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Abstract— Controlling the configuration of a soft continuum
robot arm is challenging due to the hyper-redundant kinemat-
ics of such robots. We propose a new model-based, inverse
dynamic control approach to this problem that is defined on
the configuration state variables of the geometrically exact
Cosserat rod model. Our approach is capable of controlling
a soft continuum robot to track static or time-varying 3D
configurations through bending, torsion, shear, and extension
deformations. The controller has a decentralized structure,
in which the gain matrices can be defined in terms of the
physical and material properties of distinct cross-sections of
the robot arm. This structure facilitates its implementation on
continuum robot arms composed of independently-controllable
segments that have local sensing and actuation. The controller
is validated with numerical simulations in MATLAB with
a hydrogel-based soft robot arm that can produce the four
primary types of deformations. The simulated arm successfully
tracks these configurations with average normalized root-mean-
square errors (NRMSE) below 7% in all cases. To demonstrate
the generality of the control approach, its performance is also
validated on a larger simulated robot arm made of silicone.

I. INTRODUCTION

Soft continuum robots are fabricated from soft mate-
rials [1] and designed with a continuous backbone [2].
Due to their hyper-redundant kinematics, these robots have
high dexterity (infinite degrees of freedom) and compliance,
with the ability to grasp objects and perform manipulation
tasks that rigid-link robots cannot [3]. Soft robot arms are
usually actuated with tendon, cable, pneumatic, or hydraulic
actuators [4]. Over the past decade, local actuation for soft
robots has advanced [5], [6], [7]. For example, [8] introduces
an independently-controllable local actuation unit made of
temperature-responsive hydrogel, called an SVA (Soft Voxel
Actuator), that we used to fabricate a soft robot arm with
distributed actuation in our prior work [9]. The develop-
ment of local actuators can be distributed through a soft
robot enables the implementation of decentralized control
approaches on such robots, which would display robust
performance to individual actuator failures. Decentralized
control approaches, in general, can be used to overcome
limitations of centralized control approaches when applied to
large-scale systems, such as high computational complexity,
delays, uncertainties, and a lack of robustness [10].
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Fig. 1. Schematic of a Cosserat rod. The equations for the 3-dimensional
rod configuration describe the relationships between the curvature vector
(u), the rate of change of position with respect to arc length (v), and the
resulting bending, torsion, shear, and extension deformations.

Continuum robots are inspired by soft-bodied animals
and muscular hydrostats such as octopuses, snakes, elephant
trunks, worms, and animal tongues [11], [12]. Octopuses
in particular have been a rich source of inspiration for
roboticists [6], due in part to the dexterity and flexibility of
their continuously deformable arms that are capable of four
primary deformations: bending, twisting, shortening, and
elongation [13]. In previous studies, only one or two of these
four types of deformations were simulated or experimentally
produced in a soft continuum robot, depending on the control
objective or model limitations [14], [15], [16]. In this paper,
we present a new approach to dynamic control of a soft
continuum robot arm that enables the arm to track reference
configurations which require all four primary deformations.
This control approach is decentralized, and it can be used to
reshape such robots into complex configurations for a wide
range of tasks.

Geometrically exact models using Cosserat rod theory
have been widely applied to static and dynamic modeling
of soft continuum robots, as they are able to accurately
represent large deformations from bending, torsion, shear,
and extension [17]. The Kirchhoff model, a special case of
the Cosserat model, can only describe bending and torsion
movements; in other words, it is an unshearable and inexten-
sible Cosserat rod model [18]. In [9], we used the numerical



forward solution of the Cosserat rod model presented in [18]
to experimentally demonstrate open-loop control of bending
deformation in our hydrogel SVA-actuated soft robot arm.
The piecewise constant strain (PCS) model is a continuous
Cosserat model that describes shear and torsion [19]. Other
common dynamic modeling approaches are based on the
classic Lagrangian or Newton-Euler formulations for rigid-
link robots [20].

The majority of static and dynamic controllers for con-
tinuum robots use the standard Lagrangian formulation for
modeling the robot and the Jacobian formulation for closed-
loop real-time inverse dynamic control [21], [22], [7], [23],
[24]. In [21], a closed-loop control approach for trajectory
tracking and surface following using the inverse dynamics of
the Lagrangian formulation was implemented experimentally
in 2D for the first time on a pneumatically actuated soft
robotic arm. A few real-time control approaches based on
reduced-order finite element methods have been developed
and tested on soft robots and manipulators using the Simula-
tion Open Framework Architecture (SOFA) software frame-
work [25], [26]. To address the lack of control methodologies
that take full advantage of body compliance, a compliant me-
chanics environment for controlling soft robots was presented
in [27] that uses the recently developed software package
Elastica, an open-source simulation environment for slender
rods that can bend, twist, shear, and stretch. Other studies
from this group [28], [29] propose methods for controlling
an octopus-inspired soft arm with muscle-like actuation.

In this paper, we develop a novel decentralized control
approach for configuration tracking by soft continuum robot
arms composed of independently-controllable segments with
with local sensing and actuation. This control approach
enables such robots to track 3D configurations that involve
any combination of bending, torsion, shear, and extension
deformations. The approach can be implemented on con-
tinuum robots with dynamics that can be described by the
geometrically exact Cosserat rod model. We validate our
control approach in numerical simulations of both hydrogel-
based and silicone continuum robot arms.

