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We consider a scenario in which a group of quadrotors is tasked at tracking multiple
stationary targets in an unknown, bounded environment. The quadrotors search for targets
along a spatial grid overlaid on the environment while performing a random walk on this grid
modeled by a discrete-time discrete-state (DTDS) Markov chain. The quadrotors can transmit
their estimates of the target locations to other quadrotors that occupy their current location
on the grid; thus, their communication network is time-varying and not necessarily connected.
We model the search procedure as a renewal-reward process on the underlying DTDS Markov
chain. To accommodate changes in the set of targets observed by each quadrotor as it explores
the environment, along with uncertainties in the quadrotors’ measurements of the targets, we
formulate the tracking problem in terms of Random Finite Sets (RFS). The quadrotors use
RFS-based Probability Hypothesis Density (PHD) filters to estimate the number of targets and
their locations. We present a theoretical estimation framework, based on the GaussianMixture
formulation of the PHD filter, and preliminary simulation results toward extending existing
approaches for RFS-based multi-target tracking to a decentralized multi-robot strategy for
multi-target tracking. We validate this approach with simulations of multi-target tracking
scenarios with different densities of robots and targets, and we evaluate the average time
required for the robots in each scenario to reach agreement on a common set of targets.

I. Introduction
Mobile ground robots [1] and aerial robots [2] have often been used for exploration andmapping tasks. Heterogeneous

teams of ground and aerial robots have been employed for applications that involve mapping an environment, such as
disaster response [3, 4] and surveillance [5]. Such tasks require the robots to track features of interest that are present in
the environment. Mobile robots, especially quadrotors, are subject to limitations on their operation due to constraints on
the payloads that they can carry, including power, sensing and communication devices for transmitting information to
other robots and/or to a command center. Many multi-robot control strategies rely on a centralized communication
network for coordination. For example, some multi-robot exploration strategies, e.g. [6], rely on constant two-way
communication between the robots and a central node. Since a centralized communication architecture is required,
these strategies do not scale well with the robot population size, as the communication bandwidth becomes a bottleneck
with increasing numbers of robots. Moreover, a failure of the central node causes loss of communication for all the
robots. Decentralized multi-robot control strategies can be used to overcome these limitations. Such strategies involve
only local communication between robots and scale well with the number of robots. However, communication among
robots can become unreliable as the number of robots increases [7], and the communication network connectivity may
be disrupted by the environment [8] or by the movement of robots beyond communication range.

Multi-target tracking is an established field of research with origins in the study of point processes [9], with most
early applications in radar and sonar based tracking. In real-world scenarios, there is often uncertainty in the existence,
locations, and dynamics of targets, as well as uncertainty in sensor measurements of targets that arise from sensor noise
and false detections (clutter) around the real targets. Random Finite Set (RFS) models provide a probabilistic framework
for multi-target tracking that can account for these uncertainties and ensure statistical guarantees on the accuracy of the
estimated number of targets and their states. Unlike RFS-based estimators, many classical probabilistic multi-target
tracking approaches require techniques for data association, which is computationally intensive. Such approaches
include multiple hypothesis tracking [10, 11], in which an exhaustive search on all possible combinations of tracks and
data associations is performed, and joint probabilistic data association [12, 13]. The papers [14–16] are foundational
works on estimation methods based on Random Finite Sets, and they have made concepts from point process theory
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Fig. 1 Illustration of our multi-robot multi-target tracking strategy, showing sample paths for two quadrotors
(orange and blue) on a square grid. The quadrotors search the environment for a set of static targets, represented
by the squares, as they perform a random walk on the grid.

for multi-target tracking more accessible to engineering disciplines. The paper [17] presents an implementation of a
multi-target tracking approach as a probability hypothesis density (PHD) filter, and [18] provides examples of scenarios
with targets that follow either linear or nonlinear motion models. In [19], a PHD filter-based approach is proposed for
simultaneous search and tracking of an unknown number of moving targets by a single robot with a limited sensing field
of view. There have also been works on multi-target search and tracking using multi-robot systems with communication
networks that are always connected [20–22] and that use decentralized controllers to maintain connectivity [23]. In
real-world applications, constraints on the robots’ communication ranges limit the area that the robots can explore. Our
previous work [24] presents a consensus-based target search strategy for multiple robots that does not require the robots
to maintain a connected communication network. The robots search for a static target while performing random walks
on a discretization of the environment according to a discrete-time discrete-state (DTDS) Markov chain model. The
strategy is proved to achieve consensus, defined as the robots’ agreement on the presence of the target. However, the
work [24] does not consider scenarios with multiple targets in the environment.

This paper addresses the problem of tracking multiple targets without requiring a connected communication network
using a multi-robot search strategy with the same probabilistic motion model and inter-robot communication constraints
as in [24]. We consider scenarios in which the quadrotors move according to a DTDS Markov chain model on a finite
spatial grid, as illustrated in Figure 1, while searching for multiple stationary targets. A robot detects the presence of a
target by obtaining sensor measurements of target’s states. We assume that the robots’ sensors have limited fields of
view and that the robots share information about the targets only with other robots within their local communication
range. We model the multi-robot target tracking procedure as a renewal-reward process, in which the reward is defined
as the estimated number of targets and the targets’ states, such as their spatial locations. The main contributions of this
paper are the following:

1) Given a group of robots that explore an unknown bounded environment according to a DTDS Markov motion
model, we prove that the number of a robot’s encounters with any other robot up to a specific time characterizes
a renewal process.

