
A Visual Inertial Odometry Framework for 3D Points, Lines and Planes

Shenbagaraj Kannapiran†1, Jeroen van Baar2, and Spring Berman1

Abstract— Recovering rigid registration between successive
camera poses lies at the heart of 3D reconstruction, SLAM and
visual odometry. Registration relies on the ability to compute
discriminative 2D features in successive camera images for
determining feature correspondences, which is very challenging
in feature-poor environments, i.e. low-texture and/or low-light
environments. In this paper, we aim to address the challenge of
recovering rigid registration between successive camera poses in
feature-poor environments in a Visual Inertial Odometry (VIO)
setting. In addition to inertial sensing, we instrument a small
aerial robot with an RGBD camera and propose a framework
that unifies the incorporation of 3D geometric entities: points,
lines, and planes. The tracked 3D geometric entities provide
constraints in an Extended Kalman Filtering framework. We
show that by directly exploiting 3D geometric entities, we can
achieve improved registration. We demonstrate our approach
on different texture-poor environments, with some containing
only flat texture-less surfaces providing essentially no 2D
features for tracking. In addition, we evaluate how the addition
of different 3D geometric entities contributes to improved
pose estimation by comparing an estimated pose trajectory
to a ground truth pose trajectory obtained from a motion
capture system. We consider computationally efficient methods
for detecting 3D points, lines and planes, since our goal is to
implement our approach on small mobile robots, such as drones.

I. INTRODUCTION

Odometry and SLAM are critical for robots to navigate
in previously unseen environments. Although various solu-
tions are available [1], they rely on discriminative visual
features in color camera images in order to determine robust
correspondences. Texture-rich environments can provide the
necessary visual features and many encountered environ-
ments are texture-rich, e.g., outdoor environments. However,
other environments may lack texture almost completely,
e.g., stairwells and elevator shafts. In addition, even if the
environment is texture-rich, low light levels or atmospheric
conditions such as fog will negatively impact the ability to
compute robust correspondences.

Without good visual features in camera images, robots
will have to rely on other sensing modalities to provide 3D
measurements for registration and pose estimation. A popular
modality is LIDAR, which can provide a 360◦ point cloud
around the robot. However, LIDAR sensors are both expen-
sive and and, more importantly, heavy. In the case where the

†Work partially done during an internship at Mitsubishi Electric Research
Laboratories (MERL). This work was supported in part by the Arizona State
University Global Security Initiative.

1Shenbagaraj Kannapiran and Spring Berman are with the School
for Engineering of Matter, Transport and Energy, Arizona State
University, Tempe, AZ 85287, USA shenbagaraj@asu.edu;
spring.berman@asu.edu

2Jeroen van Baar is with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA 02139, USA jeroen@merl.com

Fig. 1. Registration result of point clouds from 93 frames with our proposed
framework using 3D points, 3D lines and 3D planes. The scene contains
texture-poor areas, which are difficult for methods that rely on 2D features
derived from color images.

robot is an Unmanned Aerial Vehicle (UAV), the weight of
a LIDAR sensor severely limits its feasibility as a payload.
RGBD cameras, on the other hand, are inexpensive and
lightweight, and thus a more desirable choice for obtaining
3D measurements. Although current 3D reconstruction and
SLAM approaches incorporate RGBD cameras and utilize
their depth information [2], these approaches still rely on
visual features from the color camera images.

Additional sensors, such as inertial measurement units
(IMUs), have been introduced to further assist 3D recon-
struction and SLAM. A major drawback of IMUs is drift in
their measurements due to integration of a slowly changing
bias instability and high-frequency noise. Relying mostly
on IMUs for registration, dead-reckoning accumulates er-
rors over time and can lead to registration errors that are
prohibitively large for accurate reconstruction and mapping.
Visual Inertial Odometry (VIO) frameworks [3] have been
introduced to reduce or eliminate this drift. In addition to
2D point features, 2D line features have been recently con-
sidered for VIO [4]. Assuming that the environment can be
(locally) approximated as a Manhattan-world configuration,
the approach relies on tracking 2D lines as features in the
camera images.