II. FORWARD DYNAMICS OF A COSSERAT ROD MODEL

We aim to develop a model of the nonlinear dynamics of
an octopus-inspired soft continuum robot arm that accounts
for the effects of large deformations due to bending, torsion,
shear, and extension [17]. A suitable candidate is the Cosserat
rod model, for which three assumptions are required: a
sufficiently large length-to-diameter ratio, material incom-
pressability, and linear elasticity [17].

Figure 1 depicts a 3-dimensional uniform Cosserat rod in
Cartesian coordinates. The length of the rod is denoted by
L, the density of the rod by ρ, and the area and second
mass moment of inertia tensor of each cross-section by A
and J , respectively. The position and orientation matrix of
each cross-section at arc length s in the global coordinate
frame are denoted by Gp(t, s) ∈ R3 and GR(t, s) ∈ SO(3),
respectively. From this point on, whenever a variable does
not have the global frame annotation G, it means that it is

defined with respect to a local coordinate frame that is fixed
to the cross-section in which the variable is defined. In the
Cosserat dynamics of a rod whose neutral axis is in the z
direction, the curvature vector u(t, s) = [ux,uy,uz]

T and
the rate of change of position v(t, s) = [vx,vy,vz]

T are
directly responsible for deformations of the rod, and we will
refer to them as configuration state variables. The vectors
ux and uy produce bending about the x and y axes, and
uz creates torsion about the z-axis. The vectors vx and vy

cause shear effects that produce changes in the size of the
cross-section, and vz produces extension along the z-axis.
The vectors q(t, s) and w(t, s) define velocity and angular
velocity. The internal force and moment are represented by
Gn(t, s) ∈ R3 and Gm(t, s) ∈ R3, respectively. They are
the force and moment that the material at p(t, s+ds) exerts
on the material at p(t, s− ds), for infinitesimal ds.

A set of partial differential equations, differentiated with
respect to arc length s and time t, governs the deformation
of each cross-section along the elastic Cosserat rod (Fig. 1).
The spatial derivatives of the state variables are calculated at
each cross-section of the rod. The internal force and moment
evolve according to the equations:

Gns =
GRρA(ŵq + qt)− Gf ,

Gms =
GRρ(ŵJw + Jwt)− Gp̂s

Gn− Gl,
(1)

and the kinematic variables evolve according to:
Gps =

GRv ,Gpt = Rq,
GRs =

GRû ,GRt = Rŵ,

qs = vt − ûq + ŵv,

ws = ut − ûw,

(2)

where (̂·) is the cross product matrix of a vector. The time
derivatives are computed using the Backward Differentiation
Formula (BDF) [30], [31] as follows:

vt = c0v
i + vh, vh = c1v

i−1 + c2v
i−2,

ut = c0u
i + uh, uh = c1u

i−1 + c2u
i−2,

qt = c0q
i + qh, qh = c1q

i−1 + c2q
i−2,

wt = c0w
i +wh, wh = c1w

i−1 + c2w
i−2,

(3)

in which c0 = 1.5/dt, c1 = −2/dt, and c2 = 0.5/dt are the
implicit difference coefficients. The elements (·)(i) are the
values of the corresponding variables at time step i, and the
history elements, (·)h, are the values of the corresponding
variables at the two previous time steps, i− 1 and i− 2.

The equations of an elastic Cosserat rod are written for
its central backbone, and any forces and moments that are
applied to this backbone are modeled as external forces
and moments, denoted by Gf and Gl, respectively. In
practice, these forces and moments are the sum of the
control inputs applied by the actuators of the continuum robot
arm (Gfa,

Gla), external loads on the arm (Gf l,
Gll), and

environmental effects (Gfe,
Gle):

Gf = Gfa + Gf l + Gfe,
Gl = Gla +

Gll +
Gle.

(4)

https://www.cosseratrods.org/


Our approach to numerically solving (1) is outlined in
Algorithm 1. The implicit fourth-order Runge-Kutta (RK4)
method is implemented to numerically integrate (1) with
respect to space, and then the standard shooting method
(SSM) is used to generate initial guesses n0,m0 of n,m
at each time step. The following boundary conditions of the
fixed end of the rod are known:

Gp(t, 0) = p0,
GR(t, 0) = R0,

q(t, 0) = 0, w(t, 0) = 0.
(5)

The SSM guesses the following unknown boundary condi-
tions of the fixed end of the rod,

Gn(t, 0) = n0,
Gm(t, 0) = m0, (6)

while satisfying the known boundary conditions of the free
end,

Gn(t, L) = nL = 0, Gm(t, L) = mL = 0. (7)

