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ABSTRACT
In this paper, we present an online nonlinear Model Predictive Control (MPC) method for collision-free,
deadlock-free navigation by multiple autonomous nonholonomic Wheeled Mobile Robots (WMRs).
Our proposed method solves a nonlinear constrained optimization problem at each time step over a
specified horizon to compute a sequence of optimal control inputs that drive the robots to target poses
along collision-free trajectories, where the robots’ future states are predicted according to a unicycle
kinematic model. To reduce the computational complexity of the optimization problem, we formulate
it without stabilizing terminal constraints or terminal costs. We describe a computationally efficient
approach to programming and solving the optimization problem, using open-source software tools
for fast nonlinear optimization and applying the multiple-shooting method. We also provide rigorous
proofs of the feasibility of the optimization problem and the stability of the proposed method. To
validate the performance of our MPC method, we implement it in both 3D robot simulations and
experiments with real nonholonomic WMRs for different multi-robot navigation scenarios with up to
six robots. In all scenarios, the robots successfully navigate to their goal poses without colliding with
one another or becoming trapped in a deadlock.

1. Introduction
Many applications of multi-robot systems require the

robots to navigate through an environment while avoiding
collisions with each other and with obstacles. Despite ex-
tensive research on this topic, there are still challenges to
designing control strategies for multi-robot navigation that
are computationally efficient and have theoretical guaran-
tees on collision avoidance and absence of deadlocks. To
address these challenges, we present a collision-free and
deadlock-free multi-robot navigation strategy that is based
on an online, computationally efficient Nonlinear Model Pre-
dictive Control (NMPC) method for pose stabilization of
multiple nonholonomic Wheeled Mobile Robots (WMRs).
1.1. Related Works

According to the well-knownBrockett’s condition [1], the
pose of a nonholonomic WMR cannot be stabilized using a
linear controller or a smooth time-invariant controller. Thus,
other types of control methods have been proposed in the
literature for this objective, including smooth time-varying
controllers [2], differential kinematic-based approaches [3],
and guiding vector field (GVF) controllers [4]. However,
these control methods do not incorporate constraints on the
robot’s control inputs, which are enforced by the limitations
of the robot’s actuators, and constraints on the robot’s states,
which are determined by the boundaries of the free space in
which the robot can move.
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Other navigation strategies for nonholonomicWMRs that
do incorporate these constraints have been developed using
Model Predictive Control (MPC) [5, 6], also called Receding
Horizon Control (RHC). MPC is a powerful control method
that can handle Multiple-Input Multiple-Output (MIMO)
constrained control problems [7, 8]. Due to this capability,
MPC-based methods have also been employed for collision-
free multi-robot navigation, in which collision avoidance
between pairs of robots is encoded as constraints on the
robots’ states.

The main limitation of online implementations of MPC
methods, especially for multi-robot systems with large num-
bers of robots, is their high computational cost, arising from
the fact that the controller runs a constrained optimization
problem over a specified horizon at each time step [9]. If suf-
ficient computational resources are in fact available, online
MPC methods can be used to compute controllers for large-
scale systems and systems with fast dynamics [10, 11].The
stability of an MPC method can be ensured by introducing
terminal constraints or terminal costs, e.g. [12, 13]. However,
this increases the computational complexity of the associated
optimization problem.

Additional MPC-based approaches for multi-robot navi-
gation have been developed which can be implemented with
lower computational resources than online methods. Some
of these approaches calculate the reachable set of the robots’
states or the optimal control solutions offline, prior to the
robots’ deployment. For example, the MPC method in [14]
incorporates collision avoidance constraints in the optimiza-
tion problem, and the feasibility and stability of the method
are established by computing the reachable set of the robots’
states. However, such offline computations scale poorly with
the number of robots, and they cannot be used for real-time
implementations in dynamic or uncertain environments. An-
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other approach to reducing the computational effort is to
simplify the control problem by formulating it as a linear
MPC method [15, 16]. This can be done by using linear mod-
els to describe the robots’ motion, such as linear point-mass
models or linearizations of the unicycle model [17, 18, 19].
For instance, in [17], a linear MPC is combined with the
Optimal Reciprocal Collision Avoidance (ORCA) approach
to synthesize navigation controllers for nonholonomic robots
by computing holonomic reference trajectories for the robots,
using the approximation that they are holonomic. However,
many of these methods have been implemented only in simu-
lation, e.g. [14, 16], not in real-world experiments. Moreover,
applying these methods to nonholonomic robots, which are
described by nonlinear kinematic models, will inevitably re-
sult in a tracking error between the reference trajectories and
the robots’ actual trajectories.

Various software tools and techniques have been devel-
oped for speeding up the solution of the optimization problem
in an MPC method. In [20], the authors propose approaches
to implementing fast MPC using online optimization with
interior-point methods. The work [21] presents a solver
for convex quadratic programs, implemented in the Oper-
ator Splitting Solver for Quadratic Programming (OSQP),
which is typically ten times faster than the interior-point
methods. However, these approaches are restricted to linear
MPC problems [17, 22] or a linearized form of the original
nonlinear problem [23, 24]. MPC methods for collision-free
navigation by multiple nonholonomic WMRs involve the
solution of a nonlinear optimal control problem. The soft-
ware packages NLopt [25] and APOPT [26] can be used
to solve this type of problem. Moreover, the open-source
software tool CasADi [27] provides a symbolic program-
ming framework for formulating the optimization problem,
which further reduces the computational effort required to
solve the problem and facilitates efficient implementation
of NMPCs. Another way to accelerate the solution of the
optimization problem is to define its decision variables as
both the control inputs and the robot states, an approach
called the multiple-shooting method [28], instead of just the
control inputs, as is done in the single-shooting method [29].
The single-shooting method can exhibit slow convergence
to the optimal solution and numerical instabilities [30]. The
multiple-shooting method produces faster convergence to op-
timal solutions than the single-shooting method [31], since it
lifts the optimization problem to a higher-dimensional space.
The multiple-shooting method is employed for MPC in [32]
to accelerate the convergence of the associated optimization
problem.