2) Using the Gaussian Mixture approximation of the PHD filter proposed in [18], we show that under the constraint
of local inter-robot communication, all robots eventually track the number of targets in the environment and their
estimated states.

The remainder of the paper is organized as follows. Section II presents the problem statement. Section III discusses
the DTDS Markov chain motion model that the robots follow. We then provide a brief discussion on the theory of
renewal-reward processes and their application to our problem in Section IV. In Section V, we present the Random Finite
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Set formulation and its first-order moment, the Probability Hypothesis Density (PHD) filter, as an estimation framework
for detecting and tracking multiple targets. In Section V.A, we describe the Gaussian Mixture approximation of the
PHD filter from [18]. We then validate our strategy with simulations in Section VI and finally state our conclusions and
future work in Section VII.

II. Problem Formulation
We consider an unknown, bounded environment that contains a finite, non-zero number of static targets, indexed by

the set I ⊂ Z+. The environment is discretized into a square grid, and the four vertices of each grid cell are referred to
as nodes. Let S ⊂ Z+ denote the set of ( nodes, and let GB = (VB , EB) be an undirected graph associated with this grid,
whereVB is the set of nodes and EB is the set of edges (8, 9) that signify the pairs of nodes 8, 9 ∈ VB between which the
quadrotors can travel. A group of # quadrotors, indexed by the set N , explores the environment using a random walk
strategy: each quadrotor performs a random walk on the grid, moving from its current node 8 to an adjacent node 9
with transition probability ?8 9 at each discrete time : . We assume that each quadrotor is able to localize itself in this
environment; i.e., that it knows which node it currently occupies. We also assume that quadrotors can communicate
with one another only if they occupy the same node. We also assume that the quadrotors have perfect localization.

The number of targets estimated by each quadrotor is updated at every time step : . Let the 8Cℎ target detected by
quadrotor 0 9 at time : be <0 9

8,:
∈ R+ which is a tuple, composed of the state of the target, which is a time-varying

property of the target like its location within the quadrotor’s field of view (FoV), the pixels that it occupies in the
quadrotor’s camera image, and a unique identification label. LetM08

:
= {<081,: , . . . , <

08
=< ,:
} be the set of states of all

targets detected by the quadrotor 0 9 at time : , where =< is the maximum number of features that a quadrotor can detect
simultaneously. The value of =< is limited by the computational capabilities and the available memory on the robot.
As the quadrotor explores the environment, the number of targets that it detects and their states vary, as new targets
appear in the FoV of the quadrotor and existing targets disappear. An observation set obtained by a quadrotor at a
particular time consists of both measurements that are associated with actual targets and measurements arising from
clutter. The objective of multi-target tracking is to jointly estimate, at each time step, the number of targets and the
targets’ states from a series of noisy and cluttered observation sets. The concept of a random finite set (RFS) is useful for
formulating this problem, since within the FoV of a quadrotor, the number of targets and their states are time-varying
and not completely known. A random finite set, as defined in [16], is a set with a random number of elements which are
themselves random. In other words, a RFS is a random variable whose possible values are unordered finite sets. A
computationally tractable approach to set-based estimation is to utilize the first statistical moment of an RFS, known as
the Probability Hypothesis Density (PHD) or its intensity function, for multi-target tracking. We propose to use the
Gaussian Mixture formulation of the PHD filter (GM-PHD) for each quadrotor, as it is less computationally expensive
than the particle filter implementation.

Figure 1 illustrates our multi-target tracking approach with two quadrotors and six stationary targets. The quadrotors
explore the grid according to the random walk motion model defined in Section III, and they estimate the number of
targets and their positions within their limited sensing FoV using the GM-PHD filter described in Section V.A. Sample
trajectories are shown for each quadrotor as a sequence of arrows that indicate its direction of motion. At time step : , the
first renewal epoch, the quadrotors meet at node < and exchange rewards, defined as each quadrotor’s estimates of the
number of targets that it has detected up until time : and their positions, as described in Section IV. The implementation
of this strategy is described in pseudocode in Algorithm 1 and Algorithm 2. We extract only unique target states during
simulation by using set union methods, as described in Algorithm 3.

III. Discrete-Time Discrete-Space (DTDS) Markov Chain Model of Robot Motion
Let . 08

:
∈ S be the random variable that represents the location of quadrotor 08 at time : on the spatial grid. For

each quadrotor 08 , the probability mass function c: ∈ R1×( of . 08
:

evolves according to a discrete-time discrete-space
(DTDS) Markov chain given by:

c:+1 = Pc: , (1)

where the state transition matrix P ∈ R(×( has elements ?8 9 ∈ [0, 1] at row 8 and column 9 . The time evolution of the
probability mass function of . 08

:
is expressed using the Markov property as follows:

%A (. 08
:+1 = 9:+1 |. 08: = 9: , . . . , .