This two-point Boundary Value Problem (BVP) [30], [32],
[33], which has been reduced to an Initial Value Problem
(IVP), is solved by the SSM guesses at each iteration of
Algorithm 1. Then, the guessed values are corrected by the
Levenberg-Marquardt nonlinear optimization algorithm. A
unique solution to the BVT is ensured by using a sufficiently
small time step and using the solution at the previous time
step as the initial guess for the current time step [34]. Then,
the configuration state variables, v and u, are found from
the computed Gn and Gm as follows:

v = (Kse + c0Bse)
−1[GRT Gn+Ksev

∗ −Bsevh],

u = (Kbt + c0Bbt)
−1[GRT Gm+Kbtu

∗ −Bbtuh].
(8)

The vectors v∗ and u∗ are the values of v and u at the
undeformed reference shape. The effects of shear and ex-
tension are characterized by Kse and the effects of bending
and torsion by Kbt, under the assumption that the continuum
robot arm is slender, symmetric, homogeneous, and isotropic:

Kse =

αcG 0 0
0 αcG 0
0 0 E

A, Kbt =

E 0 0
0 E 0
0 0 G

J .

(9)
In these equations, G and E are the shear modulus and
Young’s modulus, respectively, and αc is a constant which is
equal to 4/3 for circular cross-sections and 3/2 for rectangular
ones. The damping matrices Bse = τKse and Bbt = τKbt

in Eq. (8) can be calculated from vibration tests [35], in
which τ is twice the period of vibrations exhibited by the
continuum robot arm’s tip.

III. A DECENTRALIZED APPROACH TO INVERSE
DYNAMIC CONTROL

We design a controller with a decentralized structure that
has distinct proportional-derivative (PD) gains at each loca-
tion along the arc length of the Cosserat rod. For segmented
soft continuum robots, this enables the independent control
of each segment in a computationally efficient manner. We

have previously developed decentralized control approaches
for segmented soft robot arms with objectives of vibration
dampening using H∞ state feedback control [36] and trajec-
tory tracking using a consensus-based method [37]. Here, a
desired reference configuration is tracked (v̄, ū), which may
be static or time-varying and results in bending, twisting,
shear, extension, or a combination of these deformations in
3D space. In another study [38], we developed a kinematic
controller for trajectory tracking by the tip of a segmented
hyper-redundant robot arm, modeled as a series of Gough-
Stewart platforms, that is capable of producing all four
deformations considered here. In both [38] and this paper, we
consider robot arms that are comprised of a series of phys-
ically connected segments with local sensing and actuation,
and both control approaches rely on calculations by a central
computational unit. However, we use a kinematic model of
the robot in [38] and a Cosserat-based dynamic model in
this paper, and the robot’s segments in [38] are assumed
to exchange information with adjacent segments, which is
not assumed here. Moreover, the control approach developed
in [38] is centralized, whereas the approach presented here
is decentralized.

The control law is defined to track a reference config-
uration (v̄, ū) and to compensate for external loads and
environmental effects. The control inputs below are applied
by the actuators of the continuum robot arm to the backbone
of the robot:

Gfa =GR[Km1
v̄tt +Kv1(v̄t − vt) +Kp1

(v̄ − v)]

− Gf l − Gfe,
Gla =GR[Km2

ūtt +Kv2(ūt − ut) +Kp2
(ū− u)]

− Gll − Gle,
(10)

where Km1
,Km2

are 3 × 3 diagonal matrices whose di-
agonal entries are proportional to ρA, ρJ , respectively, and
Kv1 ,Kv2 ,Kp1 ,Kp2 are gain matrices defined as:

Kv1 = v1Bse, Kp1
= p1Kse,

Kv2 = v2Bbt, Kp2
= p2Kbt,

(11)

where we set the scalar coefficients to v1 = p1 = p2 =
v2 = 1. In this way, the controller gains at a specific cross-
section of the robot can be defined in terms of the physical
properties (A, J ) of that cross-section, independently of
the composition of other cross-sections. This facilitates its
implementation on a segmented continuum robot arm with a
decentralized control structure.

Algorithm 1 briefly describes our implementation of this
configuration tracking controller. First, the desired configura-
tion is defined in terms of the variables v̄ and ū (line 1). We
define an outer loop that iterates over time steps (lines 2 to
10) and an inner loop that iterates over discretized spatial
locations (nodes) along the backbone of the robot (lines
4 to 9). In the outer loop, the initial boundary condition
values of n0 and m0 are guessed using SSM; in the first
iteration, they are set to zero (line 3). By applying RK4
to (Gnj−1,Gmj−1) and the derivatives of the internal force



Algorithm 1: Configuration tracking controller
1: Given a desired configuration v̄, ū
2: for i← 0 to T/dt do
3: ni

0,m
i
0 ← SSM (ni

L = 0,mi
L = 0)

4: for j ← 0 to L/ds do
5: ni

j ,m
i
j ← RK4 (ni

j−1,n
i
s,j) and (mi

j−1,m
i
s,j)

6: vi
j ,u

i
j ← ni

j ,m
i
j , Forward dynamics (8)

7: f i
a,j , l

i
a,j ← Control law (10)

8: ni
s,j ,m

i
s,j ← Substitute (4) in (1)

9: end for
10: end for

Note: (n,m,f , l) are defined in the global frame, and
(v,u) in the local frame.

