
Multi-Robot Target Search using Probabilistic Consensus on
Discrete Markov Chains

Aniket Shirsat, Karthik Elamvazhuthi, and Spring Berman

Abstract— In this paper, we propose a probabilistic
consensus-based multi-robot search strategy that is robust to
communication link failures, and thus is suitable for disaster
affected areas. The robots, capable of only local communication,
explore a bounded environment according to a random walk
modeled by a discrete-time discrete-state (DTDS) Markov chain
and exchange information with neighboring robots, resulting in
a time-varying communication network topology. The proposed
strategy is proved to achieve consensus, here defined as agree-
ment on the presence of a static target, with no assumptions
on the connectivity of the communication network. Using
numerical simulations, we investigate the effect of the robot
population size, domain size, and information uncertainty on
the consensus time statistics under this scheme. We also validate
our theoretical results with 3D physics-based simulations in
Gazebo. The simulations demonstrate that all robots achieve
consensus in finite time with the proposed search strategy over
a range of robot densities in the environment.

I. INTRODUCTION

Disaster areas, such as regions affected by earthquakes
and floods, experience great disruption to communication and
power infrastructure. This presents challenges in coordinat-
ing searches for survivors and dispersing relief teams to those
locations. Teams of mobile robots have proved to be useful
for exploring and mapping environments in disaster response
scenarios [1], [2], [3]. However, such robots are subject to
constraints on the payloads that they can carry, including
power sources, sensors, embedded processors, actuators, and
communication devices for transmitting information to other
agents and/or to a command center. In addition, many multi-
robot control strategies rely on a communication network
for coordination. Centralized exploration strategies like [4]
rely on constant communication between agents and a central
node. However, these strategies do not scale well with
the number of agents, since the communication bandwidth
becomes a bottleneck with increasing agent population size.
Moreover, such strategies suffer from a single point of
failure, i.e., a disruption to the central node causes loss of
communication for all the agents.

These drawbacks can be overcome by employing decen-
tralized exploration strategies that involve only local com-
munication between agents. However, communication can
become unreliable as the number of agents increases [6],
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Fig. 1: Overhead view of problem scenario, simulated in Gazebo 9
[5]. Multiple aerial robots, flying at different heights, search for a
target represented by the magenta box using a Markov chain motion
model.

and the connectivity of the communication network may be
disrupted in some applications by the environment [7] or by
the movement of agents outside of communication range.
Decentralized multi-agent control strategies that employ
communication networks often require the agents to reach
consensus on a particular variable. Achieving consensus is
the problem of arriving at a common output variable or
global property from measurements by distributed agents
with local communication, without the need for a supervisory
agent (leader or central processor) [8]. Consensus problems
have been studied in the cases of static or fixed network
topologies [9] and dynamic or switching network topologies
[8], directed and undirected communication graphs [10],
random networks [11], and mobile networks with commu-
nication delays [12]. Consensus algorithms for multi-robot
rendezvous, e.g. [13], [14], [15], [16], are an example of such
a strategy on a dynamic network. The robot controllers drive
the robots to meet at a common location in order to enable
their information exchange via local communication. How-
ever, such strategies restrict exploration since the robots must
aggregate at a common location. Distributed consensus for
merging individual agents’ information has been previously
used for multi-agent search, e.g. [17]; however, it requires
a connected communication network. Although random mo-
bility models are commonly used in multi-robot exploration,
e.g. [18], [19], [20], few works consider consensus problems
for agents that perform probabilistic search strategies, and
thus have randomly time-varying communication networks.

To address this problem, we present and analyze a
probabilistic multi-agent search strategy that is based on



a distributed consensus protocol. The proposed strategy is
decentralized and asynchronous and relies on only limited
communication among agents. Thus, it can be employed in
applications, such as disaster response scenarios, where it is
infeasible to maintain a connected communication network,
rendezvous, or communicate with a central node. The agents
move according to a discrete-time discrete-state (DTDS)
Markov chain model on a finite spatial grid, as illustrated
in Figure 1. We consider only static features here, which
represent persistent characteristics of the target(s) that the
agents are searching for in the environment. The main
contributions of this paper are the following:

1) We prove that agents with a DTDS Markov motion
model and local communication will achieve consen-
sus, in an almost sure sense, on the presence of a static
feature of interest in a bounded environment.