MPC methods have been developed for different types of
multi-robot control architectures. The appropriate control ar-
chitecture in a given application is determined by the number
of robots and their capabilities, the available computational
resources, and the relative importance of preventing dead-
locks and collisions. In centralized control approaches for
multi-robot systems, a central computational unit designs and
transmits control commands for all the robots. Centralized
multi-robot navigation approaches, e.g. [33], can guarantee

collision-free and deadlock-free navigation, but the required
computational resources increase with the number of robots.
One way to reduce the computational complexity of the con-
trol problem in an MPC method for multi-robot systems is
to employ a distributed control approach [34, 35]. In these
approaches, the optimal control problem is decomposed into
subproblems, which are assigned to each robot to solve us-
ing its on-board computational resources, and neighboring
robots communicate their solutions to each other to plan
collision-free paths [36]. To eliminate the requirement for
a central computational unit or inter-robot communication,
decentralizedMPC-based approaches have been developed
for multi-robot navigation [18, 37], in which each robot com-
putes its own control inputs using only local measurements,
without communicating with other robots. These types of
approaches can be scaled to large numbers of robots. How-
ever, existing approaches are not fully decentralized, since
they rely on communication between neighboring robots to
share sensor information and computation tasks in order to
avoid collisions. Importantly, when using distributed and
decentralized control architectures, it remains a challenge to
design multi-robot navigation strategies that avoid all types
of deadlocks [19, 38].
1.2. Paper Contributions and Organization

This paper presents an online NMPCmethod for collision-
free, deadlock-free navigation by multiple nonholonomic
WMRs. In Section 2, we define the kinematic model of
a nonholonomic WMR and formulate an MPC design for
navigation by a single nonholonomic WMR and the corre-
sponding optimization problem. In Section 3, we present our
MPC design for navigation by multiple noholonomic WMRs
and the associated optimization problem. As we discuss in
Section 3.2, our method extends a type of NMPC method
without stabilizing terminal constraints or terminal costs, de-
signed for pose stabilization of a single robot, to multi-robot
systems with inter-robot collision avoidance. The follow-
ing properties of our method differentiate it from existing
MPC-based methods for multi-robot navigation:

• Our NMPC method uses the nonlinear unicycle model
for nonholonomic WMRs, as opposed to a lineariza-
tion of this model, which can be used to design linear
MPCs but can produce inaccurate predictions of future
robot states.

• Our method is executable online, which enables real-
time implementation in dynamic or uncertain environ-
ments.

• We provide rigorous proofs of the feasibility and stabil-
ity of our method, which guarantee collision-free and
deadlock-free navigation by the robots. These proofs
are given in Section 3.2.

• We significantly reduce the computational complexity
of nonlinear MPC by designing the associated opti-
mization problem without stabilizing terminal con-
straints or terminal costs, as described in Section 3.2.
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Figure 1: (a) 3-D view [42] of the Turtlebot3 Burger robot,
and (b) overhead view with body-fixed coordinate frame.

• We use the multiple-shooting method to accelerate
the convergence of the optimization problem in our
NMPC.

• Unlike the implementations of other methods on real-
world robots [19, 39, 40, 41], the experimental im-
plementation of our method does not require global
localization of the robots using an overhead camera or
motion capture system.

We implement our method using CasADi in a standard
software framework, the Robot Operating System (ROS), and
validate its effectiveness at producing collision-free multi-
robot navigation in six different scenarios, both in simula-
tions and physical experiments, as described in Section 4.
In Section 5, we provide recommendations for tuning the
parameters of our method, describe how the method can pre-
vent three types of deadlocks, and outline limitations of the
method and how they can be overcome.

2. Preliminaries and Background
2.1. Kinematic Model of a Nonholonomic Robot

Figure 1 shows an example of a nonholonomic WMR,
the Turtlebot3 Burger robot from Robotis®, which we use
to validate our control strategy in simulations and physical
experiments. The origin of the robot’s local coordinate frame,
defined in Fig. 1b, is located at position (x(t), y(t)) in the
global coordinate frame at time t. The heading direction of
the robot is aligned with the x-axis of the local coordinate
frame. The robot’s heading angle �(t) at time t increases
when the robot rotates counter-clockwise about the z-axis
of the local frame, and decreases when it rotates clockwise.
The control inputs at time t are the robot’s linear velocity v(t)
and angular velocityw(t). We define the state vector x ∈ ℝ3

and the control input vector u ∈ ℝ2 as:
x ∶= [x y �]T, u ∶= [v w]T. (1)

The kinematic model of a nonholonomic WMR can be writ-
ten as the following unicycle model in state-space form [43]:

ẋ = f (x,u) →
⎧

⎪

⎨

⎪

⎩

ẋ = v cos(�)
ẏ = v sin(�)
�̇ = w

(2)

where f (⋅) denotes a nonlinear function of states and control
inputs, representing the twist of the robot. From Eq. (2), we
obtain the following discrete-time kinematic model of the
robot [44]:

x(k + 1) = x(k) + v(k) cos(�(k))Ts
y(k + 1) = y(k) + v(k) sin(�(k))Ts
�(k + 1) = �(k) +w(k)Ts

(3)

where Ts is the sampling time and k ∈ ℕ ∪ {0} is an index
for the time step, such that t = kTs. We can write this model
in state-space form as:

x(k + 1) = x(k) + f (x(k),u(k))Ts (4)
The states and control inputs of the robot may be sub-

ject to particular constraints. For instance, if a robot is con-
strained to navigate in a bounded environment, then its state
vector must evolve within the limits xmin and xmax defined bythe coordinates of the boundaries. Moreover, in real-world
implementations, the control inputs of the robot are con-
strained by a lower limit umin and an upper limit umax, whichare determined by the capabilities of the robots’ actuators.
2.2. MPC Formulation for Single-Robot

