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Abstract: In this work, we present a novel automated procedure for constructing a metric map of an unknown domain
with obstacles using uncertain position data collected by a swarm of resource-constrained robots. The robots obtain this
data during random exploration of the domain by combining onboard odometry information with noisy measurements
of signals received from transmitters located outside the domain. This data is processed offline to compute a density
function of the free space over a discretization of the domain. We use persistent homology techniques from topological
data analysis to estimate a value for thresholding the density function, thereby segmenting the obstacle-occupied region
in the unknown domain. Our approach is substantiated with theoretical results to prove its completeness and to analyze its
time complexity. The effectiveness of the procedure is illustrated with numerical simulations conducted on six different
domains, each with two signal transmitters.
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1. INTRODUCTION
Swarms of autonomous robots can potentially be used

for many applications in remote or hazardous locations,
including exploration, environmental monitoring, disas-
ter response, and search-and-rescue operations. These
applications may require the swarm to generate a map
of the environment without having access to GPS mea-
surements or reliable inter-robot communication. Due
to size and cost constraints, each robot may be highly
resource-limited and thus unable to use existing mapping
techniques such as those in [1].

For the most part, existing works on mapping using
robotic swarms have focused on generating a topological
map, e.g. [2] [3]. There has been some work on multi-
robot mapping [4] that requires inter-robot communica-
tion, but to the best of our knowledge, there is no other
work which addresses metric mapping of unknown do-
mains with multiple obstacles using a swarm of robots
with the resource limitations that we consider in this pa-
per. A topological map is a sparse representation of an
environment that encodes all of its topological features,
such as holes that signify the presence of obstacles, and
provides a collision-free path through the environment in
the form of a roadmap. A metric map, or simply map,
of a domain gives metric information about the subset of
a domain that is unoccupied by features such as obsta-
cles. This representation includes the precise locations
and geometries of features in the domain. The combi-
nation of metric maps with filtering techniques such as
particle filtering or Kalman filtering enables robots with
more sophisticated capabilities than the ones we consider
to accurately localize themselves. The construction of a
topological map is less sensitive to sensor and actuator
noise in the robots than the construction of a metric map,
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but it only yields estimated features that are homotopic to
the actual features in a domain.

In this paper, we develop an automated procedure for
constructing a metric map of an unknown, GPS-denied
environment with obstacles using uncertain localization
data acquired by a swarm of robots with local sensing
and no inter-robot communication. The procedure is scal-
able with the number of robots. Each robot generates
the localization data by combining its onboard odom-
etry information with the measured strength of signals
that are emitted by transmitters located outside the do-
main. For example, in a disaster response scenario, the
robots may be able to detect radio signals only from the
area outside the domain from which they were deployed.
Our procedure is also applicable to indoor environments;
even though signal propagation through such environ-
ments has high unpredictability [5], much research has
been devoted to the use of received signal strength inten-
sity (RSSI) for indoor localization of robots [6]. In [7],
a technique is presented for multi-robot localization that
could be used for mapping environments without global
position information. Similar to our approach, this tech-
nique uses robot measurements of external signals; how-
ever, unlike our approach, it requires robots to distinguish
neighboring robots from obstacles and communicate ex-
plicitly with them. We prove that our procedure will gen-
erate a metric map under specified assumptions on the
coverage of the domain by the robots.

Our previous papers [8] and [9] presented procedures
for estimating the number of obstacles in an unknown do-
main and extracting a topological map of the domain, re-
spectively. The methodology presented in [9] generates
a topological map in the form of a Voronoi diagram by
applying clustering and wave propagation algorithms to
a probabilistic map and does not incorporate RSSI mea-
surements. We have also developed an optimal control



method for mapping GPS-denied environments using a
swarm of robots with both advective and diffusive mo-
tion [10]. Although this method only requires measure-
ments of encounter times with obstacles, it relies on an
accurate partial differential equation model of the swarm
dynamics, and it is ineffective on domains with multiple
obstacles.

Our procedure is fundamentally an occupancy grid
mapping method, which represents the unknown domain
using a set of evenly-spaced binary random variables
that each indicate the presence or absence of an obsta-
cle at that location in the domain. Such methods have
been studied extensively, both in single-robot [11][12]
and multi-robot [13] [14] settings. Our contribution over
existing occupancy grid mapping strategies is a guarantee
of the probabilistic completeness of our mapping proce-
dure, given in Theorem 1. We prove that our approach re-
sults in the map of the unknown environment with prob-
ability one, as long as the assumptions associated with
Theorem 1 are satisfied. This proof of probabilistic com-
pleteness was absent in our earlier work [9]. Our result in
Lemma 1, which is needed to prove Theorem 1, cannot
be proved for the system considered in [9] since it is un-
observable. This provides insight into why our approach
in [9] cannot be used for metric mapping. We note that
although our strategy uses an extended Kalman filter as in
most landmark-based mapping techniques, such as simul-
taneous localization and mapping (SLAM) [15], unlike
such techniques, our approach does not require sophisti-
cated sensors or processing to characterize obstacles and
distinguish them from other robots.

