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Adaptation of Gradient-based Navigation Control for Holonomic
Robots to Nonholonomic Robots

Amir Salimi Lafmejani1, Hamed Farivarnejad2, and Spring Berman2

Abstract—In this paper, we propose a gradient-based nonlinear
control approach for stabilizing a nonholonomic Wheeled Mobile
Robot (WMR) to a target position in environments with and
without obstacles. This approach enables any gradient-based
feedback control law (with bounded or unbounded gradients)
developed for a holonomic point-mass robot model to be adapted
to control a nonholonomic robot. The proposed controller is
defined in terms of smooth continuous functions, which produce
smooth robot trajectories and can be tuned to stabilize the robot
to the goal position at a desired convergence rate. We first
prove that the controller will stabilize a nonholonomic robot
to a target point in an obstacle-free environment. To stabilize
the robot’s position in environments with obstacles, we modify
our controller to utilize the gradient of an artificial potential
function and use Lyapunov stability theory to prove that the
robot is guaranteed to converge to the target position under this
controller. We demonstrate the effectiveness of our controller
for various initial robot positions and environments, and two
types of potential fields that are widely used in gradient-based
methods for obstacle avoidance, through MATLAB simulations
and experiments with a commercial nonholonomic WMR.

Index Terms—Wheeled Mobile Robots, Nonholonomic Con-
straint, Nonlinear Controller, Obstacle Avoidance, Artificial Po-
tential Field.

I. INTRODUCTION

MOTION control of nonholonomic Wheeled Mobile
Robots (WMRs) is required in a wide variety of

applications in robotics. Despite extensive work on designing
motion controllers for nonholonomic WMRs, challenges still
arise due to the nonholonomic constraints in the robot’s
kinematic model [1], [2]. Existing control approaches for
stabilizing the position of a nonholonomic robot suffer from
various limitations, including (1) chattering in the robot’s
motion that results from the use of discontinuous functions
in the control law, e.g. sgn [3], arctan [4], and atan2; and
(2) erratic or oscillatory transient robot motions, which are
intrinsic characteristics of time-varying control laws [5] and
pure geometric techniques [6]. Furthermore, many existing
control approaches for obstacle avoidance (1) have been devel-
oped using a holonomic motion planner, which may introduce
infeasible collision-free paths and cannot be implemented
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on nonholonomic robots [7]; (2) do not have mathematical
guarantees on performance; and (3) can result in the robot
becoming trapped in a local minimum.

There are also many gradient-based control approaches in
the literature that are rigorously proved to achieve position
stabilization and obstacle avoidance for holonomic WMRs,
but cannot be directly applied to nonholonomic WMRs. This
challenge motivated our work in this paper, which makes the
following main contributions. (1) We present an approach to
converting any gradient-based feedback controller designed for
holonomic robots into a controller that can be implemented on
nonholonomic robots for position stabilization and obstacle
avoidance. (2) Our controller has no discontinuities, since it
utilizes continuous functions (namely, trigonometric functions
of the robot’s heading angle) that produce a smooth robot
trajectory. (3) Using Lyapunov stability theory, we prove
that the controller is asymptotically stable for sets of both
positive and negative controller gains, given any initial robot
configuration. Thus, the robot can drive either forward or
backward to the target position as needed.

II. RELATED WORK

Various controllers have been designed to stabilize a non-
holonomic WMR to a target position. Discontinuous con-
trollers were developed in [3], [4] for exponential position
stabilization. Since these controllers are based on a switching
framework, noise in the robot’s sensor measurements can
result in undesired chattering along the boundaries of the
switching conditions [8]. A time-varying feedback stabiliza-
tion controller was proposed in [9], although it can produce
transient oscillations and undesired cusps in the trajectory of
the robot as it converges to the target position [8]. Control
approaches based on Lyapunov stability theory were devel-
oped in [10], [11]; however, these approaches cannot produce
smooth continuous time-invariant feedback laws [8].

A feedback linearization method was proposed in [12] for
smooth position stabilization, but this method produces a
singularity in the control law when the robot’s linear velocity
is zero. Nonlinear Model Predictive Control (NMPC) methods
for position stabilization have also been investigated [5], [13].
However, online implementations of these methods are com-
putationally intensive, and the transient portion of the robot’s
trajectory will not be smooth if the prediction horizon is
not large enough. Geometric control techniques developed for
holonomic systems, e.g. the approaches in [14], [15], cannot
be applied to nonholonomic robots, given their no-slip velocity
constraint. To address this issue, a geometric control approach
for position stabilization of noholonomic WMRs was designed
in [16] by exploiting properties of exponential coordinates and
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the special Euclidean group SE(2). However, in implemen-
tation, the controller’s dependence on direct measurements of
the robot’s heading angle can produce chattering when this
angle is near π or −π rad. Moreover, discontinuities arise in
the control law due to the use of the atan2 function.

