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Abstract—In this paper, we propose a fully decentralized con-
trol strategy for collective payload transport in 3D space by
a team of identical holonomic mobile robots in a microgravity
environment. This task has potential space applications such as
on-orbit assembly, debris removal, and planetary construction,
which have to be performed in uncertain environments where
inter-robot communication is unreliable or not available. De-
centralized control schemes that rely on limited data and do
not require inter-robot communication would enable teams of
robots to achieve cooperative transport objectives in unknown
environments. Existing decentralized strategies for collective
payload transport require at least some of the following infor-
mation: (1) the geometry and dynamics of the payload; (2)
the payload’s position and velocity over time; (3) the number
and distribution of robots around the payload; (4) the vector
from the payload’s center of mass to each robot’s attachment
point; and (5) desired trajectories for the robots and payload.
In this paper, we consider a team of robots that must stabilize
a payload’s center of mass to a target position without access
to any of this information. The robots are assumed to be
rigidly attached to the payload, e.g. via pincers, grippers, or
magnets, and the only information provided to them is the
target position in a global coordinate system that is shared by
all the robots. The robots do not exchange information and
only require measurements of their own positions and velocities.
Moreover, the payload may have an arbitrary shape, without
particular constraints on its geometry (e.g., convexity). Given
these assumptions and objectives, and building on our prior
work on collective transport strategies, we design a fully decen-
tralized proportional-derivative controller that can be employed
by the robots to drive the payload’s center of mass to the desti-
nation. Using a Lyapunov stability argument, we analytically
prove that under this controller, the payload’s center of mass
asymptotically converges to a small neighborhood of the target
position. The radius of this neighborhood is the magnitude of
the error between the target position and actual steady-state
position of the payload’s center of mass. We also investigate the
effect of the distribution of robots around the payload on the
magnitude of this error. We validate our theoretical results in
MATLAB simulations of five collective transport scenarios with
different payload shapes and variations in the distribution of
robots around the payload.
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Astrobee

Solar panel

Figure 1: Conceptual illustration of on-orbit collective transport of a 3D
payload (solar panel) by six Astrobee robots.

1. INTRODUCTION
Multiple robots can be used to accomplish complicated tasks
that cannot be accomplished by an individual robot [1]. Due
to this capability, a system of multiple robots can be used in
various applications such as construction, assembly, search-
and-rescue operations, disaster response, and object trans-
portation. Recently, various robotic systems have been used
frequently in different space applications, including planetary
exploration and on-orbit servicing [2], [3], [4], [5], [6].

On-orbit servicing tasks [7], [8], [9] such as moving irregular-
shaped objects and assembly of large heavy space struc-
tures [10] require cooperative object manipulation, also called
collective transport, by multiple robots. Figure 1 shows a
conceptual illustration of an on-orbit collective transport task
in which six Astrobee [11] robots cooperatively manipulate a
solar panel in space (Astrobee image is from [5]). Collective
transport approaches that rely on inter-robot communication
are vulnerable to failures arising from communication delays,
bandwidth limitations, and loss of connectivity. Moreover,
in order to implement a versatile, cost-effective multi-robot
system that can handle many types of payloads with minimal
sensing capabilities, the control strategy should not require
the robots to have information about their distribution around
the payload or the payload’s mass, geometry, or motion.
Centralized or distributed control approaches which rely on
inter-robot communication and knowledge about the payload
dynamics cannot be applied in these scenarios. Instead, it will
be necessary to use a fully decentralized control approach in
which each robot employs a controller that only requires local
sensing information and there is no communication between
the robots.
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In this paper, we propose a fully decentralized control ap-
proach that is inspired by the phenomenon of group food
retrieval in ants [12], [13], [14]. This behavior is an example
of decentralized cooperative manipulation in which the trans-
porters do not use explicit communication, follow predefined
trajectories to the goal point, or have prior knowledge about
the payload’s properties and the number and distribution of
transporters around the payload [15]. In our control approach,
the individual actions of the robots during collective transport
are determined by their locally perceived information as they
navigate to the goal point. We design decentralized position
controllers for a collective transport task in 3D space by a
group of point-mass robots that lack inter-robot communica-
tion and can only use on-board measurements of their own
positions and velocities as feedback. The controllers have a
proportional-derivative (PD) structure and drive the robots to
transport the payload to a target destination.

