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Controllability and Stabilization for Herding a
Robotic Swarm using a Leader:

A Mean-Field Approach
Karthik Elamvazhuthi, Zahi Kakish, Aniket Shirsat, and Spring Berman

Abstract—We introduce a model and a control approach for
herding a swarm of “follower” agents to a target distribution
among a set of states using a single “leader” agent. The follower
agents evolve on a finite state space that is represented by a
graph and transition between states according to a continuous-
time Markov chain, whose transition rates are determined by
the location of the leader agent. The control problem is to
define a sequence of states for the leader agent that steers the
probability density of the forward equation of the Markov chain.
For the case when the followers are possibly interacting, we prove
local approximate controllability of the system about equilibrium
probability distributions. For the case when the followers are
non-interacting, we design two switching control laws for the
leader that drive the swarm of follower agents asymptotically to
a target probability distribution that is positive for all states.
The first strategy is open-loop in nature, and the switching
times of the leader are independent of the follower distribution.
The second strategy is of feedback type, and the switching
times of the leader are functions of the follower density in the
leader’s current state. We validate our control approach through
numerical simulations with varied numbers of follower agents
that evolve on graphs of different sizes, through a 3D multi-
robot simulation in which a quadrotor is used to control the
spatial distribution of eight ground robots over four regions, and
through a physical experiment in which a swarm of ten robots
is herded by a virtual leader over four regions.

Index Terms—Swarms, multi-robot systems, herding, Markov
chains, stabilization, feedback control, switching systems

I. INTRODUCTION

We present a control strategy for herding a swarm of agents
to a target distribution among a set of states using a single
leader agent. For example, a leader with sophisticated sensing,
localization, and planning capabilities may be required to herd
a group of follower agents, which lack these capabilities,
through an environment with obstacles. This control approach
has a wide range of applications in swarm robotics, including
exploration [34], environmental monitoring [14], debris clear-
ance during disaster response [30], and targeted drug delivery
at the micro-nanoscale [12], [23]. The ideas that we present in
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this paper could also find applications for addressing problems
other than those arising in swarm robotics, such as livestock
herding [38] and crowd control [21].

There has been a considerable amount of work on control
strategies in which a small number of leader robots guide
a swarm of follower robots. Many of these strategies have
been designed for containment control problems [20], in
which the objective is to design interaction rules between
the leaders and follower agents so that the followers are
eventually contained in the convex hull spanned by the leaders.
Most containment control approaches are based on multi-
agent consensus protocols [28], in which the leaders have an
attractive effect on the followers. On the other hand, there have
been few works on multi-robot herding strategies in which the
leaders have a repulsive effect on the followers. In [32], [33],
the authors consider a scenario with multiple non-cooperative
herders and establish stability guarantees for their control law
by reducing the system to a unicycle model. This approach has
been extended in [11] to construct controllers that are finite-
time stabilizing. Control strategies for herding swarms with a
single leader agent have also been proposed. For example, [19]
presents control laws that are inspired by hunting strategies
used by groups of bottlenose dolphins. It was shown in [7]
that a single leader can herd a diffusive swarm, modeled
with differential inclusions, by following open-loop sinusoidal
trajectories. Similarly, we have shown in [16] that a single
leader can herd a swarm of double-integrator agents, modeled
with ordinary differential equations (ODEs), along a given
smooth path by moving along appropriately designed oscilla-
tory trajectories. Herding strategies that employ a single leader
have also been considered in a feedback control framework
using algorithm-constructed feedback laws [29] and switching
adaptive laws [25].

In this paper, we present a herding strategy that uses a
single leader agent and is scalable with the number of follower
agents. In our strategy, the follower agents switch between
states according to a continuous-time Markov chain (CTMC),
which allows us to represent the dynamics of the probability
distribution of followers over the states as a mean-field model
in the form of a set of ODEs. The control parameters of
this model are the followers’ transition rates out of their
current state. These transition rates are positive whenever
the leader is present in the followers’ current state. This
specification causes the leader to have a “repulsive” effect on
the followers. The scalability of this control approach arises
from the fact that the mean-field model represents the swarm
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of followers as a continuum, and is therefore independent
of the number of followers. In addition, the model control
parameters define control laws that are used by all followers
and are therefore independent of the followers’ identities. For
the case where the followers are interacting, for example,
through collision avoidance or aggregation type behaviors, we
prove local approximate controllability of this system with
the leader’s position as the control parameter. Then, for the
case of non-interacting followers, i.e., the transition rates are
only a function of the leader’s state, we construct a feedback
control law for the leader that drives the followers to a given
target probability distribution that is positive for all states. We
validate our control strategy using numerical simulations, a
3D multi-robot simulation in which a quadrotor herds 8 small
ground robots, and an experiment in which a virtual projected
leader herds 10 physical robots.

Mean-field models of the type we consider have previously
been used in the design of stochastic control strategies for
task allocation and spatial coverage by robotic swarms, e.g. in
[4], [8], [1], [2], [26], [27]. See [15] for a recent survey by
the authors of works that use mean-field models for control
problems in swarm robotics. These techniques contrast with
classical approaches to multi-agent control [28], in which the
control laws depend on the individual agents’ identities. Our
paper extends this prior work by proposing a novel application
of mean-field modeling in a leader-follower control problem
for robotic swarms. Moreover, while prior work [4], [8],
[1], [2], [26], [27] addresses control problems in which the
transition rates or transition probabilities can be independently
specified, we consider a more constrained control problem in
which all transitions leaving a state have the same transition
rate, since follower agents that are in the leader’s current state
can switch to any neighboring state with equal probability.
We therefore demonstrate that the swarm’s distribution can be
controlled using a smaller number of control parameters than
in previous works. In addition, our inclusion of a leader agent
allows us to avoid the requirement that the agents of the swarm
have global localization.

Comparison with prior work on herding: Most previous
works on herding [20], [19], [7], [33], [16], [29] are limited to
control strategies that ensure that the followers are confined to
a small region in space. On the other hand, in this paper, we
present control strategies that herd the swarm to a larger class
of follower distributions. While the control strategy presented
in [25], [24] can herd the set of followers to arbitrary config-
urations, it requires the leader to broadcast commands to each
robot in the swarm indicating whether the follower is supposed
to be in a chased or unchased mode. For such a leader-follower
communication protocol to be implementable, the leader must
be able to distinguish between different follower robots. The
leader might not have such a capability in practice when the
swarm is large. In contrast, in our approach, the leader does
not directly communicate with the swarm of followers, and
the followers do not have identities. Moreover, the control law
in [25], [24] requires the leader to switch its position between
individual follower robots. Such a switching control law would
scale poorly with the number of followers. On the other hand,
the control laws that we present require the leader to switch

its position between vertices of the graph that represent spatial
states. The number of switchings in our control laws is a
function of the number of possible states of a single follower,
rather than the number of followers as in [25], [24]. These
properties ensure that our control laws scale well with the
number of follower agents, as we verify through numerical
simulations.

To summarize, the following are the main contributions of
this paper:

1) Introduction of a mean-field model for herding a swarm
of unidentified (unlabeled) follower robots using a single
leader that has a repulsive effect on the robots (Section
III).

2) Proof of local approximate controllability of the mean-
field model about equilibrium (probability) distributions
of the swarm, with the leader’s position as the control
input (Theorem IV.4).

3) Global (practical) asymptotic stability result for a novel
open-loop switching controller that stabilizes the swarm
to a neighborhood of a given equilibrium distribution
(Theorem V.2).

4) Global asymptotic stability result for a novel closed-loop
switching controller that stabilizes the swarm to a given
equilibrium distribution (Theorem V.8).

The paper is organized as follows. In Section II, we establish
notation and provide some definitions that are used throughout
the paper. In Section III, we formulate the main problems
that are addressed in the paper. In Section IV, we present
a detailed analysis of the controllability properties of the
systems defined in Section III. In Section V, we consider the
problem of stabilizing target equilibrium densities. In Sections
VI, VII, and VIII, we validate the control strategies presented
in Section V through numerical simulations, 3D simulations,
and physical experiments.