08
0 = 90) = %A (. 08

:+1 = 9:+1 |. 08: = 9: ), (2)
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Algorithm 1: Control strategy for robot 08 ∈ N
Step 0: Initialization 08 , � (08)W , `

(08)
W , %

(08)
W , .

(08)
0 , �:−1, &:−1, �: , ': , ^

(08)
0 (I), ?S, ?D, F

(08)
0 ,M ( ·)

0
Step 1: RandomWalk
[. (08)
:

] = MarkovRandomWalk(. (08)
:−1 );

Step 2: GM-PHD Filter
a Predicted State Components Apply steps 1 and 2 from Table 1 in [18]
�
(08)
:−1 =�

(08)
W ; F (08)

:−1=F
(08)
W ; ` (08)

:−1 = ` (08)W

[F (08)
: |:−1, `

(08)
: |:−1, %

(08)
: |:−1,�

(08)
: |:−1] = predictGMPHD(�:−1,F (08):−1 ,`

(08)
:−1 ,%

(08)
:−1 ,�:−1,&:−1,?S);

b Updated State Components Apply steps 3 and 4 from Table 1 in [18]
[F: ,`: ,%: ,�: ] =updateGMPHD(�: ,`: |:−1,': ,%: |:−1,?D,�: |:−1,F: |:−1, ^ (08):

(I),/ (08)
:

);
c Pruning and Merging Components Apply all steps from Table 2 in [18]
d Multi-target State Extraction Apply all steps from Table 3 in [18] with CℎA4BℎBC0C4 = 0.5
[-̂ (08)
:

,F̂ (08)
:

,%̂ (08)
:

] = extractMTStateGMPHD(F (08)
:

,` (08)
:

,% (08)
:

,CℎA4BℎBC0C4);
M (08)

:
=M (08)

:−1
⋃
-̂
(08)
:

;

where 9: is a specific node in the spatial grid that the quadrotor may occupy at time : . In other words, (2) states that the
future location of the quadrotor depends only on its current location and is statistically independent of any previous
locations. We assume that the DTDS Markov chain is time-homogeneous, which implies that %A (. 08

:+1 = 9:+1 |. 08: = 9: )
is same for all quadrotors at all time steps. Thus, the entries of P can be defined as follows:

?8 9 = %A (. 08:+1 = 9:+1 |. 08: = 9: ), ∀ 9: ∈ (, : ∈ Z≥0, 08 ∈ N . (3)

Assuming that each quadrotor chooses its next position from a uniform random distribution, we can compute the entries
of P as follows:

?8 9 =

{
1
38+1 , (8, 9) ∈ EB ,
0, otherwise,

(4)

where 38 is the degree of the node 8 ∈ S. Since each entry ?8 9 ≥ 0, we use the notation P ≥ 0. We see that P< ≥ 0 for
< ≥ 1. Hence, P is a non-negative matrix. Then, from Theorem 5 in [25], we can say that P is a stochastic matrix. We
define Equation 1 as the spatial Markov chain. From the construction of the spatial Markov chain, every quadrotor has a
positive probability of moving from node 8 ∈ ( to any node 9 ∈ ( in a finite number of time steps. Thus, the Markov
chain is said to be irreducible, and consequently, P is an irreducible matrix. Now applying Lemma 8.4.4 in [26], we
know that there exists a real unique positive left eigenvector of P. Since P is a stochastic matrix, we have that d(P) = 1,
where d(P) denotes the spectral radius of P. Thus, we can conclude that this real unique positive left eigenvector is
the stationary distribution associated with the spatial Markov chain. Since we have shown that the Markov chain is
irreducible and has a stationary distribution c that satisfies cP = c, we can conclude from Theorem 21.12 in [27] that
the Markov chain is positive recurrent. Thus, all states in the Markov chain are positive recurrent, which implies that
each quadrotor will keep visiting every state on the finite spatial grid infinitely often. We will use this result to prove
results on the associated renewal-reward process, which is discussed next.

IV. Renewal-Reward Process
We now define a random variable g08

9
∈ R≥0 as the 9 Cℎ interval between two successive times at which quadrotor

08 and any another quadrotor occupy the same node. This time interval is referred to as the inter-arrival time. A
renewal epoch is a time instant at which two quadrotors meet at the same node. For each quadrotor 08 , we define the
counting process )08 (:) ∈ Z≥0 as the number of times 08 has met any other quadrotor by time : . At each renewal
epoch, quadrotor 08 updates its reward, defined as the number of all detected targets and their locations, with the number
of targets and locations detected by the quadrotor(s) that occupies its current node and transmits this information to 08 .
We use the definition of a renewal process given by Definition 7.1 in [28]. If the sequence of non-negative random
variables {g080 , g

08
1 , . . . , } is independent and identically distributed, then the counting process )08 (:) is said to be a

renewal process. We demonstrate that )08 (:) is a renewal process at the end of this section.
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Fig. 2 An example graph GB = (VB , EB) defined on the set of spatial nodes VB = {8, 9 , ;}. The arrows signify
directed edges between pairs of distinct nodes or self-edges. The edge set is EB = {(8, 8), ( 9 , 9), (;, ;), (8, 9), ( 9 , ;)}.

