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Abstract: In this paper, we construct a mean-field discrete-time Markov process evolving on a
compact subset of Rd can be stabilized to an arbitrary target distribution that has a continuous
density. This density, unlike in our previous works, need not have a connected support on the
state space. Our main application of interest is characterizing the distribution of a multi-agent
system that evolves according to a discrete-time Markov process. Even if the Markov process
converges to an equilibrium distribution, the agents may continue to switch between states,
potentially wasting energy. In order to prevent this unnecessary switching, we show that the
Markov process can be constructed in such a way that the operator that pushes forward measures
is the identity operator at the target measure. The challenge in the stability analysis of the
system arises from the fact that the transition kernel is a function of the current distribution,
resulting in a nonlinear Markov process. Moreover, we aim to design the transition kernel,
which is the feedback control law for the Markov process, to be decentralized in the sense that
it depends on the local density of agents. We prove by construction that there exists a control
law that is decentralized and globally stabilizes the desired measure. In order to implement this
control law, the individual agents must estimate the local population density. We validate our
control law with numerical simulations of multi-agent systems with different population sizes.
We observe that the number of agent state transitions at equilibrium significantly decreases as
the population size increases.

Keywords: Large Scale Systems, Stochastic Modeling and Stochastic Systems Theory,
Operator Theoretic Methods in Systems Theory, Robotics

1. INTRODUCTION

In this paper, we address the problem of stabilizing a
discrete-time Markov process evolving on a compact, con-
nected subset of Rd to a desired distribution. Our ap-
plication of interest is controlling the distribution of a
multi-agent system in which the agents evolve according to
the Markov process that we consider. The time evolution
of the distribution is given by the Kolmogorov forward
equation. In our previous works, Biswal et al. (2019a,b),
we considered a similar scenario in which we stabilized
measures that have an L∞ density. In this paper, we
consider measures that have continuous densities, a much
smaller class of measures than we previously considered.
However, unlike in our earlier works, the distribution’s
support need not be strictly positive almost everywhere.
The reason for this will be made clear shortly.

There are numerous well-established methods for control
of multi-agent systems, many of which are described in
Bullo et al. (2009); Lewis et al. (2013); Mesbahi and
Egerstedt (2010). However, many of these control ap-
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proaches lack scalability with respect to very large agent
populations. When all agents follow the same control laws
and these control laws are independent of agents’ identi-
ties, an alternative approach is to apply control techniques
to a fluid approximation of the swarm in the form of
a mean-field model (Elamvazhuthi and Berman, 2019).
This approximation is justified by modeling each agent’s
dynamics as a Markov process, and then the mean-field be-
havior of the population is determined by the Kolmogorov
forward equation corresponding to the Markov process. In
the absence of agent interactions, the mean-field model
often has the advantage of being linear, or at least simpler
to analyze than the dynamics of a population of finite
number of agents. Therefore, in this paper, we focus on
the problem of stabilizing the mean-field model of the
system using the corresponding transition kernel, which
determines the state transition probabilities of the agents,
as the control parameter. We demonstrate that the control
law designed for the mean-field model enables a control
approach that scales well with the agent population size.

Our goals in this paper are threefold. First, we aim to
design a Markov process that can stabilize any proba-
bility measure that has a continuous density and is not



necessarily positive everywhere on the domain. The signif-
icance of the second property stems from the fact that in
general, discrete-time Markov chains cannot be stabilized
to distributions that do not have connected supports, as
shown in Elamvazhuthi et al. (2017). The convergence of
a Markov process to an equilibrium distribution does not
necessarily imply that the agents evolving according to
the process also converge to equilibrium states. In fact,
agents may continue to transition between states, which
can cause them to waste energy. To prevent agents from
continuing to switch between states at the equilibrium
distribution, our second goal is to construct a Markov
process such that its forward operator, which pushes for-
ward measures, is the identity operator at equilibrium.
This results in a time-dependent transition kernel that is
a function of the distribution and gives rise to a nonlinear
Markov process. Since we establish that the kernel must
be dependent on the distribution, our third goal is to
construct the kernel to have a decentralized structure. A
kernel with this structure corresponds to control laws that
require each agent to estimate the population only in its
local neighborhood, rather than obtain feedback on the
entire agent distribution. Toward this end, we construct
an explicit kernel for the mean-field model that is defined
pointwise; that is, it is a function of the value of the
distribution at the current state. This is the reason for
working with measures that have continuous densities. We
proved the existence of such feedback laws in the case of
continuous-time Markov chains evolving on finite graphs
in Elamvazhuthi et al. (2017, 2018). A similar problem is
addressed in Mather and Hsieh (2014), which develops a
decentralized control approach by a priori restricting the
controller to have a decentralized structure, in order to
avoid requiring agents to have information on the entire
distribution. Another related work is Demir et al. (2015),
which designs a centralized controller and uses estimation
algorithms to determine the entire agent distribution in a
decentralized manner.