Related Work

Multi-robot systems for space applications have been inves-
tigated in many research studies. For instance, a control
approach for multiple satellites to perform area coverage and
space exploration is presented in [16]. As another example,
reconfigurable modular robots are conceptualized for on-orbit
satellite servicing in [17]. In [18], a human-supervised team
of robots is proposed for assembly of structures in orbit
or on planetary surfaces. In [19], a control approach is
presented for manipulation of objects in 3D by orbital free-
flying robots.

There are numerous studies on designing control approaches
for cooperative transport tasks by multiple mobile manipula-
tors in aerial, terrestrial, and underwater environments. De-
centralized control approaches for collective transport have
previously been proposed for scenarios in which the robots
follow preplanned trajectories or have information about the
geometry and dynamics of the payload, the payload’s posi-
tion and velocity or the distribution and number of robots
carrying the payload. In the decentralized approach proposed
in [20], robots push a large payload to a goal when their
line of sight to the goal is occluded by the payload. The
strategies described in [21], [22], require robots to commu-
nicate their measurements to one another in order to estimate
the dynamics of the payload. In [23], the authors propose
an event-triggered communication strategy with distributed
impedance control to improve the stability and robustness of
cooperative manipulation of unknown payloads in unknown
environments.

Adaptive robust control approaches have been proposed for
cooperative manipulation in 2D and 3D. These approaches
combine a stabilizing term with a regression term in the
controller in order to achieve stabilization in the presence of
parameter uncertainties. However, these approaches require
either prior information about the robots’ distribution around
the payload or feedback on the payload’s motion [24], [25],
[26]. In [27], an approach is presented for pose control of
a rod-shaped object using cooperative aerial manipulation,
in which the robot trajectories are preplanned. A similar
control approach for cooperative aerial manipulation in [28]
requires a global positioning system and real-time planning.
In [29], a networked control method with decoupled robot
dynamics is presented for collective transport by mobile
manipulators with communication. In [30], decentralized
collaborative manipulation of rigid bodies in both 2D and 3D
is achieved using an adaptive control approach that requires
predefined payload trajectories and knowledge of the position
and velocity of the payload’s center of mass. A decentralized

approach for cooperative manipulation is proposed in [31] in
which the robots have a common reference model for the
desired payload motion and use an adaptive controller to
compensate for the effect of friction on the payload. This
approach requires the robots to have access to measurements
of the payload’s linear and angular velocities, whereas our
approach does not require any information on the payload’s
motion.

Control approaches for collective transport that do not re-
quire inter-robot communication or prior knowledge about
the payload dynamics have also been developed [32], [33],
but they rely on predefined robot and payload trajectories that
are planned by a global supervisor. In [34], a strategy inspired
by a leader-follower scheme is presented for transport of a
flexible payload that is based on implicit communication and
requires knowledge of the payload dynamics. A strategy
for cooperative aerial manipulation and transport of large
and heavy objects is proposed in [35], which requires the
robots to estimate dynamic parameters of the payload. Re-
cently, learning-based methods have also been proposed for
collective transport tasks. In [36], robots in a transport team,
which explicitly exchange information, jointly reach the same
desired motion by running a time-varying quadratic program
which is solved online by a neural network scheme. A
dynamic recurrent neural network is used in [37] to solve
a quadratic program that computes cooperative kinematic
controllers for redundant manipulators using partially known
information about the payload and the teammates. In ad-
dition, reinforcement learning is used in [38] to design two
distributed approaches to cooperative manipulation: the first
applies Q-learning with individual reward functions, and the
second utilizes game-theoretic techniques. The first approach
exhibits more robustness to different reward structures than
the second.