Navigation
In an MPC scheme, the future states of the robot are

calculated over a prediction horizon and an objective function
is minimized in order to find a sequence of optimal control
solutions over this horizon. At each time step, only the first
optimal control in the computed sequence is applied to the
robot [9]. In the general MPC formulation, a control input
u(k) that is close to a reference control input uref(k) must be
computed at each time step k in order to drive the robot’s
state x(k) to follow a reference trajectory xref(k). Using thenotation ‖x‖2A ∶= xTAx for a square matrixA, we define the
following loss function with weighting matrices Q ∈ ℝ3×3

and R ∈ ℝ2×2:
l(x(k),u(k)) = ‖

‖

x(k) − xref(k)‖‖
2
Q+‖

‖

u(k) − uref(k)‖‖
2
R (5)

where Q is positive semi-definite and R is positive definite.
In this paper, we consider the case where the robot must
be stabilized to a fixed goal pose, i.e., the pose regulation
problem. The reference trajectory xref(k) is defined as this
single goal pose, and uref(k) is set to zero so that no control
input is driving the robot once it reaches the goal pose.

Given the loss function in Eq. (5), the discrete-time kine-
matic model Eq. (4), and the specified limits xmin, xmax and
umin,umax on the state vector and control input vector, re-
spectively, we can write the nonlinear optimization problem
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Figure 2: Illustration of the execution of an MPC method over two consecutive time steps, k (left) and k + 1 (right). The robot
states x(k) (upper plots) and control inputs u(k) (lower plots) are computed over the prediction horizon NP and the control horizon
NC , respectively.

for the MPC method as follows:

J ∗
NP

(x(0), x∗,u∗) = minu
NP−1
∑

k=0
l(x(k),u(k))

x(k + 1) = x(k) + f (x(k),u(k))Ts
xmin ≤ x(k) ≤ xmax
umin ≤ u(k) ≤ umax
x(0) = xc(k)

(6)

whereNP is the prediction horizon, x(0) is the initial state
of the robot, and xc(k) is the current measured state of the
robot. The optimization problem in Eq. (6) is solved at each
time step, and the initial state of the robot is updated at each
step with the measured state of the robot at time step k. In
this MPC design, the optimization problem is solved using
the single-shooting method, in which only control inputs are
decision variables.

Figure 2 illustrates the execution of theMPCmethod over
two consecutive time steps, k and k + 1. The figure shows
representative plots of the robot’s state x and control input u
over time at these two time steps. At time step k, the robot
states at times k through k +NP − 1, depicted by the blue
dashed line in the upper left plot, are predicted according
to the discrete-time model in Eq. (3). We define the error
between the robot’s state at time k and its current goal pose
as

e(k) = x(k) − xref(k). (7)

Then, we can compute a matrix e(k|k +NP − 1) ∈ ℝ3×NP

that consists of the errors between all future predicted robot
states and the corresponding goal poses:
e(k|k+NP −1) = [e(k) e(k+1) ... e(k+NP −1)] (8)
The solution to the optimization problem in Eq. (6) is

the sequence of optimal controls computed at time step k,
u∗(k|k +NP − 1) ∈ ℝ2×NP . In accordance with the MPC
method, the robot receives only the first optimal control input
in this sequence, u∗(0) ∈ ℝ2×1, and applies this input until
the next time step, as illustrated in the control input plots in
Fig. 2.

The robot’s measurements of its states will differ from
the predicted states due to sensor noise, uncertainties in the
kinematic model, and unmodeled dynamics of the environ-
ment. This disparity is depicted in the plots of the robot’s
state between time steps k and k + 1 in Fig. 2. To initial-
ize the optimization problem at time step k + 1, the pre-
diction horizon is shifted forward by one time step and the
robot’s initial state is updated to its current measured state,
x(0) = xc(k+1). The state errors over the prediction horizon,
e(k+1|k+NP ), are computed for the new time step, and the
optimization problem is solved to obtain the optimal control
solutions. Again, the robot applies the first optimal control
input until the next time step. This procedure is repeated un-
til ||e(k)|| = ||x(k) − xref(k)|| < �, for some small positive
constant �.

In order to reduce the computational complexity of the
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optimization problem, we can compute the control inputs
over a control horizonNC that is shorter than the prediction
horizon NP , while still predicting the future robot states
over the prediction horizon. The solution to the optimization
problem is then the sequence of optimal controls u∗(k|k +
NC − 1) ∈ ℝ2×NC . The optimal controls for the remainder
of the prediction horizon are defined as follows:
u∗(k̄) ∶= u∗(k+NC−1), ∀k̄ ∈ [k+NC , k+NP −1] (9)

At the next time step, this control horizon shifts along with
the prediction horizon. In this paper, we set the control
horizon equal to the prediction horizon, NC = NP , in all
simulations and experiments in order to predict future robot
states as accurately as possible, as discussed in Section 5.1.

3. MPC Design for Multiple Nonholonomic
Robots
In our proposed nonlinear MPC method for collision-free

navigation by multiple nonholonomic WMRs, the optimal
control solutions (i.e., the optimal linear and angular veloc-
ities) for all robots are obtained by solving a constrained
optimization problem at each time step. The objective is to
find optimal solutions such that each robot navigates to a
preassigned goal pose while avoiding collisions with other
robots.
3.1. MPC Formulation for Multi-Robot

Navigation
Given m robots, we define xi and ui, i ∈ {1, 2, ..., m}, as

the state and control input vectors, respectively, of the i-th
robot. From Eq. (4), the discrete-time kinematic model of
all robots is given by:

xi(k+1) = xi(k) +f (xi(k),ui(k))Ts, i = 1, ..., m (10)
We define vectors that contain all the robot states and control
inputs at time step k ∈ {0, 1, ..., NP − 1}:

X(k) = [xT1 (k) xT2 (k) ... xTm(k)]
T ∈ ℝ3m

U(k) = [uT1 (k) uT2 (k) ... uTm(k)]
T ∈ ℝ2m (11)

Similarly, Xc(k) will denote the vector containing all the
robots’ measured states at time step k. We also define xi,minand xi,max as lower and upper bounds on the i-th robot’s statevector, and ui,min and ui,min as lower and upper bounds on
its control input vector.

