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Abstract

In this paper, we propose an obstacle avoidance controller for a disk-shaped holonomic robot with double-integrator dynamics and
local sensing. The control objective is for the robot to converge to a target velocity while avoiding collisions with strictly convex
obstacles in an unbounded environment. We assume that the robot has no information about the location and geometry of the
obstacles, has no localization capabilities, and can only measure its own velocity and its relative position vector to the closest point
on any obstacles in its sensing range. We first propose a potential-based controller for the case with a single obstacle, and we prove
that the robot safely navigates past the obstacle and attains the desired velocity. For the case with multiple obstacles, we propose
a switching control scheme in which the robot applies the single-obstacle controller for the closest obstacle at each instant. We
investigate the correctness of this switching control law and demonstrate the absence of local stable equilibrium points that would
trap the robot. We validate our analytical results through simulations of a robot that uses the proposed controllers to successfully
navigate through an environment with strictly convex obstacles of various shapes and sizes.
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1. Introduction

Obstacle avoidance has been a challenging topic in the con-
trol of robotic systems and has been extensively studied by re-
searchers over the past few decades. Numerous approaches
have been proposed to prevent robots from colliding with ob-
stacles in their workspace, ranging from heuristic solutions [1]
to algorithmically rigorous [2, 3, 4, 5] and/or mathematically
rigorous [6, 7, 8] motion planning and control schemes. These
approaches can be categorized according to their requirements
on the robot’s localization capabilities and prior knowledge
about the environment. We first describe key developments in
obstacle-avoidance control schemes, along with their require-
ments, and then summarize our contribution in the context of
this prior work.

Many existing obstacle avoidance strategies require the robot
to have global localization as well as information about the
exact shapes and locations of the obstacles. One pioneering
solution with these requirements, first proposed in [9] in the
1980’s, uses the concept of virtual potential fields. Subse-
quent approaches based on potential fields include [10], which
assumes an environment that contains circular obstacles with
known centers and radii, and [7], in which harmonic potential
fields, which satisfy Laplace’s equation, are used to guarantee
collision-free robot navigation to a target position on the do-
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main boundary. The construction of potential fields called nav-
igation functions on bounded manifolds was a significant devel-
opment that enabled the design of control laws for exact robot
navigation to destinations in generalized sphere worlds [8, 11].
These control laws require accurate robot localization and prior
information about the locations of the obstacles and the equa-
tions of their boundaries. Numerous works have adapted the
navigation function approach to different scenarios. In [12], a
combination of harmonic potentials and navigation functions
is proposed as a solution when the free space can be decom-
posed into a chain of connected polygons. In [13], a navigation
function-based strategy is merged with the dynamic window ap-
proach [14] to produce faster robot convergence to a destination
in dynamic environments. An algorithm for automatic tuning
of the parameters of navigation functions for sphere worlds is
presented in [15]. In [16], navigation functions are designed
such that the robot can asymptotically track a moving target
in environments with obstacles. Recently, a modified naviga-
tion function-based approach was proposed in [17] to produce
robot convergence to the minimum of a globally convex poten-
tial function in an environment with arbitrary convex obstacles.

Control schemes that use barrier certificates [18] and bar-
rier functions [19] have been recently developed for scenarios
where there are unsafe or undesired regions in a dynamical sys-
tem’s state space that its trajectories must avoid. These methods
require knowledge of the exact boundary of the unsafe or unde-
sired region, which is the set of obstacles when the objective is
collision-free robot navigation. In [20], a control barrier func-
tion scheme is proposed to prevent collisions among the robots
in a swarm, and it also prevents collisions between the robots
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and static or dynamic obstacles. This control approach requires
knowledge of the the centers and radii of the circles that virtu-
ally bound the obstacles.

Another category of work on obstacle avoidance can be char-
acterized by the dependence of the proposed control strategies
on only approximate knowledge about the locations and geome-
tries of the obstacles. In [21], a sliding mode controller is pre-
sented for tracking the gradient of potential fields that are con-
structed based on the smallest circle that bounds each obstacle.
In the recent work [22], a stochastic navigation function-based
approach is proposed that requires a priori estimates of the ob-
stacle geometries and locations according to a probability dis-
tribution (a belief space). It is shown that if the robot follows
a stochastic approximation of the gradient of the navigation
function, convergence to the desired destination and obstacle
avoidance are guaranteed with a probability of one. The re-
cent work [23] proposes a sensor-based feedback law that uses
a Voronoi diagram for the environment which the robot com-
putes online. While this approach applies to environments with
unknown convex obstacles, it requires an assumption on the ob-
stacle curvature (Assumption 2 in [23]).

Other obstacle avoidance strategies do not require prior
knowledge about the obstacles, but are subject to different re-
strictions or rely on other available information. A modified
potential field-based method is presented in [24] for the case
where the target robot position is very close to one of the obsta-
cles, and it is extended to environments with moving obstacles
in [25]. Even though the proposed controller does not require
any knowledge about the shapes and positions of the obstacles,
it cannot eliminate all local minima in the environment that can
trap the robot. In [26], a stochastic source-seeking scheme is
proposed for a GPS-denied environment with a signal that is di-
rectly measurable by the robot. The robot is allowed to contact
the boundaries of the environment and the obstacles and travels
around these boundaries, maintaining contact with them, until
it finds a feasible direction to the source of the signal in the free
space.

In addition to the works described above, which focus on
designing controllers with theoretical guarantees in particular
types of environments, numerous other works focus on devel-
oping obstacle avoidance strategies that, while not necessarily
amenable to theoretical analysis, are convenient to implement
using typical sensors on physical robotic platforms. For exam-
ple, visual sensing approaches for estimating the distance and
velocity of nearby obstacles are described in [27] and [28] for
terrestrial and aerial applications, respectively. The work [29]
proposes a combination of a visual servoing control scheme
and a velocity estimation algorithm for obstacle avoidance by a
legged robot and an omnidirectional wheeled robot.

In this paper, we present a controller that stabilizes a holo-
nomic finite-dimensional robot to a constant desired velocity in
an unknown, unbounded environment and prevents its collision
with arbitrary strictly convex obstacles, as well as its entrap-
ment between the obstacles. Obstacle avoidance is enforced by
a repulsive term in the controller that is based on the gradient of
a virtual potential field. The proposed controller is suitable for
applications in which it is necessary to regulate the velocity of a

robot and navigate it safely through an unknown, obstacle-filled
environment where precise position feedback is absent, unre-
liable, or not required. For example, underwater robots may
lack accurate global position information via odometry or GPS,
only obtaining GPS readings when they surface periodically.
A multi-robot control problem that involves velocity regulation
and does not require position feedback is flocking control of a
group of agents [30], which may need to avoid unanticipated
obstacles along their way while stabilizing their velocities and
maintaining group cohesion [31].

To summarize, the novel contribution of this paper is a robot
controller for velocity regulation and obstacle avoidance with
all of the following properties:

• The controller does not require that the robot have exact or
approximate global position information or a priori infor-
mation about the locations, geometries, or configuration of
obstacles in the environment.