Our approach of analyzing the stability of a dynamical
system from a measure-theoretic point of view is quite
classical (Lasota and Mackey, 2013), and it is also used
extensively in the context of mean-field games (Gomes
et al., 2010), optimal transport theory (Villani, 2003), and
mean-field control (Fornasier et al., 2014). We present a
review of significant works that have influenced research
on the stabilization of Markov processes in Biswal et al.
(2019b).

2. NOTATION

In this section, we present notation that will be used
throughout the paper. We define R̄+ := [0,∞), and
R+ := (0,∞). Similarly, we define Z̄+ as the set of all non-
negative integers and Z+ as the set of all positive integers.
The closed ball in Rd of radius δ centered at x will be
denoted by Bδ(x).

We denote the state space by (Ω,B(Ω)), a measurable
space. Here, Ω ⊆ Rd is a compact set and B(Ω) represents
the Borel sigma algebra on Ω corresponding to the stan-
dard topology on Rd. We denote the spaces of probability
measures on Ω by P(Ω).

The Lebesgue measure on Rd will be denoted by m. For a
measure ν on Rn, ν is said to be absolutely continuous with
respect to m, denoted by ν � m, if ν(E) = 0 whenever
m(E) = 0. In this case, there exists a function f : Rn → R
such that dν = fdm; this function is called the density or
the derivative of ν with respect to m, Folland (2013).

For a measure space (X , ν), we define Lp(X , ν), where
p ∈ [1,∞), as the space {f : X → R : f is mea-
surable and ‖f‖p < ∞}, where ‖f‖p = (

∫
|f |pdν)1/p.

In addition, we define L∞(X , ν) = {f : X → R :
f is measurable and ‖f‖∞ < ∞}, where ‖f‖∞ =
ess supx∈X |f(x)|. C(X ) is the space of continuous func-
tions on X . We define C(X ) ⊂ L1(X ) to be a set of
continuous functions that satisfy

∫
X f = 1. We endow

C(X ) with the ‖ · ‖1 norm.

For a function f : X → R, the support of f is the closure
of the set of points where f is nonzero. For topological
spaces X ,Y, if T : X → Y is an operator, it will be
understood that ‖T‖ stands for the operator norm, defined

as supx
‖Tx‖Y
‖x‖X .

For measurable spaces (X ,M) and (Y,N ), where M and
N are the respective sigma algebras, a transition kernel or
Markov kernel is a map T : X ×N → [0, 1], where T (·, E)
is a Borel measurable function on X for each fixed E ∈ N
and T (x, ·) is a measure on Y for each fixed x ∈ X . The
transition kernel T induces an operator T : P(X )→ P(Y)
as follows. For each probability measure ν on X ,

(Tν)(E) =

∫
X
T (x,E) dν(x), E ∈ N

defines a probability measure on (Y,N ). We will say that
T is regular if there exists a function h ∈ L∞(X×Y,m×m)
such that for each x ∈ X , the measure T (x, ·) is absolutely
continuous with respect to m and T (x, du) = h(x, u)du.
The function h : X × Y → R̄+ will be called the kernel
function of the transition kernel T .

3. PROBLEM FORMULATION

Consider a system of N agents that evolve in discrete time
on the set Ω ⊂ Rd. We assume that the agents are identity-
free, that is, that they evolve independently of one another
and according to the same dynamics. Let ξkn denote the
state of each agent k ∈ {1, . . . , N} in Ω at time n ∈ Z+.
Let ξk0 be a random variable with distribution µ0 ∈ P(Ω).