The first step in our procedure, namely, data collection
by a swarm of robots during exploration of the domain,
is a decentralized process. In the subsequent step, the
collected data is processed offline to compute a proba-
bility of occupancy on the grid cells. The computations
from this step onward are executed by a central computer
that generates the domain map from the computed den-
sity function. This is the only centralized component of
our mapping procedure, and it is scalable with the number
of robots since the map computation can be parallelized.
Tools from topological data analysis (TDA) are used to
compute a threshold density value in order to identify the
obstacle-filled region in the occupancy grid. This com-
putation is performed by constructing a probability-based
filtration on the free space in the domain. We direct the
reader to Section II of [9] for the necessary background
on the topological concepts that are used in this paper.

The reason for computing the map offline is twofold.
First, the robots localize in the domain with uncertainty
that increases over time due to noise in their actuators,
sensors, and RSSI measurements. Even though we prove
in Lemma 1 that this uncertainty is bounded, the bound
could be large for a particular robot depending on the ran-
dom path that it follows, which would make its localiza-
tion data unreliable. Hence, each individual robot can
only generate an uncertain map of the region that it ex-
plores. However, our approach constructs an accurate es-

timate of the map of a region by fusing data offline from
multiple robots that explore the region. Second, in order
for each robot to construct the map of the domain on-
line, it should individually cover the entire domain and
have sufficient computational capabilities to perform all
the map generation calculations onboard. In our strat-
egy, this is infeasible due to the low computational re-
sources of the robots that we consider. As an alterna-
tive, the robots could construct local maps, communicate
these maps to other robots that they encounter during the
course of exploration, and merge the maps that they re-
ceive from the other robots. However, this would require
the robots to have communication capabilities, which we
do not assume in our scenario.

2. PROBLEM STATEMENT

We consider the problem of estimating the metric map
of a closed, bounded, path connected, GPS-denied do-
main D ⊂ R with obstacles using uncertain localization
data acquired by a swarm of N robots while exploring
the domain. We restrict our analysis to domains with
boundaries having regularity of at least Lipschitz conti-
nuity. Although here we only consider the case d = 2,
it is straightforward to extend our procedure to the case
where d > 2. We exclude scenarios where an obstacle
is located very close to the domain boundary, since it is
highly unlikely that the robots will enter the gap between
the boundary and obstacle. We assume that such gaps are
at least twice a robot’s sensing diameter.

Each robot is equipped with a compass, wheel en-
coders, and a received signal strength indicator (RSSI)
device such as Atheros [16], and it can detect obstacles
and other robots within its local sensing radius and per-
form collision avoidance maneuvers. Two radio transmit-
ters are assumed to be located outside the domain, and
the robots’ RSSI devices can measure their signals any-
where inside the domain. The assumption on the trans-
mitters’ location is included to avoid complexities in the
analysis required to prove Theorem 1 that arise from sin-
gularities in the signal strength attenuation model, i.e.,
points where this model is undefined. However, since
these points are isolated, and thus comprise a set of mea-
sure zero, in practice our approach should work even if
the transmitters are located inside the domain. As the
proof of Theorem 1 shows, our strategy requires at least
two transmitters to map a two-dimensional domain. We
assume that the robots have sufficient memory to store
the data that they collect during exploration. We also as-
sume that after a sufficiently large time T , the robots have
covered the domain according to the coverage definition
given in Section 4.1. After time T , the robots move to a
common location for extraction of the stored data.

The robots move with a constant speed v and a head-
ing θ(t) at time t with respect to a fixed global frame.
The position and velocity state vectors of a robot in this
frame are defined as X(t) = [x(t), y(t)]T and V(t) =
[vx(t), vy(t)]T = [v cos(θ(t)), v sin(θ(t))]T, respec-
tively. At the initial time t = 0, the start of the exploration



phase, a precise estimate of X(0) and θ(0) is provided to
each robot. During the deployment, each robot generates
a uniform random number U ∈ [0,1] at the start of every
time step ∆t. If U ≤ pth, where pth is a specified value,
then the robot randomly chooses a new heading θ(t) ∈
[−π,π]. We define Wx(t) ∈ R2 and Wv(t) ∈ R2 as vec-
tors of independent, zero-mean normal random variables
that are generated at time t. These vectors model random-
ness in the robots’ motion due to wheel actuation noise.
We define the vector W(t)∈R4 as W(t)= [Wx(t) Wv(t)]
and note that W(t)∼N (0,Q), Q ∈ R4×4.