In our prior work [39], we addressed the problem of con-
trolling the velocity of a payload, rather than its position,
for a multi-robot transport team without knowledge about
the payload or inter-robot communication. Moreover, in our
most recent work [40], we proposed a proportional-derivative
(PD) controller for collective transport in 2D that does not
rely on inter-robot communication, prior knowledge about the
load dynamics and geometry, or knowledge of the number
of robots and their distribution around the payload. We
proved that under this control strategy, the payload’s rotation
is bounded and its angular velocity converges to zero. In this
paper, we extend our previous work to collective transport
tasks in 3D that are useful for on-orbit servicing and space
applications. We analytically prove asymptotic convergence
of the payload’s center of mass to a neighborhood of the target
position and study the parameters that influence the steady-
state distance between the payload’s center of mass and this
goal position.

Paper Organization

The organization of the paper is as follows. In Section 2,
we describe the problem statement and derive the dynamical
model of the multi-robot transport system. In Section 3, we
present our fully decentralized control approach and analyze
the stability and convergence properties of the closed-loop
system dynamics. In Section 4, we validate our control
approach in simulations of five different scenarios in which
a team of Astrobee robots cooperatively transport a 3D object
to a target location.
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Figure 2: Illustration of an orbital coordinate frame and a local coordinate
frame fixed to the payload, as well as geometric parameters that express the
position of a robot in the payload’s local coordinate frame.

2. PRELIMINARIES
In this section, we first present the collective transport prob-
lem statement and associated notation. Then, we derive the
equations that describe the orbital dynamics of the entire
system, consisting of the robots and the payload.

Problem Statement

We consider a team of N identical point-mass robots that
move in 3D space and are rigidly attached to a payload in an
arbitrary configuration, as shown in Fig. 2. We assume that
each robot has access to its own position and velocity with
respect to an orbital coordinate system, which is common to
all the robots.2 The robots do not communicate with one
another and are not assigned predefined trajectories. They
also lack information about the payload’s kinematics and
dynamics, the number of robots in the transport team, and
the robots’ distribution around the payload.

We define xo = [xo yo zo]
T ∈ R3 and δo = [φo θo ψo]

T ∈
R3 as the position of the payload’s center of mass, point
O in Fig. 2, and the payload’s orientation with respect
to the orbital coordinate frame, respectively. We define
xi = [xi yi zi]

T ∈ R3 as the position of robot i and
xd = [xd yd zd]

T ∈ R3 as the position of the target point
in the orbital frame, as shown in Fig. 2. The center of mass
of the entire system, including both the load and the robots, is
denoted by point C in Fig. 2. Given that points O and C are
not necessarily coincident, we define xc = [xc yc zc]

T ∈ R3

as the position of C in the orbital frame and rc ∈ R3 as the
vector from C to O, as shown in Fig. 2. We also define
ri = [rix riy riz]

T ∈ R3 as the vector from C to the
attachment point of robot i in the payload’s local coordinate
frame.

Each robot i knows its own position xi and velocity ẋi and
applies an actuating force ui = [uix uiy uiz]

T ∈ R3 to the

2An orbital coordinate system that is associated with a particular orbit moves
at a velocity with respect to Earth at which objects in that orbit experience
the microgravity condition. In this case, we can assume that the orbital
coordinate system is fixed to the main spacecraft that deploys the robots for
the collective transport task.

payload, which we represent in the orbital frame. The control
objective is to design the forces ui, i = 1, ..., N , such that the
robots drive the position of the payload’s center of mass, xo,
to the target position xd. The only sensor feedback available
to the robots consists of their on-board measurements of their
own positions and velocities with respect to the orbital frame.