2) Our proof does not require the assumption that the
agent communication network remain connected over
a non-zero finite time interval, as assumed in [21]
for a similar consensus problem over a time-varying
network.1

We validate our theoretical results with Monte Carlo sim-
ulations in MATLAB and with 3D physics simulations
performed in Gazebo 9 [5] using the Robot Operating System
(ROS). From the simulation results, we empirically charac-
terize the dependence of the expected time until consensus
on the number of agents, the grid size, and the agent density,
which can be used to guide the selection of the number of
agents to search a given environment.

The remainder of the paper is organized as follows.
Section II presents the problem formulation, and Section
III describes the probabilistic motion model of the agents.
Section IV proves that all agents will reach consensus on the
presence of the feature under our stochastic search strategy.
Section V presents example implementations of our strategy
in numerical and 3D physics simulations and discusses the
results. Section VI concludes and suggests future work.

II. PROBLEM STATEMENT

We consider an unknown, bounded environment that con-
tains a finite, non-zero number of static features of interest,
indexed by the set I ⊂ Z+, where Z+ is the set of
positive integers. A set of N agents, indexed by the set
N = {1, 2, ..., N}, explore the environment using a random
walk strategy. We assume that each agent can localize itself
in the environment and can detect a feature within its sensing
range. When an agent a ∈ N detects a feature at discrete
time k, it associates a scalar information state ξa[k] ∈ R≥0
with its current position. The vector of information states
for all agents at time k is denoted by ξ[k]. Defining U(0, 1)
as the uniform probability distribution on the interval [0, 1],
the initial information state of each agent a is specified
a priori as ξa[0] ∼ U(0, 1). The agent can communicate

1This assumption implies the existence of a uniform upper bound on the
interval between successive meeting times of any two agents, which is not
guaranteed for agents that evolve stochastically on a finite connected state
space.

its information state ξa[k] at time k to all agents within
a disc of radius rcomm ∈ (0, δ], where δ is the maximum
communication radius. We define these agents as the set
of neighbors of agent a at time k, denoted by N a

k . In
addition, we assume that the agents can avoid obstacles
during their exploration. Since the agents are constantly
moving, the set of agents with which they can communicate
changes over time. The time evolution of this communication
network is determined by the random walks of the agents
throughout the bounded environment. This approach uses low
communication bandwidth, since each agent only transmits
a scalar value associated with each feature that it detects.

We discretize the environment, as shown in Figure 2, into
a square grid of nodes spaced at a distance d apart. The set of
nodes is denoted by S ⊂ Z+. We define S = |S|. Let Gs =
(Vs, Es) be an undirected graph associated with this finite
spatial grid, where Vs is the set of nodes and Es is the set
of edges (i, j) that signify pairs of nodes i, j ∈ Vs between
which agents can travel. We refer to these pairs of nodes as
neighboring nodes. Each agent performs a random walk on
this grid, moving from its current node i to a neighboring
node j at the next time step with transition probability pij .
Let Zak ∈ S be a random variable that represents the index of
the node that an agent a ∈ N occupies at the discrete time k.
For each agent a, the probability mass function πk ∈ R1×S

of Zak evolves according to a DTDS Markov chain:

πk+1 = πkP, (1)

where the state transition matrix P ∈ RS×S has elements
pij ∈ [0, 1] at row i ∈ S and column j ∈ S.

We assume that no prior information about possible search
locations is available. To cover the search area uniformly,
each agent is deployed from a random node on the spatial
grid. These initial agent positions are chosen independently
of one another and are identically distributed according to the
probability mass function π0, defined as a discrete uniform
distribution over the set of nodes. We define ξr ∈ R≥0 as
a scalar reference information state that is associated with
the set of nodes Zr ⊂ S from which an agent can detect a
feature. In this work, we consider environments with a single
feature of interest.