We propose a VIO framework that can handle texture-poor
environments and incorporates 3D geometric entities: 3D
points, 3D lines and 3D planes from point clouds obtained
with an RGBD camera. The 3D points themselves may be
prone to noise in the point cloud data, and fitting of 3D

lines and planes with robustness to outliers—due to noise—
helps to mitigate sensitivity to such noise. A major advantage
of our proposed approach, due to its reliance on depth
measurements rather than visual features, is its potential
to operate effectively in environments with fog, low-light
conditions, or man-made structures devoid of visual textures.
Moreover, our framework is agnostic to the particular RGBD
camera that is used to obtain the point clouds. Our focus is on
developing an approach which can be implemented on UAV
robots that can access relatively small spaces. This limits the
UAV size, and hence the size and weight of its payload. Our
contributions can be summarized as follows:

• Algorithms for detection and tracking of 3D points, 3D
lines and 3D planes in 3D point clouds, including meth-
ods to determine world space estimates from tracked 3D
entities in local camera frames; and

• A unified VIO framework that incorporates the tracked
3D points, 3D lines and 3D planes as geometric con-
straints in an Extended Kalman Filtering (EKF) frame-
work.

We next discuss related work, followed by a technical
description of our approach in Section III, and discussion of
experiments and results in Section IV. Section V concludes
the paper and provides an outlook on future work.

II. RELATED WORK

In this section, we give an overview of previous work
related to 3D reconstruction, SLAM and visual odometry.
Given the wealth of research in these fields, e.g., see [1], [5],
[6], a comprehensive overview is beyond the scope of this
paper. Feature matching and determining correspondences
lie at the heart of all these approaches. Several approaches
use monocular RGB(D) cameras to determine features and
correspondences. ORB-SLAM [7], [8] computes so-called
ORB features for matching, providing sparse correspondence
information. To ensure greater robustness to mismatches in
2D feature points, SLAM with points and planes [2], [9]
rely on both SIFT [10] (or alternatively SURF [11]) features
and plane correspondences. CPA-SLAM [12] incorporates a
plane-based approach using expectation-maximization (EM)
pose estimation and graph-based optimization for registra-
tion. More recent techniques use data-driven approaches,
e.g., [13], but still rely on correspondences from visual data.
An interesting data-driven registration approach samples cor-
respondences [14] in a deep learning framework. Although
featureless approaches are being investigated, e.g., [15], these
methods still rely on textures for template matching.

A. Methods for Low-Texture Environments

Classical methods rely on texture-rich environments for
computing visual features which are discriminative for
matching. Low-texture environments, however, cannot pro-
vide such features. Several approaches have been introduced
for low-texture environments. Pop-up SLAM [16] detects
wall and ground planes in single images and formulates
SLAM based on Pop-up 3D planes, while also incorporat-
ing sparse features when available. Newcombe et al. [17]

perform fast Iterative Closest Point (ICP) directly on depth
scans acquired with an RGBD sensor. Although this method
does not rely on features, scans between successive frames
have to overlap significantly to avoid incorrect ICP solutions.
The method proposed in [18] uses range flow and sparse
geometry features from depth maps directly to handle low-
texture environments. The method in [19] leverages point and
line features in dynamic Manhattan worlds by performing
dynamic object tracking, visual odometry, local mapping,
and loop closing. End-to-end deep learning approaches aim
to learn feature correspondences in depth maps [20]. A
major drawback of deep learning approaches is their reduced
accuracy in novel environments.

B. Inertial Odometry

Incorporating additional sensors besides cameras can fur-
ther improve results. The authors in [21] propose to com-
bine odometry or inertial sensor measurements with ORB-
SLAM to improve performance in low-texture environments.
MonoSLAM [22] introduced an Extended Kalman Filtering
(EKF) approach to SLAM, including the use of a gyro sensor.
Visual Inertial Odometry (VIO) [3], [23] also uses an EKF
framework to prevent drift by integrating constraints, i.e.
2D features, that are generated from visual information in
successive frames. Constraints from 2D lines [4] can be
added by assuming that the scene is locally Manhattan-world.
Similarly, there are other tightly coupled VIO techniques,
such as [24], [25], [26], [27], [28], that exploit points and
lines to reduce IMU drift and obtain optimized camera pose
estimates.

To handle low-texture environments, we build on the VIO
frameworks described in [3], [4], [23] and propose to directly
incorporate 3D geometric entities, i.e., 3D points, 3D lines
and 3D planes, computed from the point cloud provided by
an RGBD camera, into a single unified VIO framework. To
the best of our knowledge, this is the first such proposed
VIO framework.

III. VIO WITH 3D GEOMETRIC ENTITIES

In our VIO framework, the visual information, which is
incorporated as geometric constraints in an EKF, relies on
tracking a set of 2D correspondences, i.e., points and lines.
To compensate for the potential lack of texture, or visual
information necessary to determine 2D correspondences, we
directly utilize 3D information from the underlying geometry
instead. We first give a brief overview of the notation and
VIO framework using EKF and then describe our proposed
approach in more detail.