II. NOTATION

We first define some notation that will be used to formally
state the problems addressed in this paper. We will use
the following definitions from graph theory. We denote by
G = (V, E) a directed graph with a set of M vertices,
V = {1, ...,M}, and a set of NE edges, E ⊂ V × V , where
e = (i, j) ∈ E if there is an edge from vertex i ∈ V
to vertex j ∈ V . We define a source map S : E → V
and a target map T : E → V for which S(e) = i and
T (e) = j whenever e = (i, j) ∈ E . There is a directed
path of length s from a vertex i ∈ V to a vertex j ∈ V
if there exists a sequence of edges {ei}si=1 in E such that
S(e1) = i, T (es) = j, and S(ek) = T (ek−1) for all
2 ≤ k ≤ s. A directed graph G = (V, E) is called strongly
connected if for every pair of distinct vertices v0, vT ∈ V ,
there exists a directed path of edges in E connecting v0 to
vT . We will assume that (i, i) /∈ E for all i ∈ V . For a
given vertex v ∈ V , we will denote the neighborhood of v
by N (v) = {w ∈ V; ∃e ∈ E s.t. e = (v, w)}. The graph G is
said to be bidirected if (v, w) ∈ E implies that (w, v) ∈ E for
all v, w ∈ V . The cardinality of the set N (v) will be denoted
by |N (v)|. The vector 1 ∈ RM will be used to refer to the
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M -dimensional vector with all elements equal to 1. Given a
vector x ∈ RM , xi will refer to the ith coordinate value of
x. The 2-norm of the vector x ∈ RM will be denoted by
‖x‖ =

√∑
i x

2
i . For a matrix A ∈ RM×N , Aij will refer to

the element in the ith row and jth column of A.
A function f : R→ RM is said to be absolutely continuous

if ∀ε > 0, there exists δ > 0 such that for any finite set
of disjoint intervals (a1, b1), ..., (aN , bN ),

∑N
j=1(bj − aj) <

δ =⇒
∑N
j=1 ‖f(bj)−f(aj)‖ < ε. More generally, f is said to

be absolutely continuous on [a, b] if this condition is satisfied
whenever the intervals (aj , bj), j = 1, ..., N , all lie in [a, b].

III. PROBLEM FORMULATION
We consider a swarm of N follower agents and a single

leader agent. All agents’ states evolve in continuous time over
the set V = {1, ...,M}, which we represent as the vertices of a
graph G. The vertices in V represent a set of spatial locations
obtained by partitioning the agents’ environment. The edge
set E defines the pairs of vertices between which the agents
can transition. We will assume that the graph G = (V, E)
is strongly connected. The leader agent performs a sequence
of deterministic transitions from one vertex to another. The
leader’s location at time t is denoted by `(t) ∈ V . The location
of each follower agent i ∈ {1, ..., N} is defined by a Markov
chain Xi(t) that evolves on the state space V according to the
conditional probabilities

P(Xi(t+ h) = T (e)|Xi(t) = S(e)) = ue(t)h+ o(h)

P(Xi(t+ h) = v|Xi(t) = v) = 1−
∑

e∈E;S(e)=v

ue(t)h+ o(h)

(1)

for each e ∈ E . Here, h is an infinitesimally small time
interval, o(h) is the little-oh symbol, and P is the underlying
probability measure induced on the space of events Ω by
the stochastic processes {Xi(t)}Ni=1. The first equation in (1)
defines the probability of an agent jumping to a state T (e) at
time t+h, given that it is in the state S(e) at time t. Similarly,
the second equation in (1) defines the probability that an agent
in state v at time t stays in this state at time t+ h. Since h is
infinitesimally small, the probability of the agent staying in the
set V is equal to 1, which is consistent with our assumption
that agents do not exit V .

The fraction, or empirical distribution, of follower agents
that are at location v ∈ V at time t is given by
1
N

∑N
i=1 χv(Xi(t)), where χv(w) = 1 if w = v and 0

otherwise. Our goal is to design a control law that navigates
the leader between vertices such that the follower agents are
redistributed (“herded”) from their initial empirical distribution
1
N

∑N
i=1 χv(Xi(0)) among the vertices to a desired empirical

distribution 1
N

∑N
i=1 χv(Xi(T )) at some final time T , where T

is a given finite number (controllability problem) or is infinite
(stabilization problem). Since the identities of the follower
agents are not important, we aim to construct a control policy
for the leader that is a function of the current empirical
distribution 1

N

∑N
i=1 χv(Xi(t)), rather than the individual

agent states Xi(t). However, 1
N

∑N
i=1 χv(Xi(t)) is not a state

variable of the CTMC. In order to treat 1
N

∑N
i=1 χv(Xi(t))

as the state, we consider the mean-field limit of this quantity
as N → ∞. Let P(V) = {y ∈ RM≥0;

∑M
v=1 yv = 1} be the

simplex of probability densities on V . Under particular condi-
tions that are discussed in the paragraph after Problem III.2,
when N → ∞, the empirical distribution 1

N

∑N
i=1 χv(Xi(t))

converges to the vth entry xv(t) of a deterministic quantity
x(t) ∈ P(V). Each entry xv(t) of the vector x(t) denotes
the fraction of follower agents in state v ∈ V at time t. This
vector evolves in time according to the following Kolmogorov
forward equation or mean-field model, a system of ODEs,
defined for t ∈ [0,∞):

ẋ(t) =
∑
e∈E

ue(t)Bex(t), x(0) = x0 ∈ P(V), (2)

where Be are control matrices whose entries are given by

Bije =


−1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

The transition rates ue(t) are determined by the leader’s
location `(t). In particular, for each e ∈ E and each t ≥ 0, we
set

ue(t) =

{
η + u0e(x(t)) if S(e) = `(t),

u0e(x(t)) otherwise

for a positive constant η > 0 and a set of Lipschitz functions
u0e : P(V) → R≥0, which model inter-follower interactions.
The parameter η models the sensitivity of the follower agents
to the leader’s presence in their state. Higher values of η
indicate that the follower agents transition out of their states at
higher probability rates. For the purpose of analysis, without
loss of generality, we will set η = 1. The functions u0e(·) could,
for example, be used to model an attractive effect between
followers by setting u0e(x) = xT (e), where xT (e) denotes the
fraction of agents in the state T (e). Alternatively, u0e(·) could
model congestion effects by setting u0e(x) = 0 whenever xT (e)

exceeds some threshold value. See Figure 1 for an illustration
of the agents’ states and the interactions between the followers
and the leader.

Then for a given leader trajectory ` : R≥0 → V , the system
(2) can be rewritten as

ẋ(t) =
∑
e∈E

u0e(x(t))Bex(t) + D`(t)x(t), t ∈ [0,∞),

x(0) = x0 ∈ P(V), (3)

where, for each v ∈ V , the matrix Dv ∈ RN×N is given by

Dv =
∑

e∈E,S(e)=v

Be. (4)

We make the following assumptions about the agents’
capabilities for the case of non-interacting agents (i.e., u0e = 0
for all e ∈ E):

1) The leader can perfectly localize itself in V; i.e., it knows
its location l(t) ∈ V at each time t.

2) The leader can measure the density of follower agents
xl(t)(t) that are at its current location l(t) at time t.
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Fig. 1: Representation of the leader and follower agents’ states
for an example scenario with a bidirected grid graph G. Green
edges define the admissible transitions between states; red
edges mean that the repulsive effect of the leader will cause
the followers to exit the source state to the target states with
positive transition rates.

3) Each follower can sense whether the leader is present at
the follower’s current location.

We can now state the control problems that we address in
this paper. The first problem relates to the controllability of
system (3).

Problem III.1. Given a target probability distribution xeq ∈
P(V) among the states in V , and a time T > 0, construct
a trajectory ` : [0, T ] → V of the leader agent such that
x(T ) = xeq .

After addressing the controllability problem, we will con-
struct solutions for the following stabilization problem.

Problem III.2. Given a target probability distribution xeq ∈
P(V) among the states in V , design the leader agent’s
trajectory ` : R≥0 → V so that limt→∞ x(t) = xeq .

By addressing Problems III.1 and III.2, we can synthesize
a control input `(t) for the mean-field model (3) that we
can use to control the distribution of a large swarm of
follower agents. We note that the mean-field model represents
the swarm of followers as an infinite population, but in
practice, the number of followers will be finite. Therefore,
the applicability of solutions of Problems III.1 and III.2 to
finite populations of follower agents depends on whether,
for given transition rates ue(t), the empirical distribution
1
N [
∑N
i=1 χ1(Xi(t)) ...