Dynamical Model

To derive the equations describing the orbital dynamics of
the entire system, comprised of both the load and the robots,
we use the framework in our previous papers [41], [39]. We
consider a local coordinate frame whose origin is located at
the center of mass of the entire system (C in Fig. 2). The
axes of the local frame are chosen to be along the principal
axes of the entire system. We denote the mass of each robot
and the mass of the payload by mr and mo, respectively. We
also define J ∈ R3×3 as the matrix of the moment of inertia
of the entire system in the local coordinate frame. To this end,
m and J are given by

m =mo +Nmr,

J =Jo +mo

(
(rTc rc)I − rc × rc

)
+mr

N∑
i=1

(
(rTi ri)I − ri × ri

)
, (1)

where Jo ∈ R3×3 is the payload’s moment of inertia in the
local coordinate system, and I ∈ R3×3 is the identity matrix.
We define GRB ∈ R3×3 as the rotation matrix from the local
frame to the orbital coordinate frame, which is a function of
the payload’s orientation, i.e. GRB =G RB(δo). We also
denote the angular velocity of the payload in the local frame
by ωo ∈ R3. Considering the entire system as a rigid body,
we can write the equation of motion of the entire system as

Mẍc =

N∑
i=1

ui (2)

Jω̇o + ω̂oJωo =

N∑
i=1

r̂Gi R
T
Bui, (3)

where ω̂o ∈ SO(3) and r̂i ∈ SO(3) are the skew-symmetric
representations of ωo and ri, respectively. We note that the
weight of the payload and the robots are not incorporated
into the dynamical model since we assume that the task is
performed in a microgravity environment.

3. CONTROLLER DESIGN AND ANALYSIS
In this section, we present decentralized robot controllers for
the system described by Eq. (2) and Eq. (3) that produce
asymptotic convergence of the payload’s center of mass to a
neighborhood of the desired position xd.

Decentralized Control Law

The proposed control law has a proportional-derivative (PD)
structure,

ui = −Kdẋi −Kp(xi − xd), (4)

in which Kp = KpI and Kd = KdI are gain matrices,
where I ∈ R3×3 is the identity matrix, and Kp and Kd are
strictly positive constants. This control law implies that each
robot selfishly tries to stabilize its own position to the target
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position. Since the robots are attached to distinct points on the
payload’s boundary, convergence of all the robots’ positions
to the target position is impossible. However, by each apply-
ing the decentralized controller in Eq. (4), the robots produce
a collective transport behavior that approximately achieves
the control objective defined in Section 2. We analyze and
discuss this behavior in the next section.

To analyze the collective behavior of the entire system of
the payload and robots with the proposed controller, we
first derive the dynamics of the closed-loop system and then
investigate the stability and convergence properties of this
system.

Closed-Loop Dynamics

There is a holonomic kinematic constraint between the posi-
tion of robot i and the position of the system’s center of mass
(see Fig. 2), given by

xi = xc +
G RBri. (5)

Taking the time derivative of Eq. (5), we obtain

ẋi = ẋc +
G RBω̂ori, (6)

where GRBω̂o is the time derivative of GRB (see [42]) and
represents the effect of the payload’s rotation on the robots’
velocities. We define ec := xc − xd, where ėc = ẋc and
ëc = ẍc, since xd is constant. Substituting the expressions
for xi and ẋi in Eqs. 5 and 6 into Eq. (4), we obtain

ui = −Kd(ėc +
G RBω̂ori)−Kp(ec +

G RBri). (7)

We now incorporate the decentralized control law for ui in
Eq. (7) into the dynamical model in Eq. (2) and Eq. (3) to
derive the equation of motion of the closed-loop system as

Mëc =−Kd

N∑
i=1

(ėc +
G RBω̂ori)

−Kp

N∑
i=1

(ec +
G RBri), (8)

Jω̇o =−
N∑
i=1

r̂Gi R
T
BKd(ėc +

G RBω̂ori)

−
N∑
i=1

r̂Gi R
T
BKp(ec +

G RBri)