Obstacle avoidance is another well-studied challenging
problem in the control of nonholonomic WMRs. Many ex-
isting controllers for obstacle avoidance by WMRs are based
on artificial potential fields [17], [18]. In these approaches,
the potential field is constructed to produce virtual attraction
forces on the robot toward the target position and virtual
repulsion forces away from the obstacles [19]. These methods
do not ensure global convergence to the target point while
avoiding obstacles, since the robot can become trapped in
local minima [20]. When applied to a nonholonomic WMR,
potential field-based controllers that have been developed for
holonomic robots may result in infeasible robot trajectories,
since the robot cannot necessarily move along the prescribed
gradient due to its nonholonomic constraint. In [21], [22],
[23], methods are proposed for mapping the infeasible tra-
jectories obtained by the holonomic planner to feasible ones
for nonholonomic robots; however, the potential functions
in these methods are not strictly decreasing. To overcome
this drawback, approaches that use differential flatness [24]
and iterative calculations [21] have been proposed to derive
feasible collision-free trajectories for nonholonomic WMRs.

A feedback controller for obstacle avoidance by nonholo-
nomic WMRs was designed in [25] using a time-varying
potential function with no local minima or saddle points. This
approach is subject to the aforementioned issues associated
with discontinuous time-varying controllers. A special type of
potential function called a navigation function [18] guarantees
convergence of a robot to a target position, defined as the
global minimum of the function, and ensures no collisions with
obstacles. The design of navigation function-based controllers
for nonholonomic WMRs was studied in [26], [27], [28].
These methods rely on prior knowledge about the environment,
including the geometry of the obstacles and the domain. In
addition to potential forces, gyroscopic forces were proposed
in [29] to implement obstacle avoidance while ensuring that
the robot converges to the target position. In [30], a reactive
control method inspired by magnetic fields was proposed for
obstacle avoidance by nonholonomic WMRs in environments
with convex obstacles. This method and the sliding mode
controller in [31] guarantee almost global convergence to the
target position, can be applied in unbounded convex domains,
and require the robot to have only local sensing capabilities,
with no prior information about the environment such as the
locations and shapes of the obstacles.

III. PROBLEM STATEMENT

We consider a nonholonomic WMR with a reference point
P at the midpoint of the axis connecting its wheels, as shown
in Fig. 1. The robot’s configuration at time t is defined as
ξ(t) = [x(t)T θ(t)]T = [x(t) y(t) θ(t)]T ∈ R3, where x and
y denote the coordinates of point P in the global coordinate
frame and θ denotes the robot’s heading angle, defined as the
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Fig. 1: (a) 3-D view of the Turtlebot3 Burger robot [32], a nonholo-
nomic WMR that we used in our experiments, and (b) definitions of
the state variables ρ, α, and θ in an overhead view of the robot.

angle of the robot’s heading direction with respect to the xo-
axis of the global frame. The unicycle kinematic model of the
robot is given by:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω, (1)

where v is the speed of the reference point and ω is the angular
velocity of the robot. The vector of control inputs is defined as
u = [v ω]T ∈ R2. We assume that the robot knows its initial
configuration ξ(0) and can use its sensors to determine x(t)
and the quaternion representation [33] of its heading angle
θ(t) at each time t > 0. A quaternion q is defined as the
sum of a scalar qw and a vector [qx qy qz]

T described in
an orthonormal basis (i, j,k) of R3:

q = qw + qxi+ qyj + qzk. (2)

Since the WMR moves in the x− y plane, the elements of q
are given by:

qx = 0, qy = 0, qz = sin

(
θ

2

)
, qw = cos

(
θ

2

)
, (3)

two of which are trigonometric functions of the robot’s head-
ing. We will design controllers for the robot that solve the
following problems. In both problems, we define the target
position of the robot (specifically, of the point P ) as the origin
of the global coordinate frame, without loss of generality.

