
Using Reinforcement Learning to Herd a
Robotic Swarm to a Target Distribution

Zahi Kakish1, Karthik Elamvazhuthi2, and Spring Berman1

1 Arizona State University, Tempe AZ 85281, USA,
zahi.kakish@asu.edu, spring.berman@asu.edu,

2 University of California, Los Angeles CA 90095, USA,
karthikevaz@math.ucla.edu

Abstract. In this paper, we present a reinforcement learning approach
to designing a control policy for a “leader” agent that herds a swarm
of “follower” agents, via repulsive interactions, as quickly as possible
to a target probability distribution over a strongly connected graph.
The leader control policy is a function of the swarm distribution, which
evolves over time according to a mean-field model in the form of an or-
dinary difference equation. The dependence of the policy on agent pop-
ulations at each graph vertex, rather than on individual agent activity,
simplifies the observations required by the leader and enables the control
strategy to scale with the number of agents. Two Temporal-Difference
learning algorithms, SARSA and Q-Learning, are used to generate the
leader control policy based on the follower agent distribution and the
leader’s location on the graph. A simulation environment correspond-
ing to a grid graph with 4 vertices was used to train and validate the
control policies for follower agent populations ranging from 10 to 1000.
Finally, the control policies trained on 100 simulated agents were used to
successfully redistribute a physical swarm of 10 small robots to a target
distribution among 4 spatial regions.

Keywords: swarm robotics, graph theory, mean-field model, reinforce-
ment learning

1 Introduction

We present two Temporal-Difference learning algorithms [1] for generating a
control policy that guides a mobile agent, referred to as a leader, to herd a swarm
of autonomous follower agents to a target distribution among a small set of
states. This leader-follower control approach can be used to redistribute a swarm
of low-cost robots with limited capabilities and information using a single robot
with sophisticated sensing, localization, computation, and planning capabilities,
in scenarios where the leader lacks a model of the swarm dynamics. Such a
control strategy is useful for many applications in swarm robotics, including
exploration, environmental monitoring, inspection tasks, disaster response, and
targeted drug delivery at the micro-nanoscale.

2 Zahi Kakish et al.

There has been a considerable amount of work on leader-follower multi-agent
control schemes in which the leader has an attractive effect on the followers [2,3].
Several recent works have presented models for herding robotic swarms using
leaders that have a repulsive effect on the swarm [4,5,6]. Using such models, an-
alytical controllers for herding a swarm have been constructed for the case when
there is a single leader [5,6] and multiple leaders [4]. The controllers designed
in these works are not necessarily optimal for a given performance metric. To
design optimal control policies for a herding model, the authors in [7] consider a
reinforcement learning (RL) approach. While existing herding models are suit-
able for the objective of confining a swarm to a small region in space, many
applications require a swarm to cover an area according to some target proba-
bility density. If the robots do not have spatial localization capabilities, then the
controllers developed in [2,3,4,5,6,7] cannot be applied for such coverage prob-
lems. Moreover, these models are not suitable for herding large swarms using
RL-based control approaches, since such approaches would not scale well with
the number of robots. This loss of scalability is due to the fact that the models
describe individual agents, which may not be necessary since robot identities are
not important for many swarm applications.

In this paper, we consider a mean-field or macroscopic model that describes
the swarm of follower agents as a probability distribution over a graph, which
represents the configuration space of each agent. Previous work has utilized sim-
ilar mean-field models to design a set of control policies that is implemented on
each robot in a swarm in order to drive the entire swarm to a target distribution,
e.g. for problems in spatial coverage and task allocation [8]. In this prior work, all
the robots must be reprogrammed with a new set of control policies if the target
distribution is changed. In contrast, our approach can achieve new target swarm
distributions via redesign of the control policy of a single leader agent, while the
control policies of the swarm agents remain fixed. The follower agents switch
stochastically out of their current location on the graph whenever the leader is
at their location; in this way, the leader has a “repulsive” effect on the followers.
The transition rates out of each location are common to all the followers, and
are therefore independent of the agents’ identities. Using the mean-field model,
herding objectives for the swarm are framed in terms of the distribution of the
followers over the graph. The objective is to compute leader control policies that
are functions of the agent distribution, rather than the individual agents’ states,
which makes the control policies scalable with the number of agents.