We now define another graph that models the time-varying
communication topology of the agents as they move along
the spatial grid. Let Gc[k] = (Vc, Ec[k]) be an undirected
graph in which Vc = N , the set of agents, and Ec[k] is
the set of all pairs of agents (a, b) ∈ N × N that can
communicate with each other at time k. Let M[k] ∈ RN×N

be the adjacency matrix with elements mab[k] = 1 if
(a, b) ∈ Ec[k] and mab[k] = 0 otherwise. We define L[k] ∈
RN×N as the graph Laplacian, whose elements are lab[k] =∑N
b=1mab[k] = deg(va) if a = b and lab[k] = −mab[k] if

a 6= b. Given the agent dynamics (1) on the spatial grid, each
agent a updates its information state at each time k according
to a consensus protocol similar to one developed in [22].
This update is based on the agent’s current information; the
information from all its neighboring agents, of which there
are at most dmax = N − 1; and the reference information



Algorithm 1: Control strategy for agent a ∈ N
Input: α, ga, ε, ξr; ξa[0] ∼ U(0, 1); Za0 ← i ∈ S
Output: k, ξa[k] for which |ξa[k]− ξr| ≤ ε
k ← 0
while |ξa[k]− ξr| > ε do

sum1 ← 0
sum2 ← 0
forall b ∈ N a

k do
/* agents a, b communicate */
sum1 ← sum1 − αlab[k](ξa[k]− ξb[k])

end
if i ∈ Zr then

/* agent a detects feature */
sum2 ← −ga(ξa[k]− ξr)

end
ξa[k + 1]← ξa[k] + sum1 + sum2
Zak+1 ← j, (i, j) ∈ Es, with probability pij
i← j
k ← k + 1

end

state:

ξa[k + 1] = ξa[k]− α
∑
b∈Na

k

lab[k](ξa[k]− ξb[k])

− ga(ξa[k]− ξr),
(2)

where a, b ∈ N ; α is a constant, chosen such that α ∈
(0, 1

dmax
) [12]; and ga is defined as:

ga =

{
1, Zak ∈ Zr

0, otherwise
(3)

In the next two sections, we will show that when agents
move on the spatial grid according to (1) and exchange in-
formation with their neighbors according to (2), they achieve
average consensus on their information states, defined as
follows:

Definition II.1. We say that the vector ξ[k] converges almost
surely to average consensus if

ξ[k]
a.s→ ξr1, (4)

where 1 ∈ RN×1 is a vector of ones.

This implies that the agents’ individual information states
will eventually converge to a common information state that
indicates the presence of the object being searched. We define
Tc as the time k at which every agent’s information state
ξa[k] reaches ξr within a small tolerance ε, where 0 ≤ ε� 1;
i.e., |ξa[Tc]− ξr| < ε for all agents a ∈ N . We consider Tc
to be the time at which the agents reach consensus.

The implementation of this probabilistic search strategy
on each agent is described in the pseudo code shown in
Algorithm 1. We illustrate the strategy for a scenario with
two quadrotors in Figure 2. The quadrotors start at the spatial
grid nodes indexed by i and j and move on the grid according
to the DTDS Markov chain dynamics in (1). The figure
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k = Z2

k
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0 = j

up

left
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Fig. 2: Illustration of our multi-agent search strategy, showing
sample paths for two quadrotors (orange and red) on a square
grid. The quadrotors search the environment for a static target (the
magenta star) as they perform a random walk on the grid.

shows sample paths of the quadrotors. The orange quadrotor
detects the feature, indicated by a magenta star, when it
moves to a node in the set Zr (at these nodes, the feature is
within the quadrotor’s sensing range). The quadrotors meet at
grid node m after k = 9 time steps and exchange information
according to (2). They stop the search if their information
states are within ε of ξr; otherwise, they continue to random-
walk on the grid.