• The robot has no predefined trajectory and operates au-
tonomously with minimal capabilities: it can only measure
its own velocity and its relative position vector to the closest
point on any nearby obstacles within its sensing range.

• The controller has theoretical guarantees on performance;
specifically, it can be proved that a robot with this controller
will converge to a desired velocity without colliding with ob-
stacles or becoming entrapped by local minima.

The organization of the paper is as follows. In Section 2, we
define the problem statement and the terminology that we use
throughout the paper. In Section 3, we present the structure of
the proposed controller. The closed-loop dynamics of the robot
with the controller are analyzed for the case of environments
with a single obstacle in Section 4. In Section 5, the controller
design and analysis are extended to the case of environments
with multiple obstacles. Numerical simulation of the robot’s
motion with the proposed controller is given in Section 6. Fi-
nally, the paper is concluded in Section 7.

2. Problem Statement

We consider a disk-shaped holonomic robot that moves in
a planar unbounded domain with second-order dynamics (a
double-integrator model), q̈ = u, where q = (x, y)T ∈ R2 de-
notes the position of the robot’s center in a global reference
frame and u ∈ R2 is the robot’s control input. A physical real-
ization of such a robot is an omnidirectional mobile robot that
can move in any direction in a plane at each time instant [32].
We assume that the domain contains multiple strictly convex
obstacles. The control objective is for the robot to attain a de-
sired velocity vdes while avoiding collisions with the obstacles.
The x-axis of the global reference frame is defined along the
direction of vdes, without loss of generality. We now define two
terms that we will frequently use throughout the paper.

Definition 2.1. The line from the robot’s current position q that
is normal to the obstacle’s boundary intersects the boundary
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at the projection point. This point and its position vector are
denoted by P and qP, respectively, as shown in Fig. 1.

Definition 2.2. The vector q − qP from the projection point to
the robot’s current position is called the collision vector. This
vector is denoted by d and is shown in red in Fig. 1.

We make the following assumptions about the robot’s spec-
ifications and capabilities. The robot has a circular shape with
radius r. It does not have global position information (e.g.,
GPS) and has no prior knowledge of the obstacles’ locations
and shapes. The only information provided to the robot is the
target velocity vdes. The robot can measure its own velocity,
for example by using tachometers or a velocity estimation al-
gorithm based on optical flow [33]. It can measure its heading
in the global frame, e.g., using a compass.1 It can also iden-
tify the boundaries of nearby obstacles within its local sensing
range, which is assumed to be a circle with radius δc. We as-
sume that at each time instant, the robot can measure its dis-
tance from each obstacle within its sensing range, for example,
using infrared sensors or LIDAR. This distance is the length of
the collision vector d, according to the Projection Theorem in
[34]. We also assume that the robot can measure the angle φd
of the vector −d in its body-fixed frame, e.g. using LIDAR. By
adding φd + π rad to the robot’s heading in the global frame,
the robot can obtain the angle of d in the global frame, which
we denote by θd. This angle is required in the proposed control
law described in Section 3.

Given this minimal and completely local information, we
first seek a control law that can solve the following problem.

Problem 2.3. We consider an unbounded domain that contains
a single strictly convex obstacle with an arbitrary boundary 2

described by β(x, y) = 0, where β : R2 7→ R is at least twice
continuously differentiable.

We design a robot control law that uses only the local mea-
surements available to the robot to ensure that the robot:

(1) asymptotically converges to the desired velocity vdes,
(2) does not collide with the obstacle, and
(3) is never trapped in a neighborhood of the obstacle.

After designing a control law that solves this problem, we
consider an unbounded environment with multiple strictly con-
vex obstacles, in which the following assumption is satisfied.

Assumption 2.4. We define the closest pair of obstacles in the
environment as the two obstacles with the shortest distance be-
tween their boundaries. We assume that this distance is larger
than the diameter 2r of the robot.

We confirm that the controller proposed for Problem 2.3
guarantees the properties described in the following problem.

1Note that the robot’s ability to measure its heading (or orientation in gen-
eral) does not contradict the assumption that it lacks global position informa-
tion. The orientation of a mobile robot is often measured by its on-board sen-
sors, such as a compass, IMU, or gyroscope, and not necessarily by an external
localization system.

2The assumption that the obstacle is strictly convex excludes the possibility
that its boundary contains straight segments.

Fig. 1: A schematic representation of the robot, an obstacle, the projection
point, the collision vector, a virtual potential field constructed by the robot, and
the associated global reference frame.

Problem 2.5. We consider an unbounded domain that con-
tains a finite number m > 1 of strictly convex obstacles with
arbitrary boundaries described by βi(x, y) = 0, where each
βi : R2 7→ R, i ∈ {1, ...,m} is at least twice continuously dif-
ferentiable. We assume that Assumption 2.4 about the distance
between obstacles in the domain is satisfied. During its motion,
the robot implements the control law designed to solve Problem
2.3 for the obstacle that is closest to its current position. We
confirm that this control law ensures that the robot:

(1) asymptotically converges to the desired velocity vdes,
(2) does not collide with any obstacle, and
(3) is never trapped by any set of obstacles.

3. Controller Design

The proposed control law is a combination of a regulatory
term, which stabilizes the robot’s velocity to vdes, and a repul-
sive term that is based on the gradient of a virtual potential field.

3.1. Definition of the virtual potential field
The robot constructs a virtual potential field ϕ around the

point P. This field is designed to satisfy four properties:
(i) ϕ is only a function of δ := (‖d‖ − r) ∈ R>0, the distance

between the robot’s boundary and the point qP.
(ii) ϕ(δ)→ ∞ as δ→ 0.
(iii) d

dδϕ(δ)→ ∞ as δ→ 0.

(iv) ϕ(δ) and d
dδϕ(δ) decrease monotonically to 0 as δ → δc,

and equal zero when δ ≥ δc.
Note that by property (i), the potential field has circular level
sets around qP, as shown in Fig. 1.

To this end, we define the potential field as follows:

ϕ(δ) =

p δ
δc

+
(
δc
δ

)p
− (p + 1), 0 < δ ≤ δc,

0, δc < δ,
(1)
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where p is a strictly positive real constant. We can easily con-
firm that the function in Eq. (1) has properties (i)-(iii). The
function also satisfies property (iv), and is therefore continuous
and differentiable for every δ ∈ R>0. This potential field may
introduce extremely large forces into the control law that exceed
the saturation limits of the actuators when the robot moves very
close to the obstacle’s boundary. However, as described in Sec-
tion 4.3, we can enforce an upper bound on the actuation forces
if we impose a limit on the robot’s speed.

3.2. Robot control law
The proposed control law is the following combination of a

stabilizing term and a repulsive term:

u = −K(q̇ − vdes) − KR∇dϕ(δ), (2)

in which K = kI and KR = kRI, where k, kR are positive gains
and I ∈ R2×2 is the identity matrix, and ∇dϕ(δ) is the gradient
of the potential field with respect to d.