(8, 8)

8̂

(8, 9)

9̂

(8, ;)

;̂

@ 8̂, 9̂ @ 9̂ ,;̂

@ 8̂,8̂ @ 9̂ , 9̂ @ ;̂,;̂

Fig. 3 A subset of the composite graph Ĝ = (V̂, Ê) for two agents that move on the graph GB shown in Figure 2.

For a renewal process having inter-arrival times g080 , g
08
1 , . . ., we define (

08
= =

∑=
9=1 g

08
9
as the =Cℎ renewal epoch,

with (080 = 0 for all 08 ∈ N . From the definition of a renewal process, we can infer that the number of renewal epochs by
time : is greater than or equal to = if and only if the =Cℎ renewal epoch occurs before or at time :; that is,

)08 (:) ≥ = ⇔ (08= ≤ :. (5)

Now consider that at each renewal epoch, quadrotor 08 receives a reward. The reward '08= earned by quadrotor 08 when
the =Cℎ renewal occurs is defined as follows:

'08= =M08
:

⋃
0 9≠08

M0 9

:
, .

08
:

= .
0 9

:
and 0 9 ∈ N . (6)

Equation 5 and Equation 6 together define a renewal-reward process. Each quadrotor 08 calculatesM08
:

by estimating
the number of targets and their spatial distribution using a PHD filter. In Section V, we describe some fundamental
theory on target detection and tracking using this type of filter.

Given the quadrotor motion model defined in Section III, we can model the dynamics of all the quadrotors’
movements on the spatial grid by a composite Markov chain with states k: = (. 01

:
, .
02
:
, . . . , .

0#
:
) ∈ H , whereH = SN .

Note that ( = |S| and |H | = (# . We now define another undirected graph Ĝ = (V̂, Ê) associated with this composite
Markov chain. The vertex set V̂ is a set of all possible realizations ŷ ∈ H of k: . Here ŷ(0;) represents the 0Cℎ; entry of ŷ,
which corresponds to the spatial node 8 ∈ S occupied by robot 0; ∈ N and ; ∈ I. We define the edge set Ê of graph Ĝ
as follows: (ŷ, ẑ) ∈ Ê if and only if (ŷ(0;), ẑ (0;)) ∈ EB for all robots 0; ∈ N . Let Q ∈ R |H |×|H | be the state transition
matrix associated with this composite Markov chain. An element of Q, denoted by @ ŷ ẑ , is the probability that in the
next time step, each robot 0 will move from spatial node ŷ(0;) to node ẑ (0;). These elements are computed from the
transition probabilities defined by Equation (4) as follows:

@ ŷ ẑ =

#∏
0;=1

? ŷ (0;) ẑ (0;) , ∀ŷ, ẑ ∈ H & ; ∈ I. (7)

As an illustration, consider a set of two robots, N = {01, 02}, that move on the graph GB shown in Figure 2. The
robots can stay at their current node in the next time step or travel between nodes 8 and 9 and between nodes 9 and ;, but
they cannot travel between nodes 8 and ;. Figure 3 shows a subset of the resulting composite graph Ĝ, which has the set
of nodes V̂ = {(8, 8), (8, 9), (8, ;), ( 9 , 8), ( 9 , 9), ( 9 , ;), (;, 8), (;, 9), (;, ;)}. Each node in V̂ is labeled by a single index ŷ,
e.g., ŷ = (8, 9), with ŷ(01) = 8 and ŷ(02) = 9 . Given the connectivity of the spatial grid defined by EB , we can for example
identify ((8, 9), (8, ;)) as an edge in Ê, but not ((8, 9), (;, ;)). Since # = 2 and ( = 3, we have that |H | = 32 = 9. For
each ŷ, ẑ ∈ V̂, we can compute the transition probabilities in Q ∈ R9×9 from Equation (7) as:

@ ŷ ẑ = %A (k:+1 = ẑ | k: = ŷ) = ? ŷ (01) ẑ (01) ? ŷ (02) ẑ (02) , : ∈ Z+. (8)

We now prove that )08 (:) is a renewal process.
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Theorem IV.1. )08 (:) is a renewal process on the composite Markov chain k: .

Proof. Suppose that an initial time instant :0, the locations of all # robots on the spatial grid are represented by the
node ŷ ∈ V̂. Consider another set of robot locations at time :0 + : , where : > 0, represented by the node ẑ ∈ V̂. The
transition of the robots from configuration ŷ to configuration ẑ in : time steps corresponds to a random walk of length :
on the composite Markov chain k: from node ŷ to node ẑ. It also corresponds to a random walk by each robot 08 on the
spatial grid from node ŷ(08) to node ẑ (08) in : time steps. By construction, the graph GB is strongly connected and each
of its nodes has a self-edge. Therefore, there exists a discrete time = > 0 such that, for each robot 08 ∈ N , there exists a
random walk on the spatial grid from node ŷ(08) to node ẑ (08) in = time steps. Consequently, there always exists a
random walk of length = on the composite Markov chain k: from node ŷ to node ẑ. Therefore, k: is an irreducible
Markov chain. All states of an irreducible Markov chain belong to a single communication class. In this case, all states
are positive recurrent. As a result, k: is positive recurrent. Thus, each state in k: is visited infinitely often from all
other states in k: . A state with this property is said to regenerate (or renew) infinitely often. We can then conclude
from Proposition 67 in [29] that )08 (:) is a regenerative process on k: . Since every regenerative process is a renewal
process, )08 (:) is a renewal process.