Problem III.1. Consider a robot with model (1) that moves in
an unbounded domain. Design a feedback control law of the
form u = u(ξ) that requires only trigonometric functions of
θ and drives the robot to the target position from any initial
configuration.

Problem III.2. Consider a robot with model (1) that moves in
a convex domain that contains one or more convex obstacles.
Design a controller of the form u = u(ξ), based on the
gradient of a potential field, that requires only trigonometric
functions of θ and drives the robot to the target position from
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almost1 any initial configuration while preventing collisions
with the obstacles and the domain’s boundary.

Existing solutions to the above problems have the lim-
itations described in Section I. In particular, they require
the controller to be an explicit function of the Euler angle
representation of the robot’s heading, which can result in large
changes in the control input when the robot’s heading increases
past π rad and is measured as θ ∈ [−π, 0] rad, or when it
decreases past −π rad and is measured as θ ∈ [0, π] rad.
These large changes can cause undesired transient behaviors
in the robot’s navigation, such as sudden reorientations of the
robot and chattering in its trajectory that is characteristic of
switching controllers [34]. In order to produce a smooth robot
trajectory, our position controller uses trigonometric functions
of the robot’s heading, i.e. sin(θ) and cos(θ), in accordance
with the quaternion representation Eq. (3). Moreover, our
approach to collision-free position control can implement any
gradient-based controller designed for a holonomic robot on
a nonholonomic WMR. We note that our gradient-based con-
troller inherits (and cannot alter) the properties and limitations
of the corresponding controller for holonomic robots, such as
dependence on prior information about the environment or the
existence of local minima that can trap the robot.

IV. CONTROL SYSTEM

A. Controller Design
Defining ρ :=

√
x2 + y2 and α := tan−1( yx ), we can

represent the position of the reference point P in a polar
coordinate system as x = ρ cos(α) and y = ρ sin(α).
Accordingly, we can rewrite the model in Eq. (1) in the polar
coordinate system as:

ρ̇ cos(α)− ρα̇ sin(α) = v cos(θ),

ρ̇ sin(α) + ρα̇ cos(α) = v sin(θ),

θ̇ = ω. (4)

We multiply the first and second equations in Eq. (4) by cos(α)
and sin(α), respectively, and add them up. Then we repeat
this procedure by multiplying the first and second equations
by − sin(α) and cos(α), respectively, and adding them up. As
a result, we obtain the following representation of the unicycle
kinematic model in the polar coordinate system, where ρ, α,
and θ are state variables and v and ω are control inputs:

ρ̇ = v cos(θ − α), α̇ =
v

ρ
sin(θ − α), θ̇ = ω, (5)

We propose the following control laws for v and ω:

v = kvρ, ω = kω sin(θ − α), (6)

where kv and kω are controller gains. Given Eq. (3) and the
definition of ρ, Eq. (6) can be rewritten as:

v = kv
√
x2 + y2 = kv‖x‖,

ω = kω sin(θ − α) (7)
= kω sin(θ) cos(α)− kω cos(θ) sin(α)
= 2kωqzqw cos(α)− kω(q2w − q2z) sin(α). (8)

1See Remark IV.4 for a discussion of particular cases in which convergence
to the target position is not guaranteed.
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Fig. 2: The phase portrait of the closed-loop system when the (a)
negative and (b) positive controller gains are used.

Remark IV.1. As Eq. (7) shows, we can directly substitute
the position and orientation measurements from the robot’s
sensors, i.e. x, y, qz , and qw, into the control laws in order
to calculate the control inputs without any post-processing of
these measurements. Moreover, our proposed control law for
ω does not have any discontinuities in the robot’s heading
angle θ, since it is based on the quaternion representation of
rotations using trigonometric functions of the heading angle
measurements.

B. Convergence Analysis

To analyze the stability of the proposed control system, we
substitute the control law (6) into the robot’s kinematic model
(5) and obtain the equations of the closed-loop system as:

ρ̇ = kvρ cos(θ − α),
α̇ = kv sin(θ − α),
θ̇ = kω sin(θ − α). (9)

Furthermore, defining β := θ − α and subtracting the second
equation from the third equation in (9), we obtain a reduced-
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dimensional representation of the closed-loop system:

ρ̇ = kvρ cos(β), (10)

β̇ = (kω − kv) sin(β). (11)

The equilibrium points of this system are located where ρ = 0
and β = nπ for n ∈ Z. By linearizing the system about
these points, we can confirm that if kω < kv < 0, then
the equilibrium points with even values of n are locally
exponentially stable, while the equilibria with odd values of n
are unstable. A converse statement about even and odd values
of n holds true if 0 < kv < kω . The next theorem characterizes
the region of attraction of the stable equilibrium points.