Remark 3.1. The gradient of ϕ with respect to d can be written
as:

∇dϕ(δ) =
dϕ
dδ

ed =


p
δc

(
1 −

(
δc
δ

)p)
ed, 0 < δ ≤ δc

0, δc < δ
(3)

where ed is the unit vector along d. The calculation of ∇dϕ is
provided in Appendix A. Since p and δc are known parameters,
and we assume that the robot can measure δ and the direction
of d (see Section 2), the robot can therefore calculate ∇dϕ(δ)
using only these local measurements.

Remark 3.2. We emphasize that the control law in Eq. (2) re-
lies solely on local measurements: the robot’s velocity q̇ and the
magnitude and direction of the collision vector d, all of which
can be measured by sensors on-board the robot. The robot does
not need global position information or knowledge about the
locations and geometric properties of the obstacles.

4. Analysis of Robot Dynamics for Single-Obstacle Case

We now investigate the robot’s closed-loop dynamics with
the control law in Eq. (2) and prove that this control law
achieves the three objectives described in Problem 2.3. First,
we define four terms that will be used in our analysis.

Definition 4.1. The free space is the subset of the domain that
excludes the obstacle’s boundary and interior.

Definition 4.2. The obstacle’s front area is the subset of the
free space in which δ ∈ (0, δc] and vT

des∇dϕ ≥ 0.

Definition 4.3. The obstacle’s back area is the subset of the
free space in which δ ∈ (0, δc] and vT

des∇dϕ < 0.

Definition 4.4. The safe area is the subset of the free space that
excludes the obstacle’s front and back areas.

The areas defined above are illustrated for an arbitrary strictly
convex obstacle in Fig. 2.

Fig. 2: Illustration of an obstacle’s front and back areas as well as the safe area.
The dashed orange lines are parallel to the direction of the desired velocity, and
the solid blue lines are normal to the dashed orange lines. The blue arrows
illustrate the gradient of the potential field.

4.1. Velocity convergence analysis

We can write the closed-loop dynamics of the robot with the
proposed control law as:

q̈ + K(q̇ − vdes) + KR∇dϕ(δ) = 0. (4)

By setting q̈ = q̇ = 0 in Eq. (4), we obtain Kvdes = KR∇dϕ(δ).
Since the obstacle is strictly convex, given any two distinct
points at the same distance δ from the obstacle, the direction
of the gradient ∇dϕ(δ) (i.e., the direction of ed) at these points
cannot be identical. Also, we can confirm that dϕ

dδ in Eq. (3) is a
strictly monotonic function for δ ∈ (0, δc). Thus, the equation
Kvdes = KR∇dϕ(δ) has unique solutions for δ and ed, which we
denote by δe and ede , respectively. Consequently, Eq. (4) has a
unique equilibrium point at which

δe = δc

(
1 +

k ‖vdes‖

pkR

)−1/(p+1)

, ede = −evdes , (5)

where evdes is the unit vector along vdes. We can check that
δe ∈ (0, δc). The repulsive vector field −∇dϕ has a component
in the opposite direction of vdes everywhere in the front area of
the obstacle, and it has a component in the same direction as
vdes everywhere in the back area. Thus, the position where the
term KR∇dϕ negates the term −Kvdes in Eq. (4) must be in the
front area, and so the equilibrium where the robot stops at a
distance δe from the obstacle must be in this area (see Fig. 3).

Eq. (4) also has an invariant set E that is defined as

E =
{
q ∈ R2 , q̇ ∈ R2 | q̇ = vdes , ∇dϕ(δ) = 0

}
. (6)

From Eq. (3), ∇dϕ = 0 implies that δ ≥ δc. This invariant set
has no intersection with the obstacle’s front area, since asymp-
totic convergence to the desired velocity vdes and a monotonic
decrease in the value of the potential field ϕ(δ) as δ→ δc (prop-
erty (iv) of ϕ) cannot occur simultaneously in the front area.

The stability characteristics of the unique equilibrium point
in Eq. (5) and the invariant set in Eq. (6) are discussed in the
next two theorems.
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Fig. 3: Illustration of repulsive vector field −∇dϕ (red arrows) and the unique
equilibrium point at distance δe from the obstacle, given by Eq. (5).

Theorem 4.5. Consider the unique equilibrium point of Eq.
(4) for which the robot is stationary at distance δe, given in Eq.
(5), from the boundary of the obstacle in the obstacle’s front
area. This equilibrium is a saddle point.

Proof. We use Lyapunov’s indirect method to investigate the
stability properties of this equilibrium. Toward this end, we de-
fine the state vector as X = (qT , q̇T )T∈ R4 and linearize Eq. (4)
about the equilibrium point, obtaining the following equation:

Ẋ =

 02×2 I2×2

−KR
∂
∂q∇dϕ(δ) −K

 X, (7)

where δ ≡ δe. By Lemma 3.5 in [35], we know that the
linear system in Eq. (7) has the stability properties of the
system described by q̇ = − ∂

∂q∇dϕ(δe)q. In addition, since
q = d + qP and ϕ = ϕ(δ), where δ = (‖d‖ − r), we can show
that ∇dϕ = ∇qϕ (this equation is similar to Equation (7) in
[30] and is proved in Appendix A). Therefore, we have that
q̇ = − ∂

∂q∇dϕ(δe)q = −∇2ϕ(δe)q, where ∇2ϕ(δe) is the Hessian
of ϕ at the equilibrium point. The stability properties of Eq. (7)
are thus determined by the eigenvalues of ∇2ϕ(δe), which we
characterize in the following lemma.

Lemma 4.6. The determinant of ∇2ϕ(δ) is strictly negative for
all points q ∈ R2 such that δ ∈ (0, δc), and consequently, the
eigenvalues of ∇2ϕ(δ) have opposite signs.

Proof. The Hessian of ϕ can be calculated as

∇2ϕ(δ) =
∂

∂q
(∇dϕ(δ)) =

∂

∂q
(
ϕ′(δ)ed

)
, (8)

where ϕ′(δ) =
dϕ
dδ . Applying the fact that ∇dϕ = ∇qϕ, Eq. (8)

can be written as

∇2ϕ(δ) = ϕ′′(δ)edeT
d + ϕ′(δ)

(
∂ed

∂q

)
, (9)

where ϕ′′(δ) =
d2ϕ
dδ2 . By the chain rule, the partial derivative in

Eq. (9) can be expressed as

∂ed

∂q
=
∂ed

∂d
∂d
∂q
. (10)

Since d = q − qP, we have that ∂d
∂q = I. Also, given that ed =

[cos(θd) sin(θd)]T , we can confirm that

∂ed

∂d
=

1
δ

 sin(θd)2 − cos(θd) sin(θd)

− cos(θd) sin(θd) cos(θd)2

 . (11)

Using Eqs. (10) and (11), Eq. (9) can be rewritten as

∇2ϕ(δ) = ϕ′′(δ)

 cos(θd)2 cos(θd) sin(θd)

cos(θd) sin(θd) sin(θd)2


+
ϕ′(δ)
δ

 sin(θd)2 − cos(θd) sin(θd)

− cos(θd) sin(θd) cos(θd)2

 . (12)

Then, we can express the determinant of the Hessian as

det(∇2ϕ(δ)) =
1
δ
ϕ′(δ)ϕ′′(δ). (13)

We can determine from Eq. (1) that ϕ′(δ) and ϕ′′(δ) are strictly
negative and strictly positive, respectively, for δ ∈ (0, δc).
Hence, det(∇2ϕ(δ)) is strictly negative for any point q that is
at a distance δ ∈ (0, δc) from a strictly convex obstacle.