∑N
i=1 χM (Xi(t))]

T of the N -agent
Markov chain converges to the solution x(t) of the mean-
field model (3) as N → ∞; i.e., whether its mean-field limit
is x(t). When the random variables Xi(t) are independent,
this convergence result follows trivially from the law of large
numbers. However, if the transition rates ue(t) are functions of
the density x(t), which is the case when there are interactions

between followers, or if the leader’s trajectory `(t) is a
function of the follower agent distribution, then the random
variables Xi(t) that represent the follower agents’ states would
not necessarily be independent. In this case, it would require
significant work to determine whether the mean-field limit of
the empirical distribution of followers is indeed the vector
x(t); such an analysis is beyond the scope of this paper.

Remark III.3. (Invariance of P(V)) The total number of
follower agents in the state space V should not change with
respect to the transition rates ue(t). For the solution x(t)
of the system (2), this implies that if x0 ∈ P(V), then we
must have that x(t) ∈ P(V) for all t ∈ R. This property
is automatically satisfied by solutions x(t) of the system (2)
given the definitions of Be and ue(t). In particular, since
1TBe = 0, we have that 1T ẋ(t) =

∑M
v=1 ẋv(t) = 0 for

all t ≥ 0, and hence the mass of follower agents is always
conserved. Moreover, both the transition rates ue(t) and all the
off-diagonal entries of Be are non-negative. Hence, ẋv(t) ≥ 0
for each v ∈ V such that xv(t) = 0 whenever x(t) is non-
negative. Since the solutions x(t) are continuous, this implies
that if x0 is non-negative, then x(t) is non-negative for all t.

IV. CONTROLLABILITY ANALYSIS

In this section, we will address Problem III.1. It is a
standard approach in control theory literature [10], [37] to
study controllability properties of switched systems of the
form (3) using controllability properties of a related relaxed
system. The controllability results in [10], [37] are restricted
to bilinear systems. Since system (3) is not bilinear in gen-
eral, we will perform our controllability analysis using the
concept of relaxed controls [40], [17]. The approach of using
relaxed controls to study controllability properties of herding
models was first performed in [13], where the authors studied
the reachability properties of the differential inclusion based
herding model that was initially presented in [7]. In contrast
to the models presented in [7], [13], where the swarm of
followers was represented as a subset of a Euclidean space, in
our work the swarm is represented as a probability distribution.
Following this approach, we first prove the controllability of
the following relaxed system,

ẏ(t) =
∑
e∈E

u0e(y(t))Bey(t) +
∑
v∈V

αv(t)Dvy(t)

t ∈ [0,∞), (5)
y(0) = x0 ∈ P(V),

where αv(t) is a non-negative function for each v ∈ V .
If system (5) is controllable with α(t) = [α1(t) ... αM (t)]T

as the control inputs, then it can be concluded that system (3) is
controllable. In order to establish controllability of the relaxed
system (5), we will show that the span of the set ∪v∈V{Dvx}
is equal to M −1 for all x ∈ P(V). To conclude this, we will
use some spectral properties of Q :=

∑
v∈V Dv =

∑
e∈E Be

that can be established using the Perron-Frobenius theorem [3]
for positive matrices. These properties are stated in Lemma
IV.1 below. Here and in the following sections, we define
int P(V) = {x ∈ P(V);xv > 0 ∀v ∈ V}.
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Lemma IV.1 ([4]). The matrix Q has rank M − 1 with 0 as
its principal eigenvalue. Moreover, there exists β ∈ int P(V)
such that Qβ = 0.

Proof. See [4][Theorem 1].

We now establish local controllability of system (5) in the
following lemma.

Lemma IV.2. Let z ∈ int P(V) be an equilibrium point
of the system (5) with steady-state control input αss =
[αss1 ... αssM ]T ∈ int P(V). Let T > 0 be given and
let c = min

{
αssi ; i ∈ {1, ...,M}

}
. Then there exists a

neighborhood U of z in P(V) such that for each x0 ∈ U , there
exists a set of measurable functions α̃v : [0, T ] → [−c, c],
such that

∑
v∈V α̃v(t) = 0 for almost every t ∈ [0, 1] and

the solution x(t) of the system (5) satisfies x(T ) = z, with
αv(t) = α̃v(t)+αssv for all v ∈ V and almost every t ∈ [0, T ].

Proof. We will show that the set

Az = {
∑
v∈V

γvDvz; [γ1 ... γM ]T ∈ RM ,
∑
v∈V

γv = 0}

is an (M − 1)–dimensional subspace of RM . This would
imply that (5) is locally controllable at z on P(V); i.e., there
is a neighborhood U of z in P(V) in which system (5) is
controllable to xeq .

According to Lemma IV.1, the matrix Q has rank M − 1.
Moreover, there exists β = [β1 ... βM ] ∈ int P(V) such that
Qβ = 0. Note that Dvz = zv(Dv)

v , where (Dv)
v denotes

the vth column of Dv . Therefore, we can conclude that the
set

Az
r = {

∑
v∈V

γvDvz; [γ1 ... γM ]T ∈ RM}

has dimension M−1. Let y =
∑
v∈V γvDvz be an element of

Az
r for some [γ1 ... γM ] ∈ RM . Suppose that

∑
v∈V γv = c.

Then setting ηv = γv − cβv

xv
∑

w∈V βw
for each v ∈ V , we

note that y = ηvDvz and
∑
w∈V ηw = 0. This implies that

Az = Az
r , and hence the set Az is an (M − 1)–dimensional

subspace of RM . This implies that there are a sufficient
number of control directions for system (5) on the (M − 1)–
dimensional submanifold P(V) in a neighborhood of z. This
concludes the proof.

In the next result, we establish that solutions of the relaxed
system (5) can be approximated arbitrarily well using solutions
of system (3). This will enable us to establish approximate
controllability of system (3) in Theorem IV.4. In order to prove
this result, we will need some new definitions and terminolo-
gies from measure theory [6]. Let C(V) denote the space of
functions on V . We observe that, for the standard discrete
topology on V , all the functions in C(V) are continuous. The
space L1(0, T ;C(V)) is defined by

L1(0, T ;C(V)) = {f : (0, T )→ C(V) is a (6)

measurable function;

∫ T

0

‖f(t)‖∞dt <∞},

where ‖f(t)‖∞ denotes the maximum of the function f(t) ∈
C(V) attained over V . We will also need the space R(0, T ;V),

which will denote the set of relaxed controls; i.e., the set of
elements e for which e(t) is a probability measure on C for
almost every t ∈ (0, T ). Since the set V has finite cardinality,
we can identify the set of probability measures on V with
P(V). Thus, if µ is a relaxed control, there exists a time-
dependent vector-valued function α(t) = [α1(t) ... αv(t)]

T

such that µ(t,U) =
∑
v∈U µ(t, {v}) =

∑
v∈U αv(t) for

almost every t ∈ (0, T ) and all U ⊂ V . Then the solution
of the system (5) coincides with the solution of the system

ż(t) =
∑
e∈E

u0e(z(t))Bez(t) +

∫
V
Dvy(t)µ(t, dv),

t ∈ [0,∞), (7)
x(0) = x0 ∈ P(V).

This implies that we can identify R(0, T ;V) with the set of
elements in L∞(0, 1;P(V)), the set of measurable functions
defined over (0, 1) that take values in P(V). The duality
map < ·, · > from L1(0, T ;C(V)) × R(0, T ;V) to R will
be defined by < µ, f >=

∫ T
0

∫
V f(t)dµ(t, dv)dt for all

f ∈ L1(0, T ;C(V)) and all µ ∈ R(0, T ;V). A sequence µn
in R(0, T ;V) is said to weakly converge to µ ∈ R(0, T ;V) if

lim
n→∞

< µn, f > = < µ, f > (8)

for all f ∈ L1(0, T ;C(V)). Let PC(0, T ;D) denote the
elements µ ∈ R(0, T ;V) that are piecewise constant, and for
each t ∈ [0, T ] the measure µ(t) is an element of the set of
Dirac measures D, that is, for each t ∈ [0, T ] there exists a
v ∈ V such that the measure µ(t, {v}) of {v} is equal to 1.
With these definitions, we can state and prove our next result.