III. ANALYSIS OF THE MARKOV CHAIN MODEL OF
AGENT MOBILITY

Consider the DTDS Markov chain that governs the prob-
ability mass function of the state Zak , defined as the location
of agent a at time k on the spatial grid that represents
the environment. Then, the time evolution of the agent a’s
movement in this finite state space can be expressed by using
the Markov property as follows:

Pr(Zak+1 = j | Zak = i, Zak−1 = m, . . . , Za0 = l)

= Pr(Zak+1 = j | Zak = i),
(5)

where the second expression is the probability with which
an agent at node j transitions to node i at time k + 1, and
m, l ∈ Z+.

A. State Transition Matrix

The Markov chain (1) is expressed in terms of the state
transition matrix P. The time invariant matrix P is de-
fined by the state space of the spatial grid representing
the discretized environment. Hence, the Markov chain is
time-homogeneous, which implies that Pr(Zak+1 = j | Zak =
i) is the same for all agents at all times k. The entries of P,
which are the state transition probabilities, can therefore be
defined as

pij = Pr(Zak+1 = j | Zak = i), ∀i, j ∈ S, k ∈ Z+, ∀a ∈ N .
(6)



Since each agent chooses its next node from a uniform
distribution, these entries can be computed as

pij =

{
1

di+1 , (i, j) ∈ Es,
0, otherwise,

(7)

where di is the degree of the node i ∈ S, defined as di = 2
if i is a corner of the spatial grid, di = 3 if it is on an edge
between two corners, and di = 4 otherwise. Since each entry
pij ≥ 0, we use the notation P ≥ 0. We see that Pm ≥ 0 for
m ≥ 1. Hence, P is a non-negative matrix. Using Theorem
5 in [23], we can conclude that the state transition matrix P
is a stochastic matrix.

B. Stationary Distribution

A stationary distribution of a Markov chain is defined as
follows.

Definition III.1. (Page 227 in [23]) The vector π ∈ RS is
called a stationary distribution of a Markov chain if π has
entries such that:

1) πj ≥ 0 ∀j ∈ S and
∑S
j=1 πj = 1

2) πP = π

Thus, if π is a stationary distribution, we can say that
∀k ∈ Z+,

πPk = π. (8)

From the construction of the Markov chain (1), each agent
has a positive probability of moving from any node i ∈ S to
any other node j ∈ S of the spatial grid in a finite number of
time steps. As a result, the Markov chain Zak is an irreducible
Markov chain, and therefore P is an irreducible matrix.

From Lemma 8.4.4 (Perron-Frobenius) in [24], we know
that there exists a real unique positive left eigenvector of P.
Moreover, since P is a stochastic matrix, its spectral radius
ρ(P) is equal to 1. Therefore, we can conclude that this left
eigenvector is the stationary distribution of the corresponding
DTDS Markov chain. We will next apply the following
theorem.

Theorem III.1. (Theorem 21.12 in [25]) An irreducible
Markov chain with transition matrix P is positive recurrent
if and only if there exists a probability distribution π such
that πP = π.

Since we have shown that the Markov chain is irreducible
and has a stationary distribution π, which satisfies πP = π,
we can conclude from Theorem III.1 that the Markov chain
is positive recurrent. Thus, all states in the Markov chain are
positive recurrent, which implies that each agent will keep
visiting every state on the finite spatial grid infinitely often.

IV. ANALYSIS OF CONSENSUS ON AGENTS’
INFORMATION STATES

The dynamics of all agents’ movements on the spatial grid
can be modeled by a composite Markov chain with states
defined as Zk = (Z1

k , Z
2
k , ..., Z

N
k ) ∈ M, where M = SN .