and moment with respect to arc length, their values at
the current spatial node on the backbone, j, are computed
(lines 5). After implementing the current internal force and
moments in (8), the values for vj and uj are found (line
6). Then, using the error between the configuration variables
and their desired values, the control law calculates the force
and moment (Gfa,Gla) that the actuators must apply to the
corresponding backbone section (line 7), and then Gns and
Gms are found for the next spatial node on the backbone
(line 8). To demonstrate that the configuration tracking error
converges to zero under this controller, first the closed-loop
system dynamics are derived. By rearranging the equations
in (1), we obtain:

Gf = GRρA(ŵq + qt)− Gns,
Gl = GRρ(ŵJw + Jwt)− Gp̂s

Gn− Gms.
(12)

Then, by substituting in the sum of external forces and
moments from (4) and keeping the actuator control inputs
on the left-hand side, we obtain:

Gfa = GRρA(ŵq + qt)− Gns − Gf l − Gfe,
Gla = GRρ(ŵJw + Jwt)− Gp̂s

Gn− Gms − Gll − Gle.
(13)

Replacing Gfa and Gla in (13) with the control law (10), the
external loads and environmental forces and moments from
both sides of the equations cancel out:

GR[Km1 v̄tt +Kv1(v̄t − vt) +Kp1(v̄ − v)]

= GRρA(ŵq + qt)− Gns,
GR[Km2

ūtt +Kv2(ūt − ut) +Kp2
(ū− u)]

= GRρ(ŵJw + Jwt)− Gp̂s
Gn− Gms.

(14)

The right-hand sides of these equations are the sums of the
internal forces and moments with respect to the arc length.
By defining n′

s and m′
s as the following expressions,

Gn′
s =

GRρA(ŵq + qt)− Gns,
Gm′

s =
GRρ(ŵJw + Jwt)− Gp̂s

Gn− Gms,
(15)

and rewriting them in terms of the second time derivatives

TABLE I
PARAMETERS IN THE NUMERICAL SIMULATIONS.

Param. Description Value
ds Spatial discretization (m) L/N
dt Time step (s) 0.1
N Number of spatial nodes 80
Nv Number of virtual segments 8
rp Undeformed radius of proximal segment (mm) 3
rd Undeformed radius of distal segment (mm) 0.5
L Undeformed length of the hydrogel robot arm (mm) 45
ρ Density of hydrogel actuator [40] (kg/m3) 1300
E Young’s modulus of hydrogel actuator (MPa) 0.6
ρS Density of silicone (kg/m3) 2330
ES Young’s modulus of silicone (GPa) 188

of the configuration state variables,

Gn′
s =

GRKm1
vtt,

Gm′
s =

GRKm2utt,
(16)

the closed-loop configuration dynamics of the robot can be
expressed in the following form:

Km1 v̄tt +Kv1(v̄t − vt) +Kp1(v̄ − v) = Km1vtt,

Km2ūtt +Kv2(ūt − ut) +Kp2(ū− u) = Km2utt.
(17)

Defining the error vector e(t) = (v̄ − v, ū − u)T and
writing (17) in terms of this error, the closed-loop system
dynamics take the form of standard homogeneous second-
order differential equations:

ett +K′
vet +K′

pe = 0, (18)

where the matrices K′
v and K′

p are defined as

K′
v =

[
Kv1 �Km1 0

0 Kv2 �Km2

]
,

K′
p =

[
Kp1

�Km1
0

0 Kp2
�Km2

]
,

(19)

in which � denotes element-wise division of matrices
(Hadamard division). The matrices K′

v and K′
p are sym-

metric and positive definite. To show that e(t) −→ 0 as
t −→ ∞, the following positive definite quadratic Lyapunov
function is chosen,

V =
1

2
eTt et +

1

2
eTK′

pe, (20)

which has the following time derivative:

Vt =
1

2
eTttet +

1

2
eTt ett +

1

2
eTt K

′
pe+

1

2
eTK′

pet

=
1

2
(eTtt + eTK′

p)et +
1

2
eTt (ett +K′

pe)

=
1

2
(−eTt K′

v)et +
1

2
eTt (−K′

vet) = −eTt K′
vet.

(21)

Since K′
v is positive definite, Vt is a negative definite

function. By applying Lyapunov’s direct method to the
closed-loop system dynamics, we can prove that e(t) −→ 0 as
t −→∞ and the system is globally asymptotically stable [39].



Fig. 2. Tracking performance for a reference configuration that requires bending deformations. (a)-(d) Simulation snapshots at times t = 30 s, 60 s,
90 s, and 120 s, respectively. (e),(g) Applied moments about the x and y axes, respectively. (f),(h) Curvature components ux and uy , respectively, of all
segments, and the corresponding reference components ūx and ūy for segment 5. The average NRMSE over all spatial nodes is (f) 5.0%, (h) 5.3%.

IV. SIMULATION RESULTS

In this section, the performance of the decentralized
configuration tracking controller is validated with numeri-
cal simulations of a Cosserat rod model of the hydrogel-
based segmented continuum robot arm in [9]. The simulated
robot must achieve specified reference configurations through
bending, torsion, shear, and extension. In all simulations,
the relatively low values of the average normalized root-
mean-square errors (NRMSEs) between the simulated and
reference configurations over all spatial nodes (discretized
locations along the robot’s backbone) demonstrate effective
tracking performance by the controller. These values are
stated in figure captions in the following subsections.