Algorithm 2: Renewal-reward computation for robots (08 , 0 9 ) ∈ N

Given: M (08)
:

,M (0 9 )
:

, . (08)
:

, . (0 9 )
:

for : ∈ 1 : C 5 8=0; do
for =1 ∈ 1 : |N | do

; = 1; = = 1;
for =2 ∈ =1 + 1 : |N | do

if . (=1)
:

= . (=2)
:

then
';==M

(=1)
:

⋃M (=2)
:

;
; = ; + 1; = = = + 1;

end
end

end
end

Algorithm 3: Exchange of set of estimated states between robots (08 , 0 9 ) ∈ N

Given: - (08 ,0 9 )
:−1 , -̂ (08)

:
, -̂ (0 9 )

:

for ;1 ∈ 1 : B8I4( | -̂ (08)
:
|, 2) do

for ;2 ∈ 1 : B8I4( | -̂ (0 9 )
:
|, 2) do

-C4<? = -̂
(08)
:,;1

⋃
-̂
(0 9 )
:,;2

;

if -C4<? ⊄ -
(08 ,0 9 )
:−1 then

-
(08 ,0 9 )
:

= -
(08 ,0 9 )
:−1

⋃
-C4<?;

end
else

-
(08 ,0 9 )
:

= -
(08 ,0 9 )
:−1 ;

end
end
M (08 ,0 9 )

:
= - (08 ,0 9 )

:
;

end
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V. Random Finite Sets Based Probability Hypothesis Density Filter
Let "08

:
≤ =< be the number of targets identified by quadrotor 08 at time step : . Suppose that at time : − 1, the

target states are G08
:−1,1, G

08
:−1,2, . . . , G

08

:−1,"08
:−1
∈ X, where X is the set of target states. At the next time step, some of

these targets might disappear from the quadrotor’s field of view (FoV), and new targets may appear. This results in "08
:

new states G08
:,1, G

08
:,2, . . . , G

08

:,"
08
:

. Note that the order in which the states are represented has no significance in the

RFS multi-target tracking formulation. The quadrotor 08 makes #08
:

measurements I08
:,1, . . . , I:,# 08

:
∈ Z at time : ,

whereZ is the set of measurements. The order in which the measurements are made is not significant. The states of the
targets identified by quadrotor 08 at time : (i.e., the multi-target state) and the measurements obtained by the quadrotor
at time : can both be represented as finite sets:

-
08
:

= {G08
:,1, . . . , G

08

:,"
08
:

} ∈ F (X), (9)

/
08
:

= {I08
:,1, . . . , I:,# 08

:
} ∈ F (Z), (10)

where F (X) is the multi-target state space and F (Z) is the measurement space. For a quadrotor 08 , given multi-target
state -08

:−1 at time : − 1, each G08
:−1 ∈ -

08
:−1 either continues to exist (survives) at time : with probability ?08S,: (G

08
:−1) or

disappears (dies) at time : with probability 1 − ?08S,: (G
08
:−1). The conditional probability density at time : of a transition

from state G08
:−1 to state G

08
:

is given by 5 08
: |:−1 (·|·).

We now define the RFS model for the time evolution of the multi-target state, which incorporates motion of the
targets relative to the quadrotor, appearance (birth) of targets, and disappearance (death) of targets:

-
08
:

=

[ ⋃
b ∈-08

:−1

S08
: |:−1 (b)

] ⋃ [ ⋃
b ∈-08

:−1

B08
: |:−1 (b)

] ⋃
�08
:

(11)

S08
: |:−1 (b): RFS of targets with previous state b at time : − 1 that survive at time :

B08
: |:−1 (b): RFS of targets spawned at time : from targets with previous state b at time : − 1

�08
:
: RFS of targets that are spontaneously born at time :

At each time step, a quadrotor 08 detects a target with state G08
:
∈ -08

:
with probability ?08D,: (·), or misses it with

probability 1 − ?08D,: (·). The conditional probability of obtaining a measurement I08
:
∈ /08

:
from G

08
:

is characterized by
the multi-target likelihood function, 608

:
(·|·). We can now define the RFS model for the time evolution of the multi-target

measurement, which incorporates measurements of actual targets along with clutter:

/
08
:

= K08
:

⋃ [ ⋃
G∈-08

:

�08
:
(G)

]
(12)

K08
:
: RFS of measurements arising from clutter at time :

�08
:
(G): RFS of measurements of the multi-target state -08

:
at time :

The multi-target Bayes filter propagates the multi-target posterior density ?08
:
(· | /081:: ) in time via recursion as:

?
08
: |:−1 (-

08
:
|/081::−1) =

∫
-08 ∈F(X)

5
08
: |:−1 (-

08
:
|-08 )?08

:−1 (-
08 |/081::−1)`B (3-

08 ) (13)