Using this notation, we model each robot as a point
mass that follows the standard linear odometry motion
model [15], whose state space form can be written as:[

X(t+∆t)
V(t+∆t)

]
=

[
I ∆tI
0 I

][
X(t)
V(t)

]
+

[
Wx(t)
Wv(t)

]
, (1)

where I is the identity matrix. We denote the system ma-
trix of Equation (1) by A.

While performing this correlated random walk
through the domain, each robot uses an extended Kalman
filter [15] to estimate its global position and the associ-
ated covariance matrix from its onboard odometry and
RSSI measurements of the signals emitted by the two
transmitters. The robot records this estimated position
and covariance matrix at fixed time intervals. Although
exploration through random walking gives only weak
guarantees on complete coverage of the domain, it is a
simple motion strategy that can be implemented on robots
with the limitations that we consider. It should be noted
that any exploration strategy that accommodates these
limitations can be substituted for random walking. We
specify that the line joining the two transmitters lies out-
side the domain (see Theorem 1). The signal strength
attenuation of a radio signal from a transmitter i is a func-
tion of distance from the transmitter location Xi [17].
We adopt the model Si(X(t)) = KiPowi||X(t)−Xi||−α

presented in [18], where α ∈ [0.1,2], Powi is the trans-
mitted signal voltage of transmitter i, and Ki is the cor-
responding proportionality constant. We set α = 2, as
is commonly done in the literature [17]. We define
S(X(t)) = [S1(X(t)), ..., Sl(X(t))]T, where l is the num-
ber of transmitters (here, we set l = 2). We also define
NS(t) ∈ Rl and NV(t) ∈ R2 as vectors of independent,
zero-mean normal random variables that are generated at
time t. These vectors model noise in the robots’ RSSI de-
vices and wheel encoders, respectively. Let Z(t) denote
the vector of sensor measurements received by a robot at
time t. Then the output equation of the system can be
written as,

Z(t) =
[

S(X(t))
V(t)

]
+

[
NS(t)
NV(t)

]
. (2)

3. MAP GENERATION PROCEDURE
This section describes a procedure for extracting a

metric map of the domain as an occupancy grid map us-
ing the noisy localization data collected by the swarm of
robots.

3.1. Computation of the Density Function of Free
Space on a Discretization of the Domain

As in other occupancy grid mapping algorithms [15],
our first step is to discretize the domain into a fine grid
of M cells. The objective of this step is to use the robots’
recorded data on their estimated positions to compute a
density function p f : mi→ [0,1] that encodes the proba-
bility of a cell mi, i∈ 1, ...,M being unoccupied by an ob-
stacle, or free. We use the notation p f

i instead of p f (mi)
for brevity. Here we summarize our approach to comput-
ing p f

i . Although it is similar to the approaches in our
earlier work [9][8], the probabilistic occupancy grid map
computation in this paper uses a different equation for si
(Equation (3)), the score assigned to each grid cell i, than
the computation in our previous works.

While each robot j ∈ {1, ...,N} moves randomly
through the unknown environment, it records data at
times tk ∈ [0,T ], k ∈ 1, ...,K. This data consists of the tu-
ple d j

k = {µ
j

k ,σ
j

k }, where µ
j

k ∈R2 and σ
j

k ∈R2×2 are the
mean and covariance matrix, respectively, of the robot’s
estimate of its position in Cartesian coordinates at time
tk. We define pi jk as the discrete probability that the jth

robot occupied the cell mi at time tk. This probability is
calculated for all robots, cells, and times tk by integrat-
ing the Gaussian distribution with mean µ

j
k and covari-

ance matrix σ
j

k over the part of the domain occupied by
cell mi. We then filter out probabilities pi jk that are ob-
tained from Gaussian distributions which are centered far
from each grid cell mi. Toward this end, we define the
set Pi = {pi jk | pi jk > ρ}, where ρ > 0 is a tolerance. In
this paper, we set ρ = 0.05. We compute p f

i for each cell
mi using a technique similar to the log odds computation
that is commonly employed in the robot SLAM literature
[15]. A score si ∈ [0,∞) is assigned to each grid cell mi
according to the equation

si =
1
|Pi| ∑

pi jk∈Pi

log
(

1
1− pi jk

)
. (3)

We then compute the probability that cell mi is free using
the formula p f

i = 1− (exp(si))
−1.

Next, we apply a moving average linear filter, a com-
mon technique in image processing, to the probabilities
p f

i . This ensures that the automated thresholding step, de-
scribed in the next section, is effective even if the robots
fail to cover a few free grid cells in the domain. For each
grid cell mi, we replace p f

i with the mean of p f
i and the

p f
j of its neighboring grid cells m j. This eliminates any

p f
i value that is unrepresentative of its neighborhood. The

simulations in Section 5 use a 3×3 square neighborhood
for filtering. Strictly speaking, this step can be skipped
if the assumption on the coverage of the domain by the
swarm is satisfied.