Since det(∇2ϕ) is strictly negative, the eigenvalues of ∇2ϕ
are both non-zero and have opposite signs, and consequently
the equilibrium of the system described by q̇ = −∇2ϕ(δe)q is
a saddle point. As explained in the text preceding Lemma 4.6,
this implies that the equilibrium of the system in Eq. (7) is also
a saddle point. Therefore, the equilibrium of Eq. (4) for which
the robot is stationary at distance δe from the obstacle is a saddle
point. We can thus conclude that the robot can only reach this
equilibrium if its initial position is in a set of measure zero. In
practice, the robot will not be initialized precisely in this set,
and so it will never stop at the location of the saddle point.

Theorem 4.7. The invariant set E described in Eq. (6) is lo-
cally asymptotically stable, and the obstacle’s back area is a
subset of its basin of attraction.

Proof. We cannot use Lyapunov’s indirect method to study the
stability of the invariant set E due to the following argument.
In the set E, we have that δ ≥ δc, and consequently ϕ(δ) = 0 and
dϕ(δ)/dδ = 0 in this set. The linearization of Eq. (4) about each
point in the set E is given by Eq. (7) with δ ≥ δc. As a result, the
first two columns of the matrix in Eq. (7) are both columns of
zeros, and therefore the matrix has two zero eigenvalues. Thus,
we cannot determine the stability characteristics of the closed-
loop system from its linearization [36].

Instead, we use LaSalle’s invariance principle for this case.
Toward this end, we define the velocity error s = q̇−vdes. Since
the desired velocity is constant, we have that q̈ = ṡ. Then, the
closed-loop dynamics in Eq. (4) can be rewritten as:

ṡ + Ks + KR∇dϕ = 0. (14)

We consider the following Lyapunov function:

V =
1
2

sT s + kRϕ(δ). (15)
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This function is positive over the entire state space and equals
zero at each point in the set E, since s = 0 and ϕ(δ) = 0 in this
set. The time derivative of this function is:

V̇ = −sT Ks − sT KR∇dϕ + kR(∇dϕ)T ḋ, (16)

where we have written ϕ̇ = (∇dϕ)T ḋ in the last term using the
chain rule. To simplify Eq. (16), we write ḋ as ḋ = q̇ − q̇P,
in which q̇P is the time derivative of the position of the projec-
tion point (see Fig. 1). Since the projection point is constrained
to move along the boundary of the obstacle, its velocity q̇P is
always tangent to this boundary. Moreover, the gradient of the
potential field ϕ is normal to the boundary. Hence, we can con-
clude that (∇dϕ)T q̇P = 0. Thus, using the relation s = q̇ − vdes,
Eq. (16) is simplified to:

V̇ = −sT Ks + kRvT
des∇dϕ. (17)

As stated in Definition 4.3, the second term on the right-hand
side of this equation is negative in the obstacle’s back area, and
thus V̇ is negative definite over the entire back area of the ob-
stacle. This means that the invariant set E is locally asymptoti-
cally stable, and a set defined as Ω :=

{
X ∈ R4 | V ≤ c, c > 0

}
,

which contains the obstacle’s back area, is the simplest estimate
of the basin of attraction for E. The set Ω consists of all trajec-
tories with a bounded initial velocity that start in or enter the
obstacle’s back area.

4.2. Collision avoidance analysis
We now prove that the robot will never collide with the obsta-

cle in either its front area or back area. For the case where the
robot is in the back area, the following corollary from Theorem
4.7 ensures collision avoidance:

Corollary 4.8. Since V̇ is negative everywhere in the obstacle’s
back area, V can never become unbounded in this area. This
implies that ϕ never blows up to infinity in the back area. Hence,
δ never approaches zero in this region, meaning that the robot
never collides with the obstacle when it is in the back area.

Next, we analyze the case where the robot is in the obsta-
cle’s front area. For this purpose, we study the dynamics of
the robot in a different coordinate system, illustrated in Fig. 4.
Note that the vectors denoted by e in the figure are unit vectors.
First, we decompose the robot’s velocity q̇ into the sum of q̇P,
the velocity of the projection point on the obstacle’s boundary,
and ḋ, the robot’s velocity relative to the projection point. We
describe q̇P in a tangential-normal coordinate system [37], in
which ξ ∈ R denotes the scalar displacement of the projection
point along the obstacle’s boundary, and ρ ∈ R>0 denotes the
radius of curvature of the boundary. In addition, we describe ḋ
in a polar coordinate system [37], in which (as defined previ-
ously) δ= (‖d‖ − r) ∈ R≥0 is the distance between the robot’s
boundary and the projection point, and θd ∈ [−π, π] rad is the
angle of the vector d in the global reference frame. Using the
facts that q̇ = q̇P + ḋ, eδ = ed, and q̇P is always tangent to the
obstacle’s boundary, the robot’s velocity can be written in the
new coordinate system as:

q̇ = (δ̇)eδ +
(
(δ + r)θ̇d

)
eθd + (ξ̇)et. (18)

Fig. 4: Illustration of the coordinate systems used to derive Eqs. (20) and (21).

Therefore, the robot’s acceleration is:

q̈ =
(
δ̈ − (δ + r)θ̇2

d

)
eδ +

(
(δ + r)θ̈d + 2δ̇θ̇d

)
eθd + (ξ̈)et +

(
ξ̇2

ρ

)
en.

(19)
Moreover, since the collision vector d always points in the di-
rection of the normal to the boundary, we can conclude that
et = eθd and en = −eδ. Substituting the expressions for q̇ and q̈
defined in Eq. (18) and Eq. (19) into Eq. (4), we can write the
resulting equations of motion along the eδ and eθd directions as
Eq. (20) and Eq. (21), respectively:

δ̈ − (δ + r)θ̇2
d −

ξ̇2

ρ
+ kδ̇ + kRϕ

′(δ) − kvdes cos(θd) = 0, (20)

(δ + r)θ̈d + 2δ̇θ̇d + ξ̈ + k(δ + r)θ̇d + kξ̇ + kvdes sin(θd) = 0,
(21)

in which vdes = ‖vdes‖. Note that the repulsive force −ϕ′(δ)ed
shows up only in Eq. (20), since ed = eδ.

Remark 4.9. The robot is in the obstacle’s back area when
cos(θd) > 0, and it is in the front area when cos(θd) ≤ 0.

The next theorem uses Eq. (20) and Eq. (21) to prove that
the robot will never collide with the obstacle in its front area.

Theorem 4.10. If the robot’s trajectory starts anywhere in the
obstacle’s front area, then the robot will never collide with the
obstacle’s boundary in this region.