?
08
:
(-08
:
|/081:: ) =

6
08
:
(/08
:
|-08
:
)?08
: |:−1 (-

08
:
|/081::−1)∫

-08 ∈F(X) 6: (/
08
:
|-08 )?08

: |:−1 (-08 |/
08
1::−1)`B (3-08 )

(14)

where `( is a suitable reference measure on F (X) of target states -08 ∈ F (X), 608
:
(·|·) represents the multi-target

likelihood function, and 5 08
: |:−1 (·|·) represents the multi-target transition density. For further details, see [17, 18].
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We will approximate the integrals above using the framework of the probability hypothesis density (PHD) filter,
with the assumptions that: (1) each target evolves and generates observations independently of the others; (2) clutter is
Poisson distributed and independent of target-originated measurements; (3) the multi-target RFS is Poisson distributed.
For a RFS -08 ∈ X with probability distribution ?08 (·), there is a non-negative function E on X, defined as the intensity
function, such that for each region S ⊂ X,∫

|-08 ∩ S|?08 (3-) =
∫
S
E(G)3G. (15)

Then we can model the posterior intensity and its recursion as follows:

E
08
: |:−1 (G) =

∫
?
08
S,: (b) 5

08
: |:−1 (G |b)E

08
:−1 (b)3b +

∫
V
08
: |:−1 (G |b)E

08
:−1 (b)3b + W

08
:
(G), (16)

E
08
:
(G) = [1 − ?08D,: (G)]E

08
: |:−1 (G) +

∑
I∈/08

:

?
08
D,: (G)6

08
:
(I |G)E08

: |:−1 (G)

^
08
:
(I) +

∫
?
08
D,: (b)6

08
:
(I |b)E08

: |:−1 (b)
. (17)

In these equations, E08
:
and E08

: |:−1 denote the intensities associated with, respectively, the multi-target posterior density
?
08
:
(·|·) and the multi-target predicted density ?08

: |:−1 (·|·) that are defined by the recursion in Equation 13 and Equation 14.
The function W08

:
(·) is the intensity of the RFS �08

:
, V08

: |:−1 (·|b) is the intensity of the RFS B: |:−1 (b), and ^08: (·) is the
intensity of the RFS K08

:
. The quadrotor 08 can estimate the number of targets as

#̂ =

∫
E(G)3G. (18)

The estimate #̂ is used to update the number of elements ofM08
:
, and the intensity E08

:
(G) computed from Equation 17

is used to update the states of the #̂ targets. Then each element ofM08
:

is represented as the following tuple:

<
08
:,;

= 〈 ;, E08
:
(G) 〉, (19)

where ; is a label for the tracked target, such as one of its properties, e.g. its color, shape, size or its position in the
environment.

A. Gaussian Mixture PHD Filter
The PHD filter as described in (16) and (17) does not admit a closed-form solution in general, and the numerical

integration suffers from the curse of dimensionality. Thus, for implementation purposes, we consider a sub-optimal
solution of the PHD filter that models approximates it as a mixture of Gaussians, as described in [18]. The Gaussian
Mixture PHD (GM-PHD) filter provides a closed-form solution to the PHD filter under the following assumptions:
A.1 Each target generates observations independently of the others.
A.2 The clutter process is Poisson distributed and is independent of target-generated measurements.
A.3 Each target’s state evolves according to a linear model with Gaussian process noise, and each quadrotor’s sensor

has a linear measurement model with Gaussian sensor noise, i.e.

5
08
: |:−1 (G |b) = N(G; �:−1, &:−1), (20)

6
08
:
(I |b) = N(I;�:G, ': ), (21)

where the notation N(· ; `, f) denotes a Gaussian density with mean ` and covariance f, �:−1 is the state
transition matrix, &:−1 is the process noise covariance, �: is the observation or measurement matrix, and ': is
the sensor noise covariance.

A.4 The detection probability is state-dependent and is modeled as

?
08
D,: (G) =

{
?D | |@08

:
− G | | ∈ BA (@08: ),

0 otherwise,
(22)

where @08
:
denotes the grid coordinates of robot 08 at time : and BA (@08: ) represents the FoV of the sensor on

robot 08 , which we model as a disc of radius A centered at the robot location @08
:
. The survival probability is

assumed to be constant:
?
08
S,: (G) = ?S,: . (23)
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A.5 The birth and spawning intensities are modeled as Gaussian mixtures of the form

W
08
:
(G) =

�W,:∑
8=1

F
(8)
W,:
N(G; ` (8)

W,:
, %
(8)
W,:
), (24)

V
08
: |:−1 (G |b) =

�V,:∑
9=1

F
( 9)
V,:
N(G; � ( 9)

V,:−1b + 3
( 9)
V,:−1, &

( 9)
V,:−1), (25)

where �W,: , F (8)W,: , `
(8)
W,:

, and % (8)
W,:

are known parameters of the birth intensity, and �V,: , F (8)V,: , �
( 9)
V,:−1, 3

( 9)
V,:−1,

&
( 9)
V,:−1, and %

( 9)
V,:−1 are known parameters of the spawn intensity of a target with state b at time : − 1. For more

details on the parameters, please refer to [18].