Note that S = |S| and |M| = SN . We define an undirected
graph Ĝ = (V̂, Ê) that is associated with the composite

Markov chain. The vertex set V̂ is the set of all possible
realizations ı̂ ∈ M of Zk. The notation ı̂(a) represents the
ath entry of ı̂, which is the spatial node i ∈ S occupied by
agent a. We define the edge set Ê of the graph Ĝ as follows:
(̂ı, ̂) ∈ Ê if and only if (̂ı(a), ̂(a)) ∈ Es for all agents
a ∈ N . Let Q ∈ R|M|×|M| be the state transition matrix
associated with the composite Markov chain. The elements
of Q, denoted by qı̂̂, are computed from the transition
probabilities defined by Equation (7) as follows:

qı̂̂ =

N∏
a=1

pı̂(a)̂(a), ∀ı̂, ̂ ∈M. (9)

In the above expression, qı̂̂ is the probability that in the next
time step, each agent a will move from spatial node ı̂(a) to
node ̂(a).

i j l
pij pjl

pii pjj pll

Fig. 3: A graph Gs = (Vs, Es) defined on the set of spatial nodes
Vs = {i, j, l}. The arrows signify directed edges between pairs of
distinct nodes or self-edges. The edge set of the graph is Es =
{(i, i), (j, j), (l, l), (i, j), (j, l)}.
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Fig. 4: A subset of the composite graph Ĝ = (V̂, Ê) for 2 agents
that move on the graph Gs shown in Figure 3.

For example, consider a set of two agents, N =
{1, 2}, that move on the graph Gs as shown in Figure 3.
The agents can stay at their current node in the next
time step or travel between nodes i and j and between
nodes j and l, but they cannot travel between nodes i
and l. Figure 4 shows a subset of the resulting com-
posite graph Ĝ. The set of nodes in the graph Ĝ is
V̂ = {(i, i), (i, j), (i, l), (j, i), (j, j), (j, l), (l, i), (l, j), (l, l)}.
Each node in V̂ is labeled by a single index ı̂, e.g., ı̂ = (i, j),
with ı̂(1) = i and ı̂(2) = j. Due to the connectivity of
the spatial grid defined by Es, we can for example identify
((i, j), (i, l)) as an edge in Ê , but not ((i, j), (l, l)). Since
N = 2 and S = 3, we have that |M| = 32 = 9. For
each ı̂, ̂ ∈ V̂ , we can compute the transition probabilities in
Q ∈ R9×9 from Equation (9) as follows:

qı̂̂ = Pr (Zk+1 = ̂ | Zk = ı̂) = pı̂(1)̂(1)pı̂(2)̂(2),

k ∈ Z+. (10)

We now define ξ̂[k] = [ξ1[k] ξ2[k] . . . ξN [k] ξr]T ∈
RN+1 as an augmented information state vector. The dy-
namics of information exchange among the agents modeled



by Equation (2) can then be represented in matrix form as
follows:

ξ̂[k + 1] = H[k]ξ̂[k], (11)

where H[k] ∈ R(N+1)×(N+1) is defined as

H[k] =

[
I− αL[k] + diag(d) − d

0 1

]
(12)

in which d = [g1 g2 . . . gN ]T , 0 ∈ R1×N is a vector of
zeros, and I ∈ RN×N is the identity matrix.

We associate Equation (11) with a graph Gr[k], an expan-
sion of the graph Gc[k] that includes information flow from
the feature nodes Zr to agents that occupy these nodes. Here
we consider the feature as an additional agent af = N + 1,
which remains fixed. Let Gr[k] = (Vr, Er[k]) be a directed
graph in which Vr = N ∪ af , the set of agents and the
feature, and Er[k] = Ec[k] ∪ Ef [k], where Ef [k] is the set
of agent-feature pairs (a, af ) for which Zak ∈ Zr at time k.
In this graph, information flows in one direction from the
feature nodes to all agents that occupy a feature node on the
finite spatial grid at time k. In addition, information flows
bidirectionally between agents that are neighbors at time k.
We now prove the main result of this paper in the following
theorem, which shows that all agents will track the reference
feature in the environment almost surely and in a distributed
fashion.

Theorem IV.1. Consider a group of N agents whose in-
formation states evolve according to Equation (11). The
information states of all agents will converge to the reference
information state ξr almost surely.