3.2. Thresholding the Density Function to Generate
the Map

In this step, we threshold each p f
i to classify the cor-

responding grid cell mi as a free or obstacle-occupied



cell. The existence of a threshold for this classification
is proven in Theorem 1. We apply persistent homology
[19], a topological data analysis (TDA) technique based
on algebraic topology [20], to automatically find a thresh-
old based on the p f

i of each grid cell. An implicit assump-
tion required for this technique is that each obstacle con-
tains at least one grid cell with p f

i = 0. This TDA-based
technique provides an adaptive method for thresholding
an occupancy grid map of a domain that contains obsta-
cles at various length scales. In fact, it can be used with
other occupancy grid mapping methods to implement au-
tomated thresholding. We describe this technique in full
in [9]. In this paper, the persistent homology computa-
tion was done using the MATLAB-based JavaPlex pack-
age [21].

4. ANALYSIS OF THE MAPPING
PROCEDURE

4.1. Probabilistic Completeness of the Procedure
In this section, we analyze the completeness of the ap-

proach in a probabilistic sense, meaning that the proce-
dure described in Section 3 will result in a probabilis-
tic occupancy map of the unknown domain that distin-
guishes between occupied and free grids cells, provided
that the inputs to the procedure satisfy certain assump-
tions with probability one. The approach may fail to pro-
duce the desired output if the assumptions do not hold.
The simulation results in Section 5 demonstrate the ef-
fectiveness of our procedure even when the required as-
sumptions are not fully satisfied.

The most important assumption required for the com-
pleteness of our approach is that the domain is completely
covered by the swarm of robots. By this, we mean that the
recorded localization data includes at least one data tuple
per free grid cell whose µ lies inside the grid cell. We
assume that even if some of the robots fail to return af-
ter exploring the domain, sufficient data is obtained from
the recovered robots to achieve complete coverage of the
domain.

We begin our analysis by proving the existence of a
threshold on the density function, which serves as a de-
cision variable to distinguish between free and occupied
grid cells. Toward this end, we first state the following
lemma, which gives a result that is required to prove The-
orem 1. The result in Lemma 1 follows trivially when
both the robot dynamics and measurement models are lin-
ear. However, proving this result requires a careful analy-
sis when either the dynamics or measurement models are
nonlinear, as in our case.

Lemma 1: The error in the robots’ position estimates
is bounded with probability one, with a common bound
for all robots, if each robot follows the motion model
Equation (1) and estimates its state vector using an ex-
tended Kalman filter based on the outputs in Equation (2).

Proof: Let S(X)X denote the first-order derivative of
S(X) with respect to X in Equation (2). Note that we have
dropped the variable t for conciseness. We also define X̂

as the estimate of X. Assuming that S(X) is at least twice
differentiable in a neighborhood of the estimate X̂, we
can write the first-order Taylor series expansion of S(X)
about X̂ as,

S(X) = S(X̂)+S(X)X̂(X− X̂)+O(||X− X̂||2). (4)

Defining h = (X− X̂), the higher-order terms in Equa-
tion (4) are represented by O(||h||2). By definition,
O(||h||2) is bounded above by KS ‖h‖2 as ‖h‖ → 0,
where KS is some positive constant. This implies that
there exists an open ball of radius ε > 0 around 0 such
that if ‖h‖ < ε , then ‖O( ‖h‖2)

∥∥∥ ≤ KS ‖h‖2. Thus, the
inequality∥∥S(X)−S(X̂)−S(X)X̂(X− X̂)

∥∥≤ KS
∥∥X− X̂

∥∥2
(5)

is satisfied in some neighborhood of X̂ if S(X̂) is at least
twice differentiable in that neighborhood.

From Theorem 3.1 in [22], we know that the estima-
tion error ζk =

∥∥Xk− X̂k
∥∥ of an extended Kalman filter

at the kth time step, where k ∈ {1,2, ...,K}, is bounded
with probability one as long as the following conditions
hold:

1. ζ0 ≤ ε for some ε ≥ 0.
2. Define Xs

k = [Xk;Vk] as the state vector in Equa-
tion (1), f (Xs

k) as the state map, and Ak =
∂ f

∂Xs
k
(X̂s

k). The
matrix Ak is nonsingular for all k ≥ 0.
3. Let h(Xs

k) be the output map given in Equation (2) and
Hk = ∂h

∂Xs
k
(X̂s

k). Define the functions φ and χ as:

φ(Xs
k, X̂

s
k) = f (Xs

k)− f(X̂s
k)−Ak(X̂s

k)
(
Xs

k− X̂s
k
)
, (6)