Theorem IV.2. Consider the closed-loop system (10)-(11).
If kω < kv < 0, then an equilibrium point of this
system, which is specified by an even number for n as
n = 2m, m ∈ Z, is asymptotically stable, and the set
R = {ξ | ρ > 0, (2m− 1)π < β < (2m+ 1)π} is its basin
of attraction.

Proof. Using the trigonometric identity sin(β) =
2 tan( β2 )

1+tan2( β2 )

and the following change of variable,

η = tan

(
β

2

)
→ η̇ =

1

2
β̇

(
1 + tan2

(
β

2

))
, (12)

Eq. (11) is simplified to

η̇ = kβη, (13)

where kβ := kω − kv . The solution of Eq. (13) is

η(t) = η0e
kβt, (14)

where η0 denotes the value of η at t = 0. This shows that if
kβ < 0, η(t) exponentially converges to zero for any value
of η0. This assures monotonic convergence of β to 2mπ from
any value in ((2m−1)π, (2m+1)π), since tan(·) is a strictly
monotonic function on ( (2m−1)π2 , (2m+1)π

2 ). In Fig. 2a, the
projection of the system trajectories for m = −1, 0, 1 along
the vertical axis is monotonic, which shows this monotonic
evolution of β. Furthermore, using the trigonometric identity
cos(β) =

1−tan2( β2 )

1+tan2( β2 )
and Eq. (14), we can rewrite Eq. (10) as

ρ̇ = f(t)ρ, (15)

where

f(t) = kv

(
1− η20e2kβt

1 + η20e
2kβt

)
. (16)

Eq. (15) is a first-order linear differential equation with a time-
varying coefficient, whose solution is given by

ρ(t) = ρ0e
∫
f(t)dt, (17)

where ρ0 denotes the value of ρ at t = 0. To solve the
integral in the exponential term, we use the following change
of variable:

ζ(t) := η20e
2kβt → dζ = 2kβη

2
0e

2kβtdt. (18)

Then we have that
∫
f(t)dt is equal to:∫

kv
1− ζ(t)
1 + ζ(t)

dt =
kv
2kβ

∫
1− ζ
1 + ζ

dζ

ζ

=
kv
2kβ

∫ (
1

ζ
− 2

1 + ζ

)
dζ

=
kv
2kβ

(ln ζ − 2 ln(1 + ζ))

= ln

(
ζ

(1 + ζ)2

) kv
2kβ

(19)

Substituting the expression for
∫
f(t)dt from Eq. (19) into Eq.

(17), we obtain the solution for ρ(t) as

ρ(t) = ρ0

(
η20e

2kβt

(1 + η20e
2kβt)2

) kv
2kβ

. (20)

If kβ < 0, we can confirm that

lim
t→∞

η20e
2kβt

(1 + η20e
2kβt)2

= 0, (21)

which means that ρ(t) → 0 as t → ∞ if kv
kβ

> 0. Therefore,
ρ(t) converges to zero for any value of ρ0 if kv, kβ < 0, which
is equivalent to kω < kv < 0. This completes the proof.

Corollary IV.3. The equilibrium points of the closed-loop
system are marked by the green circles in Figs. 2a and 2b.
If we set 0 < kv < kω , then the equilibrium points that are
specified by odd values of n become asymptotically stable,
and the others become unstable. This occurs if β is replaced
by β + π in Eqs. (10)-(11) and the procedure in the proof
of Theorem IV.2 is reapplied. The evolution of the system’s
trajectories for positive values of kv and kω is illustrated
in Fig. 2b. Monotonic convergence of β to (2m + 1)π for
m = −1, 0, 1, and convergence of ρ to zero, are seen along
the vertical and horizontal axes, respectively.

Remark IV.4. As shown in the phase portraits in Fig. 2a and
Fig. 2b, the robot’s radial coordinate ρ diverges to infinity if
and only if the initial angle β(0) is exactly (2m + 1)π rad
when using negative controller gains or 2mπ rad when using
positive controller gains (for m ∈ Z). To ensure that the robot
converges to the target point from such initial configurations,
positive controller gains can be used when β(0) = (2m+1)π
(cases 7 and 10 in Fig. 3), and negative gains can be used
when β(0) = 2mπ (cases 4 and 6 in Fig. 3).