We consider the pose regulation problem, in which each
robot must be stabilized to a fixed goal pose xgi . We define
the vector of reference states as:

Xref = [xTg1 xTg2 ... xTgm ]
T ∈ ℝ3m (12)

Note that Xref is a constant vector, since the goal poses of therobots are fixed. Given that the reference control inputs are
set to zero in the pose regulation problem, the loss function
in Eq. (5) in our multi-robot MPC formulation is defined as:

l(X(k),U(k)) = ‖

‖

X(k) − Xref‖‖
2
Q + ‖U(k)‖2R . (13)

Predicted states

R #1

R #2

Collisions
𝑑min

2

R #4

R #3

Figure 3: Examples of potential collisions, indicated by light-
ning bolts, between pairs of robots.

In order to achieve collision-free navigation of all m
robots, we define a set of constraints in the formulation of
the MPC to prevent any collisions that may occur within
the prediction horizon. These constraints restrict the opti-
mization problem to compute optimal control commands that
drive the robots along collision-free paths toward their goal
poses. To this end, at every time step within the prediction
horizon, we need to prevent collisions between each pair of
robots. We define the minimum allowable distance between
two robots, dmin, as twice the diameter of the smallest circle
that is centered at the origin of a robot’s local coordinate
frame and completely encloses the robot. Then, the follow-
ing constraints prevent collisions between each pair of robots
during the prediction horizon:

||xi(k|k+NP −1)−xj(k|k+NP −1)|| > dmin, ∀i ≠ j,
(14)

where i, j ∈ {1, 2, ..., m}. We assume that the distance be-
tween the initial positions of each pair of robots, and the
distance between their goal positions, is at least dmin.Figure 3 illustrates examples of collisions between robots
that would occur if the robots followed their predicted tra-
jectories. The i-th robot is labeled R#i. In this scenario,
R#1, R#2, and R#3 are moving, and R#4 is stationary. The
predicted trajectories of R#1 and R#2 intersect, and R#3 is
predicted to collide with R#4. The optimal control solutions
which would produce these collisions, and hence violate the
collision avoidance constraints in Eq. (14), are considered
to be infeasible solutions of the optimization problem at the
time step k.

Given the loss function in Eq. (13), the discrete-time kine-
matic model in Eq. (10), the limits on the robots’ state and
control input vectors, and the collision avoidance constraints
in Eq. (14), we can write the nonlinear optimization problem
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for our proposed MPC method as follows, with i = 1, ..., m:

J ∗
NP

(X(0),X∗,U∗) = minX,U
m
∑

i=1

NP−1
∑

k=0
l(X(k),U(k))

||xi(k + 1) − xj(k + 1)|| > dmin, ∀i ≠ j,

xi(k + 1) = xi(k) + f (xi(k),ui(k))Ts
xi,min ≤ xi(k) ≤ xi,max
ui,min ≤ ui(k) ≤ ui,max
X(0) = Xc(k)

(15)

We solve this optimization problem using themultiple-shooting
method.
3.2. Feasibility and Stability Analysis

In this section, we investigate the feasibility of the opti-
mization problem in Eq. (15) and the stability of the proposed
MPC method. These two properties of MPC schemes have
been studied extensively in [45, 46]. The optimization prob-
lem is considered feasible if it has at least one solution and
all its constraints are satisfied at each time step, and the MPC
method is considered stable if all robots converge to their
preassigned goal poses. A feasible state is a state X(k) that
satisfies the bounds xi,min ≤ xi(k) ≤ xi,max for all i = 1, ..., m,
and a feasible control input is an input U(k) that satisfies the
bounds ui,min ≤ ui(k) ≤ ui,max, i = 1, ..., m.
Definition 3.1 (Feasible states and admissible control sets).
DefineX as the set of feasible statesX of all robots, and U as
the set of feasible robot control inputs U. Then, the control
inputs U(k|k +NP − 1) are admissible for any initial state
X(0) ∈ X if:
(1) the control inputs are a subset of the feasible control set for
all time steps in the prediction horizon, i.e. U(k|k+NP−1) ⊆
U, and
(2) the predicted states are a subset of the feasible state set
for all time steps in the horizon, i.e. X(k|k +NP − 1) ⊆ X.
To simplify the notation, we also define the set of all feasible
states and feasible control inputs as ℤ ∶= X × U.

Theorem 3.2 (Feasibility). Suppose that the initial state
X(0) is known and is a feasible state, i.e. X(0) ∈ X. Then, the
constrained nonlinear MPC optimization problem in Eq. (15)
has feasible solutions if and only if for all time steps k in the
prediction horizon, the following statements hold:
(a) The optimal control solutions and corresponding pre-
dicted states are a subset of the feasible set, i.e. X∗(k|k +
NP − 1) × U∗(k|k +NP − 1) ⊆ ℤ.
(b) The collision avoidance constraints are satisfied for all
time steps in the horizon, i.e. ||xi(k|k+NP + 1) − xj(k|k+
NP + 1)|| > dmin, ∀i ≠ j.