We apply RL-based approaches to the mean-field model to construct leader
control policies that minimize the time required for the swarm of follower agents
to converge to a user-defined target distribution. The RL-based control policies
are not hindered by curse-of-dimensionality issues that arise in classical optimal
control approaches. Additionally, RL-based approaches can more easily accom-
modate the stochastic nature of the follower agent transitions on the graph.
There is prior work on RL-based control approaches for mean-field models of
swarms in which each agent can localize itself in space and a state-dependent
control policy can be assigned to each agent directly [9,10,11]. However, to our

DARS 2021 3

knowledge, there is no existing work on RL-based approaches applied to mean-
field models for herding a swarm using a leader agent. Our approach provides
an RL-based framework for designing scalable strategies to control swarms of
resource-constrained robots using a single leader robot, and it can be extended
to other types of swarm control objectives.

2 Methodology

2.1 Problem Statement

We first define some notation from graph theory and matrix analysis that we
use to formally state our problem. We denote by G = (V, E) a directed graph
with a set of M vertices, V = {1, ...,M}, and a set of NE edges, E ⊂ V × V,
where e = (i, j) ∈ E if there is an edge from vertex i ∈ V to vertex j ∈ V. We
define a source map σ : E → V and a target map τ : E → V for which σ(e) = i
and τ(e) = j whenever e = (i, j) ∈ E . Given a vector X ∈ RM , Xi refers to the
ith coordinate value of X. For a matrix A ∈ RM×N , Aij refers to the element in
the ith row and jth column of A.

We consider a finite swarm of N follower agents and a single leader agent.
The locations of the leader and followers evolve on a graph, G = (V, E), where
V = {1, ...,M} is a finite set of vertices and E = {(i, j) | i, j ∈ V} is a set
of edges that define the pairs of vertices between which agents can transition.
The vertices in V represent a set of spatial locations obtained by partitioning
the agents’ environment. We will assume that the graph G = (V, E) is strongly
connected and that there is a self-edge (i, i) ∈ E at every vertex i ∈ V. We
assume that the leader agent can count the number of follower agents at each
vertex in the graph. The follower agents at a location v only decide to move to
an adjacent location if the leader agent is currently at location v and is in a
particular behavioral state. In other words, the presence of the leader repels the
followers at the leader’s location. The leader agent does not have a model of the
follower agents’ behavior.

The leader agent performs a sequence of transitions from one location (vertex)
to another. The leader’s location at time k ∈ Z+ is denoted by `1(k) ∈ V. In
addition to the spatial state `1(k), the leader has a behavioral state at each time
k, defined as `2(k) ∈ {0, 1}. The location of each follower agent i ∈ {1, ..., N}
is defined by a discrete-time Markov chain (DTMC) Xi(k) that evolves on the
state space V according to the conditional probabilities

P(Xi(k + 1) = τ(e) | Xi(k) = σ(e)) = ue(k) (1)

For each v ∈ V and each e ∈ E such that σ(e) = v 6= τ(e), ue(k) is given by

ue(k) =

βe if `1(k) = σ(e) and `2(k) = 1,

0 if `1(k) = σ(e) and `2(k) = 0,

0 if `1(k) 6= σ(e),

(2)

4 Zahi Kakish et al.

where βe are positive parameters such that
∑

e∈E
v=σ(e)6=τ(e)

βe < 1. Additionally,

for each v ∈ V, u(v,v)(k) is given by

u(v,v)(k) = 1 −
∑
e∈E

v=σ(e) 6=τ(e)

ue(k) (3)

For each vertex v ∈ V, we define a set of possible actions Av taken by the
leader when it is located at v:

Av =
⋃
e∈E

v=σ(e)

{e} × {0, 1} (4)

The leader transitions between states in V × {0, 1} according to the conditional
probabilities

P(`1(k + 1) = τ(e), `2(k + 1) = d | `1(k) = σ(e)) = 1 (5)

if p(k), the action taken by the leader at time k when it is at vertex v, is given
by p(k) = (e, d) ∈ Av.