As in our prior works on decentralized control of soft
segmented continuum robots [36], [37], we assume that
each segment of the robot has local sensing and actuation
capabilities. For each test case, the simulated continuum
robot arm is slender and symmetric about the z-axis, with
isotropic material properties and the parameters listed in
Table I.

Although the robot is simulated with circular cross-
sections, our control approach can be applied to continuum
robots with other cross-section geometries, as long as they
satisfy the assumptions required for using the Cosserat rod
model. Both uniform and tapered robot arms were simulated;
the cross-section of the uniform arm has a constant radius
rp, while the radius of the cross-section of the tapered arm
decreases from rp at the proximal segment to rd at the distal
(tip) segment.

Since hydrogel has a slow response time, in practice, the
control input frequencies must be low enough to give the
material enough time to complete its heating and cooling
phases. To demonstrate the applicability of our controller to
other types of materials, we also simulated it on a robot
arm composed of silicone, which has a faster response
than hydrogel, with the parameters given in Table I. The
dimensions L, rp, and rd of the simulated silicone robot arm
were each 10 times longer than the corresponding dimensions

of the hydrogel-based arm. The reference control inputs for
the silicone arm were the same as the inputs defined for the
hydrogel-based arm, except with amplitudes 10 times larger
and, in the case of controlled shear deformations, a frequency
10 times smaller. The simulations of the silicone robot arm
are presented in the supplementary video attachment.

For the arm made of hydrogel, which can only deform
underwater, the applied force from the environment was
defined as the gravitational force acting on the arm,

Gfe = (ρ− ρw)Ag − GRCq � |q|, (22)

where ρ is the density of the hydrogel, ρw is the density
of the surrounding water, g is gravitational acceleration, and
C is the damping coefficient matrix of the arm, which is
used to define the square-law drag force on the arm due
to water resistance (� denotes element-wise multiplication).
The remaining forces and moments in (4) due to external
loads and environmental effects were set to zero. For the
arm made of silicone, which was assumed to operate in air,
the density ρ in (22) was set to ρS , the density of silicone,
and the drag force term was set to zero.

A. Controlled Bending Deformations

A tapered robot arm was simulated to track the following
time-varying reference configuration, which requires bending
deformations:

ūx(t, s) =


30
( s
L

)
sin(ωt), k = 1, ..., N/2

30

(
s− L
L

)
sin(ωt), k = N/2 + 1, ..., N,

(23)

ūy(t, s) =


40
( s
L

)
cos(ωt), k = 1, ..., N/2

40

(
s− L
L

)
cos(ωt), k = N/2 + 1, ..., N,

(24)
and ūz(t, s) = 0, where ω = 2π/120 and s = k · ds.

Figures 2a-d show snapshots of the simulated hydrogel-
based arm over one cycle of the reference input. In these
figures and in all subsequent simulation snapshots, only the



Fig. 3. Tracking performance for a reference configuration that requires
torsion deformation. (a)-(d) Simulation snapshots at t = 5 s, 15 s, 30 s,
and 45 s, respectively. (e) Applied moments about the z axis. (f) Curvature
components uz for all segments and ūz for segment 8. The average
NRMSE over all spatial nodes is 4.54%.

Nv = 8 virtual segments (bounded by black rings on the
arm), rather than all N = 80 spatial nodes, are displayed
for clearer visualization. Each node traces out an ellipse in
the x−y plane while exhibiting bending deformations about
lines in this plane. Figures 2e and 2g plot the time evolution
of the moments applied by the actuators about the x and
y axes. The segments’ curvature vector components ux and
uy are plotted over time in Figs. 2f and 2h, along with the
reference components for segment 5. It is evident that ux and
uy for this segment remain close to their reference profiles.

B. Controlled Torsion Deformations

Twisting motions about the z-axis of the robot arm can
be simulated by applying a moment about this axis to each
spatial node along the arm. We simulated torsion deformation
in a tapered robot arm by applying the time-varying reference
configuration

ūz(t, s) = 60
( s
L

)
cos(ωt), ω = 2π/120, (25)

and setting ūx(t, s) = ūy(t, s) = 0. Four snapshots of
the simulated hydrogel-based arm over one cycle of the
reference input are shown in Figs. 3a-d. Fig. 3e plots the time
evolution of the moments applied by the actuators about the
z axis in the local frame of each segment. The corresponding
curvature vector components uz are plotted in Fig. 3f and
compared with the reference component for segment 8.