Proof. Given the nonlinear system in Eq. (2), if the ini-
tial state and initial control input are in the feasible set, i.e.
X(0) × U(0) ∈ ℤ, then the recursive feasibility, defined
in [47], of the optimization problem in Eq. (15) trivially
holds. In other words, the set of optimal control solutions
U∗(k|k + NP − 1) is not the empty set. To prove that the

collision avoidance constraints are satisfied for all time steps
k, ..., k+NP −1, we consider a contradictory case. Suppose
that there exists an optimal control solution for which two
robots have a point in common on their predicted paths that
they will reach at the same time, leading to a collision (see
robots R#1 and R#2 in Fig. 3). According to the Nyquist-
Shannon sampling theorem, a discrete sequence of samples
can be used to adequately reconstruct a continuous-time sig-
nal given a small enough sampling time, Ts. Thus, for Tssmall enough, the MPC method will identify the aforemen-
tioned point of collision between the robots and compute an
optimal admissible control solution that avoids producing
this collision. As a result, satisfying the collision avoid-
ance constraints at each time step is sufficient to guarantee
collision-free navigation by all the robots. ■

Proving the stability of our proposed NMPC method
is challenging, since the method requires solving a finite-
horizon optimal control problem at each time step. Most ex-
isting NMPC-based approaches for pose stabilization of non-
holonomic robots ensure stability by incorporating stabilizing
terminal constraints and/or stabilizing terminal costs into the
optimization problem [44, 48, 49, 50, 51, 52, 2, 53]. How-
ever, constructing suitable stabilizing terminal constraints
or costs is a challenging task, and moreover, this approach
limits the operating region of the MPC and necessitates a
relatively long prediction horizon [54]. These issues in turn
make the NMPC method computationally prohibitive to im-
plement. The stability of NMPC methods for nonholonomic
robots has also been proved without the introduction of sta-
bilizing terminal constraints and terminal costs [55, 56, 57].
We establish our proposed MPC method’s stability using this
approach, which is detailed in [58]. Our method extends
these types of NMPC methods, which are designed for sin-
gle robots, to multi-robot systems and introduces constraints
into the NMPC that enforce inter-robot collision avoidance.
The objective is to prove that there exists an optimal value
function, defined as:

VNP
(X(0)) ∶= inf JNP

(X(0),X,U) ∀X×U ∈ ℤ, (16)
that guarantees the asymptotic stability of our NMPC design
with prediction horizonNP . We first state several definitions
and assumptions that are needed in the stability proof.
Definition 3.3 (∞-function). Continuous functions � (r) ∶
ℝ≥0 → ℝ≥0 that are strictly increasing, and for which � (0) =
0, are categorized as the class of -functions. Those -
functions which satisfy limr→∞ � (r) = ∞ are called the class
of ∞-functions.
Assumption 3.4. Define Jk as the following cost function,
which is calculated over the first k steps of the prediction
horizon:

Jk(X(0),X,U) = minX,U
m
∑

i=1

k
∑

k̄=0

l(xi(k̄),ui(k̄)). (17)

Then, for any initial state X(0) ∈ X, the following holds:

Vk(X(0)) ∶= inf Jk(X(0),X,U) ≤ �kl(X∗,U∗), (18)
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where �k, k ∈ ℕ, is a bounded sequence of monotonically
increasing natural numbers.

Assumption 3.5. There exist two -functions �1 and �2
which satisfy the following:

�1(||X−Xref||) ≤ l(X∗,U∗) ≤ �2(||X−Xref||). (19)
Definition 3.6 (Performance index). The performance index

NP

, which determines the minimum value of the prediction
horizonNP that ensures the asymptotic stability of the MPC
method [58], is defined as:


NP
∶= 1 −

(�NP
− 1)

∏NP−1
k=1 (�k − 1)

∏NP−1
k=1 �k −

∏NP−1
k=1 (�k − 1)

. (20)

Theorem 3.7 (Stability). Suppose that the initial state X(0)
is known and that the initial state and initial control inputs
are feasible, i.e. X(0) × U(0) ∈ ℤ. Given Assumption 3.4,
the closed-loop controller computed by the nonlinear con-
strained MPC in Eq. (15) is asymptotically stable with the
prediction horizon NP if for a positive performance index

NP

> 0, the relaxed Lyapunov inequality holds:

VNP
(X(k+1)) ≤ VNP

(X(k))− 
NP
l(X(k),U(k)). (21)

Proof. Suppose that Assumption 3.4 and the inequality in
Eq. (21) hold, and the initial robot states and control inputs
are feasible, i.e. X(0) × U(0) ∈ ℤ. Given a sequence ck ⊆
ℝ≥0, where∑∞

k=0 ck <∞, such that

l(X(k),U(k)) ≤ ckl(X∗,U∗), ∀k ∈ {1, 2, ..., NP −1},
(22)

the bounds in Eq. (18) are achieved by setting �k = ∑k−1
k̄=0 ck̄[32]. Thus, an upper bound on the optimal value function at

time step k, i.e. Vk, can be obtained as follows:

Vk(X(0)) ≤
k−1
∑

k̄=0

l(X(k̄),U(k̄))

≤
k−1
∑

k̄=0

ck̄l(X∗(k̄),U∗(k̄)) = �kl(X∗(k),U∗(k)),

(23)
in which the sequence �k is monotonically increasing for
ck ≥ 0. For further details, we refer the reader to [53, 54, 58,
59]. ■

Corollary 3.8. Theorem 3.7 implies that the constrained
nonlinear MPC design in Eq. (15) produces stable optimal
control solutions if and only if the predicted sequence of
states for each robot, i.e. xi(k), i = 1, ..., m, converges to its
desired goal pose xgi in finite time starting from any feasible
initial state X(0) ∈ X.