− ω̂oJωo, (9)

where M = mI . Taking into account the facts that
GRT

B
GRB = I , r̂iri = 0, and ω̂ori = −r̂iωo, the closed-

loop system in Eq. (8) and Eq. (9) can be rewritten as

Mëc =−N(Kdėc +Kpec)−KG
dRBω̂o%

−KG
pRB%, (10)

Jω̇o =− %̂GRT
B(Kdėc +Kpec)−KdDωo

− ω̂oJωo, (11)

where % ∈ R3, %̂ ∈ SO(3), andD ∈ R3×3 are given by

% :=

N∑
i=1

ri , %̂ :=

N∑
i=1

r̂i , D :=

N∑
i=1

r̂Ti r̂i. (12)

We can confirm that the vector and the matrices in Eq. (12)
are constant since ri is a constant vector in the payload’s local
coordinate system. Also,D is a positive definite matrix.

Convergence Analysis

The equilibrium state of the closed-loop system in Eq. (8) and
Eq. (9) is obtained by setting ëc = ėc = 0 and ω̇ = ω = 0,
which results in the following equations:

Ne∗c +
G R∗

B% = 0, (13)

%̂BR∗
GKpe

∗
c = 0, (14)

in which the superscript * denotes the equilibrium state.
Solving Eq. (13) for e∗c , we obtain e∗c = − 1

N

G
R∗

B%. We can
confirm that %̂% = 0. This shows that Eq. (14) is redundant.
Also, since % is constant, and a rotation matrix never changes
the norm of a vector that it multiplies, the steady-state error
e∗c has a constant magnitude. The set of equilibrium states E
is therefore obtained as

E =

{
ec, ėc, δo,ωo ∈ R3 | ec = −

1
N

GR∗
B%, ėc = ωo = 0

}
.

(15)
Note that the payload’s orientation δo is not specified in E ,
which means that E is a manifold in the state space and not
an isolated equilibrium point. To analyze the convergence
of the closed-loop system’s trajectories to E , we consider the
following quadratic positive semidefinite function,

V =
1

2N
(Nec +

G RB%)
TKp(Nec +

G RB%)

+
1

2
ėTcMėc +

1

2
ωT

o Jωo, (16)

which is zero in the set E and positive everywhere else. The
time derivative of V is calculated as

V̇ =
1

N
(Nec +

G RB%)
TKp(N ėc +

G RB%̇+G ṘB%)

+ ėTcMëc + ω
T
o Jω̇o . (17)

Taking into account the facts that GṘB =G RBω̂o and %̇ =
0, Eq. (17) can be written as

V̇ = ėTc

(
−N(Kdėc +Kpec)−KG

dRBω̂o%−KG
pRB%

)
− ωT

o

(
%̂GRT

B(Kdėc +Kpec) +KdDωo + ω̂oJωo

)
+NeTcKpėc + e

T
cK

G
pRBω̂o%+ %T GRT

BKpėc

+
1

N
%T GRT

BK
G
pRBω̂o%. (18)

We see that many terms in the above expression cancel out.
Moreover, since ω̂o is skew-symmetric and J is diagonal, the
term ωT

o ω̂oJωo and the last term in the right-hand side of
Eq. (18) are zero. Hence, V̇ is simplified to

V̇ =−N ėTcKdėc − ėTcK
G
dRBω̂o%− ωT

o %̂
GRT

BKdėc

− ωT
oKdDωo. (19)
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Using the facts that %̂T = −%̂ and ω̂o% = −%̂ωo, Eq. (19)
can be rewritten in the following quadratic form:

V̇ = −
[
ėTc ωT

o

] [ NKd −KG
dRB%̂

%̂GRT
BKd KdD

]
︸ ︷︷ ︸

Q

[
ėc
ωo

]
. (20)