C. Controlled Shear Deformations

To our knowledge, shear deformation has not previously
been simulated in soft robot arms, despite the development
of models that are capable of describing shear in such struc-
tures [19]. We simulated shear deformation in robot arms
with uniform cross-sectional areas. In these simulations, we

Fig. 4. Average ||e(t)||2 over time of a simulated continuum robot arm
undergoing shear deformation, with exponentially decaying reference inputs
v̄x and v̄y for different values of N , dt, and ρ. The inset figure shows a
close-up of the plots during the first 10 s.

defined reference shear components v̄x and v̄y whose values
did not exceed the values of vx and vy produced during
the bending simulation described in Section IV-A, to ensure
that they did not exceed values that would result in material
failure. Our definitions of these reference components are
based on the kinematic locomotion of a burrowing worm
simulated in one dimension [14] and the elongation motions
that octopus arms exhibit when their transverse muscles
contract [11], [13]. The reference components were defined
as:

v̄x(t, s) = v̄y(t, s) = 4 sin
(
ω
(
t− 1 +

s

L

))
, ω =

2πc

λ
,

(26)

and v̄z(t, s) = 0. In order to accurately simulate the shear
deformations, the cross-sectional area of the arm must be
updated at each time step of the simulation with the reference
components as follows [14]:

Ai = A0/
√
v̄x

2 + v̄y
2, i = 1, ..., N, (27)

where A0 is the initial cross-section area.
We simulated the responses of hydrogel-based and silicone

robot arms to the reference components v̄x and v̄y . For the
hydrogel arm, we set the wave velocity to c = 1/2π m/s
and the wavelength to λ = L m. With these parameters,
each spatial node along the robot arm follows a sinusoidal
trajectory with equal amplitudes in the x and y directions
and a frequency of ω ≈ 22 Hz. This frequency was selected
in order to visualize the traveling wave response of the robot
arm over a short time period (12 s), although in practice, it
may be too high to be implemented in hydrogel material.
In the silicone arm simulation, the reference input frequency
was set to ω ≈ 2 Hz. Figures 5a-d plot snapshots of the
simulated hydrogel arm over one cycle of the reference input.
The forces applied by the actuators along the x and y axes
are plotted over time in Figs. 5e and 5g, and the segments’
components vx and vy and the reference values for segment
4 are plotted over time in Figs. 5f and 5h.

To study the effects of the number of spatial nodes N , the
time step, dt, and the material density, ρ, on the controller



Fig. 5. Tracking performance for a reference configuration that requires shear deformations. (a)-(d) Simulation snapshots at t = 1 s, 6 s, 8 s, and 12 s,
respectively. (e),(g) Applied forces along the x and y axes, respectively. (f),(h) Components vx and vy , respectively, for segment 4, and the reference
components v̄x and v̄y for this segment. The average NRMSE over all spatial nodes is (f) 6.15%, (h) 6.3%.

Fig. 6. Tracking performance for a reference configuration that requires
extension deformations. (a)-(d) Simulation snapshots at t = 30 s, 60 s, 90 s,
and 120 s, respectively. (e) Applied forces along the z axis. (f) Components
vz and v̄z for all segments. Average NRMSE over all spatial nodes is 1.3%.

performance, shear deformations were simulated in both
hydrogel and silicone robot arms for different combinations
of N and dt values. For each case, the norm of the shear
tracking error, e(t) = (v̄ − v,0)T , is plotted over time
in Fig. 4. Although N and dt must be chosen carefully
to avoid producing numerical instability, the results show
that the numerical solution of the closed-loop dynamics
remains stable over a wide range of N and dt values, without
exhibiting a significant variation in performance. Therefore,
we selected dt = 0.1 s and N = 80 to achieve acceptable
model accuracy without excessive simulation times.

D. Controlled Extension Deformations

A continuum robot arm can extend and contract along
its central axis if its material and design allow the cross-
section of the arm to expand and shrink [16], [41]. These
deformations are similar to those produced by muscular
hydrostats such as octopus arms, which elongate or shorten

by contracting their transverse or longitudinal muscles while
maintaining a constant volume [11], [13]. We simulated
extension and contraction in a tapered robot arm by applying
the time-varying reference configuration

v̄z(t, s) = 0.75 + 0.25 cos (ωt) , (28)

and setting v̄x(t, s) = v̄y(t, s) = 0. This reference input
affects all spatial nodes equally with the same frequency,
ω = 2π/120 Hz. To enforce a constant volume during ex-
tension, mimicking the isovolumetric property of a muscular
hydrostat, the cross-sectional area of the arm is updated
at each time step of the simulation as Ai = A0/v̄z , i =
1, ..., N [14]. Figures 6a-d plot snapshots of the simulated
hydrogel-based arm over one cycle of the reference input.
Figure 6e plots the time evolution of the forces applied by
the actuators along the z axis of the local frame of each
segment, and Fig. 6f compares the segments’ components
vz to the reference input v̄z .

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to dynamic control of
bending, torsion, shear, and extension deformations in a soft
continuum robot arm by applying an inverse dynamics con-
troller combined with a decentralized controller that incorpo-
rates the system stiffness and damping in the gain matrices.
This decentralized control approach can be implemented in a
computationally efficient way on a continuum robot arm with
independently-controllable actuators enabling it to perform
dexterous motions in three dimensions, and it is robust to
individual actuator failures. To our knowledge, this is the first
control approach for soft continuum robot arms that achieves
tracking of configurations which require shear deformations.
We validate our controller in simulations of a segmented
continuum robot arm that are based on the geometrically
exact Cosserat rod model. Our test cases include simulations
in which the actuators that apply forces and moments on the
elastic rod have the physical properties of a hydrogel material
used in our prior work [9]. In all simulated test cases, the
controller produces average NRMSEs in configuration track-
ing below 7%, indicating effective tracking performance. The



controller’s performance is consistent over a wide range of
values for the simulation parameters N and dt.