Using the above assumptions, we can rewrite Equation 16 and Equation 17 as follows. The intensity associated with
the multi-target predicted density can be approximated as a Gaussian mixture:

E
08
: |:−1 (G) = E

08
S,: |:−1 (G) + E

08
V,: |:−1 (G) + W

08
:
(G), (26)

where

E
08
S,: |:−1 (G) = ?S,:

�:−1∑
8=1

F
(8)
:−1N(G; `

(8)
S,: |:−1, %

(8)
S,: |:−1), (27)

`
(8)
S,: |:−1 = �:−1`

(8)
:−1, (28)

%
(8)
S,: |:−1 = &:−1 + �:−1%

(8)
:−1�

)
:−1, (29)

E
08
V,: |:−1 (G) =

�:−1∑
8=1

�V,:∑
;=1

F
(8)
:−1F

(;)
V,:
N(G; ` (8,;)

V,: |:−1, %
(8,;)
V,: |:−1), (30)

`
(8,;)
V,: |:−1 = �

(;)
V,:−1`

(8)
:−1 + 3

(;)
V,:−1, (31)

%
(8,;)
V,: |:−1 = &

(;)
V,:−1 + �

(;)
V,:−1%

(8)
V,:−1 (�

(;)
V,:−1)

) , (32)

in which �:−1, F (8):−1, `
(8)
:−1, and %

(8)
:−1 are known parameters of the intensity function at time : − 1 [18].

Then the intensity associated with the multi-target posterior density can be approximated as a Gaussian mixture:

E
08
:
(G) = [1 − ?08D,: (G)]E

08
: |:−1 (G) +

∑
I∈/08

:

E
08
D,: (G; I), (33)

where

E
08
D,: (G; I) =

�: |:−1∑
9=1

F
( 9)
:
(I)N(G; ` ( 9)

: |: (I), %
( 9)
: |: ), (34)

F
( 9)
:
(I) =

?
08
D,: (G)F

( 9)
: |:−1N(I;�:`: |:−1, ': + �:%:�): )

^
08
:
(I) + ?08D,: (G)

∑�: |:−1
;=1 F

(;)
: |:−1N(I;�:`: |:−1, ': + �:%:�): )

, (35)

`
( 9)
: |: (I) = `

( 9)
: |:−1 (I) +  

( 9)
:
(I − �:` ( 9): |:−1 (I)), (36)

%
( 9)
: |: = [� −  

( 9)
:
�: ]% ( 9): |:−1, (37)

 
( 9)
:

= %
( 9)
: |:−1�

)
: [�:%

( 9)
: |:−1�

)
: + ': ]

−1. (38)
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Fig. 4 A 5m × 5m square environment, with hollow circles denoting the grid nodes and squares denoting the
targets. The red border denotes the boundary of the area that is explored by 3 robots.

VI. Simulation Results
In this section, we validate our approach with simulations in MATLAB. First, we model a scenario with a bounded

environment with dimensions 5m × 5m that contains 3 stationary targets which must be located by 3 robots, as shown
in Figure 4. The state of each target is defined as its G − H position coordinates, G = [?G , ?H]) . A robot’s sensor
measurement of a target’s state is modeled according to Equation (21). Each robot has a circular FoV of radius
A�$+ = 0.6m, centered at the robot’s position on the spatial grid. We assume that each robot is able to accurately
localize itself on the grid, and that there are no obstacles present in the environment.

Since each agent has a limited FoV, We assume that the targets that are detected at time step : survive in the next
time step with probability ?S,: = 0.1 for all robots. Since the targets are stationary, �:−1 = I2, the 2 × 2 identity matrix.
We also set &:−1 = 0.2I2. As the robots explore the environment, new targets might appear in their FoV. We account
for this by allowing 4 new targets to be birthed at each time step, depending upon the robot’s position on the grid,
with weights FW,: = (F (8)W,: )

4
8=1 = [0.1, 0.1, 0.1, 0.1]) . Thus, the birth intensity at each time step from Equation (24) is

modeled as

W
08
:
(G) = 0.1N(G; ` (1)

W,:
, %
(1)
W,:
) + 0.1N(G; ` (2)

W,:
, %
(2)
W,:
) + 0.1N(G; ` (3)

W,:
, %
(3)
W,:
) + 0.1N(G; ` (4)

W,:
, %
(4)
W,:
), (39)

where % (;)W = 0.5I2 and

`
(;)
W =

[
?
08
G,:
+ A18ACℎ cos(\;)

?
08
H,:
+ A18ACℎ sin(\;)

]
, (40)

in which @08
:

= [?08
G,:
?
08
H,:
] denotes the G − H coordinates of robot 08 at time step : , corresponding to its current node. 08

:
;

A18ACℎ = 0.8A�$+ , so that the targets are birthed only near the boundary of FOV; and \; = [c/4, 3c/4, 5c/4, 7c/4])
rad, the angles at which targets are likely to appear. We assume that there are no spawned targets. Each target is detected
with a probability of ?D = 0.8, and a quadrotor’s observation of a target follows the measurement model (21) with
�: = I2 and ': = 0.25I2. The observations are immersed in clutter that can be modeled as a Poisson RFS K( ·)

:
with

intensity ^ ( ·)
:
(I) = _��BU(I), where _� = 3.98 × 10−3 is the clutter intensity; �B is the area of the sensor’s circular