The empirical distribution of the N -agent system over Ω at

time n is given by 1
N

∑N
k=1 δξkn . Our goal is to design tran-

sition kernel that redistributes the agents from their initial

empirical distribution 1
N

∑N
k=1 δξk0 to a desired empirical

distribution 1
N

∑N
i=1 δξk,d that “closely approximates” a

target density fd ∈ L∞(Ω) as n→∞, where 1
N

∑N
i=1 δξk,d

is a sample of the probability density fd. Since we as-
sume that the agents are identity-free, we will define the
transition kernel as a function of the current empirical

distribution 1
N

∑N
k=1 δξkn rather than the individual agent

states ξkn. Since our goal is to control the distribution of
the N -agent system, we consider the mean-field limit of
1
N

∑N
k=1 δξkn as N → ∞. Therefore, we will consider the

following discrete-time flow on the space of densities C(Ω):



fn+1 = P̃fnfn, n = 0, 1, 2 . . .

f0 ∈ C(Ω) (1)

where P̃fn : C(Ω) → C(Ω), defined next, is called the

forward operator. P̃fn is a nonlinear operator that depends
on the current density fn, the subscript fn emphasizes this
dependence.

Let f ∈ C(Ω) be the density of a measure µ ∈ P(Ω).

Then, we will define P̃f via a transition kernel Kµ : Ω ×
B(Ω) → [0, 1] that depends on the measure µ. Assume
Kµ is regular, that is if Kµ(x, ·) = qf (x, y)dy, then qf ∈
L∞(Ω× Ω,m×m). We define P̃f as

(P̃ff)(y) =

∫
Ω

qf (x, y)f(x)d(x). (2)

To ensure that P̃f preserves probability densities, we
impose the following property on qf :

qf (x, y)

{
≥ 0, for m-a.e. y ∈ Ω

= 0, otherwise
(3)∫

Ω

qf (x, y)dy = 1, for m-a.e. x ∈ Ω. (4)

These properties ensure that Kµ is stochastic.

We are now ready to state the problem that we address in
this paper.

Problem 1 Given fd ∈ C(Ω), determine whether there
exists a transition kernel Kµ : Ω×B(Ω)→ [0, 1] such that

(1) satisfies lim
n→∞

P̃fn ◦ . . . ◦ P̃f1 ◦ P̃f0f0 = fd for all initial

densities f0 ∈ C(Ω), and furthermore, P̃fd = I, where the

forward operator P̃fd is defined in (2).

The condition P̃fd = I, the identity operator, is to ensure
that the agent’s trajectory, at the desired equilibrium
distribution fd, remains static. This condition leads to the

nonlinearity of the operator P̃f .

4. MAIN RESULT

In this section, an operator P̃ that solves Problem 1 will be
constructed. To begin, we state the assumptions. Suppose
fd ∈ C(Ω) be the desired distribution in Problem 1. We
note that fd need not be supported m almost everywhere
on Ω, unlike our work in Biswal et al. (2019b). We also
assume that Ω is a path connected, compact subset of Rd.
We also require Ω to satisfy the cone condition (Biswal
et al., 2019b), which ensures that the boundary of Ω is
regular enough.

Let µ ∈ P(Ω) be such that µ � m. Further, if fµ is
the derivative of µ with respect to m, we assume that
fµ ∈ C(Ω). For an arbitrary f ∈ C(Ω), define a function
af to be

af (x) =


f(x)− fd(x)

f(x)
if f(x)− fd(x) > 0

0 otherwise.
(5)

We note that af is continuous on Ω. Moreover, the supre-
mum of af is 1.

Let r > 0 be fixed. To simplify notation, denote Br(x)∩Ω
as Bx. Let k : Ω × Ω → R be a function in L∞(Ω ×

Ω,m × m). Further, to simplify analysis we will assume
in this paper that k is uniformly distributed over the ball
Bx, that is, for x ∈ Ω and y ∈ Bx, k(x, y) = 1

m(Bx)
χBx .

Therefore, k satisfies∫
Ω

k(x, y)χBx(y)dy = 1. (6)

The question of measurability of a k that satisfies the
above property, is answered in our extension of this paper
Biswal et al. (2021). Let A ∈ B(Ω). Define transition kernel
Kµ : Ω× B(Ω)→ [0, 1] as

Kµ(x,A) = Kµ(x,Bx ∩A)

= afµ(x)

∫
A

k(x, y)χBx(y)dy + (1− afµ(x))δx(A). (7)

The kernel is defined such that the corresponding Markov
chain stays at x with probability 1− afµ(x) and moves to
a state in the set A with probability afµ(x), and when it
moves, the distribution is given by the density k(x, y).