Proof. Suppose that at an initial time k0, the locations of
the N agents on the spatial grid are represented by the node
ı̂ ∈ V̂ . Consider another set of agent locations at a future
time k0 + k, represented by the node ̂ ∈ V̂ . The transition
of the agents from configuration ı̂ to configuration ̂ in k
time steps corresponds to a random walk of length k on
the composite Markov chain Zk from node ı̂ to node ̂. It
also corresponds to a random walk by each agent a on the
spatial grid from node ı̂(a) to node ̂(a) in k time steps. By
construction, the graph Gs is strongly connected and each of
its nodes has a self-edge. Thus, there exists a discrete time
n > 0 such that, for each agent a, there exists a random
walk on the spatial grid from node ı̂(a) to node ̂(a) in
n time steps. Consequently, there always exists a random
walk of length n on the composite Markov chain Zk from
node ı̂ to node ̂. Therefore, Zk is an irreducible Markov
chain. All states of an irreducible Markov chain belong to
a single communication class. In this case, all states are
positive recurrent. As a result, each state of Zk is visited
infinitely often by the group of agents. Moreover, because
the composite Markov chain is irreducible, we can conclude
that ∪k∈Z+

Gc[k] = G0, where G0 is the complete graph on
the set of agents N , and therefore that ∪k∈Z+Gr[k] contains
a directed spanning tree with ξr as the fixed root. Since this
union of graphs has a spanning tree, we can apply Theorem
3.1 in [26] to conclude that the information state of each

agent will converge to ξr almost surely. The notation θ(k)
and Fθ(k) in [26] corresponds to our definitions of Zk and
H[k], respectively.

V. SIMULATION RESULTS

We validate the result on average information consensus in
Theorem IV.1 with numerical simulations in MATLAB and
3D physics-based software-in-the-loop (SITL) simulations
developed in ROS-Melodic and Gazebo 9 [5]. In the sim-
ulations, multiple agents perform random walks on a finite
spatial grid according to the dynamics in Equation (1). Each
grid is defined as a square lattice with c =

√
S nodes on

each side, where the distance between neighboring nodes
is d = 1 m. The state transition probabilities pij of the
corresponding graph Gs are defined according to Equation
(7). Since our largest simulated agent population is N = 14,
and the parameter α must be less than 1

dmax
= 1

N−1 [12],
we set α = 1

14−1 ≈ 0.08. The tolerance ε defining the time
until consensus was set to 0.01. All simulations were run on
a desktop computer with 16 GB of RAM and an Intel Xeon
3.0 GHz 16 core processor with an NVIDIA Quadro M4000
graphics processor.

A. Numerical Simulations

We performed large ensembles of Monte Carlo simulations
to investigate the effect of the number of agents N , the spatial
grid dimension c, and the resulting agent density N/c2 on
the expected time until the agents reach consensus, i.e., agree
that the feature of interest is present. Quantifying the effect of
these factors is necessary in order to determine the number of
agents that should search a given area. This would help first
responders to optimally distribute resources for searching a
disaster-affected environment.

Each agent is modeled as a point mass that can move
between adjacent nodes on the graph Gs, as illustrated in
Figure 2. We assume that the agents can localize on Gs. The
set of neighbors N a

k of an agent a at time k consists of all
agents that occupy the same spatial node as agent a at that
time. The feature can by detected by an agent located at
nodes Zr = {4, 5, 6} of the spatial grid, and the reference
information state of the feature is defined as ξr = 1.