Proposition IV.3. Given T > 0, let y(t) be the solution of the
system (5) for some set of controls αv : [0, T ] → [0, 1] such
that

∑
v∈V αv(t) = 1 for all t ∈ [0, T ]. Then, for each ε > 0

there exists a control ` : [0, T ] → V such that the solution
x(t) of the system (3) satisfies ‖x(T )− y(T )‖2 ≤ ε.

Proof. Let α ∈ L∞(0, 1;P(V)) and let µ ∈ R(0, T ;V) be
the corresponding relaxed control. Then from [17][Theorem
12.6.7], there exists a sequence (µn)∞n=1 ∈ PC(0, T ;D)
that weakly converges to µ. Let (`n)∞n=1 be the sequence of
piecewise constant functions from [0, T ] to V constructed by
setting, for each t ∈ [0,∞) and each v ∈ V , `n(t) = v if
µn(t, {v}) = 1. From [17], we know that solutions zn(t) of
the system (7) with relaxed control µn converge to the solution
z of the system (7) with relaxed control µ, uniformly over the
time interval [0, T ]. This concludes the proof.

Lemma IV.2 states that trajectories of system (5) can be
approximated arbitrarily well using trajectories of system (3).
Combining Lemma IV.2 and Proposition IV.3, we obtain the
following main theorem on approximate controllability of
system (3), which gives an affirmative answer to a weaker
form of Problem III.1 for which the state at the final time is
only required to be within distance ε of the target final state.

Theorem IV.4. Let xeq ∈ int P(V) be an equilibrium point
of the system (5) with steady-state control input αss =
[αss1 ... αssM ]T ∈ int P(V). Additionally, let T > 0. Then there
exists a neigborhood U of P(V), such that for each x0 ∈ U
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and each ε > 0, there exists a control ` : [0, T ]→ V such that
the solution x(t) of the system (3) satisfies ‖x(T )−xeq‖2 ≤ ε.

Proof. According to Lemma IV.2, there exists a neighbour-
hood U of xd such that if x0 ∈ U , then there exists a control
α(t) for the relaxed system (5) for which the solution y(t)
satisfies y(T ) = xeq . It follows then from Proposition IV.3
that there exists a control `(t) such that ‖x(T ) − xd‖ =
‖x(T )− y(T )‖ ≤ ε .

Remark IV.5. (Lack of Global Controllability) While The-
orem IV.4 states that system (3) is locally approximately
controllable about an equilibrium point xeq , in general, we
cannot expect global controllability of the system for any
T > 0. For example, consider the two-node bidirected graph
G with V = {1, 2}. Then, for a given positive parameter
c, we set u0(1,2)(y) = cy22 and u0(2,1)(y) = cy21 for all
y = [y1 y2]T ∈ [0, 1]2. If x01 < 0.5 and c > 0 is large enough,
then limt→0+ ẋ1(t) < 0 for any choice of piecewise constant
`(t). This implies that the system (3) is not controllable to the
equilibrium point xeq = [0.5 0.5]T from x0 for any final time
T > 0.

Remark IV.6. (Unbounded Speed of the Leader) It is
important to note that in order to prove controllability of the
system (3), we have implicitly assumed that the leader can
switch between states arbitrarily fast. This implies that the
leader can move at arbitrarily large speeds in space. However,
in practice, the leader’s speed will have an upper bound, which
implies a lower bound on the switching times. This would, in
turn, impose a lower bound on the parameter ε in Theorem IV.4
for which the approximate controllability result remains true.
However, it is difficult to analytically quantify such a lower
bound on ε as a function of a lower bound on the switching
times.

V. CONTROL DESIGN AND STABILITY ANALYSIS

From here on, we will assume that the followers are not
interacting with one another; that is, u0e(x) = 0 for all x ∈
P(V) and all e ∈ E .

To address Problem III.2, we will construct two control laws
that govern the leader’s state transitions. Toward this end, we
introduce some new definitions. A complete walk, denoted by
W = (ei)

w
i=1, is a sequence of size w ∈ Z>0 in E such that

S(e1) = T (ew), T (ei) = S(ei+1) for each i ∈ {1, ..., w− 1},
and for each v ∈ V there exists j ∈ {1, ..., w} such that
T (ej) = v. We will extend a given complete walk W to an
extended complete walk (ECW), W∞ = (ei)

∞
i=1, by defining

enw+j = ej for n ∈ Z>0, j ∈ {1, ..., w}. (9)

The sequence W∞ denotes the path along which the leader
can transition from one state to another.

A. Open-Loop Controller

We first construct an open-loop control strategy for the
leader agent. An advantage of this control law over the
feedback control law presented in Section V-B is that the

leader is not required to measure the density of follower
agents. Let xeq ∈ int P(V), ε > 0, and tε0 = 0, and define

Rv =
{
k ∈ {1, ..., w}; S(ek) = v

}
.

We define switching times (tεj)
∞
j=1 as

tεj = tεj−1 +
ε

|RS(ej)|x
eq
S(ej)

for j ∈ Z>0, (10)

where |Rv| denotes the cardinality of the set Rv for each v ∈
V . We also define `ε : [0,∞)→ V as

`ε(t) = S(ej) for t ∈ [tεj−1, t
ε
j), j ∈ Z>0. (11)

Let P =
∑w
k=1 t

1
k and

Aav =
1

P

∫ P

0

D`1(t)dt. (12)

Then, setting Ã = 1
P

∑
v∈V Dv and D = diag [xeq1 ... xeqM ]T ,

we have that Aav = ÃD−1. Using these definitions, in the
next result we establish that the solutions of system (3), for
the choice of leader inputs (11), converge to solutions of a
related time-varying system the time-invariant component of
the dynamics (determined by the averaged matrix Aav) is
dominant.

Lemma V.1. Let `(t) = `ε(t) in system (3). There exists ε0 >
0 and a time-varying matrix A : [0,∞)→ RM×M such that if
ε ∈ (0, ε0], then the solution x(t) of (3) can be approximated
using the solution y(t) of the equation

ẏ(t) = Aavy(t) + εA(
t

ε
)y(t), y(0) = x0. (13)

In particular, ‖x(t) − y(t)‖ = O(ε). Moreover, the map
t 7→ A(t) is such that the induced 2-norm ‖A(t)‖ is globally
bounded over t ∈ R≥0 and A(t + P ) = A(t) for all
t ∈ [0,∞).

Proof. Consider the change of variables τ = t
ε . Then system

(3) becomes
ẋ(τ) = εD`(t)x(τ). (14)

Let H(τ) = D`(τ) −Aav for each τ ∈ [0,∞). Set U(τ) =∫ τ
0
H(s)ds. Consider the change of variables

x(τ) = y(τ) + εU(τ)y(τ). (15)

Then we see that

ẋ(τ) = ẏ(τ) + εU(τ)ẏ(τ) + εU̇(τ)y(τ). (16)

For all ε small enough, I + εU(τ) is invertible for all τ ∈
[0,∞) and can be represented by the power series expression

(I + εU(τ))−1 =

∞∑
i=0

(−ε)iUi(τ). (17)

From (14), (17), and the fact that U̇(τ) = H(τ) and D`(τ) −
H(τ) = Aav for all τ ∈ [0,∞), equation (16) can be used to
solve for ẏ(τ):

ẏ(τ) = εAavy(t) + ε2A(τ)y(τ), (18)

where A(τ) is a time-varying matrix that is globally norm-
bounded in time. From equation (15), and noting again that
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I + εU(τ) is invertible for all τ ∈ [0,∞) for small enough
ε, we conclude that ‖x(t) − y(t)‖ = O(ε) for all t ≥ 0. The
periodicity of A(τ) follows from the fact that both H(τ) and
U(τ) are periodic.

Using Lemma V.1, we can now establish the stability
properties of system (3) with the control input `(t) = `ε(t)
defined in (11). The following theorem uses the fact that
solutions of system (13) can be used to approximate solutions
of (3). The theorem applies an argument based on averaging
theory [36] to prove practical stability of system (3).

Theorem V.2. Suppose the graph G is bidirected, W∞ =
(ei)
∞
i=1 is an ECW, and xeq ∈ int P(V). Let `(t) = `ε(t).

There exists ε0 > 0 such that for each ε ∈ (0, ε0], there exists
Cε ≥ 0 with limε→0 Cε = 0 and T 0,eq

ε > 0, which depends on
x0, xeq , and ε, such that ‖x(t)−xeq‖ < Cε for all t ≥ T 0,eq

ε .