χ(Xs
k, X̂

s
k) = h(Xs

k)−h(X̂s
k)−Hk(X̂s

k)
(
Xs

k− X̂s
k
)
. (7)

There exist real numbers εφ ,εχ ,Kφ ,Kχ > 0 such that∥∥φ(Xs
k, X̂

s
k)
∥∥ ≤ Kφ

∥∥Xs
k− X̂s

k
∥∥2 ≤ Kφ ε

2
φ , (8)∥∥χ(Xs

k, X̂
s
k)
∥∥ ≤ Kχ

∥∥Xs
k− X̂s

k
∥∥2 ≤ Kχ ε

2
χ . (9)

4. There are positive real numbers ā, h̄, p̄, p > 0 such that
‖Ak‖ ≤ ā, (10)
‖Hk‖ ≤ h̄, (11)

pI ≤ Pk ≤ p̄I, (12)
where Pk is the covariance matrix at the kth time step.

To prove the lemma, we will now show that these
four conditions are satisfied. Conditions (1) and (2) are
satisfied because ζ0 = 0 and Ak is the constant matrix
A, which is nonsingular. Equation (8) is satisfied triv-
ially, since φ(Xs

k, X̂
s
k) is zero when Ak is a constant ma-

trix. In condition (3), we need to determine whether
the bounds described in Equation (9) are fulfilled with
h(Xs

k) = [S(X(t));V(t)] in Equation (7). To verify this, it
is enough to show that a condition analogous to Equa-
tion (7) is satisfied when the output map is restricted
to the signal map. In other words, we need to check
whether Equation (7) is satisfied when h(Xs

k) = S(X).
Equation (5) shows that this condition is true locally at
every point as long as S(X) is at least twice differentiable,



which is true for all points inside the domain in our case,
since the transmitters are located outside the domain.

Examining condition (4), we find that computation of
Hk is required for further analysis. Given the definition
h(Xs

k) = [S(X(t));V(t)] from Equation (2), we can com-
pute the Jacobian of h(Xs

k) as,

Hk(Xs
k) =

[
Sk(Xk)X 0

0 I

]
, (13)

where

Sk(Xk)X =


−αK1Pow1(xk−xt1)

((xk−xt1)2+(yk−yt1)2)
2+α

2

−αK1Pow1(yk−yt1)

((xk−xt1)2+(yk−yt1)2)
2+α

2

−αK2Pow2(xk−xt2)

((xk−xt1)2+(yk−yt1)2)
2+α

2

−αK2Pow2(yk−yt2)

((xk−xt1)2+(yk−yt1)2)
2+α

2

 .
(14)

Here, (xti,yti) are the Cartesian position coordinates of
the ith transmitter.

Equation (10) and Equation (11) are trivially satisfied.
Now it is left to prove that the constraint described us-
ing Equation (12) is also in agreement. This inequality
is related to the observability of the system. Using The-
orem 4.1 in [22], we deduce that Equation (12) is sat-
isfied if the linearized system is observable for every n;
i.e., if the observability matrix of the linearized system
Ok = [Hk; HkAk; HkA2

k; HkA3
k] has full rank for all k.

After row transformations of Ok using Gaussian elimina-
tion, we obtain

Ok =


Sk(Xk)X 0

0 I
0 ∆tSk(Xk)X

0

 , (15)

where the large 0 is a matrix of zeros. Since ∆t 6= 0, it is
evident from Equation (15) that Ok is not full rank if and
only if Sk(Xk)X is not full rank. It can be shown that the
points (xk,yk) at which Sk(Xk)X is not full rank obey the
following equation:

(xk− xt1)

(yk− yt1)
=

(xk− xt2)

(yk− yt2)
= constant. (16)

Under these constraints, condition (4) is satisfied, im-
plying that the state estimation error for each robot is
bounded. Therefore, the estimation error of the robot
positions is also bounded, since it is a part of the state.
The maximum of all the robots’ position estimation errors
serves as a bound with probability one for these errors.

Remark: The points (xk,yk) that satisfy Equation (16)
comprise the line joining the two transmitters. Therefore,
if we ensure that this line does not pass through the do-
main, then the system is observable. Alternatively, we
could make the system observable by introducing a third
transmitter which is non-collinear to the other two trans-
mitters.

Finally, we prove the existence of a threshold value of
p f

i that distinguishes the free grid cells from the occu-
pied cells. The following theorem proves that there exists

a threshold γ ∈ (0,1) that successfully divides between
obstacles and free space in the domain.

Theorem 1: Under the assumption of complete
coverage of the domain, a grid cell mi is free if and only
if there exists a threshold γ ∈ (0,1) for which p f

i > γ with
probability one.