Theorem IV.5. Consider a nonholonomic WMR with kine-
matic model (1) that moves in a convex domain containing
one or more convex obstacles. Suppose there exists an artificial
potential field ϕ = ϕ(x) that admits a global minimum at the
origin x = 0 and for which µ := ||∇ϕ|| is maximal on the
boundaries of the obstacles. If kv < 0 and kω = 2kv , then
the following control law drives the robot to the origin from
almost any initial position in the domain while preventing it
from colliding with the obstacles and the domain’s boundary:

v = kvµ, ω = kω
µ

ρ
sin(θ − α). (22)
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Proof. Inserting the control law in Eq. (22) into the robot’s
kinematic model in Eq. (5), and using the fact that β = θ−α,
the equations of the closed-loop system become:

ρ̇ = kvµ cos(β), ρβ̇ = kvµ sin(β). (23)

We define a set C as

C =
{
(ρ, β) ∈ R2 | sin(β) = 0 ∨ cos(β) = 0

}
. (24)

If the system trajectories start from this set, then the solution of
Eq. (23) is straightforward to calculate. We will now consider
the time evolution of trajectories that start outside this set.

We note that µ is implicitly a function of ρ, and the
equilibrium points of system (23) are the elements of the set

E :=
{
(ρ, β) ∈ R2 | µ = 0

}
. (25)

This set also represents the critical point of the potential field
ϕ(x). We now consider the function

V = ρ tan2(β/2), (26)

which equals zero if ρ = 0 and/or β = 2mπ, m ∈ Z,
and is positive otherwise. The time derivative of V along the
trajectories of the closed-loop system is

V̇ = kvµ (2 + cos(β)) tan2(β/2), (27)

which is zero when µ = 0 and/or β = 2mπ, m ∈ Z, and
is negative otherwise. Invoking LaSalle’s invariance principle
[35], we can conclude that system trajectories that start outside
the set C converge to the largest invariant set in the set

S :=
{
(ρ, β) ∈ R2 | µ = 0 ∨ β = 2mπ, m ∈ Z

}
, (28)

which contains E . Points (ρ, β) for which ρ > 0 and β = 2mπ,
m ∈ Z, do not comprise an invariant set, since they are not
elements of E . Therefore, almost all trajectories of the closed-
loop system converge to the largest invariant set in E , which
is the location of the global minimum of ϕ(x).

Before we prove that the robot will avoid collisions with
obstacles, we state the following two lemmas, which will be
used in the proof.

Lemma IV.6. Along system trajectories that start outside the
set C, sin(β) never changes sign and converges to zero as
t→∞.

Proof. We multiply the first and second equations in Eq. (23)
by sin(β) and − cos(β), respectively, and add them up. Then
we obtain:

ρ̇ sin(β)− ρβ̇ cos(β) ≡ d

dt

(
ρ

sin(β)

)
sin2(β) = 0. (29)

Define ρ0 = ρ(0) and β0 = β(0). Equation (29) shows that
if sin(β0) 6= 0, then ρ

sin(β) is constant along the robot’s entire
trajectory, and therefore we have that

ρ(t) =
ρ0

sin(β0)
sin(β(t)). (30)

Since ρ(t) is always positive, the sign of sin(β(t)) must be
equal to the sign of sin(β0) for all t ≥ 0. This implies that
sin(β(t)) never changes sign. Moreover, from Eqs. (26)-(27),

we have that ρ(t) → 0 as t → ∞. Equation (30) then shows
that sin(β(t))→ 0 as t→∞. This completes the proof.

Lemma IV.7. Along system trajectories that start outside the
set C, β̇ remains bounded and converges to zero.

Proof. The function V in Eq. (26) is positive semi-definite,
and V̇ in Eq. (27) is negative semi-definite. Therefore, V is al-
ways bounded, which implies that tan(β/2) remains bounded.
Also, using the trigonometric identity sin(β) =

2 tan( β2 )

1+tan2( β2 )

and Lemma IV.6, we can conclude that tan(β(t)/2) → 0 as
t → ∞. This implies that limt→∞ tan(β(t)/2) exists and is
finite. Moreover, the time derivative of tan(β(t)/2) is:

d

dt
(tan(β/2)) =

β̇

2
(1 + tan2(β/2)). (31)

By applying Barbalat’s Lemma [35] to the function tan(β/2),
we can conclude that limt→∞( ddt (tan(β/2))) = 0. This, along
with the boundedness of tan(β/2) in Eq. (31), proves that β̇(t)
is bounded and converges to zero as t→∞.