Proof. Let A : [0,∞) → RM×M be the time-varying matrix
from Lemma V.1. Then consider the linear equation (13).
Define a Lyapunov function V : P(V)→ R≥0 given by

V (z) = (z− xeq)TD(z− xeq) (19)

for all z ∈ P(V). Since the graph G is bidirected and strongly
connected, we compute that

∂V

∂y

T

Aav(y(t)− xeq)

= −
∑
e∈E

1

2
(yS(e)(t)− xeqS(e) − yT (e)(t) + xeqT (e))

2 < 0

for all t ≥ 0 such that y(t) ∈ P(V) \ {xeq}. Then we have
that

V̇ (y(t)) =
∂V (y(t))

∂y

T

Aav(y(t)−xeq)+ε
∂V (y(t))

∂y

T

A(t)y(t).

(20)
since Aavx

eq = 0.
It follows from the computations in the proof of Lemma V.1

that all off-diagonal elements of Aav+εA( tε ) are non-negative
and that

1T (Aav + εA(
t

ε
)) = 0

for all t ∈ [0,∞) and for all ε > 0 small enough. Here, we are
using the fact that the matrix U(τ) constructed in the proof
of Lemma V.1 can have a non-zero value at its ijth entry
only if Aav has a non-zero value at its ijth entry. Then, from
Lemma V.1 and Remark III.3, we can conclude that P(V)
is invariant for the solution y(t). Since P(V) is a compact
set, this result implies that the term ∂V (y(t))

∂y

T
A(t)y(t) is

uniformly bounded. Thus, the second term in the right-hand
side of equation (20) is bounded by the parameter

C ′ε = ε sup
y∈P(V)

∣∣∂V
∂y

∣∣ sup
t∈[0,T ]

‖A(t)‖

for each ε > 0, and we have that limε→0 C
′
ε = 0. This implies

that for all ε > 0 small enough, V̇ (y(t)) < 0 for all t ∈ [0,∞)
such that ‖y(t) − xeq‖ > Cε, where Cε → 0 as ε → 0. In
turn, this implies that V (y(t)) is strictly decreasing whenever
‖y(t) − xeq‖ > Cε. Hence, for all t that are sufficient large,
‖y(t)− xeq‖ ≤ Cε. This concludes the proof.

Remark V.3. (Extension to Strongly Connected Graphs) The
assumption that the graph G is bidirected has been made
for the sake of simplicity. Theorem V.2 can be generalized to
strongly connected graphs that are not necessarily bidirected

by replacing ε
|RS(ej)

|xeq
S(ej)

with
εxd

S(ej)

|RS(ej)
|xeq

S(ej)

in (10) for each

j ∈ Z>0, where, from the Perron-Frobenius theorem [3], xd

is the unique vector in P(V) such that
∑
e∈E Bex

d = 0.

B. Closed-Loop Controller

In contrast to the open-loop control law presented in the
previous section, the control law that we present in this
section is a function of the density of the followers at the
leader’s current state. We show through numerical simulations
in Section VI that this closed-loop controller ensures faster
convergence of the followers to the target distribution than the
open-loop controller.

Given xeq ∈ RM , we define the set Q ⊂ RM × Z>0 as:

Q = {(x, k) ∈ RM × Z>0; xS(ek) ≤ x
eq
S(ek)

}. (21)

The set Q is used as follows to define the feedback control
law according to which the leader transitions from one state
to another. If the leader is in state S(ek) and the density of
follower agents in that state, xS(ek), is less than or equal
to the target value xeqS(ek), then the leader transitions to the
next state T (ek) in W∞. While the path that the leader takes
is predetermined by the specification of W∞, the times at
which it switches from one state to another is a function of the
follower density that it measures at its current state, according
to the following equations:

k(t+) = k(t−) + 1, (22)
`(t+) = T (ek(t−)), (x(t−), k(t−)) ∈ Q,

where k(t+) and `(t+) denote the right-sided limits of the
functions k(t) and `(t), respectively, at time t, and k(t−) and
`(t−) denote the left-sided limits of k(t) and `(t) at t. This
control law for the leader, combined with the ODE model (3)
that governs the follower agent densities, results in a hybrid
dynamical system [18] in which the continuous-time dynamics
are given by:

ẋ(t) = D`(t)x(t), (23)

k̇(t) = 0,
˙̀(t) = 0, t ∈ [0,∞),

the discrete-time dynamics are given by equations (22), and
the initial conditions are defined as:

x(0) = x0 ∈ P(V), k(0) = 0, `(0) = S(e1). (24)

Algorithm 1 presents a pseudocode that simulates the mo-
tion of a leader agent governed by control law (22) and the
motion of N follower agents that respond to the leader’s
presence according to the dynamics (3).

Since the closed-loop system (22)-(24) is a hybrid system,
we need an appropriate notion of a solution to this type of
system in order to establish our stability result in Theorem
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Algorithm 1 Simulation of Closed-Loop System

1: Inputs: ∆t, tf , G = (V, E), W∞ = (e1, e2, ...), N
2: Initialize n = 1, t = 0, `(0) = S(e1), Xj(0) ∈ V
3: while t < tf do
4: while 1

N

∑N
j=1 χ`(t)(Xj(t)) > xeq`(t) do

5: for j = 1 to N do
6: if Xj(t) = `(t) then Xj(t + ∆t) = w for
w ∈ N (`(t)) with probability η∆t,

7: end if
8: end for
9: t = t+ ∆t

10: end while
11: n = n+ 1
12: tn = t
13: `(tn) = T (en) . Leader jumps to next state
14: end while

V.8. Hence, we provide the following definition that will be
sufficient for the purposes of this paper.

Definition V.4. Suppose that W∞ = (ei)
∞
i=1 is a given ECW.

By a solution of the system (23)-(24), we mean that there
exists a time tf ≥ 0 (possibly equal to ∞), an absolutely
continuous function x : [0, tf ) → P(V), piecewise constant
functions k : [0, tf ) → Z>0 and vl : [0, tf ) → V , and a
sequence of non-decreasing switching times (ti)

∞
i=1 such that

limj→∞ tj = tf and, for each i ∈ Z>0, we have that

x(t) = x0 +

∫ min{t,ti}

0

D`(t)x(τ)dτ (25)

and

k(t) = i, t ∈ [ti−1, ti), (x(ti), k(ti)) ∈ Q, (26)
`(t) = T (ei−1), t ∈ [ti−1, ti),

where t0 = 0 and [ti−1, ti) := ∅ is the null set if ti−1 = ti.

Given this definition, we prove the following result on the
existence and uniqueness of solutions of the system (23)-(24).
In the following theorem and henceforth, int P(V) will denote
the interior of the set P(V) in the subspace topology of P(V)
as a subset of RM .

Theorem V.5. Suppose that W∞ = (ei)
∞
i=1 is an ECW and

xeq ∈ int P(V). Then there exists a unique solution to the
system (22)-(24) with switching times (ti)

∞
i=1.

Proof. The strategy of the proof is the following. We can
exactly compute the first non-zero switching time as a function
of the initial leader position and the follower distribution.
Between each of the computed switching times, the system
(22)-(24) is a linear system. Therefore, we will start by
constructing a local solution from t0 = 0 until the first non-
zero switching time using the exponential of a matrix. Then,
we will iteratively construct a global solution from this local
solution.

First, we show that there at least exists a unique local
solution of system (23)-(24). Specifically, we show that there
exists j ∈ Z>0 and a sequence of switching times (ti)

j
i=1 such

that x : [0, tj ]→ P(V) is absolutely continuous and equations
(25)-(26) hold for each i ∈ {1, ..., j}. Let i1, defined as

i1 = min{m ∈ Z>0; xS(em)(0) > xeqS(em)},

be the index of the first switching time at which the leader is
at a state where the distribution of the followers is greater
than the target distribution. If i1 does not exist, then the
initial distribution of the followers is less than or equal to
the target distribution, and we set ti = 0 for all i ∈ Z>0. In
this case, the existence of a unique local solution is trivial.
Alternatively, suppose that i1 is finite; that is, there exists at
least one state along the leader’s trajectory where the current
follower distribution is higher than the target distribution. Let
ti = 0 for all i ∈ {̃i ∈ Z>0; 0 < ĩ < i1}. Set v = S(ei1) and

ti1 =
1

|N (S(v))|
ln
xv(0)

xeqv
.