To investigate the dependence of the expected time to
reach consensus, E[Tc], on the number of agents N and
the spatial grid dimension c, we simulated scenarios with
different combinations of N ∈ {2, 3, . . . , 14} and c ∈
{5, 8, 10, 12, 15, 20} meters. For each scenario, we ran 1000
simulations with random initial agent positions and computed
the mean time µ at which the agents reached consensus.
Figure 5 plots the values of µ versus N and c for each
simulated scenario, and Figure 6 plots µ versus the cor-
responding agent density, N/c2. We observe from these
figures that a decrease in the agent density results in an
increase in µ. This can be attributed to low agent encounter
rates with other agents and with feature nodes at low agent
densities. Using the curve fitting toolbox in MATLAB and
data from Figure 6 we see that there is an exponential relation
between E[Tc] and N/c2 given by E[Tc] = ae−b

N
c2 with



Fig. 5: Mean time (s) until consensus is reached, µ, versus number
of agents N and spatial grid dimension c. Each value of µ is
averaged over 1000 Monte Carlo simulations of scenarios with the
corresponding values of N and c.
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Fig. 6: Mean time (s) until consensus is reached, µ, versus agent
density N/c2 for the simulation data plotted in Figure 5.

a = 0.008, b = −15.84. Figure 6 shows that the expected
time until consensus does not decrease appreciably for agent
densities above approximately N/c2 = 0.05. Thus, for a
given grid size c2, it may not be necessary to deploy more
than about d0.05c2e agents (0.05c2 rounded up to the next
integer) to search the area.

For selected combinations of N and c, we also computed
the standard deviation σ of the time to reach consensus
over the corresponding 1000 simulations. Figure 7a plots
µ ± σ versus N for a fixed grid dimension c = 5, and
Figure 7b plots µ± σ versus c for a fixed number of agents
N = 5. Figure 7a shows that for a relatively small grid
size (c = 5), both µ and σ do not vary substantially with
N . Thus, a small number of agents would be sufficient
to search such an environment, since increasing the agent
density would not significantly speed up the search or reduce
the variability in time until consensus. Figure 7b indicates
that for a fixed group size of N = 5 agents, both µ and σ

increase monotonically with the size of the grid. This trend
suggests that more agents should be deployed if the predicted
time until consensus and/or the variability in this time is too
high for a given environment.

We illustrate the agents’ consensus dynamics with two
cases of the simulation runs. Figure 8 plots the time evolution
of the agent information states for each case. In the first case,
N = 2 agents traverse a spatial grid with dimension c = 3.
From Figure 8a, we see that the time until consensus, i.e.
the time at which both agents’ information states converge
within ε of the reference state ξr = 1, is approximately 160
s. We also simulate N = 5 agents that traverse a spatial grid
with dimension c = 10. Figure 8b shows that the time until
consensus has increased to about 570 s in this case, which
is within one standard deviation σ of the mean consensus
time µ computed from our Monte Carlo analysis, as shown
in Figure 7b for c = 10.

2 4 6 8 10 12 14

120

140

160

180

200

220

(a)

4 6 8 10 12 14 16 18 20 22

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(b)

Fig. 7: Time until consensus is reached, averaged over 1000 Monte
Carlo simulations of scenarios with (a) varying numbers of agents
N and grid dimension c = 5; (b) varying c and N = 5. The circles
mark mean times µ, and the error bars show standard deviations σ.

We also studied the effect on E[Tc] of uncertainty in
the agents’ identification of the feature nodes (i.e., ξr is
a random variable), which may arise in practice due to
factors such as sensor noise, occlusion of features, and inter-
agent communication failures. We ran 1000 Monte Carlo
simulation runs, for each of two scenarios, all with N = 5



Reference information Time until consensus is reached (s)
state µ± σ
ξr = 1 140 ± 35

ξr ∼ N(1, 0.02) 175 ± 68

TABLE I: Time until consensus is reached (µ±σ), computed from
1000 Monte Carlo simulations of scenarios with N = 5, c = 5 and
different values of ξr
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Fig. 8: Time evolution of the agent information states ξa[k] in
simulations of (a) N = 2 agents moving on a 3×3 grid; (b) N = 5
agents moving on a 10×10 grid.

agents moving on a spatial grid with dimension c = 5 m.
For each scenario, Table I shows the mean µ and standard
deviation σ of the time until the agents reach consensus. To
investigate the effect of uncertainty in feature identification,
we specified that agents either perfectly identify the feature,
in which case ξr = 1, or obtain noisy measurements of the
feature, for which ξr ∼ N(1, 0.02). From Table I, we observe
that the addition of noise to the agents’ measurements of the
feature results in an increase in both µ and σ. However, de-
spite information uncertainty, the agents successfully achieve
consensus.