As future work, our plan is to validate the proposed inverse
dynamics control approach and demonstrate controllers for
object grasping tasks on a 3D version of the hydrogel-based
robotic arm [9]. To implement the decentralized controller in
practice, both local sensing and actuation are required, and
there are possibilities for adding local sensing to the next
version of our hydrogel-based continuum robot.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, 2015.

[2] I. D. Walker, “Continuous backbone “continuum” robot manipulators,”
International Scholarly Research Notices, vol. 2013, 2013.

[3] R. J. Webster III and B. A. Jones, “Design and kinematic modeling
of constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[4] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control
strategies for soft robotic manipulators: A survey,” Soft Robotics,
vol. 5, no. 2, pp. 149–163, 2018.

[5] D. Trivedi, A. Lotfi, and C. D. Rahn, “Geometrically exact models for
soft robotic manipulators,” IEEE Transactions on Robotics, vol. 24,
no. 4, pp. 773–780, 2008.

[6] M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, and
C. Laschi, “Design concept and validation of a robotic arm inspired
by the octopus,” Materials Science and Engineering: C, vol. 31, no. 6,
pp. 1230–1239, 2011.

[7] I. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino,
and D. G. Caldwell, “Dynamics for variable length multisection
continuum arms,” The International Journal of Robotics Research,
vol. 35, no. 6, pp. 695–722, 2016.

[8] R. Khodambashi, Y. Alsaid, R. Rico, H. Marvi, M. M. Peet, R. E.
Fisher, S. Berman, X. He, and D. M. Aukes, “Heterogeneous hydrogel
structures with spatiotemporal reconfigurability using addressable and
tunable voxels,” Advanced Materials, p. 2005906, 2021.

[9] A. Doroudchi, R. Khodambashi, A. S. Lafmejani, D. M. Aukes,
and S. Berman, “Dynamic modeling of a hydrogel-based continuum
robotic arm with experimental validation,” in IEEE Int’l. Conference
on Soft Robotics (RoboSoft), 2020, pp. 695–701.

[10] L. Bakule, “Decentralized control: An overview,” Annual Reviews in
Control, vol. 32, no. 1, pp. 87–98, 2008.

[11] S. Kolachalama and S. Lakshmanan, “Continuum robots for manipu-
lation applications: A survey,” Journal of Robotics, vol. 2020, 2020.

[12] S. M. R. Sorkhabadi, P. T. Chinimilli, D. Gaytan-Jenkins, and
W. Zhang, “Human locomotion activity and speed recognition using
electromyography based features,” in 2019 Wearable Robotics Asso-
ciation Conference (WearRAcon), 2019, pp. 80–85.

[13] W. M. Kier and K. K. Smith, “Tongues, tentacles and trunks: the
biomechanics of movement in muscular-hydrostats,” Zoological Jour-
nal of the Linnean Society, vol. 83, no. 4, pp. 307–324, 1985.

[14] F. Boyer, S. Ali, and M. Porez, “Macrocontinuous dynamics for hy-
perredundant robots: application to kinematic locomotion bioinspired
by elongated body animals,” IEEE Transactions on Robotics, vol. 28,
no. 2, pp. 303–317, 2011.

[15] L. Niu, L. Ding, H. Gao, Y. Su, Z. Deng, and Z. Liu, “Closed-form
equations and experimental verification for soft robot arm based on
Cosserat theory,” in IEEE/RSJ Int’l. Conference on Intelligent Robots
and Systems (IROS), 2019, pp. 6630–6635.

[16] Q. Guan, J. Sun, Y. Liu, N. M. Wereley, and J. Leng, “Novel bending
and helical extensile/contractile pneumatic artificial muscles inspired
by elephant trunk,” Soft Robotics, 2020.

[17] S. S. Antman, “Problems in nonlinear elasticity,” Nonlinear Problems
of Elasticity, pp. 513–584, 2005.

[18] J. Till, V. Aloi, and C. Rucker, “Real-time dynamics of soft and
continuum robots based on Cosserat rod models,” The Int’l. Journal
of Robotics Research, vol. 38, no. 6, pp. 723–746, 2019.

[19] F. Renda, V. Cacucciolo, J. Dias, and L. Seneviratne, “Discrete
Cosserat approach for soft robot dynamics: A new piece-wise constant
strain model with torsion and shears,” in IEEE/RSJ Int’l. Conference
on Intelligent Robots and Systems (IROS), 2016, pp. 5495–5502.

[20] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: mod-
elling, planning and control. Springer Science & Business Media,
2010.

[21] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Model-
based dynamic feedback control of a planar soft robot: Trajectory
tracking and interaction with the environment,” The International
Journal of Robotics Research, vol. 39, no. 4, pp. 490–513, 2020.