Note that v is the first state at which the leader spends a non-
zero amount of time, which is equal to ti1 . Since xeq lies in
the interior of P(V), the quantity lnxv(0)

xeq
v

is well-defined. It
follows that

ẋv(s) = −|N (v)|xv(s)

for all s ∈ [0, ti1). This implies that

xv(s) = e−|N (v)|sxv(0)

for all s ∈ [0, ti1), and hence lims→ti1 xv(s) = xeqv . Then we
set k(t) = i1 and `(t) = v for all t ∈ [0, ti1). Thus, we have
established that at least one local solution of system (22)-(24)
exists. This constructed local solution can be non-unique only
if there is an alternative possible choice of switching times,
(t̃i)

j̃
i=1. This alternative set of switching times is valid only if

the first non-zero switching time is chosen to have an index
greater than i1. However, this would violate the requirement in
constraint (26) that (x(ti), k(ti)) ∈ Q. Hence, the constructed
local solution is unique.

Next, we will show that any local solution can be extended
to a unique global solution that is defined over a countably
infinite sequence of switching times. Suppose there exists a
unique local solution of system (23)-(24). That is, there exists
p ∈ Z>0, possibly larger than i1, and a sequence of switching
times such that x : [0, tp] → P(V) is absolutely continuous
and equations (25)-(26) hold for each i ∈ {1, ..., p}. Let q1,
defined as

q1 = min{m ∈ Z>0; m > p & lim
t→tp

xS(em)(t) > xeqS(em)},

be the index of the first switching time after p at which the
leader is at a state where the distribution of followers is greater
than the target distribution. If q1 does not exist, then we set
ti = tp for all i ∈ Z+ such that i ≥ p, and the existence of
a unique global solution is trivial. Alternatively, suppose that
q1 is finite. Let ti = tp for all i ∈ {̃i ∈ Z>0; p < ĩ < q1}.
Set v = S(eq1) and

tq1 = tp +
1

|N (S(v))|
ln
xv(tp)

xeqv
.

Then we can see that

ẋv(s) = −|N (v)|xv(s)
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for all s ∈ [tq1−1, tq1). This implies that

xv(s) = e−|N (v)|(s−tq1−1)xv(tq1−1)

for all s ∈ [tq1−1, tq1), and hence that lims→tq1 xv(s) = xeqv .
Then we set k(t) = q1 and `(t) = v for all t ∈ [tq1−1, tq1).
Therefore, any local solution can be extended uniquely over
a longer time interval. Since we have already constructed
one such local solution, this implies that we can iteratively
construct a unique global solution x to system (22)-(24) by
extending each local solution to another local solution over
successively longer time intervals. Because this solution is
both continuous and piecewise continuously differentiable, and
therefore Lipschitz, it is absolutely continuous. This concludes
the proof.

In the next lemma, we derive an estimate of the solutions
of system (22)-(24) that will be used to prove the main
asymptotic stability result stated in Theorem V.8.

Lemma V.6. Suppose that xeq ∈ int P(V). Let there exist
some j ∈ Z>0 and ε > 0 such that the solution of system
(22)-(24) satisfies xv(tj−1) > xeqv + ε for v = S(ej). Then,

xw(tj) > xw(tj−1) +
ε

|N (v)|
for all w ∈ N (v).

Proof. By assumption, we have that

xv(tj−1) > xeqv + ε

for v = S(ej). Then,

tj = tj−1 +
1

|N (v)|
ln

xv(tj−1)

xeqv
.

This implies that ẋv(t) = |N (v)|xv(t) and ẋw(t) = −xv(t)
for all t ∈ [tj−1, tj) and all w ∈ N (v). Therefore,

xw(tj) = xw(tj−1) +
xv(tj−1)− xeqv
|N (v)|

for all w ∈ N (v).

The following proposition establishes an important mono-
tonicity property of solutions of system (22)-(24) that is used
in the proof of Theorem V.8, which states the main asymptotic
stability result.

Proposition V.7. Suppose there exist times τ1 > 0, τ2 > τ1
and state v ∈ V such that the solution x(t) of system (22)-
(24) satisfies xv(t) ≤ xeqv for all t ∈ [τ1, τ2]. Then xv(t) is
non-decreasing over the interval t ∈ [τ1, τ2]. Hence, if there
exist τ̃ ≥ 0 and w ∈ V such that the solution x(t) satisfies
xw(τ̃) ≥ xeqv , then xw(t) ≥ xeqv for all t ∈ [τ̃ , tf ).

Proof. We are given that xv(t) ≤ xeqv for all t ∈ [τ1, τ2].
Hence, tk − tk−1 = 0 for all k ∈ Z+ such that v = S(ek)
and tk ∈ [τ1, τ2]. Moreover, ẋv(t) ≥ 0 for all t ∈ [tk−1, tk),
since gek(`(t)) = 0 whenever v 6= S(ek). This implies that
ẋv(t) ≥ 0 for t ∈ (τ1, τ2), and therefore

∫ t
τ1
ẋv(s)ds is non-

decreasing for t ∈ [τ1, τ2]. Since the solution x is absolutely
continuous, we have that

xv(t)− xv(τ1) =

∫ t

τ1

ẋv(s)ds

Fig. 2: Bidirected graph with 4 vertices, representing agent
states. Red edges define the leader’s sequence of state transi-
tions; black edges define followers’ possible state transitions.

for all t ∈ [τ1, τ2]. This concludes the proof.

The result proved in Proposition V.7 can be used to demon-
strate that the target probability distribution xeq is stable in
the sense of Lyapunov. In the following theorem, we establish
that this distribution is also globally attractive.

Theorem V.8. Suppose that W∞ = (ei)
∞
i=1 is an ECW and

xeq ∈ int P(V). Then the unique solution of system (22)-(24)
satisfies

lim
t→tf

x(t) = xeq.

Proof. We prove this result by contradiction. Suppose that
limi→∞ x(ti) 6= xeq . Then there must be a v ∈ V and ε > 0
such that for each N ∈ Z>0, there exists pN ≥ N for which
xv(tpN−1) > xeqv + ε. From Lemma V.6, this implies that for
every w ∈ N (v),

xw(tpN ) > xw(tpN−1) +
ε

|N (v)|
.

Because ε > 0, it follows that there exists an M ∈ Z>0 that
satisfies

Mε

|N (v)|
≥ xeqv ,

and hence Proposition V.7 implies that

xw(t) ≥ xeqw +
ε

|N (v)|

for t = tpM+1
for all w ∈ N (v). Since the graph G is assumed

to be strongly connected, Lemma V.6 also implies that for
each r ∈ V , there exists ε̃r > 0 and qrN ∈ Z+ corresponding
to each N ∈ Z>0 such that xr(t) ≥ xeqr + ε̃r for t = tz with
z = qrN . Due to the monotonicity result in Proposition V.7,
this implies that xr(t) ≥ xeqr for all r ∈ V for all sufficiently
large times t. This implies that

∑
v∈V xv(t) > 1 for some

time t ∈ [0,∞). This leads to a contradiction with the fact
that the set P(V) is invariant for the solution x(t). Hence, it
must be true that limi→∞ x(ti) = xeq . From the monotonicity
property of solutions proved in Proposition V.7, it follows that
limt→tf x(t) = xeq .

Remark V.9. (Zeno Behavior) Note that it is possible that
limi→∞ ti = tf < ∞. In fact, this is trivially true when
x(0) = xeq ∈ int P(V).
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Remark V.10. (Stabilizing a Swarm of Interacting Robots)
Stabilization of the followers to a target probability distribu-
tion required the assumption that the followers are not inter-
acting. While this assumption is not required for the open-loop
controller that was studied in Section V-A, significantly more
work would be needed to extend the closed-loop controller
introduced in this section to the case of interacting followers.
First, following Remark IV.5, we cannot ensure global stability
of the target distribution. Second, it cannot be guaranteed that
the monotonicity property of the solutions that was established
in Proposition V.7 would still hold if the followers were inter-
acting. One possible approach to designing a local stabilizing
controller for the case of interacting agents is similar to the
approach we used to prove local approximate controllability
of the system (3): construct a stabilizing controller for the
relaxed system (5) and then construct a switching controller
that mimics the behavior of the controller for the relaxed
system and locally approximately stabilizes the original system
(3).