The fraction, or empirical distribution, of follower agents that are at location
v ∈ V at time k is given by 1

N

∑N
i=1 χv(Xi(k)), where χv(w) = 1 if w = v and 0

otherwise. Our goal is to learn a policy that navigates the leader between vertices
using the actions p(k) such that the follower agents are redistributed (“herded”)

from their initial empirical distribution 1
N

∑N
i=1 χv(Xi(0)) among the vertices to

a desired empirical distribution 1
N

∑N
i=1 χv(Xi(T)) at some final time T , where

T is as small as possible. Since the identities of the follower agents are not
important, we aim to construct a control policy for the leader that is a function of
the current empirical distribution 1

N

∑N
i=1 χv(Xi(k)), rather than the individual

agent states Xi(k). However, 1
N

∑N
i=1 χv(Xi(k)) is not a state variable of the

DTMC. In order to treat 1
N

∑N
i=1 χv(Xi(k)) as the state, we consider the mean-

field limit of this quantity as N → ∞. Let P(V) = {Y ∈ RM≥0;
∑M
v=1 Yv = 1}

be the simplex of probability densities on V. When N → ∞, the empirical
distribution 1

N

∑N
i=1 χv(Xi(k)) converges to a deterministic quantity Ŝ(k) ∈

P(V), which evolves according to the following mean-field model, a system of
difference equations that define the discrete-time Kolmogorov Forward Equation:

Ŝ(k + 1) =
∑
e∈E

ue(k)BeŜ(k), Ŝ(0) = Ŝ0 ∈ P(V), (6)

where Be are matrices whose entries are given by

Bije =

{
1 if i = τ(e), j = σ(e),

0 otherwise.

The random variable Xi(k) is related to the solution of the difference equation
(6) by the relation P(Xi(k) = v) = Ŝv(k).

DARS 2021 5

We formulate an optimization problem that minimizes the number of time
steps k required for the follower agents to converge to Ŝtarget, the target distri-
bution. In this optimization problem, the reward function is defined as

R(k) = −1 · E||Ŝ(k)− Ŝtarget||2. (7)

Problem 1. Given a target follower agent distribution Ŝtarget, devise a leader
control policy π : P(V) × V → A that drives the follower agent distribution to
Ŝ(T) = Ŝtarget, where the final time T is as small as possible, by minimizing the

total reward
∑T
k=1R(k). The leader action at time k when it is at vertex v ∈ V is

defined as p(k) = π(Ŝ(k), `1(k)) ∈ Av for all k ∈ {1, ..., T}, where A = ∪v∈VAv.

2.2 Design of Leader Control Policies using Temporal-Difference
Methods

Two Temporal-Difference (TD) learning methods [1], SARSA and Q-Learning,
were adapted to generate an optimal leader control policy. These methods’ use
of bootstrapping provides the flexibility needed to accommodate the stochastic
nature of the follower agents’ transitions between vertices. Additionally, TD
methods are model-free approaches, which are suitable for our control objective
since the leader does not have a model of the followers’ behavior. We compare
the two methods to identify their advantages and disadvantages when applied
to our swarm herding problem. Our approach is based on the mean-field model
(6) in the sense that the leader learns a control policy using its observations of
the population fractions of followers at all vertices in the graph.

Sutton and Barto [1] provide a formulation of the two TD algorithms that we
utilize. Let S denote the state of the environment, defined later in this section;
A denote the action set of the leader, defined as the set Av in Equation (4); and
Q(S,A) denote the state-action value function. We define α ∈ [0, 1] and γ ∈ [0, 1]
as the learning rate and the discount factor, respectively. The policy used by the
leader is determined by a state-action pair (S,A). R denotes the reward for the
implemented policy’s transition from the current to the next state-action pair
and is defined in Equation (7). In the SARSA algorithm, an on-policy method,
the state-action value function is defined as:

Q(S,A)← Q(S,A) + α[R+ γQ(S′, A′)−Q(S,A)] (8)

where the update is dependent on the current state-action pair (S,A) and the
next state-action pair (S′, A′) determined by enacting the policy. In the Q-
Learning algorithm, an off-policy method, the state-action value function is:

Q(S,A)← Q(S,A) + α[R+ γmax
a

Q(S′, a)−Q(S,A)] (9)

Whereas the SARSA algorithm update (8) requires knowing the next action A′

taken by the policy, the Q-learning update (9) does not require this information.
Both algorithms use a discretization of the observed state S and represent

the state-action value function Q in tabular form as a multi-dimensional matrix,

6 Zahi Kakish et al.

indexed by the leader actions and states. The state S is defined as a vector that
contains a discretized form of the population fraction of follower agents at each
location v ∈ V and the location `1(k) ∈ V of the leader agent. The leader’s spatial
state `1(k) must be taken into account because the leader’s possible actions
depend on its current location on the graph. Since the population fractions
of follower agents are continuous values, we convert them into discrete integer
quantities serving as a discrete function approximation of the continuous fraction
populations. Instead of defining Fv as the integer count of followers at location
v, which could be very large, we reduce the dimensionality of the state space by
discretizing the follower population fractions into D intervals and scaling them
up to integers between 1 and D:

Fv = round
(
D
N

∑N
i=1 χv(Xi(0))

)
,

where Fv ∈ [1, . . . , D], v ∈ V.
(10)

For example, suppose D = 10. Then a follower population fraction of 0.24 at
location v would have a corresponding state value Sv = 2. Using a larger value of
D provides a finer classification of agent populations, but at the cost of increasing
the size of the state S. Given these definitions, the state vector S is defined as:

Senv = [F1, . . . , FM , `1] (11)

The state vector Senv contains many states that are inapplicable to the learn-
ing process. For example, the state vector for a 2 × 2 grid graph with D = 10
has 10× 10× 10× 10× 4 possible variations, but only 10× 10× 10× 4 are ap-
plicable since they satisfy the constraint that the follower population fractions
at all vertices must sum up to 1 (note that the sum

∑
v Fv may differ slightly

from 1 due to the rounding used in Equation (10).) The new state Senv is used
as the state S in the state-action value functions (8) and (9).

The leader’s control policy for both functions (8) and (9) is the following ε-
greedy policy, where X ∈ [0, 1] is a uniform random variable and ε is a threshold
parameter that determines the degree of state exploration during training:

π(Senv) = arg max
A

Q(Senv, A) if X > ε (12)

3 Simulation Results

An OpenAI Gym environment [12] was created in order to design, simulate,
and visualize our leader-based herding control policies [13]. This open source
virtual environment can be easily modified to simulate swarm controllers for dif-
ferent numbers of agents and graph vertices, making it a suitable environment
for training leader control policies using our model-free approaches. The simu-
lated controllers can then be implemented in physical robot experiments. Figure
1 shows the simulated environment for a scenario with 100 follower agents, rep-
resented by the blue × symbols, that are herded by a leader, shown as a red

DARS 2021 7

circle, over a 2× 2 grid. The OpenAI environment does not store the individual
positions of each follower agent within a grid cell; instead, each cell is associated
with an agent count. The renderer disperses agents randomly within a cell based
on the cell’s current agent count. The agent count for a grid cell is updated
whenever an agent enters or leaves the cell according to the DTMC (1), and
the environment is re-rendered. Recording the agent counts in each cell rather
than their individual positions significantly reduces memory allocation and com-
putational time when training the leader control policy on scenarios with large
numbers of agents.

k = 0 k = 50

Fig. 1. Visual rendering of a simulated scenario in our OpenAI environment for itera-
tions k = 0 and 50. The environment simulates a strongly connected 2× 2 grid graph
such as the one shown in Figure 2. The leader (red circle) moves between grid cells in
a horizontal or vertical direction. It may not move diagonally. Follower agents (blue ×
symbols) are randomly distributed in each cell. The borders of each cell are represented
by the grid lines. The histogram to the right of each grid shows both the target (red)
and current (blue) agent population fractions in each vertex at iteration k.

The graph G that models the environment in Figure 1, with each vertex of G
corresponding to a grid cell, was defined as the 2 × 2 graph in Figure 2. In the
graph, agents transition along edges in either a horizontal or vertical direction,
or they can stay at the current vertex. The action set is thus defined as:

A = [Left, Right, Up, Down, Stay] (13)

Using the graph in Figure 2, we trained and tested a leader control policy
for follower agent populations of N = 10–100 at 10-agent increments. Both the
SARSA and Q-Learning paradigms were applied and trained on 5000 episodes
with 5000 iterations each. In every episode, the initial distribution Ŝinitial and
target distribution Ŝtarget of the follower agents were defined as:

Ŝinitial =
[
0.4 0.1 0.1 0.4

]T
(14)

8 Zahi Kakish et al.

Fig. 2. The bidirected grid graph G used in our simulated scenario. The leader agent
(red × symbol) is at vertex 3. The movement options for the leader are Left to vertex
2 or Up to vertex 1. The leader can also Stay at vertex 3, where its presence triggers
follower agents at the vertex to probabilistically transition to vertex 1 or vertex 2.