Proof. We consider the following function:

W =
1
2

(
δ̇2 +

(
(δ + r)θ̇d + ξ̇

)2
)

+ kRϕ(δ)

− kvdes

(
(δ + r) cos(θd) −

∫ θd

0
ρ sin(σ)dσ

)
. (22)

To confirm that this function is positive over all θd in the ob-
stacle’s front area, i.e. θd ∈ [−π,−π/2] ∪ [π/2, π] rad, we only
have to prove that (δ cos(θd) −

∫ θd

0 ρ sin(σ)dσ) ≤ 0 for all θd in
this set. From Remark 4.9, we see that the term δ cos(θd) ≤ 0
for all θd in the front area. In addition, by Definition 6.2 in [36],
the integral

∫ θd

0 ρ sin(σ)dσ ≥ 0 for any θd ∈ [−π, π] rad, since ρ
is always positive and sin(θd) belongs to the sector [0, π/4] for
θd ∈ [−π, π] rad (and therefore for θd ∈ [−π,−π/2] ∪ [π/2, π]
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rad). Therefore, (δ cos(θd) −
∫ θd

0 ρ sin(σ)dσ) ≤ 0 for all θd in
the front area, and hence W is positive over such θd. We note
that we cannot derive a closed-form solution for the integral∫ θd

0 ρ sin(σ)dσ, since ρ changes with θd for arbitrary strictly
convex obstacles, and the obstacle shape in our scenario is un-
known.

The time derivative of the function W along the trajectories
of the system in Eq. (20) and Eq. (21) is given by:

Ẇ = − k
(
δ̇2 + (δ + r)2θ̇2

d

)
+ δ̇

ξ̇2

ρ
− ξ̇δ̇θ̇d

− kvdes

(
ξ̇ sin(θd) −

d
dt

∫ θd

0
ρ sin(σ)dσ

)
. (23)

We define β as the angle of the direction of the normal to the
boundary in the global reference frame. For an infinitesimal
change in the projection point displacement ξ, we have that
dξ = ρdβ, where the radius of curvature ρ is approximated as
constant. This implies that ξ̇ = ρβ̇. Moreover, since eδ is al-
ways normal to the boundary, we can conclude that dθd = dβ,
and consequently, β̇ = θ̇d. Using the relation ξ̇ = ρθ̇d, we can
reduce Eq. (23) to the following expression:

Ẇ = − k
(
δ̇2 + (δ + r)2θ̇2

d

)
− kvdes

(
ρθ̇d sin(θd) −

d
dt

∫ θd

0
ρ sin(σ)dσ

)
. (24)

We now define g(θd) :=
∫ θd

0 ρ sin(σ)dσ. By the chain rule, the
time derivative of g(θd) can be written as d

dt g(θd) = d
dθd

g(θd)θ̇d,
where d

dθd
g(θd) = ρ sin(θd). This leads to the cancellation of the

two terms in the second set of parentheses in Eq. (24), and Ẇ
is simplified to:

Ẇ = −k
(
δ̇2 + (δ + r)2θ̇2

d

)
, (25)

from which we can conclude that Ẇ ≤ 0. Therefore, W never
becomes unbounded in the front area, which implies that ϕ re-
mains bounded in this region. By property (ii) of ϕ, this shows
that the distance δ never approaches zero in the front area,
and hence the robot never collides with the obstacle in this re-
gion.

The next theorem, which addresses the evolution of robot
trajectories that begin in the obstacle’s front area, completes
our analysis of collision avoidance.

Theorem 4.11. Almost all robot trajectories that start in the
obstacle’s front area will eventually leave this region and enter
the back area or the safe area.

Proof. From Theorem 4.5, the only equilibrium point in the
front area is a saddle, which does not attract any trajectories in
this area except for trajectories that start in a particular set of
measure zero. Furthermore, since there are no other equilibria
in the front area, we can apply the Index Lemma in [36] to Eq.
(14) and conclude that there is no limit cycle in this area as well.
Therefore, the unstable trajectories in the front area, which em-
anate from the saddle point, must cross into the back area. By
Theorem 4.7, there exists an asymptotically stable invariant set
in the back area that attracts these trajectories.

4.3. A bound on the repulsive term in the control input
As stated in property (iii) in Section 3.1, the derivative of

the potential field ϕ goes to infinity when the robot’s distance
δ from the obstacle approaches zero. Thus, when the robot is
very close to the obstacle (i.e., δ is small), the repulsive term in
the control input Eq. (2) could become too large to implement
in practice. In this section, we establish an upper bound on this
term by incorporating realistic constraints on the robot’s initial
velocity and sensing range.

We consider the line that is parallel to the direction of the de-
sired velocity and passes through the saddle equilibrium point,
as shown in Fig. 3. If the robot’s initial position is located
on this line, and its initial velocity is parallel to this line, then
both the velocity stabilizing force −K(q̇−vdes) and the repulsive
force will be along this line at the beginning of its motion and
for all future time, since there will be no other vector fields to
drive the robot off this direction. This leads to one-dimensional
motion of the robot along this line. Moreover, for a given initial
robot speed, the velocity stabilizing force has the largest com-
ponent that directly opposes the repulsive force when the robot
is on this line, compared to when it is anywhere else in the ob-
stacle’s front area. Thus, the minimum feasible value for δ in
the front area is achieved on this line.

When the robot moves only along this line in the front area,
we have that θ̈d, θ̇d, ξ̈, ξ̇ = 0 and θd = π. Substituting these
values into Eqs. (20) and (21), the equation of the robot’s one-
dimensional motion along this line in the front area is given by:

δ̈ + kδ̇ + kRϕ
′(δ) + kvdes = 0. (26)

Theorem 4.13 below proves the existence of a lower bound on
δ by comparing the time response of Eq. (26), which is denoted
by δ(t), to that of the following equation,

%̈ + k%̇ = h(%), (27)

where
h(%) := −a% + b, a, b ∈ R>0. (28)

We first state the following Lemma, which describes the condi-
tions that guarantee the existence of a positive lower bound for
the time response of Eq. (27), denoted by %(t).

Lemma 4.12. Given %0 := %(0) ∈ R>0
3 and w0 := %̇(0) as the

initial conditions for Eq. (27), and vmax ∈ R>0 as a bound for
w0, i.e. |w0| ≤ vmax, there exists a strictly positive number γ that
satisfies %(t) ≥ γ, ∀t ∈ [0,∞), if a and b in Eq. (28) are large
enough.

Proof. See Appendix B.

Theorem 4.13. Given δ0 := δ(0) and v0 := δ̇(0) as the robot’s
initial distance from the obstacle and its initial speed in Eq.
(26), respectively, and also assuming |v0| ≤ vmax, there exists
a lower bound on the robot’s distance from the obstacle. If
the robot starts its motion in the safe area, this bound will be
uniform and depend on δc and vmax.

3We assume that %0 is positive, since we want to compare %(t) with δ(t),
which we proved is always positive in Theorem 4.10.
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Fig. 5: Illustration of the right-hand side of Eq. (29) compared to a function in
the form of Eq. (28) with % replaced by δ.