Using Kµ, we define an operator Pµ that acts on measures
in P(Ω) as

(Pµµ)(A) =

∫
Ω

Kµ(x,A)dµ(x) =

∫
Ω

Kµ(x,Bx ∩A)dµ(x)

=

∫
Ω

∫
A

afµ(x)χBx(y)k(x, y)dydµ(x) +∫
Ω

(1− afµ(x))δx(A)dµ(x)

=

∫
Ω

∫
A

afµ(x)χBx(y)k(x, y)dydµ(x) +∫
A

(1− afµ(x))dµ(x). (8)

The subscript µ in Pµ, emphasizes the fact that Pµ is a
nonlinear operator that depends on the measure it is acting
upon.

We note how a Dirac measure δz, for some z ∈ Ω, behaves
under the action of Pµ in successive time steps. Since

k(x, ·) = 1
m(Bx)

χBx , we have Pµδz(A) = m(Bz∩A)
m(Bz) . That

is, an application of Pµ to the Dirac measure results in a
measure that is supported on the ball of radius r centered
at z. The operator Pµ so defined therefore has a ‘spreading
effect’.

We note a few important properties of the transition kernel
Kµ and the operator Pµ in the following lemma. The
proof is omitted as it is follows straightforwardly from the
definition.

Lemma 1. Kµ is a well-defined Markov kernel, that is, it
is a measure on Ω in the second variable and a measurable
function on Ω in the first. Further, Pµ : P(Ω) → P(Ω) is
a well-defined operator, it preserves absolutely continuous
measures.

To obtain an operator that acts on functions (densities),
specifically, C(Ω) instead of measures P(Ω), we carry out
the following computations. In view of the lemma above,
we must have that Pµµ is absolutely continuous w.r.t m,

suppose P̃fµfµ be its density. That is, for A ∈ B(Ω)

(Pµµ)(A) =

∫
A

(P̃fµfµ)(y)dy (9)



Applying Fubini’s theorem (Folland (2013)) to (9) and
equating to (8) we obtain∫
A

(P̃fµfµ)(y)dy =

∫
A

∫
Ω

afµ(x)χBx(y)k(x, y)dydµ(x) +∫
A

(1− afµ(x))dµ(x).

From the above equation we can write an expression for

P̃f as follows. For f ∈ C(Ω) we define P̃f on C(Ω) as

P̃ff(y) = P̃ 1
f f + P̃ 2

f f, where (10)

(P̃ 1
f f)(y) =

∫
Ω

af (x)k(x, y)χBx(y)f(x)dx+

(P̃ 2
f f)(y) = (1− af (y))f(y)

Next, we prove that P̃ indeed preserves C(Ω).

Lemma 2. P̃ : C(Ω)→ C(Ω) is well-defined.

Proof. Let f ∈ C(Ω). Owing to the property of k, it is

easy to see that P̃f preserves functions that integrate to 1.

Next, we will prove that P̃ff is continuous. We note that

the non-integral term P̃ 2
f f in (10) is trivially continuous,

hence, we will prove continuity of P̃ 1
f f . This integral term

is non-zero if af (y), af (z) > 0, which we assume to be true.

In order to prove continuity, we invoke the basic ε-δ
argument, that is, we will prove that for every ε > 0,
there exists a δ > 0, such that for all y, z ∈ Ω, whenever

|y− z| ≤ δ, |P̃ f(y)− P̃ 1
f f(z)| ≤ ε. Fix ε > 0. For y, z ∈ Ω,

|P̃ 1
f f(y)− P̃ 1

f f(z)| evaluates to:∫
Ω

(af (x)k(x, y)χBx(y)f(x)− af (x)k(x, z)χBx(z)f(x)) dx

≤ ‖k‖∞
∫

Ω

(f(x)− fd(x))(χBx(y)− χBx(z))dx

≤ ‖k‖∞‖f − fd‖sup
∫

Ω

(χBx(y)− χBx(z))dx. (11)