Proof: We begin by proving the sufficient part of the
statement; i.e., that there exists a threshold γ ∈ [0,1] such
that a grid cell mi is free if p f

i > γ . Lemma 1 shows that
there exists an estimation error bound with probability
one on the position estimate for all robots. Thus, the un-
certainty associated with position is also bounded. Also,
for every free grid cell mi, there is at least one data tuple
d j

k that is centered inside the grid due to the assumption
on coverage. The boundedness of the uncertainty ensures
the existence of a two-dimensional symmetric Gaussian
distribution function with an associated covariance ma-
trix having a finite norm σmax. The integral of this func-
tion over the grid cell is less than or equal to the integral
of the Gaussian function associated with d j

k . Without loss
of generality, we assume for simplicity that the grids cells
are squares with area [−s,s]× [−s,s] that is very small
compared to the domain size. After some algebraic ma-
nipulation, we can derive that

1
|Pi| ∑

pi jk∈Pi

log
(

1
1− pi jk

)
>

1
|Pi|

log
(

1
1− (p)i

)
(17)

where,

(p)i =
1

2πσ2
max

∫ s

−s

∫ s

−s
exp
(
−1

2

(
x2

σ2
max

+
y2

σ2
max

))
dxdy.

(18)

Using the change of variables x = y = t
√

2σmax, the
above double integral can be simplified to:

(p)i =

(
1√
π

∫ s√
2σmax

− s√
2σmax

exp(−t2)dt

)2

. (19)

From [23], er f (s) ≡ 1√
π

∫ s
−s exp(−t2)dt is the error

function. This function can also be defined as er f (s) ≡
1− er f c(s), where er f c(s) = 2√

π

∫
∞

s exp(−t2)dt is the
complementary error function. Therefore, Equation (19)
can be expressed as:

(p)i =

(
er f
(

s√
2σmax

))2

. (20)

Corollary 1 in [24] gives an upper bound on er f c(s),
which we can use to compute the following lower bound
on er f (s):

er f (s)≥ 1− exp(−s2). (21)

From Equation (20) and Equation (21), we obtain a
lower bound on (p)i:

(p)i ≥
(

1− exp
(
− s2

2σ2
max

))2

. (22)



We now combine Equation (22) and Equation (17) and
use the formula p f

i = 1− (exp(si))
−1 to compute p f

i , as
mentioned in Section 3.1. After some algebraic simplifi-
cation, we obtain the following inequality:

p f
i > 1−

(
1−
(

1− exp
(
− s2

2σ2
max

))2
)( 1

|Pi |

)
. (23)

Note that the threshold, given by the right side of the
above inequality, is bounded between zero and one, and
that it increases as σmax decreases and vice versa.

Now we prove the condition of necessity of the state-
ment; i.e., that there exists a threshold γ such that p f

i > γ

implies that the grid cell mi is free, for all grid cells. We
use proof by contradiction to establish this. First, sup-
pose that this proposition is false. Then for any chosen γ ,
p f

i > γ does not imply that the grid cell mi is free, for all
grid cells. In other words, for every γ chosen, there ex-
ists at least one occupied grid cell for which p f

i > γ . Let
us choose γ to be the right-hand side of Inequality (23).
Now assume that an occupied grid cell Obsmi satisfies
the condition p f (Obsmi) > γ . This can happen in two
possible cases. First, there may exist at least one data
point d j

k which is centered inside Obsmi. This cannot oc-
cur, since we assume that the robot cannot move over ob-
stacles. Second, σmax may be unbounded, which is also
not true according to Lemma 1. Therefore, we have con-
firmed that there exists a threshold that filters occupied
grid cells. In other words, we were wrong to assume that
the proposition was false. Thus, the proposition is true.

Remark: Theorem 1 proves that our strategy will never
assign the same probability p f

i to both a free grid cell and
an occupied grid cell. This guarantees that the free grid
cells and occupied grid cells can be distinguished by a
threshold value of p f

i . In fact, multiple such thresholds
exist, and thus it is useful to compute a threshold which
is optimal in some sense. Toward this end, the final step
of our mapping procedure described in Section 3.2 com-
putes the minimum threshold above which the number
of computed topological features of the domain (specifi-
cally, the number of connected components and holes in
the thresholded map) remains constant.

Remark: Lemma 1 cannot be proven in the strategy
presented in our previous paper [9], since the system
there is unobservable (for this case, Sk(Xk)X = 0 in Equa-
tion (15)). Thus, the strategy presented in that paper does
not guarantee metric map generation of the domain. In-
stead, it generates only a conservative topological map
[25]. In addition, note that the lower bound on p f

i from
Inequality (23) increases as |Pi| increases, indicating that
as more robots visit a grid cell i, its probability of being
free increases.