We note that the number of switchings in the control laws
presented in this section and in Section V-A depends on the
number of possible states of a single follower agent. In many
applications, the actual state space of each follower agent
would be continuous, and the state space of the corresponding
Markov chain that models the motion of each agent would be
obtained by discretizing this continuous state space. Therefore,
as the state space of the Markov chain converges to the
actual continuous state space of the followers, the control law
presented in this section would require an increasing amount
of time to drive the followers to the target distribution. This
contrasts with the control approach presented in [25], in which
the state space of each follower agent is continuous, and hence
no discretization of the state space is required in the modeling
process. However, the control approach in [25] does not scale
well with the number of follower agents, since the leader
must have the ability to distinguish between the followers and
switch successively between them. For potential applications
such as artificial pollination by robotic insects [5], where the
number of agents is expected to be on the order of thousands,
it may be sufficient to prescribe the target swarm behavior in
terms of desired probability distributions of agents or agent
activity on a coarse discretization of the agents’ state space,
thus making the herding approach presented in this paper
more appropriate. On the other hand, in applications where
the number of followers is small and the goal is to control
them to precise locations in space, the approach in [25] might
be more suitable.

VI. NUMERICAL SIMULATIONS

In this section, we verify the effectiveness of our con-
trol strategies with numerical simulations in MATLAB of
three scenarios with different controllers, graph topologies,
and follower agent population sizes. In the first scenario,
the leader agent must herd the follower agents to a target
distribution over an undirected 4-vertex grid graph with the
topology shown in Figure 2. The leader moves along the
path W∞ = ((1, 2), (2, 3), (3, 4), (4, 1), (1, 2), ...). The initial

distribution of followers was set to x0 = [1 0 0 0]T , and the
target distribution was defined as xeq = [0.1 0.1 0.4 0.4]T .
Figures 3a and 3b compare the solution of the system (3) to the
stochastic simulation of the CTMC characterized by expres-
sion (1) with the open-loop controller (11) for two different
follower population sizes, N = 20 and N = 200, with the
corresponding switching parameter value set to ε = 0.05 and
ε = 0.01, respectively. As expected, the plots show that the
stochastic simulation for the N = 200 case follows the mean-
field model solution more closely than for the N = 20 case.
In both cases, the difference between the average follower
populations and the target distributions converges to 0 within
27.5 s. For the N = 20 case, in which ε = 0.05, the solution
of the mean-field model shows larger fluctuations about the
target distribution than for the N = 200 case, in which
ε = 0.01. This is consistent with the result in Theorem V.2 that
decreasing the value of ε produces smaller fluctuations of the
solution of the mean-field model about the target distribution
as t→∞.

In the second scenario, the graph topology and the path of
the leader are the same as in the first scenario. The initial distri-
bution of followers was set to x0 = [1 0 0 0]T , and the target
distribution was defined as xeq = [0.25 0.25 0.25 0.25]T .
Figures 3c and 3d compare the solution of system (3) to a
stochastic simulation of the CTMC characterized by expres-
sion (1) with the closed-loop controller (22) for two different
follower population sizes, N = 20 and N = 200. As expected,
the plots show that the stochastic simulation for the N = 200
case follows the mean-field model solution more closely than
for the N = 20 case. In both cases, the average follower
populations converge to the target distribution within 3.5 s.
Compared to the open-loop controller used in the first scenario,
we observe that the closed-loop controller achieves much
faster convergence of the swarm to the target distribution.

To demonstrate the scalability of our control approach,
we considered two scenarios in which the leader must herd
N = 104 follower agents to a target distribution over a 36-
vertex graph (Scenario 1) and a 100-vertex graph (Scenario 2).
Both graphs are bidirected and have a two-dimensional grid
structure. For both scenarios, all the follower agents start in a
single state (the bottom left grid cell), and the transition rate η
is set to η = 1. Scenario 1: One-tenth of the follower agents
are required to distribute equally among the boundary cells and
four cells at the center, while nine-tenths of the population
is required to distribute equally among the remaining cells
to form the letter ‘O’. Figure 4 shows snapshots at times
t = 0 s, t = 100 s, and t = 1000 s of the distribution of
follower agents and location of the leader agent in a stochastic
simulation of the CTMC characterized by expression (1) with
the closed-loop controller (22). Let Nv(t) denote the number
of follower agents in state v ∈ V at time t in the stochastic
simulation, and define xs(t) = 1

N [N1(t) ... N36(t)]T as the
vector of followers’ population fractions in different states
at time t. Measuring the difference between the simulated
and target distributions of follower agents at time t as the
error E(t) = ||xs(t) − xeq||2, we compute E(0) = 1.04,
E(40) = 3.9 × 10−2, and E(400) = 1.4 × 10−3 for the
times of the snapshots in Figure 4. The decreasing value of
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(a) Open-loop control with N = 20 follower agents
(ε = 0.05)
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(b) Open-loop control with N = 200 follower agents
(ε = 0.01)
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(c) Closed-loop control with N = 20 follower agents
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(d) Closed-loop control with N = 200 follower agents

Fig. 3: Trajectories of the mean-field model (thick lines) and the corresponding stochastic simulations (thin lines).

E(t) over time indicates that the follower agent distribution
converges to the target distribution as desired, which can also
be confirmed qualitatively from the snapshots. A movie of
the numerical simulation with the closed-loop controller is
shown in the video attachment. Scenario 2: The follower
agents are required to distribute on the 100-vertex graph to
form the letters ‘ASU’. Ninety percent of the agents must
distribute equally among cells that form the letters, and ten
percent must distribute equally among the remaining cells.
Figure 5 shows snapshots at times t = 0 s, t = 300 s,
and t = 3000 s of the distribution of follower agents and
location of the leader agent in a stochastic simulation of the
CTMC characterized by expression (1) with the closed-loop
controller (22). As expected, since the number of states for
the 100-vertex graph is greater than for the 36-vertex graph,
the agents take longer to converge to the target distribution
on the 100-vertex graph. We compute the error E(t) at the
times t of the snapshots in Figure 5 as E(0) = 1.02,
E(300) = 1.7 × 10−2, and E(3000) = 7.9 × 10−4. As in
Scenario 1, the decrease in E(t) over time indicates that the
follower distribution converges to the target distribution, which
can also be confirmed qualitatively from the snapshots.

Additional numerical simulations of Scenario 1 and Sce-
nario 2 were performed to investigate the robustness of the
closed-loop controller to (a) variations in the transition rate
η, the rate at which follower agents exit their state due to the
leader’s presence; and (b) inaccuracy in the leader’s estimate of
the fraction of follower agents at its current location. For simu-
lations of case (a), the leader obtained accurate measurements
of the follower population, and the transition rate η was set to
η = 1+∆η, ∆η ∈ {0.5, 0.25, 0,−0.25,−0.5}. The parameter
∆η = 0 corresponds to the nominal scenario where η = 1. For
simulations of case (b), η was fixed at η = 1, and the leader’s
estimate of the empirical distribution 1

N

∑N
i=1 χv(Xi(t)) was

modeled as 1
N

∑N
i=1 χv(Xi(t))(1 + ∆KYv(t)) for ∆K ∈

{0.5, 0.25, 0,−0.25,−0.5}, where Yv(t) ∈ [0, 1] is a uniform
random variable. The parameter ∆K = 0 corresponds to
the scenario where the leader’s estimate is accurate. Tables
I and II list the values of the error E(t) computed at the
final time of the simulations of Scenario 1 and Scenario 2,
respectively, for both cases (a) and (b). The minimum error
values are achieved for the nominal value of η (∆η = 0) and
accurate leader measurements (∆K = 0). However, relatively
low error values are still obtained when ∆η 6= 0 and ∆K 6= 0,
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Fig. 4: Snapshots at three times t of N = 104 follower agents redistributing over a 36-vertex graph during a stochastic
simulation of the closed-loop system. The black arrows define the sequence of state transitions by the leader agent.
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Fig. 5: Snapshots at three times t of N = 104 follower agents redistributing over a 100-vertex graph during a stochastic
simulation of the closed-loop system. The black arrows define the sequence of state transitions by the leader agent.

indicating that the closed-loop controller is able to successfully
drive the follower agents close to the target distribution even
in the presence of variations in η and inaccuracy in the leader’s
measurements.