We have that,∫
Ω

χBx(y)dx = m (∪x∈Ω:y∈BxBx) = m(Br(y) ∩ Ω),

and similarly for the point z. Therefore,∫
Ω

χBx(y)− χBx(y)dx = m(Br(y) ∩ Ω)−m(Br(z) ∩ Ω)

= m(Br(y) ∩ Ω \Br(z))−m(Br(z) ∩ Ω \Br(y))

≤ m(Br(y) \Br(z))−m(Br(z) \Br(y))

It is easy to see that right hand side is bounded from

above by a function of δ = |y − z|. That is, if |P̃ 1
f f(y) −

P̃ 1
f f(z)| ≤ ε, then ε = g(δ), where g is a bijective function

that can be determined by geometry not included here for
the sake of brevity. Choosing δ = g−1(ε)/‖k‖∞‖f−fd‖sup
completes the continuity argument.

The operator P̃f trivially satisfies P̃fdf
d = fd. Moreover,

it satisfies P̃fd = I, in order to stop the agents from

transitioning between states at the target density fd. Next,
we will show that fd is a globally asymptotically stable
equilibrium of system (1).

Theorem 3. For the system (1), fd is globally asymptoti-
cally stable in the L1(Ω,m) norm.

Here only a sketch of the proof is provided, the theorem
will be proved for more general fd in the extension of this
paper Biswal et al. (2021).

Proof. (sketch) To start, we make the following observa-
tion. Consider the case when y ∈ Ω is such that it satisfies
fn(y) > fd(y). Then af (y) > 0. From the expression (10)
we obtain,

P̃fnfn(y) =

∫
Ω

afn(x)k(x, y)χBx(y)fn(x)dx+ fd(y).

The first term in the equation above is non-negative.
Therefore, only one of the following cases must be true.

fn+1(y) ≥ fn(y) > fd(y)
fn(y) > fn+1(y) ≥ fd(y).

(12)

That is, it is not possible for the function fn+1(y) < fd(y),
for any n. Next, consider the case when y ∈ Ω is such that
fn(y) ≤ fd(y). In this situation af (y) = 0. Expression (10)
then reduces to

P̃ fn(y) =

∫
Ω

afn(x)k(x, y)χBx(y)fn(x)dx+ fn(y). (13)

Similar to the previous case, attributing to the fact that
the first term is non-negative, only one of the following
must be true:

fn+1(y) ≥ fd(y) > fn(y)
fd(y) > fn+1(y) ≥ fn(y).

(14)

That is, in this case fn+1 monotonically increases.

For any given n, define the sets E1
n = {y ∈ Ω : fn(y) <

fd(y)}, E2
n = {y ∈ Ω : fn(y) = fd(y)} and E3

n = {y ∈
Ω : fn(y) > fd(y)}. By construction, Ω = E1

n t E2
n t E3

n;
moreover, these sets do not intersect one another. Since
each fn is a probability density on Ω, it must integrate
to 1 over E1

n t E2
n t E3

n. By definition, on E2
n fn = fd.

Therefore, to prove this result, it is sufficient to show that
on the set E1

n, ‖fn − fd‖1 → 0 as n → ∞, as this would
imply that on Ω, ‖fn − fd‖1 → 0 as n→∞.

On E1
n, by (14), we have that fn+1 ≥ fn, and hence

fd − fn ≥ fd − fn+1. Set Fn = (fd − fn)+, where for an
arbitrary function h : Rd → R, h+ denotes the positive
part of h. Then Fn is monotonically decreasing on Ω.
Moreover, since (Fn)n is bounded, this implies that Fn
converges pointwise to a function, say g. By the monotone
convergence theorem, we then have that

∫
Ω
Fn →

∫
Ω
g. If

g = 0, then we have our result. We will next prove by
contradiction that g is in fact 0.

Let g 6= 0, and let
∫

Ω
g ≥ γ > 0. Define S = {x ∈

Ω : g(x) > 0}. We note that the definition of S is
independent of time. Given the conditions in (12) and
(14), it follows that E1

n ⊃ E1
n+1 for all n. Due to the

convergence of Fn to g, we must have that for all n,
S ⊂ E1

n. Moreover, limn→∞m(E1
n) → m(S). Fix n, in

order to obtain a contradiction, the proof involves proving
that the measure that is pushed from (E1

n)c to S is greater
than γ contradicting the claim.