Proof. We rewrite Eq. (26) in the following form:

δ̈ + kδ̇ = −kRϕ
′(δ) − kvdes. (29)

The right-hand side of Eq. (29) is the orange curve in Fig. 5.
From this plot, we can see that there is at least one function h(δ)
in the form of Eq. (28) (the green straight line in Fig. 5) that
satisfies the following condition,

h(δ) ≤ −kRϕ
′(δ) − kvdes, ∀δ ∈ R>0, (30)

for the type of potential field defined by Eq. (1). Hence, we can
write the following differential inequality:

δ̈ + kδ̇ ≥ −aδ + b, δ(0) = δ0, δ̇(0) = v0. (31)

Now, considering the system in Eq. (27) with the initial condi-
tions set as %0 = δ0, w0 = v0, and defining

χ% := %̇ + k%, χδ := δ̇ + kδ, (32)

we rewrite Eq. (27) and Eq. (31) as

χ̇% = h(%), χ̇δ ≥ h(δ). (33)

Using the comparison lemma [36], we obtain

χδ ≥ χ%, ∀t ∈ [0,∞). (34)

Furthermore, using the expressions for χδ and χ% in Eq. (32),
we can rewrite Eq. (34) as

δ̇ − %̇ ≥ −k(δ − %). (35)

Using the comparison lemma again, we obtain

δ(t) ≥ (δ0 − %0) e−kt + %(t), ∀t ∈ [0,∞), (36)

and taking into account the fact that δ0 = %0, we conclude that

δ(t) ≥ %(t), ∀t ∈ [0,∞). (37)

Finally, invoking Lemma 4.12, we can write

δ(t) ≥ γ, (38)

which gives a lower bound for δ(t) and completes the proof.

If we assume that the robot starts its motion in the safe area,
we can replace δ0 with δc in all the calculations and obtain a
closed-form solution for γ based on the procedure in Appendix
B. Such a bound is a function of δc and vmax, and this bound is
uniform with respect to the robot’s initial condition.

To conclude this section, we take into account the fact that
−ϕ′(δ) is a decreasing function with respect to δ, which allows
us to establish an upper bound for the repulsive term based on
the derived lower bound on δ(t) as∥∥∥−kRϕ

′(δ)ed
∥∥∥ ≤ −kRϕ

′(γ). (39)

5. Analysis of Robot Dynamics for Multiple-Obstacle Case

In this section, we design a control law based on Eq. (2),
which was developed for an environment with a single obstacle,
and demonstrate that it achieves the three objectives described
in Problem 2.5 for an environment that contains multiple strictly
convex obstacles. Our solution is to define a switching control
law, in which the robot applies the control law Eq. (2) for the
closest obstacle that it detects in its sensing range at each time
instant. This control law is a discontinuous function because the
repulsive term in the control input Eq. (2) undergoes a sudden
change in its direction whenever the robot crosses the switching
surface between two obstacles, which is the loci of all points
that are equidistant from the obstacles, as illustrated in Fig. 6.
If there are m disjoint obstacles in the robot’s sensing range, the
control law is written as:

u = −K(q̇ − vdes) − KR∇d∗ϕ(δ∗),
δ∗ = min

i∈{1,...,m}
{δi}, (40)

where d∗ is the collision vector associated with the closest ob-
stacle. The closed-loop dynamics of the robot with control law
Eq. (40) can be written as:

q̈ + K(q̇ − vdes) + KR∇d∗ϕ(δ∗) = 0. (41)

Defining the state vector X = (XT
1 , X

T
2 )T ∈ R4, where X1 = q

and X2 = q̇, we can rewrite Eq. (41) in state-space form as

Ẋ = f ∗(X) :=
[

X2
−K(X2 − vdes) − KR∇d∗ϕ(δ∗)

]
. (42)

Eq. (42) is a differential equation with a discontinuous right-
hand side, since ∇d∗ϕ may have different directions on the sides
of a switching surface between two obstacles. To analyze the
solutions X(t) of Eq. (42), suppose that at a given time, the
robot is at distance δi from obstacle i and distance δ j from ob-
stacle j. We then replace the vector field f ∗ in (42) with f i and
f j, where f i is the vector field on the side of the switching sur-
face that contains obstacle i, and f j is the vector field on the
side that contains obstacle j (see Fig. 6):

f i(X) =

[
X2

−K(X2 − vdes) − KR∇diϕ(δi)

]
,

f j(X) =

[
X2

−K(X2 − vdes) − KR∇d jϕ(δ j)

]
. (43)
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On each side of the switching surface, the robot’s dynamics are
described by Eq. (4), and therefore exhibit the desired velocity
convergence and collision avoidance behaviors as we proved in
Sections 4.1 and 4.2. On the switching surface, however, the
closed-loop system (42) can have two types of solutions, de-
pending on the directions of the vector fields f i and f j with
respect to the switching surface. If the components of f i and
f j that are normal to the switching surface are pointing in the
same direction (Fig. 7, left), then the solution of the closed-loop
system is a Carathéodory solution, which is an absolutely con-
tinuous function satisfying the integral equation corresponding
to Eq. (42), X(t) = X(t0)+

∫ t
t0

f ∗(X(τ))dτ [38]. In this case, the
system trajectory passes through the switching surface. If the
two components that are normal to the switching surface point
in opposite directions (Fig. 7, right), then the system has a Fil-
ippov solution that satisfies the following differential inclusion
[38], defined in terms of a convex combination of f i and f j:

Ẋ ∈ F(X) :=
{
α f i(X) + (1 − α) f j(X) : α ∈ [0, 1]

}
. (44)

Equation (44) describes the dynamics of the robot as:

Ẋ =


f i(X), δi < δ j

α f i(X) + (1 − α) f j(X), δi = δ j

f j(X), δi > δ j

(45)

Since the components of f i and f j that are normal to the switch-
ing surface are pointing in opposite directions, the system tra-
jectory corresponding to the Filippov solution can only evolve
on the switching surface. At the point where the system tra-
jectory reaches the switching surface, there is a unique convex
combination of f i and f j (i.e., a unique value for α in (44)) that
is tangent to this surface, which defines the direction of F(X)
on the surface. At each point on the switching surface, the Fil-
ippov solution is represented by the value of α for which F(X)
is tangent to the surface at that point.

A trajectory corresponding to a Filippov solution often chat-
ters about the switching surface. We note that the proposed
controller, in contrast to a sliding mode controller, is not de-
signed to stabilize the system trajectories to the switching sur-
face. Chattering might occur for some time, but the robot
will eventually leave the switching surface if certain conditions
hold. Theorem 5.1 below guarantees that, under these condi-
tions, the closed-loop system has no equilibria on the switching
surface, which ensures that the robot does not become stuck
between two obstacles.

Theorem 5.1. Consider an unbounded environment with at
least two obstacles for which Assumption 2.4 holds true; i.e.,
the closest pair of obstacles is separated by a distance larger
than the robot’s diameter 2r. Given the discontinuous control
law in Eq. (40), no equilibrium point exists on the switching
surface between any two obstacles in the environment if p in
Eq. (1) is sufficiently small.