B. 3D Physics Simulations

We also tested our search strategy in physics-based sim-
ulations. A snapshot of the Gazebo simulation environment
is shown in Figure 1. The agents are modeled as quadrotors
with a plus frame configuration. We assume that the agents
can accurately localize in the environment using onboard
inertial and GPS sensors. The analysis of our probabilistic
consensus strategy under localization uncertainty is beyond
the scope of this paper. We also assume that the feature of
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Fig. 9: Time evolution of the robot information states ξa[k] in
Gazebo simulation runs of (a) N = 2 robots moving on a 3×3
grid; (b) N = 5 robots moving on a 5×5 grid.

interest is known to be present in the environment, but its
location is unknown.

Each quadrotor is equipped with a downward-facing RGB
camera with a resolution of 1080 × 720. The feature of
interest is modeled as a magenta box, which the agents detect
from their camera images using a color-based classifier. We
added zero-mean Gaussian noise with standard deviation
0.07 to the photometric intensity in the camera sensor model.
We also used a standard plumb bob distortion model to
account for camera lens distortion. The quadrotors are spaced
0.5 m apart in altitude in order to prevent collisions. The
altitude difference causes slight disparities in the quadrotors’
field-of-view (FOV), but this does not significantly affect the
performance of the search strategy.

We simulated two scenarios: N = 2 robots at altitudes 0.5
m and 1 m traversing a 3×3 grid, and N = 5 robots at alti-
tudes between 1 m and 3 m traversing a 5×5 grid. The video
attachment (also online at https://youtu.be/j74jeWQ0HM0)
shows a simulation run of the second scenario. Figure 9a and
Figure 9b plot the time evolution of the agent information
states over a single simulation run of each scenario. The
information states sometimes display steep drops in value, as
in the plots of ξ2 and ξ4 in Figure 9b from 50 s to 70 s. These
drops can be attributed to the following factors: (1) an agent
updates its information state with states communicated by its
neighbors, according to the consensus protocol; (2) an agent
that is at the feature node stops detecting the feature below
when another agent at a lower altitude enters its field of view,



occluding the feature; (3) spurious measurements like false
positives may have been introduced by an agent’s sensors.
Despite the unmodeled effects of the second and third factors
on the information states, the agents still successfully reach
consensus during the Gazebo simulations. We see that the
time until consensus is reached in Figure 9a and Figure 9b
is about 210 s and 250 s, respectively. The delays in these
times compared to the times in the Monte Carlo simulations
in Figure 7 can be attributed to the second and third factors
described above and to the inertia of the quadrotor, which
affect the Gazebo simulations but not the Monte Carlo
simulations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a probabilistic search
strategy for multiple agents with local sensing and com-
munication capabilities. The agents explore a bounded en-
vironment according to a DTDS Markov motion model and
share information with neighboring agents. We proved that
the agents achieve consensus almost surely on the presence
of a static feature of interest in the environment. Thus, agents
that do not detect the feature through direct measurement
will eventually recognize its presence through information
exchange with other agents. Importantly, this result does not
require any assumptions on the connectivity of the agents’
communication network. Thus, the search strategy is suitable
for applications in which network connectivity is difficult
to maintain, such as disaster scenarios. We investigated the
performance of our strategy in both numerical and physics-
based simulations.

In future work, we will extend this probabilistic search
strategy to enable the agents to localize the target(s) in
the environment using distributed consensus methods. We
also plan to experimentally implement our strategy on aerial
robots equipped with RGB-D cameras and utilize more ro-
bust feature classifiers, such as SURF [27], for identification
of features. We propose to use 5G WiFi modules for inter-
robot communication in order to facilitate high-bandwidth
data exchange.
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