We now substitute the expression for ρ(t) in Eq. (30) into
the second equation in Eq. (23) to obtain

µ =
sin(β0)

kvρ0
β̇. (32)

Since β̇ is bounded by Lemma IV.7, this equation shows that µ
is bounded. This gives an upper bound on µ := ||∇ϕ|| along
the robot’s trajectory. If ||∇ϕ|| is infinite along the boundaries
of the obstacles and the domain (if it is bounded), then the
boundedness of µ guarantees the robot’s clearance from these
boundaries. Alternatively, if ||∇ϕ|| is bounded and has its
maximum value along these boundaries, then we must design
the parameters of the function ϕ such that the maximum value
of ||∇ϕ|| always exceeds the upper bound in Eq. (32). This
condition guarantees the robot’s clearance from the boundaries
of the obstacles and the domain.

V. SIMULATION RESULTS

In this section, we validate our controllers for position
control and obstacle avoidance with MATLABr simulations
of a nonholonomic robot.

Position Control: First, we simulated the position controller
for 12 different initial configurations of the robot, using both
possible sets of control gains (positive and negative) described
in Section IV. The resulting trajectories of the robot are shown
in Fig. 3. From each initial configuration, shown in black,
the robot is successfully stabilized to the origin (dark green
point). Note that positive control gains cause the robot to move
forward along its trajectory (i.e., in the direction of the xr axis
in Fig. 1), while negative gains cause it to move backward.

Obstacle Avoidance: We evaluated our obstacle avoidance
controller by setting the potential field ϕ to either a navigation
function ψ [37] or an attractive-repulsive potential field U
defined as in [17]. These types of potential fields are widely
used in gradient-based control methods for obstacle avoidance,
and they satisfy the requirements on ϕ given in Theorem IV.5.
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Fig. 3: Stabilization of a simulated nonholonomic WMR to the origin
from different initial configurations, using negative controller gains
kv = −0.1 and kω = −0.5 (1 to 6), and positive controller gains
kv = 0.1 and kω = 0.5 (7 to 12). The robot’s heading at each initial
configuration is indicated by a green arrow.

For the case ϕ = ψ, we simulated a scenario in which a robot
moves to the target position, defined as the origin, through
a circular environment with a radius of 4.5 m (navigation
functions are defined on bounded domains) while avoiding
collisions with 9 circular obstacles. We tested the controller for
7 different initial robot configurations. For the case ϕ = U , we
simulated the same scenario and initial robot configurations,
but in an unbounded environment rather than a bounded one.
Figures 4a and 4b plot the resulting trajectories of the robot
for the cases ϕ = ψ and ϕ = U , respectively. The trajectories
show that in all cases, the robot successfully avoids collisions
with the obstacles as it drives to the origin.

VI. EXPERIMENTAL IMPLEMENTATION AND RESULTS

We also implemented our controllers for position control
and obstacle avoidance on a commercial Robot Operating Sys-
tem (ROS)-compatible nonholonomic WMR, the TurtleBot3
Burger robot produced by Robotis® (see Fig. 1). This platform
is a differential-drive robot with a nonholonomic constraint on
its velocity; it cannot produce any controlled motion along the
direction of its wheels’ axis, shown by the red dashed line in
Fig. 1b. The robot uses only its onboard sensor measurements
to estimate ξ(t), its configuration in the global coordinate
frame; no external localization system, such as an overhead
camera and vision-based tracking software, is used for this
purpose. The robot can use both odometry calculations, based
on the measurements of its wheel encoders, and IMU sensor
data to estimate its instantaneous configuration with respect
to its initial configuration in the global frame, ξ(0). Fusion of
the odometry and IMU sensor data improves the accuracy of
this estimate. Since we specify that the robot knows ξ(0), it
can calculate its configuration ξ(t) in the global frame at any
time t > 0 by adding the sensor measurements to ξ(0). The
robot’s heading angle measurement is recorded in quaternion

.
(a) ϕ = ψ, a navigation function.

(b) ϕ = U , an attractive-repulsive potential field.