∆η E(400)

+0.50 8.8 × 10−3

+0.25 4.6 × 10−3

0 1.4 × 10−3

−0.25 2.2 × 10−3

−0.50 8.3 × 10−3

∆K E(400)

+0.50 6.0 × 10−3

+0.25 5.7 × 10−3

0 1.4 × 10−3

−0.25 2.2 × 10−3

−0.50 2.0 × 10−3

TABLE I: Effect of variations in follower transition rate or
leader measurement accuracy on error E(400) in Scenario 1

VII. PHYSICAL ROBOT EXPERIMENTS

Three multi-robot experiments were implemented using the
Robotarium [31] to validate the closed-loop controller (22).

∆η E(3000)

+0.50 2.7 × 10−3

+0.25 1.1 × 10−3

0 7.9 × 10−4

−0.25 1.5 × 10−3

−0.50 2.2 × 10−3

∆K E(3000)

+0.50 1.3 × 10−3

+0.25 9.5 × 10−4

0 7.9 × 10−4

−0.25 1.5 × 10−3

−0.50 1.8 × 10−3

TABLE II: Effect of variations in follower transition rate or
leader measurement accuracy on error E(3000) in Scenario 2

The Robotarium is a swarm robotics testbed that users can
remotely access to validate their controllers and algorithms
on physical hardware. The experiment was conducted in
a centralized manner, in that the robot population in each
state was measured from images taken from multiple VICON
motion capture cameras, and the robots initiated and completed
their transitions between states when commanded by a central
computer.

In Experiment 1, the environment was modeled as an
undirected 4-vertex grid graph G and N = 10 robots were
used as follower agents. The robots move on the testbed
surface shown in Figure 6a, which is divided into four re-
gions of equal size, each of which corresponds to a vertex
of the graph G (superimposed on the testbed). A virtual
leader agent, shown as the blue circle in Figure 6b, and the
boundaries of the four regions were projected onto the testbed
using an overhead projector. The initial and target follower
agent distributions were defined as Nx0 = [4 1 1 4]T and
Nxeq = [1 4 4 1]T , respectively. The leader moves along the
path W∞ = ((1, 2), (2, 4), (4, 3), (3, 1), (1, 2), ...). The leader
remains stationary in its current state, repelling followers in
that state, until the follower population in the leader’s state
is less than or equal to the target population; then, the leader
transitions to the next state in its path. The leader was able
to herd the robots into the target distribution in 20 iterations,
as shown in Figure 7a, which plots the difference between the
target distribution and current population in each state over
time. In Experiment 2, the environment was the same as in Ex-
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(a) (b)

Fig. 6: Initial setup of (a) Experiments 1 and 2, and (b) Experiment 3 on the Robotarium swarm robotics testbed, with the
corresponding graph G superimposed.

(a) (b) (c)

Fig. 7: Follower distribution over time in the Robotarium experiments with the closed-loop controller. (a) Experiment 1; (b)
Experiment 2; (b) Experiment 3.

periment 1 and N = 18 robots were used. The initial and target
follower agent distributions were defined as Nx0 = [6 3 3 6]T

and Nxeq = [3 6 6 3]T , respectively. The leader was able to
herd the robots into the target distribution in 15 iterations, as
shown in Figure 7b. In Experiment 3, the environment was
modeled as an undirected 6-vertex grid graph G, and N = 12
robots were used as follower agents. The robots move on the
testbed surface shown in Figure 6b, which is divided into
six regions of equal size, each of which corresponds to a
vertex of the graph G (superimposed on the testbed). The
initial and target follower agent distributions were defined
as Nx0 = [4 0 4 0 4 0]T and Nxeq = [0 4 0 4 0 4]T ,
respectively. The leader was able to herd the robots into the
target distribution in 75 iterations, as shown in Figure 7c.

A movie of all three experiments is shown in the video
attachment. In the video, the leader is red if it is stationary at
its current state, and blue if it is moving to the next state in
its path. The current time step k and leader action (either Stay
if it is stationary, or the direction of its motion) are displayed
at the top of the video frames.

VIII. 3D MULTI-ROBOT SIMULATION RESULTS

We also validated the closed-loop controller (22) in a 3D
physics simulation with realistic leader and follower robot
dynamics. We used the Robot Operating System (ROS) to

program the low-level and high-level control of the simulated
robots in a completely decentralized manner, meaning that
all robots take sensor measurements and decide on their
next action autonomously, without the input of a supervisory
agent or global observer. Additionally, each robot performs its
computation and control independently of one another, with
no inter-robot communication. We used Gazebo [22] for 3D
simulation and rendering. The graph G and leader path W∞
were the same as in the numerical simulations.

In the simulation, a quadrotor acts as the leader, and N = 8
Pheeno robots [39] act as the followers. Pheeno is a customiz-
able, low-cost mobile robot developed by our laboratory. Each
simulated Pheeno is equipped with an upward-facing sonar
sensor and a ground-facing IR sensor. These sensors model
the functionality of the HC-SR04 Ultrasonic Sensor and the
QRE1113 Digital IR Sensor, respectively.

The robots move within a 2.4 m × 2.4 m bounded arena,
shown in Figure 8, that is divided into four black or white
regions of equal size. Each region corresponds to a vertex of
the graph G. The regions contain different colored blocks that
are used by the quadrotor to assist with its localization and
to identify the region (state) over which it is flying: state 1 is
green, state 2 is blue, state 3 is red, and state 4 is orange. The
visual servo approach in [9] is used to localize the quadrotor
with respect to the colored blocks in this way. The quadrotor
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Fig. 8: A rendering of the 3D simulation with a quadrotor (the leader) and eight Pheeno robots (the followers).
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Fig. 9: Follower distribution over time in the 3D simulation with the closed-loop controller. (a) Scenario 1; (b) Scenario 2.

determines the number of followers in its current state by
counting the yellow circles on top of the Pheenos below. The
eight pillars surrounding the arena are labeled with ArUco
fiducial markers [35], which the Pheenos use to determine the
heading to the next state in their transition. The two pillars
that are adjacent to each region (state) have the same marker.
Each Pheeno uses its ground-facing IR sensor to recognize
when it has crossed into a new region by sensing the change
in reflection that occurs when it travels from a white surface
to a black surface, or vice versa. Each Pheeno also uses its
upward-facing sonar sensor to detect the quadrotor when it is
hovering at a low altitude above the Pheeno.

The closed-loop controller is implemented in the simulation
as follows. The quadrotor moves according to (22) to enter
the next state in the leader path, and it counts the number of
Pheenos in that state. If this number is less than or equal to
the target number, then the quadrotor moves to the next state
in the path. If the number exceeds the target number, then the
quadrotor descends, which triggers the sonar sensors on the
Pheenos in that state. These Pheenos then transition to adjacent
states, following (1). The quadrotor repeats these actions until
the number of agents in each state equals the target number.

We performed two simulations of the closed-loop controller,
each with different initial and target distributions. In Scenario
1, Nx0 = [4 4 0 0]T and Nxeq = [2 2 2 2]T . In Scenario 2,

Nx0 = [2 2 2 2]T and Nxeq = [1 1 3 3]T . Figures 9a and 9b
plot the distribution of followers over time for both scenarios.
The figures show that the closed-loop controller successfully
drove the followers to the target distribution in each scenario.

IX. CONCLUSION

In this paper, we have addressed the problem of herding
a robotic swarm to a desired distribution among a set of
states using a leader agent that produces a repulsive effect on
swarm members in its current state. We utilize a mean-field
model of the swarm in our approach and establish approxi-
mate controllability of the model. Additionally, we construct
two switching feedback controllers for the leader agent. We
prove that these controllers can stabilize the swarm to target
probability distributions that are positive everywhere. Future
work will focus on designing feedback laws and optimal
control strategies for the leader agent that improve system
performance criteria such as the rate of the follower agents’
convergence to the target distribution and the robustness of
this convergence to disturbances, such as environmental factors
(e.g., wind) and inter-agent collisions. Another important
problem to investigate is whether the empirical distribution
of the N -agent Markov chain converges to the solution of the
mean-field model in the case where leader’s trajectory is a
function of the follower distribution.
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