3.3. Algorithms for Implementation of the MPC
Figure 4 illustrates the framework for implementing our

proposedMPCmethod in the Robot Operating System (ROS).
We first specify the number of robots m; the robots’ initial
poses X(0) and goal poses Xref; the bounds on the robots’
states and control inputs, i.e. xi,min, xi,max, ui,min, and ui,max;the weighting matrices Q and R; the sampling time Ts; andthe distance dmin. The bounds on the robots’ linear and an-gular velocities are defined as vi ∈ [−0.22 0.22] (m/s)
and wi ∈ [−2.84 2.84] (rad/s), according to the Burger
robot’s specifications [42]. We use the symbolic program-
ming framework in CasADi [27] to formulate the optimiza-
tion problem in Eq. (6) for the case of a single robot, or the
one in Eq. (15) for multiple robots. The optimization prob-
lem is solved using the Interior Point OPTimizer (IPOPT),
an open-source software library for large-scale nonlinear op-
timization problems that is available in CasADi. For details
about IPOPT options and the tuning parameters in CasADi,
see [27, 60].

Algorithms 1, 2, and 3 contain pseudocode that describes
the implementation of our proposed MPC method in both
simulation and experiment. A central supervisor runs these
algorithms to solve the optimization problem and send op-
timal control commands to the robots. The robots estimate
their current poses relative to their initial poses (which are
known) using odometry, fusing their wheel encoder mea-
surements and IMU sensor data to improve the accuracy
of the pose estimates. Using ROS, the robots publish their
odometry information on a topic, and the central supervisor
subscribes to each robot’s published odometry topic in order
to obtain the poses of the robots. The supervisor publishes
the optimal control solutions to the robots’ velocity com-
mands. These control commands are published to the robots’
velocity topics, which are each defined as a ROS topic.

Algorithm 1 executes the main loop of the program. First,
it initializes the optimization problem of the MPC, the ROS
core node, the subscribers that read the robots’ odometry
measurements, and the velocity command publishers. It
also sets the options for the Nonlinear Programming (NLP)
solver, including the acceptable convergence tolerance (ac-
ceptable_tol), the stopping criterion based on the change in
the objective function value (acceptable_obj_change_tol),
and the maximum number of iterations (max_iter) for the
IPOPT solver. Next, the following procedure repeats as long
as the error between the current robot poses and their goal
poses, ||X−Xref||, exceeds a small positive constant �. First,
Algorithm 2 obtains the robots’ measurements of their own
poses by subscribing to each robot’s odometry callback func-
tion. Then, the IPOPT solves the optimization problem in
either Eq. (6) or Eq. (15). As described earlier, only the opti-
mal control solutions computed at the first time step of the
prediction horizon, i.e. U∗(0), are applied to the robots. Fi-
nally, Algorithm 3 shifts the prediction and control horizons
forward by one time step and re-initializes the optimization
problem using the warm start approach, in which the optimal
solutions at the previous time step are defined as the initial
solutions (also referred to as initial guesses) at the next time
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Figure 4: Framework for implementing the proposed MPC method for collision-free navigation by multiple WMRs.

Algorithm 1 Main Function of MPC Method
Input: X(k|k + NP − 1), X(0), Xref(k|k + NP − 1),
U(k|k +NP − 1), Q, R,NP , m, xi,min, xi,max, ui,min, ui,max,
f (xi(k),ui(k)), Ts, dmin
Output: X∗(k|k +NP − 1), U∗(k|k +NP − 1)

1: Initialize ROS node, odometry subscribers, and velocity
command publishers; import CasADi

2: Symbolically formulate the optimization problem in
Eq. (6) or Eq. (15) using CasADi

3: Set NLP solver (IPOPT) options: acceptable_tol = 10−8,
acceptable_obj_change_tol = 10−6, max_iter = 2000

4: while ||X(k) − Xref(k)|| > � do
5: Algorithm 2: Obtain the robots’ pose measurements
6: Solve optimization problem in Eq. (6) or Eq. (15)
7: Publish U∗(0) to ROS topics of robots’ velocity com-

mands
8: Algorithm 3: Shift the prediction and control horizons,

re-initialize the optimization problem with warm start
9: end while

Algorithm 2 Obtain Robots’ Pose Measurements
Input: m, k
Output: Xc(k)
1: i← 1, Xc(k) ← [ ]
2: for i ≤ m do
3: Call odometry callback function of i-th robot
4: Read pose measurement xi ← [xi yi �i]
5: Concatenate Xc(k) and xi
6: end for
7: Return Xc(k)

step. The robots’ states are re-initialized with their current
poses.

4. Simulation and Experimental Results
In this section, we validate our NMPCmethod for collision-

free navigation in both simulations and experiments with real-
world robots. We performed the simulations in Gazebo, using

Algorithm 3 Shift Horizons & Initialize Next Step
Input: U∗(0), Xc(k)
Output: U(0), X(0)
1: Update initial guess: U(0) ← U∗(0)
2: Update initial state: X(0) ← Xc(k)
3: Increment time step: k← k + 1
4: Return U(0), X(0)

Table 1
Sampling time (s) and prediction horizon (time steps) for each
scenario in the simulations and experiments.

Simulation Experiment

Scenario 1 2 3 1 2 3

Sampling time 0.1 0.1 0.35 0.1 0.1 0.3

Prediction horizon 50 35 35 45 40 35

the Turtlebot3 Burger (see Fig. 1) as the robot platform, and
conducted the experiments with multiple Burger robots. The
Burger robot is a two-wheeled differential-drive WMR that is
equipped with Raspberry Pi and OpenCR boards, providing
an integrated embedded system of sensors and processors
which can be programmed in ROS to implement our MPC
method. More details about this robot can be found in [42].
Videos of the simulations and experiments are available on-
line in [61] and [62], respectively.