A TDA-based technique is used to estimate the thresh-
old γ , because the threshold computed using Inequal-
ity (23) works only with complete coverage. If γtrue and

γest are the true threshold and estimated threshold com-
puted using the method described in Section 3.2, respec-
tively, then γest ≥ γtrue, since the metric and topologi-
cal information coincide once the filtration parameter ex-
ceeds the value 1− γtrue.

4.2. Computational Complexity Analysis
We analyze the computational complexity of the pro-

cedure using a similar approach to that in our paper [9].
Based on our analysis, the worst-case complexity of our
procedure is O(M 2.372). The first step of our procedure
is the computation of the density function. This com-
putation varies linearly with the amount of data and the
number of grid cells. That is, if N robots each collect
K elements of data while exploring a discretized domain
containing M grid cells, then the cost of computing the
density function is of the order O(N K M ). This step
can be parallelized by processing data from each robot
in parallel, resulting in a reduced computational cost of
the order O(K M ). The thresholding step is the most
computationally expensive part of the procedure. This is
because it requires the generation of a simplicial com-
plex, whose size is linear in M, and a persistent ho-
mology computation that has a worst-case complexity of
O(M 2.372), although for most practical scenarios it ap-
proaches O(M ) [26].

5. SIMULATION RESULTS
In this section, we validate the mapping procedure in

Section 3 by constructing metric maps of six simulated
domains, each with two signal transmitters. Swarms of
point robots in each domain were simulated in Python,
and all other computations were performed in MATLAB.
The robots have a sensing radius of 0.06 m and an average
speed of v = 0.2 m/s. The simulations were initialized by
placing the robots at random points near one of the do-
main boundaries. The robots follow the motion model
Equation (1), in which W(t) is a diagonal matrix with 0.1
on the diagonal. The robots employ a simple collision
avoidance policy, for which pth = 0.2, by choosing a new
random direction upon encountering the domain bound-
ary, an obstacle, or another robot.

For the 2 m× 2 m domains shown in Figure 1, swarms
of N = 50 robots were simulated over a deployment time
of T = 300 s. The outputs at various stages of the map-
ping procedure for these domains are displayed in Fig-
ure 2-Figure 6: the contour plots of the computed p f

i
(Figure 2), the filtered p f

i (Figure 3), the barcode dia-
grams (Figure 4), the thresholded maps (Figure 5), and
the absolute error in the maps (Figure 6). The caption
below each sub-figure in Figure 1-Figure 6 indicates the
percentage of the domain area that is covered by obstacles
(PAO). These results show that the procedure generates
an accurate metric map of each domain. To further evalu-
ate the performance of our procedure, we ran 20 simula-
tions on each domain in Figure 1 with the same parame-
ters. Figure 10 shows the average threshold value γ with
its 95% confidence interval and the mean absolute error



(a)PAO=0% (b)PAO=6% (c)PAO=9% (d)PAO=23.27% (e)PAO=8%

Fig. 1 Snapshots of a simulated swarm of robots (red squares) moving through different domains with obstacles (blue
shapes).

(a)PAO=0% (b)PAO=6% (c)PAO=9% (d)PAO=23.27% (e)PAO=8%

Fig. 2 Contour plots of p f
i , the probability that grid cell mi is free, over all grid cells of the discretized domains

generated after the step described in Section 3.1. Colorbar values range from 0 to 0.9.

(a)PAO=0% (b)PAO=6% (c)PAO=9% (d)PAO=23.27% (e)PAO=8%

Fig. 3 Contour plots of the filtered p f
i shown in Figure 2, as described in Section 3.1.

(a)PAO=0% (b)PAO=6% (c)PAO=9% (d)PAO=23.27% (e)PAO=8%

Fig. 4 Barcode diagram for each domain, generated from the filtration described in Section 3.2, with δcls computed for
each case as δcls = 0.75.

(a)PAO=0% (b)PAO=6% (c)PAO=9% (d)PAO=23.27% (e)PAO=8%

Fig. 5 Contour plots of the thresholded map based on the thresholds computed using the TDA technique described in
Section 3.2.



(a)PAO=0% (b)PAO=6% (c)PAO=9% (d)PAO=23.27% (e)PAO=8%

Fig. 6 Contour plots of the absolute error between Figure 1 and Figure 5.

(a)Complex domain (b)Computed p f
i (c)Filtered p f

i
(d)Map (e)Absolute error

Fig. 7 The outputs of the mapping procedure for a complex domain with PAO=5.78%.
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(d)Mean map estimation
error for each domain
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Fig. 8 Plots showing the effect of the number of robots N on the threshold and map estimation error with T = 300s.
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Fig. 9 Plots showing the effect of the deployment time T on the threshold and map estimation error.