A. Notation and Prerequisites

We use the following notation and definitions. We identify
several coordinate spaces: the local coordinate frame I for
the inertial sensor; the local coordinate frame C for the
RGBD camera; and the world coordinate frame W. A (rigid)
transform M from a space A to another space B is denoted
by B

AM. Rotational matrices are denoted by R, and Rq is
obtained from a quaternion vector q̄ by the operation C(q̄).

The notation bV×c denotes a 3× 3 skew-symmetric matrix
from some 3-vector V. An estimated quantity is decorated
with a ˆ symbol, and an error quantity with ,̃ defining x̃ =
x− x̂ for some quantity x (e.g., a state vector).

The goal of VIO is to estimate IMU states in an EKF
estimation framework, and “ground” the estimates according
to visual features. The IMU state at time k is defined as
XIMUk

=
[
I
W q̄T bTg

WvT
I bTa

W pTI
]T

, whose components
are the rotation between the world and IMU frames, the gyro
bias, the IMU velocity in the world frame, the accelerometer
bias, and the IMU position in the world frame, respectively.
For the purpose of grounding, the EKF state estimate at
time k, X̂k, augments the IMU state with N camera poses:

X̂k =
[
X̂T

IMUk

C1

W
ˆ̄qT W p̂TC1

· · · CN

W
ˆ̄qT W p̂TCN

]T
(note theˆ).

In the EKF framework, state estimates are updated at each
time step as follows: X̂k+1 = X̂k + ∆X = X̂k + Kkrk,
where Kk denotes the matrix of Kalman gains, and rk is a
residual of the form

rk = HX̃k + noise. (1)

Here, H is the measurement Jacobian matrix, and the
noise is zero-mean Gaussian white noise, uncorrelated with
the state vector X. The IMU error-state is: X̃IMU =[
δθT

I b̃Tg
W ṽTI b̃Ta

W p̃TI

]T
, with the corresponding EKF

error-state: X̃ =
[
X̃IMU δθT

C1

W p̃TC1
· · · δθT

CN

W p̃TCN

]T
.

For some quantity x, the error x̃ here means x̃ = x − x̂.
The vectors δθT

Ci
are errors for the quaternions representing

camera poses i. The EKF error-state is an (15 + 6N)-
dimensional vector. For more details on the EKF framework,
we refer the reader to [23].

The measurement model relies on the notion that static
features are observed from multiple poses, which impose
constraints on the IMU estimates: the pose estimates should
be consistent with the observations of the (tracked) geometric
entities. Given Eq. (1), the objective is to determine the
measurement Jacobian matrix H. We will now describe how
to incorporate observations of 3D points, 3D lines and 3D
planes into a single framework for VIO.

B. Points in 3D

Given a pair of successive RGBD images, labeled source
and target, we compute Fast Point Feature Histogram (FPFH)
features [29] for the 3D points in the point cloud. The choice
of FPFH is based on the required computational efficiency,
given the necessity for real-time computation if deployed on
an actual UAV. We then use the FPFH features to determine
correspondences between 3D points in the source and target.

We denote the position of the 3D point j observed in frame
i as z(j)

i = Cipj = Ci

WRq̄(W pj −W pCi
). Since W pj is un-

known, it is estimated by tracking 3D point correspondences.
We denote this estimate as W p̂j and can obtain measurement
estimate ẑ(j)

i = Ci p̂j = Ci

WRq̄(W p̂j −W pCi
). We can define

the measurement residual as r(j)
i = z

(j)
i − ẑ

(j)
i .

In order to incorporate 3D points in the VIO measurement
model, we update the Jacobian of a measurement z(j)

i with

respect to the state, cf. Eq. (22) in [23], as follows:

H
(j)
Xi

=
[
03×15 03×6 · · · bCi p̂j×c −Ci

W Rq̄ · · ·
]
. (2)

The skew-symmetric matrix in Eq. (2) is obtained using
Lie theory [30]. Given a matrix R ∈ SO(3) and a function
y = f(R, x) = R · x, we compute:

∂y

∂R
=

∂

∂ω
|ω=0(exp(ω) ·R) · x

= −byc×,

where ω represents the parameters of so(3).
The Jacobian of z(j)

i with respect to feature position, cf.
Eq. (23) in [23], is

H
(j)
i = Ci

WRq̄. (3)

The residuals for all Mpt observations of 3D point j are then
stacked.