We tested our MPC method in six different scenarios,
each implemented in both simulations and experiments. Three
of the scenarios, in which there are m ∈ {1, 2, 3} robots, are
shown in the videos [61, 62] but are not discussed here for
the sake of conciseness. The other three scenarios, in which
there are m ∈ {4, 5, 6} robots, are described below:

Scenario 1 : Collision-free Position Swap of Four Robots.
Four robots are initially located at the vertices of a square
and are all oriented toward the center of the square (the ori-
gin). Each robot must switch positions with the robot at the
opposite vertex along the diagonal of the square. The robots’
goal headings are the same as their initial headings.
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Scenario 2 : Collision-free Reconfiguration of Five Robots.
Five robots start in a V-formation and must reconfigure into
a symmetric formation about the y-axis, with their goal head-
ings the same as their initial headings. The goal positions
of the robots are assigned such that they must avoid many
potential collisions with one another as they navigate to their
goal poses.
Scenario 3 : Collision-free Position Swap of Six Robots. Six
robots start at the vertices of a regular hexagon, facing toward
the center (the origin). Each robot must switch positions with
the robot at the diametrically opposite vertex while avoiding
collisions with one another. The robots’ goal headings are
the same as their initial headings. (Note: In the experiment
for this scenario, the ranges of vi and wi were reduced to
vi ∈ [−0.15 0.15] (m/s), wi ∈ [−1.5 1.5] (rad/s) to accom-
modate the relatively high density of robots in the testbed.)

Table 1 lists the sampling time Ts and the prediction
horizonNP that were used in each of these scenarios in the
simulations and experiments. For these scenarios, and for
the scenarios with m = 2 and m = 3 robots, the weighting
matricesQm and Rm were defined as the Kronecker products
of the matrices in Eq. (25) with the m × m identity matrix
Im×m:

Qm = Q⊗ Im×m, Rm = R⊗ Im×m, (24)
where Q and R are the weighting matrices for the scenario
with m = 1 robot, defined as:

Q = diag(1, 5, 0.1), R = diag(0.5, 0.05). (25)
Figures 5–10 show snapshots of the robots at several time
steps during simulations and experimental runs of the Sce-
narios 1–3. The robots’ trajectories are plotted as colored
dashed lines, and their goal positions and goal orientations
are indicated by colored circles and arrows, respectively, with
a different color assigned to each robot. In the figure captions,
the goal position coordinates are given in meters, and the goal
orientations are in radians. The snapshots show that in each
scenario, all robots successfully navigate to their goal poses
without colliding with one another or becoming trapped in
a deadlock configuration. In addition, Figs. 11–22 plot the
time evolution of the robots’ optimal control inputs, i.e. the
optimal linear and angular velocities computed by our MPC
method, during the simulations and experimental runs of the
scenarios.

5. Discussion and Analysis
In this section, we first give recommendations on tun-

ing several parameters in our MPC method for the scenarios
described in Section 4. Next, we describe types of dead-
locks that can occur in each scenario and discuss how our
method can resolve these deadlocks. Finally, we identify
some limitations of our method.
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Figure 5: Snapshots of the Gazebo simulation of Scenario 1.
The robots’ goal poses are: xg1 = [1 −1 −0.785]T, xg2 = [−1
−1 − 2.356]T, xg3 = [1 1 0.785]T, xg4 = [−1 1 2.356]T.
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Figure 6: Snapshots of the experimental run of Scenario 1. The
robots’ goal poses are: xg1 = [0.71 − 0.71 − 0.785]T, xg2 =
[0.71 0.71 − 2.356]T, xg3 = [−0.71 − 0.71 0.785]T, xg4 =
[0.71 − 0.71 2.356]T.

5.1. Tuning MPC Parameters
Proper selection of the MPC parameters Ts,NP ,NC ,Q,

and R is important, since they can affect both the controller
performance and the computational complexity of themethod.
Furthermore, these parameters may need to be retuned for
different multi-robot navigation problems.
Sampling time (Ts): The sampling time determines the res-
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Figure 10: Snapshots of the experimental run of Scenario 3. The robots’ goal poses are: xg1 = [−0.7 − 0.4 − 2.618]T, xg2 =
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Figure 11: Optimal robot linear velocities over time in the
simulation of Scenario 1
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Figure 12: Optimal robot linear velocities over time during the
experimental run of Scenario 1.
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Figure 13: Optimal robot angular velocities over time in the
simulation of Scenario 1.

olution of the discrete-time kinematic model in Eq. (3) and
the rate at which the optimization problem in Eq. (15) is
solved. If Ts is too large, then the kinematic model will not
accurately predict the robots’ future states, and therefore po-
tential collisions between robots may not be identified and
the robots may navigate to points that are far from their goal
positions. Moreover, collisions can occur between robots
that follow optimal control velocities which are infrequently
updated by the MPC method, and therefore are not adjusted
for imminent collisions. On the other hand, a very small Tswill result in more accurate predictions of the future states
and identification of all possible robot collisions, as discussed
in the proof of Theorem 3.2. However, reducing Ts increasesthe computational cost to solve the optimization problem, as
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Figure 14: Optimal robot angular velocities over time during
the experimental run of Scenario 1.
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Figure 15: Optimal robot linear velocities over time in the
simulation of Scenario 2.
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Figure 16: Optimal robot linear velocities over time during the
experimental run of Scenario 2.
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Figure 17: Optimal robot angular velocities over time in the
simulation of Scenario 2.
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Figure 18: Optimal robot angular velocities over time during
the experimental run of Scenario 2.
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Figure 19: Optimal robot linear velocities over time in the
simulation of Scenario 3.
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Figure 20: Optimal robot linear velocities over time during the
experimental run of Scenario 3.
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Figure 21: Optimal robot angular velocities over time in the
simulation of Scenario 3.
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Figure 22: Optimal robot angular velocities over time during
the experimental run of Scenario 3.

