, stored in an external
computer, and processed using techniques such as resizing

Fig. 7. YOLOv3 object detection results for the video feed from the Go-CHART front-view camera, with bounding boxes and class confidence levels
shown. The neural network was trained on the object classes given in the bottom row. Note: The traffic signal includes 3 different object classes: red,
yellow and green.

and annotation. It is important to record the images from the
wireless stream, although some images might be blurred and
low-resolution, so that the network is trained to be robust to
such images. This eases the strain on the network bandwidth
due to video streams from multiple Go-CHARTs, and also
enables the YOLO network to produce faster results. Around
300 different images per class were obtained (a total of
around 3000 images), and bounding boxes were manually
marked on the regions of interest in all the images with their
corresponding class labels. The training took around 30 min
per epoch and required at least 20 epochs to obtain accurate
predictions. However, we trained for 100 epochs in order
to obtain higher confidence values for the detected classes.
The number of epochs required for training decreases as the
number of classes and size of the training data set for each
class increase.

After the model was trained, it was executed on the Jetson
TX2. The model is loaded after an initial boot-up delay
of up to 90 s. Once loaded, object detection is performed
considerably quickly, at around 3-5 FPS for YOLOv3 and
up to 18 FPS for Tiny YOLO. The major trade-off between
the two algorithms is that YOLOv3 provides accurate results
but requires higher GPU usage, while the opposite is true for
Tiny YOLO. Table III lists the inference speeds and mAP
(Mean Average Precision) of both the YOLOv3 and Tiny
YOLO algorithms, tested for four image sizes with 10 input
images of each size.

TABLE III
INFERENCE SPEED AND MEAN AVERAGE PRECISION OF YOLOV3 AND

TINY YOLO, TESTED ON JETSON TX2

Algorithm Input image
size in pixels

Inference
speed (FPS)

mAP (Mean Av-
erage Precision)

YOLOv3

640 × 480 0.8 76.39
480 × 360 1.9 75.37
320 × 240 4.7 68.96
160 × 120 9.1 22.21

Tiny YOLO

640 × 480 8.3 54.62
480 × 360 12.6 41.72
320 × 240 18.3 34.38
160 × 120 19.9 16.79

Figure 7 and the supplementary video show object detec-
tion results using the YOLOv3 algorithm. If one or multiple
object classes of interest are present in a particular frame
from the video feed, the algorithm displays the detected
object class(es), the prediction accuracy for each class, and
the bounding box dimension and position of the bounding
box. The prediction accuracy is set at a threshold value of
40% to ignore false positives. This threshold is relatively low
because the prediction accuracy can decrease significantly for
blurry, low-resolution images from the camera on a moving
Go-CHART. Despite this, Figure 7 and the supplementary
video show that the algorithm is generally effective at
identifying objects in the testbed.

The Go-CHART decides on its next action based on the

type(s) of objects that it currently detects and the relevant
traffic rules (e.g., stopping when a red light or stop sign
is detected). When the Go-CHART detects multiple traffic
lights at an intersection, it bases its next action on the traffic
light with the largest bounding box, since that light is likely
to be the closest one to the robot. The supplementary video
shows scenarios in which (1) the Go-CHART stops at a red
light in an intersection and resumes driving when the light
turns green, and (2) the robot stops at a stop sign and waits
for another Go-CHART with the right-of-way to cross in
front of it before driving forward.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design, capabili-
ties, and control architecture of the Go-CHART, a low-cost
miniature robot that emulates a self-driving car. The Go-
CHART can also be controlled remotely by a user who views
the environment through the robot’s four onboard cameras
from a driving station. This capability will enable us to
conduct experiments on interactions between human-driven
and self-driving vehicles in a safe, controlled environment.
We describe lane-tracking and object detection algorithms
and demonstrate their implementation on a Go-CHART that
autonomously navigates a miniature driving testbed, with its
processing power augmented by an external GPU. We plan to
expand the driving testbed to include additional traffic signs,
dynamic lighting conditions, reconfigurable buildings, and
media projections to customize the environment. We also
plan to add artificial fog, which will enable us to develop
algorithms for real-time defogging using only the robot’s on-
board monocular cameras. In addition, we will replace the
robot’s front-view camera with an RGBD camera to enable
tests of real-time visual SLAM algorithms.

ACKNOWLEDGMENTS

The authors thank Sreenithy Chandran (ASU) for helping
to implement the deep learning techniques and Sangeet Ulhas
(ASU), Rakshith Subramanyam (ASU), Karthik Ganesan
(ASU), and Sritanay Vedartham (BASIS Scottsdale) for
helping build the testbed.

REFERENCES

[1] Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca
Carlone, Michal Cap, Yu Fan Chen, et al. Duckietown: an open, in-
expensive and flexible platform for autonomy education and research.
In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1497-1504. IEEE, 2017.