We can confirm that the matrixQ ∈ R6×6 is symmetric posi-
tive definite. This shows that V̇ is negative semi-definite, and
henceforth V remains bounded throughout the motion of the
entire system. Furthermore, invoking LaSalle’s invariance
principle [43], we can conclude that the trajectories of the
closed-loop system in Eq. (10) and Eq. (11) converge to a set
that is characterized by V̇ ≡ 0, for which ėc ≡ 0 andωo ≡ 0.
This is the set E in Eq. (15). Convergence of the closed-loop
system’s trajectories to E implies that as t→∞, the center of
mass of the entire system (C) converges to a neighborhood of
the target position xd and the payload’s angular velocity ωo
converges to zero. The uniform continuity of δo implies the
convergence of δo to a bounded value, which depends on its
initial value.

To analyze the convergence of the payload’s center of mass
(O) to the target position, we define ri,o as the vector from
point O to robot i and %o :=

∑N
i=1 ri,o. We also define

eo = xo − xd. We can confirm that for a group of robots
rigidly attached to a payload,

rc = −
mr

mo
% = −mr

m
%o. (21)

Moreover, since xc = xo −G RBrc, we can write

ec = eo −G RBrc. (22)

Substituting Eq. (21) for rc into Eq. (22) and then incorpo-
rating the result into Eq. (13), we obtain

e∗o = − 1

N
GR∗

B%
∗
o, (23)

which gives the position error of the payload’s center of mass
at equilibrium. Like %, %o has a constant magnitude, since
the robots are rigidly attached to the payload and O is a
fixed point on the payload. Eq. (23) shows that the steady-
state distance between the payload’s center of mass and the
target position depends on the number of robots N and their
distribution around the payload. This distance decreases as
N is increased, and for payloads with a homogeneous mass
density, it decreases as the distribution of robots around the
payload’s center of mass approaches a uniform distribution.
For non-homogeneous payloads, this distance is reduced by
allocating the robots in accordance with the payload’s mass
distribution; e.g., increasing the number of robots around
sections of the payload with high mass density. The direction
of e∗o depends on the steady-state value of the payload orien-
tation δo through %∗o; the steady-state orientation depends on
the initial value of δo, as stated earlier.

4. SIMULATION RESULTS
In this section, we present MATLAB simulations of our fully
decentralized controller for 3D object transport by a team of
simulated Astrobee robots in five different scenarios. We
assume that the transport task is performed in microgravity,

Figure 3: Snapshot of simulation of the first scenario in the steady-state
condition. Four Astrobee robots that are symmetrically attached to a
cylindrical payload transport it to the origin.
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Figure 4: Time evolution of the payload’s position in the first scenario.

and that the Astrobees’ actuating forces are the only external
forces that act on the entire system (the robots and the pay-
load). We also assume that the manipulator of each robot is
fixed and that they are rigidly attached to the payload. These
assumptions allow us to use the point-mass model described
in Section 2 for the dynamics of the Astrobee robots. In
all scenarios, the target point is the origin of the orbital
coordinate frame. In our figures, we display the simulated
Astrobee robots as gray cubes with black manipulators and
grippers, the payload as a light blue object, and the trajectory
of the payload’s center of mass as a red dashed line. Videos
of the simulated scenarios are available online in [44].
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Figure 5: Time evolution of the payload’s orientation in the first scenario.
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Figure 6: Snapshot of simulation of the second scenario in the steady-state
condition. Four Astrobee robots that are asymmetrically attached to a 3D
rectangular payload transport it to the origin.

Figure 7: Time evolution of the payload’s position in the second scenario.

Figure 8: Time evolution of the payload’s orientation in the second scenario.

In the first scenario, we simulate a cylindrical payload that is
transported by four Astrobee robots. The initial position and
orientation of the payload’s center of mass arexo = [2 1.5 1]T

and δo = [0 0 0]T. Figure 3 shows a snapshot of the
simulation in the steady-state condition. We plot the time
evolution of position and orientation of the 3D payload in
Figs. 4 and 5. As we discussed in Section 3, the position
error of the payload converges to zero since the distribution
of the robots around the payload is symmetric.