we observed in our simulations and experiments.
Prediction horizon (NP ): The prediction horizon deter-
mines the number of time steps over which the MPC method
predicts the robots’ future states. If NP is too small, then
collisions between approaching robots may not be predicted,
or even if robots avoid collisions, they can become stuck in
immobile deadlock configurations (see Section 5.2). IfNPis large, then the MPC method may produce overly conser-
vative optimal control velocities that steer the robots away
from each other prematurely, in an effort to prevent future
collisions that are in fact too distant in time to accurately
predict. Moreover, increasingNP raises the computational
cost to solve the optimization problem, similar to the effect
of decreasing Ts. Based on our empirical observations, our
recommendation is to setNP between 25 and 110 time steps.
Control horizon (NC ): The control horizon, NC , can be
set to any value such that NC ≤ NP . In this paper, we
choose NC = NP in all simulations and experiments. In
MPC design, the smaller the control horizon, the lower the
computational cost to solve the optimization problem. How-
ever, increasing the control horizon improves the accuracy
of the predicted future robot states, since they are computed
using a longer sequence of optimal control inputs. Therefore,
if sufficient computational resources are available, we recom-
mend to setNC = NP in order to achieve the best possible
predictions of the future robot states. Alternatively, we may
defineNC as 10%–20% ofNP , as is standard inMPC design.
Weighting matrices (Q and R): The weighting matrices
Q and R are used to define the objective function of the
optimization problem in the MPC formulation. The MPC
must simultaneously satisfy two competing objectives: (1)
the robots’ poses, X, should converge as closely as possible
to their goal poses,Xref; and (2) the optimal control solutions
should be sufficiently smooth to avoid aggressive control
maneuvers. The weighting matrices establish the relative
importance of these two objectives. One way to satisfy the
requirement thatQ is positive semi-definite and R is positive
definite is to define them as diagonal matrices with positive
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Deadlock type 2Deadlock type 1

Deadlock type 3

Figure 23: Three types of deadlocks that can occur in our
multi-robot navigation scenarios. Illustration is based on Fig.
8 in [19].

entries qii, rii along the diagonal:
Q = diag(q11, q22, q33), R = diag(r11, r22). (26)

In the navigation problem that we consider, it is more impor-
tant that the robots reach their goal positions than their goal
orientations. Therefore, q11 and q22 can be defined as much
higher weights (e.g., 10 to 50 times larger) than q33. For thesame reason, we can define r11, the weight corresponding to arobot’s linear velocity, as a much higher value (e.g., 10 times
larger) than r22, the weight on its angular velocity, which
only affects its orientation. We note that the relative values
of the entries of the weighting matrices affect the trajectories
of the robots.
5.2. Resolving Deadlocks

In multi-robot navigation scenarios, a deadlock occurs
when a robot stops moving before it reaches its goal position,
as a consequence of becoming trapped in an equilibrium
point of the system dynamics [63]. Deadlocks inevitably
occur in multi-robot systems that use decentralized control
approaches, since the robots can only respond to local infor-
mation within their sensing or communication range [64].
Three types of deadlocks that can occur during multi-robot
navigation are described and illustrated in [19]. These types
of deadlocks are re-illustrated in Fig. 23. Given the scenarios
defined in Section 4, deadlock type 1 can occur in Scenarios
1 and 3; deadlock type 2 can occur in Scenario 3; and dead-
lock type 3 can occur in Scenarios 2 and 3. Our centralized
MPC method can predict all three types of deadlocks, since
it models the future states of all robots at each time step over
the prediction horizonNP . Given an appropriate selectionofNP and a sufficiently small sampling time Ts, as discussedearlier in this section, our method produces optimal control
solutions for deadlock-free navigation.

5.3. Limitations of the Proposed MPC Method
Although our MPC method can guarantee deadlock-free,

collision-free navigation by multiple nonholonomic WMRs,
it has certain limitations that should be considered in the
selection of its parameters and its implementation. First, the
scalability of the method to large numbers of robots is limited
by the available computational resources, since the method
uses a centralized approach to computing robot control inputs.
Second, as demonstrated in [58] with numerical simulations,
the quadratic loss function in the optimization problem fails
to satisfy the bounds specified in Assumption 3.4 when the
prediction horizonNP is very large. This problem can be ad-
dressed by careful tuning ofNP and the weighting matrices
Q and R for each navigation scenario. Third, errors in the
robots’ measured poses can arise from sensor noise in the
robots’ odometry readings, wheel skidding and sliding, and
external mechanical disturbances such as unknown friction
forces. In our experiments, as mentioned in Section 3.3, the
robots fuse their wheel encoder readings and IMU sensor data
to improve the accuracy of the odometry, although this sensor
fusion did not completely eliminate errors in the odometry
measurements. Techniques such as direct decentralized inte-
gration [65] can improve real-time estimation of the robots’
positions and orientations. In addition, a robust controller
such as anH∞ controller and an observer could be incorpo-
rated into our method to attenuate the effects of measurement
noise and disturbances on the robots’ trajectories.

6. Conclusion
In this paper, we propose a nonlinear MPC method for

collision-free and deadlock-free navigation by multiple non-
holonomic WMRs. This method incorporates an optimiza-
tion problem for computing velocity control inputs that drive
the robots to goal poses while avoiding collisions. We ana-
lyze the feasibility of the optimization problem and prove the
stability of the resulting controller. To reduce the computa-
tional complexity of the MPC, we do not include any stabiliz-
ing terminal constraints or costs in the optimization problem.
We implement theMPC using open-source software tools that
provide a symbolic programming framework, which signifi-
cantly accelerates the solution of the optimization problem.
We demonstrate the effectiveness of our proposed method in
both realistic 3D simulations and physical experiments for
six different multi-robot navigation scenarios.

Future work includes the modification of this method to
create a decentralized MPC scheme for multi-robot naviga-
tion, in which robots use their own distance measurements
(e.g., from a LiDAR sensor) to detect nearby robots and un-
known obstacles in the environment and autonomously adjust
their velocities to avoid potential collisions and deadlocks.
As another direction of future work, an LMI-based NMPC
method could be designed with linear models of the robots’
motion, which would reduce the computational complex-
ity of our approach and thus enable controller synthesis for
larger numbers of robots without a corresponding significant
increase in computational effort.
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