Ŝtarget =
[
0.1 0.4 0.4 0.1

]T
(15)

The initial leader location, `1, was randomized to allow many possible permu-
tations of states Senv for training. During training, an episode completes once
the distribution of N follower agents reaches a specified terminal state. Instead
of defining the terminal state as the exact target distribution Ŝtarget, which be-
comes more difficult to reach as N increases due to the stochastic nature of the
followers’ transitions, we define this state as a distribution that is sufficiently
close to Ŝtarget. The learning rate and discount factor were set to α = 0.3 and
γ = 0.9, respectively. The follower agent transition rate βe was defined as the
same value β for all edges e in the graph and was set to β = 0.025, 0.05, or
0.1. We use the mean squared error (MSE) to measure the difference between
the current follower distribution and Ŝtarget. The terminal state is reached when
the MSE decreases below a threshold value µ. We trained our algorithms on
threshold values of µ = 0.0005, 0.001, 0.0025, and 0.005.

After training the leader control policies on each follower agent population
size N , the policies were tested on scenarios with the same environment and
value of N . The policy for each scenario was run 1000 times to evaluate its
performance. The policies were compared for terminal states that corresponded
to the four different MSE threshold values µ, and were given 1000 iterations to
converge within the prescribed MSE threshold of the target distribution (15)
from the initial distribution (14).

Figure 3 compares the performance of leader control policies that were de-
signed using each TD algorithm as a function of the tested values of µ. The
leader control policies were trained on N = 100 follower agents, using the pa-
rameters β = 0.05 and D = 10 or 20, and tested in simulations with N = 100.
The plots show that for both policies, the mean number of iterations required to
converge to Ŝtarget decreases as the threshold µ increases for constant D, and at
low values of µ, the mean number of iterations decreases when D is increased.

DARS 2021 9

Fig. 3. Number of iterations until convergence to Ŝtarget (plotted on a log scale) ver-
sus the MSE threshold value µ for leader control policies that were learned using
Q-Learning (left) and SARSA (right) with β = 0.05 and N = 100 follower agents. Each
circle on the plots marks the mean number of iterations until convergence over 1000
test runs of a leader policy in the simulated grid graph environment in Figure 2. The
shaded regions indicate the range of ±1 standard deviation about the mean numbers
of iterations (blue for D = 10; orange for D = 20.)

In addition, as µ increases, the variance in the number of iterations decreases
(note the log scale of the y-axis in the plots) or remains approximately constant,
except for the D = 20 case of SARSA.

Figure 4 compares the performance of leader control policies that were de-
signed using each algorithm as a function of N , where the leader policies were
tested in simulations with the same value of N that they were trained on. The
other parameters used for training were µ = 0.0025, D = 20, and β = 0.025,
0.05, or 0.1. The figures show that raising β from 0.05 to 0.1 does not signifi-
cantly affect the mean number of iterations until convergence, while decreasing
β from 0.05 to 0.025 results in a higher mean number of iterations. This effect
is evident for both Q-Learning and SARSA trained leader control policies for
N > 50. Both leader control policies result in similar numbers of iterations for
convergence at each agent population size. Therefore, both the Q-Learning and
SARSA training algorithms yield comparable performance for these scenarios.

The results in Figure 4 show that as N increases above 50 agents, the mean
number of iterations until convergence decreases slightly or remains approxi-
mately constant for all β values and for µ = 0.0025. Moreover, from Figure 3,
we see that MSE threshold values µ < 0.0025 for N = 100 result in a higher
number of iterations than the N = 100 case in Figure 4. This trend may be
due to differences in the magnitude of the smallest possible change in MSE over
an iteration k relative to the MSE threshold µ for different values of N . For
example, for N = 10, a similarity in iteration counts for all four MSE thresholds
µ can be attributed to the fact that the change in the MSE due to a transition
of one agent, corresponding to a change in population fraction of 1/N = 1/10, is
much higher than the four MSE thresholds (i.e., (1/10)2 > 0.005, 0.0025, 0.001,

10 Zahi Kakish et al.

Fig. 4. Number of iterations until convergence to Ŝtarget versus number of follower
agents N for leader control policies that were learned using Q-Learning (left column)
and SARSA (right column) with D = 20 and µ = 0.0025. Each circle on the plots marks
the mean number of iterations until convergence over 1000 test runs of a leader policy
in the simulated grid graph environment in Figure 2 with the same value of N that the
policy was trained on. The plot for each β value in the top two figures are reproduced
individually in the three figures below them, along with shaded regions that indicate
the range of ±1 standard deviation about the mean numbers of iterations.