(MAE) of the map estimation error with the correspond-
ing 95% confidence interval for each domain. We used
MAE rather than root-mean-squared error, since each er-
ror contributes proportionally in MAE. The plots confirm
the effectiveness of our approach, since the average MAE
lies between 5% to 8% and the error bars are relatively
small. We also conducted simulations in a larger, more
complex domain of size 20 m × 20 m, in which N = 200
robots were deployed for T = 1200 s. These results are
presented in Figure 7 and show that the procedure still
generates an accurate map.

A topological map for this domain was also con-
structed using the technique described in our previous pa-

per [9] and compared with the one presented in that paper.
From Figure 11, we see that our current approach results
in an improved topological map.

Finally, in order to examine the effectiveness of our
strategy on domains with small obstacles, we performed
a simulation on a domain of size 2 m × 2 m with five
square obstacles, each of size 4 cm × 4 cm, using 50
robots with a deployment time of 300 s. The maximum
standard deviation of the normal distribution associated
with the robot’s position was approximately 2.8 cm in
both the x and y directions. The results of this simulation
are shown in Figure 12. These results show that our tech-
nique is able to generate a reasonably accurate map of the
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Fig. 10 Results from 20 simulations on each domain in
Figure 1.

(a)Topological map from [9] (b)Topological map using current
approach

Fig. 11 Topological maps generated for a complex
domain.

(a)Actual domain (b)Absolute error

Fig. 12 Simulation on a domain with PAO=0.2%.
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(b)Estimation error for various N

Fig. 13 Plots showing the effect of the number of robots
N on the threshold and map estimation error with

T = 160s.

domain, even when the uncertainty in the robots’ position
is comparable to the size of obstacles in the domain.

We also studied the effect of the number of robots N
and the deployment time T on the performance of the
procedure. Since the domain area is the same for all
simulations, the variation of a quantity with respect to
N is equivalent to its variation with respect to robot den-
sity ( N

domain area ). For each of the 5 domains in Figure 1,
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Fig. 14 Effect of noise in the received signal on the map
estimation error.

we ran 10 simulations each with N ∈ {20,30,40,50,60}
and T = 300 s (Figure 8), and 10 simulations each with
T ∈ {800,1000,1200,1400,1600} s and N = 40 (Fig-
ure 9). The legends in subfigures (b) and (d) of Fig-
ures 8-9 show the number of obstacles in the domain
corresponding to each plot. In addition, the error bars
in Figures 8-10 represent the 95% confidence interval of
the true value. Figure 8(a) and Figure 9(a) show that the
resulting mean threshold γ with its 95% confidence inter-
val, computed from the 50 simulations over all domains
for each parameter set, increases with increasing N and
T , respectively. The corresponding plots of the mean γ

for each domain, Figure 8(b) and 9(b), exhibit the same
trend. Figure 8(c) and Figure 9(c) plot the mean MAE of
the map estimation error with its 95% confidence inter-
val versus N and T , respectively, from the 50 simulations
for each parameter set. The mean map error does not
vary significantly with N, possibly because the deploy-
ment time T = 300 s is sufficient to thoroughly cover the
domains, and it decreases with increasing T , as would
be expected since more localization data is gathered dur-
ing the deployment. To test this hypothesis, we reran the
50 simulations with 5 swarm sizes and T = 160 s (Fig-
ure 13). Figure 13(b) indeed shows that for this low T ,
the MAE of the map estimation error decreases as N in-
creases. The mean map error for each domain versus N
and T are shown in Figure 8(d) and Figure 9(d), respec-
tively. Finally, Figure 8(e) and Figure 9(e) show the de-
pendence on N and T of the percentage of the 50 sim-
ulations for each parameter set in which the topological
technique described in Section 3.2 successfully identifies
the number of obstacles (topological features) in the five
domains. As expected, the success rate increases with
increasing N and T .

In addition, we investigated the effect of noise in the
received signal on the map estimation error. For each
of the 5 domains in Figure 1, we ran 50 simulations
each with the standard deviation of this noise set to
{0.2,0.4,0.6,0.8} m and N = 40, T = 300 s. For each
trial, NS(t) in Equation (2) was set to a diagonal matrix
with 0.1 along the diagonal. Figure 14 demonstrates that
our method produces a fairly accurate map even when the
noise in the received signal exceeds what is anticipated
from the measurement model of the robots.

6. CONCLUSIONS
We have proposed a novel technique for automati-

cally generating the metric map of an unknown environ-



ment as an occupancy grid map using data collected by a
robotic swarm without global localization or inter-robot
communication. This data combines the robots’ odom-
etry information with their noisy measurements of sig-
nals from transmitters outside the domain. The approach
was validated through simulations on domains with dif-
ferent numbers of obstacles and robots and different de-
ployment times. We plan to validate our method with
robot experiments and investigate the effect of distance-
varying sensor noise models on the map accuracy.
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