Proof. Suppose that obstacles i and j are the closest pair of
obstacles in an environment. By Assumption 2.4, the distance
between these obstacles is greater than 2r. If there exists an

Fig. 6: Illustration of the forces that act on the robot when it detects multiple
obstacles in its sensing range.

Fig. 7: A schematic representation of two vector fields that result in (left)
Carathéodory and (right) Filippov solutions for a differential equation with a
discontinuous right-hand side.

equilibrium point (Ẋ = 0) on the switching surface between
obstacles i and j, we have that

α f i(X) + (1 − α) f j(X) = 0. (46)

Using the fact that δi = δ j on the switching surface, and sub-
stituting Eq. (3) for ϕ and Eq. (43) for f i and f j, Eq. (46)
becomes:

Kvdes + kR
p
δc

(
1 −

(
δc

δs

)p) (
αedi + (1 − α)ed j

)
= 0, (47)

where we have defined δs := δi = δ j.
We now derive a conservative upper bound for the parame-

ter p in the potential field. When the robot is on the switching
surface, the repulsive force on it has the highest possible com-
ponent in the direction opposite to vdes when edi = ed j .

4 The
magnitude of the repulsive force is highest when δs = r. Sub-
stituting edi = ed j and δs = r into Eq. (47), we can reduce this
equation to the following scalar equation:

kvdes + kR
p
δc

(
1 −

(
δc

r

)p)
= 0. (48)

To prevent the existence of an equilibrium point, and to ensure
that the robot converges to the desired velocity, we need the
stabilizing term to exceed the repulsive term; i.e.,

kvdes > −kR
p
δc

(
1 −

(
δc

r

)p)
. (49)

4This is a theoretical scenario that would not happen in practice; we are
using it here to obtain a conservative bound on p.
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We can rearrange this inequality to obtain the following upper
bound on a function of p, called µ(p):

µ(p) := p
((
δc

r

)p

− 1
)
<

kvdes

kR
δc. (50)

If the closest pair of obstacles are both in the robot’s sensing
range, we know that r ≤ δc, and therefore can confirm that µ(p)
in Eq. (50) is strictly increasing for positive p. Hence, we can
conclude that p must be small enough for Eq. (50) to hold,
which completes the proof.

The result in Theorem 5.1 can be generalized for a point that
is equidistant from l ∈ {3, ...,m} obstacles. At such a point, the
convex combination of vector fields f i, which defines the differ-
ential inclusion in Eq. (44), is given by F(X) :=

∑l
i=1 αi f i(X),

where αi ∈ [0, 1] for all i ∈ {1, ..., l} and
∑l

i=1 αi = 1. The vector
X is an equilibrium if

∑l
i=1 αi f i(X) = 0, which implies that

Kvdes + kR
p
δc

(
1 −

(
δc

δs

)p)  l∑
i=1

αiedi

 = 0, (51)

where δs := δ1 = δ2 = ... = δl. Again, we consider the repulsive
force on the robot with the highest possible component in the
direction opposite to vdes, which occurs when ed1 = ed2 = ... =

edl . This simplifies the summation in Eq. (51) to
∑l

i=1 αi edi =

ed1 . Finally, setting δs = r, Eq. (51) is simplified to Eq. (48).
This shows that choosing p small enough to satisfy Eq. (50)
will also guarantee the absence of an equilibrium at a point that
is equidistant from three or more obstacles.

6. Simulation Results

To validate our controller, we simulated the motion of a disk-
shaped holonomic robot in environments with a single strictly
convex obstacle or multiple strictly convex obstacles. The
robot’s radius is r = 0.1 m, and its sensing radius is δc = 0.5 m.
The desired velocity is set to vdes = 0.1 m/s along the x-axis of
the global frame for all the simulations. We present results for
one scenario with a single obstacle and two scenarios with mul-
tiple obstacles. In all scenarios, the robot starts its motion in the
safe area to the left of the obstacles, does not have any global
localization or prior information about the shapes and locations
of the obstacles, and only knows the desired velocity.

6.1. Single obstacle
We first consider an environment with an elliptical obstacle.

The control parameters in Eq. (2) are set to k = 1, kR = 0.05,
and p = 0.4. Figure 8 plots the trajectory of the robot in this
environment, showing that it travels past the obstacle without
collision. The robot’s x and y velocity components over its tra-
jectory are plotted versus time in Fig. 9. This figure shows that
the robot quickly approaches the desired velocity until it detects
the obstacle in its sensing range. Then, the controller redirects
the robot so that it travels around the obstacle, as indicated by
the increase in the y velocity component, and the robot deviates
from the desired velocity. The robot converges to the desired
velocity after it travels far enough from the obstacle that it can-
not detect it within its sensing range.

6.2. Multiple obstacles

In the first scenario, we consider an environment with six
identical circular obstacles, shown in Fig. 10. The radius of
each obstacle is 1.1 m, and Assumption 2.4 is satisfied. The
control parameters are set to k = 1, kR = 0.05, and p = 0.32.
Fig. 10 shows that the robot travels between the obstacles with-
out colliding with them or becoming entrapped. Figure 11 plots
the time evolution of the robot’s velocity components, which
oscillate as the robot maneuvers between the obstacles. The
sudden changes in the y velocity component occur at times
when the robot detects a new obstacle in its sensing range and
begins to circumvent the obstacle. The robot converges to the
desired velocity after it travels past all six obstacles.

In the second scenario, we consider an environment with four
different strictly convex obstacles, shown in Fig. 12. Assump-
tion 2.4 is satisfied, since the shortest distance between the clos-
est pair of obstacles (Obstacles 1 and 2) is 0.3 m. As illustrated
in Fig. 12, the robot travels past the obstacles without collid-
ing with them or becoming entrapped between them. Figure 13
plots the time evolution of the robot’s velocity components. The
robot’s velocity displays a chattering behavior between times
A and B, when it passes through the narrow channel between
Obstacles 1 and 2. This is due to its frequent crossing of the
switching surface between these two obstacles, which indicates
that its trajectory is a Filippov solution of the closed-loop dy-
namics (43)-(44), as described in Section 5 (Fig. 7, right). At
time C, the robot crosses the switching surface between Ob-
stacles 2 and 3. No chattering occurs at this time, since the
resultant of the velocity stabilizing force and the two repulsive
forces from Obstacles 2 and 3 prevent the robot from enter-
ing the narrow channel between these two obstacles. At time
D, the robot crosses the switching surface between Obstacles
3 and 4. No chattering is observed at this time either, because
the channel between these two obstacles is relatively wide. The
absence of chattering about the last two switching surfaces in-
dicates that the robot’s trajectory through these switching sur-
faces is a Carathéodory solution of the closed-loop dynamics,
as discussed in Section 5 (Fig. 7, left). The robot stops sensing
Obstacle 3 after it passes the corresponding point D in Fig. 12
and is repelled only by Obstacle 4. Fig. 13 shows that after
circumventing all the obstacles, the robot converges to vdes.