Fig. 4: Stabilization of a simulated nonholonomic WMR to the origin
from different initial configurations, while avoiding collisions with
obstacles, using our proposed controller with the potential field ϕ
defined as (a) a navigation function [36]; (b) an attractive-repulsive
potential field [17].

representation, and thus can be directly input to our proposed
controllers in Eq. (7), making them convenient to implement.
A video recording of the experiments described here, along
with additional position control and obstacle avoidance exper-
iments, is available online at [38].

Position Control: We implemented our position controller on
the robot with both positive and negative gains and tested it for
different initial robot configurations. Figures 5a and 5b display
the robot’s trajectory during four of the experiments, and Fig. 6
plots the time evolution of the robot’s distance to the target
position (the origin) during each of these experiments. The
figures show that the controller stabilizes the robot smoothly
to the target position from each initial configuration, without
producing oscillations or cusps in the robot’s trajectory.
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Fig. 5: Experimental validation of our position controller with
(a) negative controller gains, producing backward motion, and (b)
positive controller gains, producing forward motion. The robot’s
heading at its initial configuration is indicated by a green arrow, and
its trajectory is plotted as a yellow dashed line.
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Fig. 6: Time evolution of ρ, the robot’s distance to the target position,
during the experimental tests of position stabilization in Fig. 5.

Obstacle Avoidance: We also implemented our obstacle
avoidance controller with the potential field ϕ defined as either
a navigation function ψ or an attractive-repulsive potential field
U . For both cases, we tested the controller in an environment
with 6 circular obstacles. In the case where ϕ = ψ, we
defined a virtual circular boundary with a radius of 2.5 m
around the obstacles, and the robot was given the centers
and radii of the obstacles and boundary a priori. In the case
where ϕ = U , the robot must be able to measure its distance
from the obstacles, which we emulated by giving the robot

Robot 

trajectory

Boundary of 

domain

Obstacles

Target point 

(Origin)
4.3 (m)

(a) ϕ = ψ, a navigation function.

Obstacles

Target point 

(Origin)

4.3 (m)
Robot 

trajectory

(b) ϕ = U , an attractive-repulsive potential field.

Fig. 7: Experimental validation of our obstacle avoidance controller,
with the potential field ϕ defined as (a) a navigation function [36]; (b)
an attractive-repulsive potential field [17]. The robot’s initial heading
is indicated by a green arrow, and its trajectory is plotted as a yellow
dashed line.

the same a priori information about the obstacles. Figures 7a
and 7b show the robot’s trajectory during the experiment for
each case. In both experiments, the robot converges to the
target location (yellow circle) while avoiding collisions with
the obstacles, and for the case where ϕ = ψ, it stays within
the domain boundary (blue line in Fig. 7a). Figure 8 plots the
time evolution of ϕ(x) and ||∇ϕ(x)|| at the robot’s location
x along its trajectory during each experiment. As expected,
the values of these functions converge to zero as the robot
approaches the target point. We note that in the case where
ϕ = ψ, the robot may navigate between the obstacles (instead
of circumventing them, as in Fig. 7a) if the target point is
located among or close to the obstacles, as shown in the
videos of additional obstacle avoidance experiments in [38].
In general, the robot’s trajectory can be varied by tuning the
parameters of the potential field.

VII. CONCLUSION

In this paper, we have modified gradient-based controllers
designed for holonomic WMRs to enable their implementation
on nonholonomic WMRs, in order to achieve collision-free
position control in environments with and without obstacles.
Our controllers guarantee obstacle avoidance under the same
assumptions (e.g., prior information about obstacles) as the
corresponding controllers for holonomic robots, and do not
impose any additional requirements. We designed a smooth,
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Fig. 8: Time evolution of ϕ and ||∇ϕ||, where ϕ = ψ or ϕ = U ,
during the experimental tests of obstacle avoidance in Fig. 7.

continuous, nonlinear controller that depends on trigonometric
functions of the robot’s heading in quaternion form, and thus
does not produce undesired transient behaviors during nav-
igation that are exhibited by discontinuous and time-varying
controllers which use heading measurements in the Euler angle
representation. Any gradient-based obstacle avoidance method
that is developed for holonomic robots can be integrated into
our controller for nonholonomic robots. We proved that the
proposed controllers are stable for two sets of positive and
negative control gains and demonstrated their effectiveness
through simulations and experiments with a nonholonomic
WMR. Future work includes designing controllers for stabi-
lizing the pose (both position and orientation) of a nonholo-
nomic robot while preventing collisions with obstacles using
approaches other than gradient-based methods.
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