In the second scenario, we show that if the distribution of
robots around the payload is not symmetric, then there is a

Figure 9: Snapshot of simulation of the third scenario in the steady-state
condition. Six Astrobee robots that are asymmetrically attached to a 3D
rectangular payload transport it to the origin.

Figure 10: Time evolution of the payload’s position in the third scenario.

Figure 11: Time evolution of the payload’s orientation in the third scenario.

non-zero steady-state error in the payload’s position. Figure 6
shows a snapshot of the simulation where the initial position
of the rectangular payload is the same as in the first scenario,
while its initial orientation is δo = [π/8 π/10 π/6]T. Al-
though the plots in Fig. 8 show that the payload’s orientation
converges to zero, its position has a non-zero steady-state
error, as shown in Fig. 7, due to the asymmetric distribution of
robots around the payload. Recall that this steady-state error
can be reduced by increasing the number of robots.

In the third scenario, we increase the number of robots from
4 to 6 and arrange them in an asymmetric distribution around
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Figure 12: Snapshot of simulation of the fourth scenario in the steady-state
condition. Eight Astrobee robots that are symmetrically attached to a 3D
rectangular payload transport it to the origin.

Figure 13: Time evolution of the payload’s position in the fourth scenario.

Figure 14: Time evolution of the payload’s orientation in the fourth scenario.

the payload. All initial conditions are the same as in the
second scenario. Figure 9 shows a snapshot of the simulation
in the steady-state condition. As expected, the steady-state
error in the payload’s position decreases when we add two
more robots, as can be seen in Fig. 10. The payload’s
orientation again converges to zero, as shown in Fig. 11.

In the fourth scenario, we verify that the steady-state error in
the payload’s position converges to zero if we add two more
robots (a total of 8 robots) such that their distribution around
the payload becomes symmetric. The initial conditions are

Figure 15: Snapshot of simulation of the fifth scenario in the steady-state
condition. Ten Astrobee robots that are asymmetrically attached to a 3D
irregular payload transport it to the origin.

Figure 16: Time evolution of the payload’s position in the fifth scenario.

Figure 17: Time evolution of the payload’s orientation in the fifth scenario.

the same as in the second and third scenarios. Figure 12
shows a snapshot of the simulation in the steady-state con-
dition. The plots in Figs. 13 and 14 show that the steady-state
errors in position and orientation converge to zero.

We also validate our controller for collective transport of an
irregular 3D object by a team of 10 Astrobee robots. The
initial position and orientation of the payload are the same as
in the second, third, and fourth scenarios. Figure 15 shows a
snapshot of the simulation, and Figs. 16 and 17 plot the time
evolution of the payload’s position and orientation. The latter
plots show that the position and orientation errors converge
to very small values at steady-state. This result indicates that
even if the payload has an irregular shape for which there is no
symmetric distribution of robots, we can significantly reduce
the steady-state error by arranging the robots around the
payload boundary in an approximately uniform distribution.
We note that the robots’ positions over time can be calculated
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from the trajectory of the payload, since the robots are rigidly
attached to the payload throughout the transport.

5. CONCLUSION
We have proposed a decentralized PD control strategy for a
team of identical point-mass robots to collectively transport
a payload in 3D microgravity space to a target position. The
controller only requires the robots’ local measurements and
does not rely on predefined trajectories or explicit communi-
cation between the robots. We proved that with the proposed
controller, the robots drive the payload to a neighborhood of
the destination, where the steady-state distance between the
payload’s center of mass and the target position is only a
function of the number of robots and their distribution around
the payload. In future work, we will consider robots with
more degrees of freedom in order to use their redundancy
to minimize the internal forces that may cause stress in the
payload. We will also consider environments with convex
obstacles and modify the controller to enable the robots to
transport the payload to a destination while avoiding colli-
sions with the obstacles.
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