7. Conclusion and Future Work

We proposed an obstacle avoidance controller for a holo-
nomic finite-dimensional robot in an unbounded, GPS-denied
environment with unknown strictly convex obstacles. The con-
troller relies only on the robot’s local measurements and does
not require any information about the locations and geometry
of the obstacles. We first studied the case where the environ-
ment has a single obstacle and proved that with the proposed
controller, no collision takes place and the robot converges to
the desired velocity after it passes the obstacle. For the case
of multiple obstacles, we proposed a switching control scheme
and showed that the robot avoids collisions and converges to the
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Fig. 8: Simulation of a disk-shaped holonomic robot’s motion in an environ-
ment with a single elliptical obstacle.

Fig. 9: Time evolution of the robot’s x and y velocity components in the global
frame while it moves along the red trajectory shown in Fig. 8.

target velocity if it uses the controller designed for the single-
obstacle case for the closest obstacle at each time instant. More-
over, the robot never becomes trapped between any pair of ob-
stacles (i.e., there are no local stable equilibrium points) if it
uses a sufficiently small p in the equation for the virtual poten-
tial field, which is used in the repulsive term of the controller.

In future work, we will modify our proposed controller to
solve the obstacle avoidance problem in environments with con-
cave obstacles and validate the controller on physical omnidi-
rectional robots. We will also combine our controller with the
controller presented in our previous work [39] in order to cre-
ate a completely decentralized control strategy for multi-robot
collective transport in unknown environments with obstacles.

Appendix A. Calculation of the gradients of ϕ with respect
to d and q

We can write the gradient of ϕ with respect to d as

∇dϕ =
∂ϕ

∂d
=
∂ϕ

∂δ

∂δ

∂d
. (A.1)

We represent d in terms of its components in the global coordi-
nate frame as d := [dx dy]T . Then, from the definition of δ, we

Fig. 10: Simulation of the robot’s motion in an environment with six circular
obstacles in which Assumption 2.4 is satisfied.

Fig. 11: Time evolution of the robot’s x and y velocity components in the global
frame while it moves along the red trajectory shown in Fig. 10.

have that δ = ||d|| − r =
√

d2
x + d2

y − r. Using this expression for
δ, we obtain:

∂δ

∂d
=

 ∂δ
∂dx

∂δ
∂dy

 =


dx√
d2

x+d2
y

dy√
d2

x+d2
y

 =
1√

d2
x + d2

y

[
dx

dy

]
= ed. (A.2)

Therefore, ∇dϕ is given by

∇dϕ =
∂ϕ

∂d
=
∂ϕ

∂δ
ed. (A.3)

We also represent the position of the projection point in terms
of its components in the global frame as qP = [qp,x qp,y]T . Then
the vector equation q = d + qP can be written as

dx = x − qp,x , dy = y − qp,y. (A.4)

The gradient of ϕ with respect to q can be calculated as

∇qϕ =
∂ϕ

∂q
=
∂ϕ

∂δ

∂δ

∂q
. (A.5)

By the chain rule, the term ∂δ
∂q can be expressed as

∂δ

∂q
=

∂δ

∂dx

∂dx

∂q
+
∂δ

∂dy

∂dy

∂q
, (A.6)
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Fig. 12: Simulation of the robot’s motion in an environment with four different
strictly convex obstacles in which Assumption 2.4 is satisfied. The points
labeled A, B, C, and D are the locations of the robot at the corresponding times
labeled in Fig. 13.

Fig. 13: Time evolution of the robot’s x and y velocity components in the global
frame while it moves along the red trajectory shown in Fig. 12.

which can be rewritten as

∂δ

∂q
=

∂δ

∂dx

 ∂dx
∂x
∂dx
∂y

 +
∂δ

∂dy

 ∂dy

∂x
∂dy

∂y

 . (A.7)

Given Eq. (A.4) and the fact that δ =
√

d2
x + d2

y − r, we can
calculate the partial derivatives in Eq. (A.7) to obtain:

∂δ

∂q
=

dx√
d2

x + d2
y

[
1
0

]
+

dy√
d2

x + d2
y

[
0
1

]
=

1√
d2

x + d2
y

[
dx

dy

]
= ed.

(A.8)
Substituting this expression for ∂δ

∂q into Eq. (A.5), we find that

∇qϕ =
∂ϕ

∂δ
ed, (A.9)

which is identical to Eq. (A.3). Therefore, we conclude that

∇dϕ = ∇qϕ. (A.10)

Appendix B. Proof of Lemma 4.12

We describe a procedure for choosing a and b in Eq. (28)
in order to ensure a strictly positive lower bound γ on the time
response %(t) of the system in Eq. (27). We know that any
unforced scalar linear second-order system can be written in
the following form [40],

%̈ + 2ζωn%̇ + ω2
n% = 0. (B.1)

Hence, the system in Eq. (27) can be represented as

%̈ + 2ζωn%̇ + ω2
n% = b, (B.2)

where

ωn =
√

a, (B.3)

ζ =
k

2
√

a
, (B.4)

and consequently, its time response is written as

%(t) = e−ζωnt (c1 cos(ωnt) + c2 sin(ωnt)) + b
′

, t ≥ 0, (B.5)

in which

c1 = %0 −
b
ω2

n
, (B.6)

c2 =
1
ωn

(w0 + c1ζωn), (B.7)

b
′

=
b
ω2

n
. (B.8)

Let us choose b such that c1 = 0 5, i.e.,

b := %0ω
2
n. (B.9)

Then, from Eq. (B.5), we obtain the following inequality:

%(t) = e−ζωntc2 sin(ωnt) + b
′

≥ − |c2| + b
′

, t ≥ 0. (B.10)

In order to ensure that %(t) ≥ γ for an arbitrary γ ∈ (0, %0), we
therefore need to enforce the condition − |c2| + b

′

≥ γ. To do
this, we choose b

′

to satisfy this condition. Using Eq. (B.7)
with c1 = 0, this condition can be written as:

b
′

≥ |c2| + γ =
|w0|

ωn
+ γ. (B.11)

Taking into account the fact that |w0| ≤ vmax, we can ensure that
Eq. (B.11) is true by defining b

′

such that:

b
′

≥
vmax

ωn
+ γ. (B.12)

Noting that b
′

= %0 from Eq. (B.8) and Eq. (B.9), the above
inequality implies that

ωn ≥
vmax

(%0 − γ)
. (B.13)

5This is not the only feasible choice for b. This is the most convenient
choice that facilitates the calculations.
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Since a = ω2
n by Eq. (B.3), Eq. (B.13) implies that a should be

chosen such that

a ≥
v2

max

(%0 − γ)2 . (B.14)

By Eq. (B.3) and Eq. (B.9), we have that

b = %0a. (B.15)

We can then define b according to the selected value of a.
This proof shows that the establishment of a specific lower

bound γ for the time response of the system in Eq. (27) requires
a and b to be chosen such that the conditions in Eq. (B.14) and
Eq. (B.15) hold. Also, the selection of sufficiently large values
for a and b never contradicts Eq. (30), since we can always
choose values of a and b such that the corresponding green line
in Fig. 5 lies below the orange curve in that figure.
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