FoV, which is approximately 1m2; and U(I) is the uniform density over �B .
We assume that all robots start at random positions on the grid and have no knowledge of the number of targets or

their states (positions). The robots explore the environment according to the random walk model (1). As the robots
detect the targets, they recursively update their estimates of the number of targets and their positions using the GM-PHD
framework described in Section V.A. We set ) = 1 × 10−3 as the pruning threshold and* = 4 as the merging distance
threshold (see Table II in [18] for details on these parameters). Figure 5a plots the inter-arrival times over time during
300 s of the simulation. Each inter-arrival time g0<0=

9
ends at a renewal epoch, i.e. a time when any two robots 0< and
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Fig. 5 (a) Inter-arrival times during a simulation of 3 robots exploring the environment in Figure 4. Renewal
epochs, i.e. times when two robots meet at a node, are the times at the peaks of the graphs. Each renewal epoch
marks the initialization of a new inter-arrival time. (b) Cardinality of the reward accumulated by each of the
robots at each time step.

0= meet at a node, which can be identified in the figure as the time at the corresponding peak of the graph. At this time,
the next inter-arrival time g0<0=

9+1 is initialized to zero. Figure 5b plots the time evolution of the cardinality of the reward
(6) earned by each robot, which is the estimated number of targets. The average inter-arrival time over this simulation
run was calculated to be E[g ( ·)

:
] ∼ 68 s, and the time required for the cardinality of all robots’ rewards to equal the

actual number of targets, = = 3, was CA4F0A3 ∼ 150 s. Thus, for a scenario with both a robot density (number of robots
per m2) and a target density (number of targets per m2) of 3/25 = 0.12 m−2, there must be about CA4F0A3

E[g (·)
9
]
≈ 2.2 renewals,

i.e. at least 2 renewals, for all robots to achieve the same reward cardinality (estimated number of targets). Figure 6a,
Figure 7a, and Figure 8a show the true positions of the targets and their estimated positions by each robot at the end of
the simulation time. Figure 6b, Figure 7b, and Figure 8b show the corresponding PHD intensity for each robot as a
Gaussian mixture model with = = 3 components (the number of targets), computed from Equation (33). We obtain the
number of targets estimated by each robot 08 as

#̂08 =

⌈ =∑
;=1

F
(;) ,08
:

⌉
, (41)

where the weights F ( ·) ,08
:

for robots 08 = 1, 2, 3 are given by the peak intensities in Figure 6b, Figure 7b, and Figure 8b,
respectively. The estimated positions of the targets are obtained from positions of these peak intensities.

We also evaluated our approach through Monte Carlo simulations of three scenarios, with 100 simulation runs for
each scenario. In all scenarios, 20 robots explored a grid according to the random walk model (1) in order to track a set
of stationary targets. The robots were initialized at random positions on the grid, and the positions of the targets were
kept the same over all 100 runs for each scenario. In Scenario 1, simulated for 1000 s, the grid has dimensions 15m ×
15m and there are 10 targets; in Scenario 2, simulated for 2000 s, the grid has dimensions 20m × 20m and there are 15
targets; and in Scenario 3, simulated for 3000 s, the grid has dimensions 30m × 30m and there are 20 targets. The
mean inter-arrival time and mean reward percentage for each scenario, averaged over all 100 runs, are given in Table 1.
The mean reward percentage is computed from the ratio of the mean number of targets detected by the robots until the
mean inter-arrival time to the actual number of targets in the scenario. Table 1 shows that the mean inter-arrival time
increases as the density of robots in the environment decreases, which is due to the lower rate of robots encounters with
one another in larger environments, on average. The table also shows that as the density of targets in the environment
decreases, the percentage of targets identified before the mean inter-arrival time increases, on average. This indicates
that in the scenarios simulated, the longer inter-arrival times for larger environments tend to enable identification of a
higher number of targets, despite the lower target density.
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Fig. 6 Multi-target tracking by robot 1. (a) Estimated (∗) and true (+) target positions. (b) GM-PHD intensities
computed from Equation (33).
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Fig. 7 Multi-target tracking by robot 2. (a) Estimated (∗) and true (+) target positions. (b) GM-PHD intensities
computed from Equation (33).
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Fig. 8 Multi-target tracking by robot 3. (a) Estimated (∗) and true (+) target positions. (b) GM-PHD intensities
computed from Equation (33).
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Scenarios 1 2 3
Mean inter-arrival time (s) 20 190 430

Mean reward (%) 10 33 65
Table 1 Mean inter-arrival time and mean reward percentage over 100 simulation runs each for 3 scenarios.

VII. Conclusion and Future Work
In this paper, we demonstrated theoretically that a group of robots equipped with limited sensing and communication

capabilities, moving according to a DTDS Markov chain model on a spatial grid, is able to detect and track the number
and states of multiple stationary targets in the environment using the Gaussian Mixture formulation of the PHD filter
from the RFS framework. We verified our results with numerical simulations in MATLAB. In the future, we plan to
implement this strategy on quadrotors equipped with RGBD cameras and 5G WiFi dongles for exchanging data between
the robots.
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