DARS 2021 11

and 0.0005). Compare this to the iteration count for N = 50, which would have
a corresponding change in MSE of (1/50)2; this quantity is much smaller than
0.005 and 0.0025, but not much smaller than 0.001 and 0.0005. The iteration
counts for N = 100 are much lower, since (1/100)2 is much smaller than all four
MSE thresholds.

Finally, Figure 5 compares the performance of leader control policies that
were designed using each algorithm as a function of N , where the leader policies
were trained with N = 10, 100, or 1000 follower agents and tested in simulations
with N = 10–100 (at 10-agent increments) and N = 1000 agents. This was done
to evaluate the robustness of the policies trained on the three agents populations
to changes in N . The other parameters used for training were µ = 0.0025,
D = 20, and β = 0.025, 0.05, or 0.1. As the plots in Figure 5 show, policies
trained on the smallest population, N = 10, yield an increased mean number of
iterations until convergence when applied to populations N > 10. The reverse
effect is observed, in general, for policies that are trained on higher values of N
than they are tested on. An exception is the case where the policies are trained on
N = 100 and 1000 and tested on N = 10, which produce much higher numbers
of iterations than the policies that are both trained and tested on N = 10. This
is likely a result of the large variance, and hence greater uncertainty, in the time
evolution of such a small agent population. The lower amount of uncertainty in
the time evolution of large swarms may make it easier for leader policies that
are trained on large values of N to control the distribution of a given follower
agent population than policies that are trained on smaller values of N . We thus
hypothesize that training a leader agent with the mean-field model (6) instead
of the DTMC model would lead to improved performance in terms of a lower
training time, since the policy would only need to be trained on one value of N ,
and fewer iterations until convergence to the target distribution.

4 Experimental Results

We also conducted experiments to verify that our herding approach is effective
in a real-world environment with physical constraints on robot dynamics and
inter-robot spacing. Two of the leader control policies that were generated in
the simulated environment were tested on a swarm of small differential-drive
robots in the Robotarium [14], a remotely accessible swarm robotics testbed
that provides an experimental platform for users to validate swarm algorithms
and controllers. Experiments are set up in the Robotarium with MATLAB or
Python scripts. The robots move to target locations on the testbed surface using
a position controller and avoid collisions with one another through the use of
barrier certificates [15], a modification to the robots’ controllers that satisfy
particular safety constraints. To implement this collision-avoidance strategy, the
robots’ positions and orientations in a global coordinate frame are measured
from images taken from multiple VICON motion capture cameras.

A video recording of our experiments is shown in [16]. The environment was
represented as a 2×2 grid, as in the simulations, and N = 10 robots were used as

12 Zahi Kakish et al.

Fig. 5. Number of iterations until convergence to Ŝtarget versus number of follower
agents N (plotted on a log scale) for leader control polices that were trained using
Q-Learning (left column) and SARSA (right column) with D = 20; µ = 0.0025; and
β = 0.025, 0.05, or 0.1; and N = 10, 100, or 1000 agents. Each circle on the plots marks
the mean number of iterations until convergence over 1000 test runs of a leader policy
in the simulated grid graph environment in Figure 2.

DARS 2021 13

follower agents. The leader agent, shown as the blue circle, and the boundaries
of the four grid cells were projected onto the surface of the testbed using an
overhead projector. As in the simulations, at each iteration k, the leader moves
from one grid cell to another depending on the action prescribed by its control
policy. Both the SARSA and Q-Learning leader control policies trained with
N = 100 follower agents, D = 10, µ = 0.0025, and a β = 0.1 were implemented,
and [16] shows the performance of both control policies. In the video, the leader
is red if it is executing the Stay action and blue if it is executing any of the
other actions in the set A (i.e., a movement action). The current iteration k and
leader action are displayed at the top of the video frames. Actions that display
ε next to them signify a random action as specified in (12). Each control policy
was able to achieve the exact target distribution (15). The SARSA method took
59 iterations to reach this distribution, while the Q-Learning method took 23
iterations.