[22] A. Kapadia and I. D. Walker, “Task-space control of extensible
continuum manipulators,” in IEEE/RSJ Int’l. Conference on Intelligent
Robots and Systems (IROS), 2011, pp. 1087–1092.

[23] T. George Thuruthel, F. Renda, and F. Iida, “First-order dynamic
modeling and control of soft robots,” Frontiers in Robotics and AI,
vol. 7, no. 95, 2020.

[24] C. Wang, C. G. Frazelle, J. R. Wagner, and I. Walker, “Dynamic con-
trol of multi-section three-dimensional continuum manipulators based
on virtual discrete-jointed robot models,” IEEE/ASME Transactions on
Mechatronics, 2020.

[25] C. Duriez, “Control of elastic soft robots based on real-time finite ele-
ment method,” in IEEE Int’l. Conference on Robotics and Automation
(ICRA), 2013, pp. 3982–3987.

[26] R. K. Katzschmann, M. Thieffry, O. Goury, A. Kruszewski, T.-M.
Guerra, C. Duriez, and D. Rus, “Dynamically closed-loop controlled
soft robotic arm using a reduced order finite element model with
state observer,” in IEEE Int’l. Conference on Soft Robotics (RoboSoft),
2019, pp. 717–724.

[27] N. Naughton, J. Sun, A. Tekinalp, G. Chowdhary, and M. Gazzola,
“Elastica: A compliant mechanics environment for soft robotic con-
trol,” arXiv preprint arXiv:2009.08422, 2020.

[28] H.-S. Chang, U. Halder, C.-H. Shih, A. Tekinalp, T. Parthasarathy,
E. Gribkova, G. Chowdhary, R. Gillette, M. Gazzola, and P. G. Mehta,
“Energy shaping control of a cyberoctopus soft arm,” arXiv preprint
arXiv:2004.05747, 2020.

[29] H.-S. Chang, U. Halder, E. Gribkova, A. Tekinalp, N. Naughton,
M. Gazzola, and P. G. Mehta, “Controlling a cyberoctopus soft arm
with muscle-like actuation,” arXiv preprint arXiv:2010.03368, 2020.

[30] J. Stoer and R. Bulirsch, Introduction to numerical analysis. Springer
Science & Business Media, 2013, vol. 12.

[31] M. Schaller, S. M. R. Sorkhabadi, and W. Zhang, “Robotic shoe:
An ankle assistive device for gait plantar flexion assistance,” in
2020 Design of Medical Devices Conference. American Society of
Mechanical Engineers Digital Collection, 2019.

[32] P. T. Chinimilli, S. M. R. Sorkhabadi, and W. Zhang, “Assessment of
human dynamic gait stability with a lower extremity assistive device,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 28, no. 3, pp. 669–678, 2020.

[33] R. W. Holsapple, “A modified simple shooting method for solving
two-point boundary value problems,” Ph.D. dissertation, Texas Tech
University, 2003.

[34] J. Till and D. C. Rucker, “Elastic rod dynamics: Validation of a real-
time implicit approach,” in IEEE/RSJ Int’l. Conference on Intelligent
Robots and Systems (IROS), 2017, pp. 3013–3019.

[35] J. Linn, H. Lang, and A. Tuganov, “Geometrically exact Cosserat
rods with Kelvin–Voigt type viscous damping,” Mechanical Sciences,
vol. 4, no. 1, pp. 79–96, 2013.

[36] A. Doroudchi, S. Shivakumar, R. E. Fisher, H. Marvi, D. Aukes, X. He,
S. Berman, and M. M. Peet, “Decentralized control of distributed
actuation in a segmented soft robot arm,” in IEEE Conference on
Decision and Control (CDC), 2018, pp. 7002–7009.

[37] A. S. Lafmejani, H. Farivarnejad, A. Doroudchi, and S. Berman,
“A consensus strategy for decentralized kinematic control of multi-
segment soft continuum robots,” in American Control Conference
(ACC), 2020, pp. 909–916.

[38] A. S. Lafmejani, A. Doroudchi, H. Farivarnejad, X. He, D. Aukes,
M. M. Peet, H. Marvi, R. E. Fisher, and S. Berman, “Kinematic
modeling and trajectory tracking control of an octopus-inspired hyper-
redundant robot,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 3460–3467, 2020.

[39] H. K. Khalil and J. W. Grizzle, Nonlinear systems. Prentice Hall
Upper Saddle River, NJ, 2002, vol. 3.

[40] R. Khodambashi, Y. Alsaid, D. Aukes, and X. He, “Shape Morphing
Soft Material,” 2019, US Provisional Patent 62/860,700.

[41] T. Morales Bieze, A. Kruszewski, B. Carrez, and C. Duriez, “Design,
implementation, and control of a deformable manipulator robot based
on a compliant spine,” The International Journal of Robotics Research,
vol. 39, no. 14, pp. 1604–1619, 2020.


	Introduction
	Forward Dynamics of a Cosserat Rod Model
	A Decentralized Approach to Inverse Dynamic Control
	Simulation Results
	Controlled Bending Deformations
	Controlled Torsion Deformations
	Controlled Shear Deformations
	Controlled Extension Deformations

	Conclusions and Future Work
	References