[2] Sean Wilson, Ruben Gameros, Michael Sheely, Matthew Lin, Kathryn
Dover, Robert Gevorkyan, Matt Haberland, Andrea Bertozzi, and
Spring Berman. Pheeno, a versatile swarm robotic research and
education platform. IEEE Robotics and Automation Letters vol. 1, no.
2, pp. 884-891, July 2016.

[3] Nicholas Hyldmar, Yijun He, and Amanda Prorok. A fleet of miniature
cars for experiments in cooperative driving. In 2019 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3238-3244.
IEEE, 2019.

[4] Alexander Liniger, Alexander Domahidi, and Manfred Morari.
Optimization-based autonomous racing of 1:43 scale RC cars. Optimal
Control Applications and Methods 36(5):628-647, 2015.

[5] Sertac Karaman, Ariel Anders, Michael Boulet, Jane Connor, Kenneth
Gregson, Winter Guerra, Owen Guldner, et al. Project-based, collab-
orative, algorithmic robotics for high school students: Programming
self-driving race cars at MIT. In 2017 IEEE Integrated STEM Educa-
tion Conference (ISEC), pp. 195-203. IEEE, 2017.

[6] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames,
Eric Feron, and Magnus Egerstedt. The Robotarium: A remotely
accessible swarm robotics research testbed. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1699-1706.
IEEE, 2017.

[7] Joseph Betthauser, Daniel Benavides, Jeff Schornick, Neal O’Hara,
Jimit Patel, Jeremy Cole, and Edgar Lobaton. WolfBot: A distributed
mobile sensing platform for research and education. In Proceedings of
the 2014 Zone 1 Conference of the American Society for Engineering
Education, pp. 1-8. IEEE, 2014.

[8] Adam Stager, Luke Bhan, Andreas Malikopoulos, and Liuhui Zhao.
A scaled smart city for experimental validation of connected and
automated vehicles. arXiv preprint arXiv:1710.11408 (2017).

[9] Rakshith Subramanyam (2018). CHARTOPOLIS: A Self Driving Car
Test Bed. Master’s Thesis in Electrical Engineering, Arizona State
University.

[10] Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improve-
ment. arXiv preprint arXiv:1804.02767 (2018).

[11] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen. YOLO-LITE: A
real-time object detection algorithm optimized for non-GPU comput-
ers. In 2018 IEEE International Conference on Big Data (Big Data),
pp. 2503-2510. IEEE, 2018.

[12] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel et al. End to
end learning for self-driving cars. arXiv preprint arXiv:1604.07316
(2016).

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
R-CNN: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems, pp.
91-99. 2015.

[14] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam,
Saurabh Gupta, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325 (2015).

[15] Sasha Targ, Diogo Almeida, and Kevin Lyman. Resnet in Resnet:
Generalizing residual architectures. arXiv preprint arXiv:1603.08029
(2016).

[16] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, vol. 25, no. 11, pp. 120–126, 2000.

[17] Google Maps: Miniatur Wunderland. Accessed: 2020-07-31.
[Online] Available: https://www.google.com/maps/about/behind-the-
scenes/streetview/treks/miniatur-wunderland/

[18] University of Michigan Mcity. Accessed: 2020-07-31. [Online] Avail-
able: https://mcity.umich.edu/

[19] Karen Hao. “The latest fake town built for self-driving cars has
opened in South Korea.” Quartz, Nov. 6, 2017. Accessed: 2020-07-31.
[Online] Available: https://qz.com/1121372/south-korea-opens-k-city-
the-latest-fake-town-built-for-self-driving-cars/

[20] Millbrook: Connected and Autonomous Vehicle
Testing. Accessed: 2020-07-31. [Online] Available:
https://www.millbrook.us/services/connected-and-autonomous-
vehicle-testing/

[21] Srinivasa, S.S., Lancaster, P., Michalove, J., Schmittle, M., Rockett,
C.S.M., Smith, J.R., Choudhury, S., Mavrogiannis, C. and Sadeghi, F.
MuSHR: A low-cost, open-source robotic racecar for education and
research. arXiv preprint arXiv:1908.08031 (2019).

[22] Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V.,
Roy, G., Sun, T., Tao, Y., Townsend, B. and Calleja, E. DeepRacer:
Educational autonomous racing platform for experimentation with
sim2real reinforcement learning. arXiv preprint arXiv:1911.01562
(2019).

[23] W. Roscoe. Donkey Car: An opensource DIY self driving plat-
form for small scale cars. Accessed: 2020-07-31. [Online] Available:
https://www.donkeycar.com

[24] NVIDIA Autonomous Machines. Accessed: 2020-07-31.
[Online] Available: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetbot-ai-robot-kit/

[25] “Go-CHART: A miniature remotely accessible self-driving car
robot,” Autonomous Collective Systems Laboratory Youtube channel,
https://www.youtube.com/watch?v=pAa61VpF6oQ