5. SIMULATIONS

In this section, we present stochastic simulations of the
system (1). Consider a population of N agents evolving



0

1

0.01

1

0.02

0.8

0.03

y

0.5 0.6

x

0.04

0.4
0.2

0 0

Fig. 1. Visualization of the bump functions

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

10
-4

Fig. 2. Target distribution

on a state space Ω. Denote the state of each agent k at
time n by XN

k (n) = xk, k = {1, . . . , N}. The empirical
measure µNn at time n is given by a normalized sum of
Dirac measures associated with each agent,

µNn =
1

N

N∑
k=1

δxk . (15)

The empirical measure, being a sum of Dirac measures,
does not have a density; that is, it is not absolutely con-
tinuous with respect to the Lebesgue measure. Therefore,

we cannot apply P̃ or P in (8), (10) to this quantity. In

order to be able to apply P̃ on this empirical measure, we
“mollify” the Dirac measures. Mathematically, this means
that the measure µN is convolved with a smooth function
φ : Rd → R, a mollifier. The convolution of µN and φ is
given by

φ ∗ µN =

∫
Ω

φ(x, y)dµN =

N∑
i=1

φ(x− xi). (16)

Therefore, the result of this convolution is a sum of smooth
functions, which is smooth. Loosely speaking, each Dirac
measure is replaced by a smooth function. We can now

apply P̃ or P to the right-hand side of this equation. We
note a few properties of a mollifier φ on Rd (Folland, 2013).
For some h > 0, define

φh(x) = h−dφ
(x
h

)
. (17)

We observe that
∫
φh is independent of h. Moreover, the

“mass” of φh becomes concentrated at the origin as h→ 0.
In our simulations, we have chosen the standard bump
function with a compact support:

φ(x) =

{
e
−
(

1
1−‖x‖2

)
, x ∈ (−1, 1)

0, otherwise.
(18)

Figure 1 shows a visualization of the bump functions of
size h = 0.1; each Dirac measure is now replaced by

a smooth approximating bump function. The definition

of P̃/P is pointwise description or strictly local. The
transition kernel K (7) is such that it requires a parameter
af (5) which is positive at some x ∈ Ω, only if the density
at x is higher than the target density’s value at x. However,
this description is not feasible practically. The mollification
procedure changes this local description to a non-local
description. Therefore, from an agent’s perspective, the
mollification of the empirical measure implies that each
agent estimates the density φ in (16) based on the relative
distance between itself and its neighbors that are within
a radius h. Therefore, as h→ 0, the bump function tends
to the Dirac measure and the interactions tend to being
local.

We now present stochastic simulations of agents evolving
on Ω ⊂ R2. In the example below, Ω is defined as the
unit square [0, 1]× [0, 1]. The target distribution is shown
in Fig. 2; it is set to be µd = sin2(2πx1) + sin2(2πx2),
where [x1 x2]T ∈ Ω. Agent population sizes of 100, 500,
and 1000 are simulated. The bump parameter h is set to
0.1. As explained in the previous paragraph, h determines
the area over which the agents interact; that is, each agent
considers another agent to be its neighbor as long as their
relative distance is within h. The radius r of the ball over
which k(x, ·) is positive is set to 0.1. The initial conditions
of the agent states were randomly chosen.

For each population size, Figs. 3, 4, and 5 show snapshots
of the time evolution of the agent distribution, as well as
the trajectories of five randomly selected agents. In the
agent trajectory plot, norm of the state is plotted against
time. We observe that as the population size increases,
the agent distribution becomes closer to the target dis-
tribution, and the agents’ frequency of switching between
states significantly decreases. This can be attributed to
the fact that we are approximating a continuous function,
the distribution, with a finite number of points, which
represent the agent positions. In summary, we have shown
that control policies designed using the mean-field model
can be implemented on a population of individual agents,
as long as this population is sufficiently large.

6. CONCLUSION

In this paper, we constructed a Markov process that con-
verges to an arbitrary distribution that has continuous
derivatives. This distribution need not be strictly positive
everywhere on the domain. Moreover, the Markov process
can be constructed such that agent transitions between
states at the equilibrium distribution is prevented. Al-
though the results were proven for the mean-field model,
we showed via stochastic simulations that for populations
of a few hundred agents, the agent distribution converges
fairly closely to the target distribution at equilibrium.
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