5 Conclusion and Future Work

We have presented two Temporal-Difference learning approaches to designing a
leader-follower control policy for herding a swarm of agents as quickly as pos-
sible to a target distribution over a graph. We demonstrated the effectiveness
of the leader control policy in simulations and physical robot experiments for
a range of swarm sizes N , illustrating the scalability of the control policy with
N , and investigated the effect of N on the convergence time to the target dis-
tribution. However, these approaches do not scale well with the graph size due
to the computational limitations of tabular TD approaches and, in particular,
our discretization of the system state into population fraction intervals. Our im-
plementation requires a matrix with DM ×M × |A| state-action values to train
the leader control policy. For our 2 × 2 grid graph with |A| = 5 possible leader
actions and D = 20 intervals, this is about 204 × 4× 5 values.

To address this issue, our future work focuses on designing leader control
policies using the mean-field model rather than the DTMC model for train-
ing, as suggested at the end of Section 3. In this approach, the leader policies
would be trained on follower agent population fractions that are computed from
solutions of the discrete-time mean-field model (6), rather than from discrete
numbers of agents that transition between locations according to a DTMC. The
leader control policies can also be modified to use function approximators such
as neural networks for our training algorithm, allowing for utilization of modern
deep reinforcement learning techniques. Neural network function approximators
provide a more practical approach than tabular methods to improve the scala-
bility of the leader control policy with graph size, in addition to swarm size. In
addition, the control policies could be implemented on a swarm robotic testbed
in a decentralized manner, in which each follower robot avoids collisions with
other robots based on its local sensor information.

14 Zahi Kakish et al.

Acknowledgment This work was supported by the Arizona State University
Global Security Initiative. Many thanks to Dr. Sean Wilson at the Georgia Tech
Research Institute for running the robot experiments on the Robotarium.

References

1. Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 2018.

2. Meng Ji, Giancarlo Ferrari-Trecate, Magnus Egerstedt, and Annalisa Buffa. Con-
tainment control in mobile networks. IEEE Transactions on Automatic Control,
53(8):1972–1975, 2008.

3. Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in multiagent
networks, volume 33. Princeton University Press, 2010.

4. Alyssa Pierson and Mac Schwager. Controlling noncooperative herds with robotic
herders. IEEE Transactions on Robotics, 34(2):517–525, 2017.

5. Karthik Elamvazhuthi, Sean Wilson, and Spring Berman. Confinement control of
double integrators using partially periodic leader trajectories. In American Control
Conference, pages 5537–5544, 2016.

6. Aditya A Paranjape, Soon-Jo Chung, Kyunam Kim, and David Hyunchul Shim.
Robotic herding of a flock of birds using an unmanned aerial vehicle. IEEE Trans-
actions on Robotics, 34(4):901–915, 2018.

7. Clark Kendrick Go, Bryan Lao, Junichiro Yoshimoto, and Kazushi Ikeda. A rein-
forcement learning approach to the shepherding task using SARSA. In Interna-
tional Joint Conference on Neural Networks, pages 3833–3836, 2016.

8. Karthik Elamvazhuthi and Spring Berman. Mean-field models in swarm robotics:
A survey. Bioinspiration & Biomimetics, 15(1):015001, 2019.

9. Adrian Šošić, Abdelhak M Zoubir, and Heinz Koeppl. Reinforcement learning in
a continuum of agents. Swarm Intelligence, 12(1):23–51, 2018.

10. Maximilian Hüttenrauch, Sosic Adrian, and Gerhard Neumann. Deep reinforce-
ment learning for swarm systems. Journal of Machine Learning Research, 20(54):1–
31, 2019.

11. Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.
Mean field multi-agent reinforcement learning. In International Conference on
Machine Learning, pages 5567–5576, 2018.

12. Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016.

13. Zahi Kakish. Herding OpenAI Gym Environment, 2019. https://github.com/
acslaboratory/gym-herding.

14. S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and
M. Egerstedt. The Robotarium: Globally impactful opportunities, challenges, and
lessons learned in remote-access, distributed control of multirobot systems. IEEE
Control Systems Magazine, 40(1):26–44, 2020.

15. L. Wang, A. D. Ames, and M. Egerstedt. Safety barrier certificates for collisions-
free multirobot systems. IEEE Transactions on Robotics, 33(3):661–674, 2017.

16. Z. Kakish, K. Elamvazhuthi, and S. Berman. Using reinforcement learning to herd
a robotic swarm to a target distribution, 2020. Autonomous Collective Systems
Laboratory YouTube channel, https://youtu.be/py3Pe24YDjE.