Given tracked correspondences for 3D point j in local co-
ordinate frame C, the estimate W p̂j can be easily determined
by taking the average over W p̂ij , i ∈ {1, ...,Mpt}, where
W p̂ij = (Ci

WRq̄)−1Cipj . We employ RANSAC to eliminate
potentially incorrect correspondences.

C. Lines in 3D

In addition to 3D points, we aim to incorporate 3D lines.
In the presence of noisy observations, fitting a line may
mitigate some of the noise. Furthermore, some scenes may
not provide many discriminative point features, e.g., if the
geometry consists of mostly planar wall regions. Our goal
is to incorporate 3D lines which are robust with respect
to several observations. Various 3D line finding techniques
have been introduced, e.g., [31], [32], [33]. To avoid an
expensive search, we identify only those lines for which the
points lie on a boundary between different depth values, as
determined from the depth map. Although we could use the
FPFH features computed for the 3D point correspondences,
instead for each 3D point we analyze the normals in a small
local neighborhood, and define a histogram-based feature
similar to SIFT features [10]. We group together all points
with similar features and fit a 3D line CiLj to them. The
line fitting procedure is based on Eigen analysis.

The authors in [4] parameterize lines with start and end
points. In the case of 3D lines, we would need to track
these 3D points and update them if they become occluded
or clipped by the camera field of view. To avoid having
to determine such corresponding anchor points for a line
between observations, we parameterize a line by its direction
d only. A line j is then transformed by:

z
(j)
i = CiLj = f(Ci

WRq̄,
W Lj)

= Ci

WRq̄ · W dj .

The Jacobians of z(j)
i with respect to the state and feature

position are then:

H
(j)
Xi

=
[
03×15 03×6 · · · − bCi d̂j×c 03×3 · · ·

]
, (4)

H
(j)
i = Ci

WRq̄. (5)

Fig. 2. Two views of the instrumented UAV illustrating the locations of
the (a) RGBD camera (in red box), and (b) IMU (in green box). Additional
on-board compute devices are for future use.

The residuals for all Mln observations of 3D lines j are then
stacked.

As for 3D points, the 3D line estimate W d̂j can be deter-
mined by averaging the observations in the world coordinate
frame for the 3D line j. Tracking lines between different
observations is performed by comparing line directions in
the world coordinate frame, and designating those with direc-
tions within some threshold as corresponding lines. However,
this may potentially designate lines with similar directions,
but different 3D positions, as corresponding. To prevent this,
for a given line Lj we determine the 3D points which support
the 3D line, denoted as PLj

= {p1, · · · , pm}Lj
. First, lines

with |PLj | < τ , where τ is chosen as the threshold to
determine the number of inliers are discarded, since we found
empirically that they cannot be robustly matched. Second, for
two lines Lj , Lk we can use the associated PLj

and PLk
to

calculate Euclidean distances. If the distance is within some
threshold, lines Lj , Lk are flagged as corresponding, and
non-corresponding otherwise.

D. Planes in 3D

Finally, we also consider 3D plane entities for the VIO.
Planes can further mitigate uncertainty due to noise for points
and lines. The treatment of 3D planes in this framework
follows that of lines. The main difference between lines and
planes is that we parameterize the planes by their normal
direction.

The Jacobians of z(j)
i wtih respect to the state and feature

position are now:

H
(j)
Xi

=
[
03×15 03×6 · · · − bCi n̂j×c 03×3 · · ·

]
, (6)

H
(j)
i = Ci

WRq̄, (7)

where n denotes the plane normal. The residuals for all Mpl

observations of 3D planes j are then stacked.
Tracking 3D plane correspondences across observations

occurs in the same way as for 3D lines, including the
calculation of supporting 3D points for the plane. Planes
with the number of supporting points lower than a threshold
are discarded for the same robustness reason as lines (see
above).

E. Dimensionality Reduction

For a world coordinate frame feature W f , i.e., a 3D point,
line or plane, we have that r(j) ' H

(j)
X X̃+H(j)W f̃+noise.

In order to formulate the residual in the form of Eq. (1), we
perform the same nullspace projection as in [3], resulting in
the (stacked) residuals r(j)

o and Jacobian H
(j)
o for a feature j.

Prior to the nullspace projection, the Jacobian is a (3M (j)×
3)-dimensional matrix, and after projection, its dimensions
are ((3M (j) − 3) × 3). Here M (j) denotes the number of
observations for an entity j: a point, line or plane.

If we assume that ∀j, M (j) = M = Mpt = Mln = Mpl,
then given Npt 3D points, Nln 3D lines and Npl 3D planes,
the final stacked Jacobian matrix, by combining all entities,
is ((Npt+Nln+Npl)(3M−3)×3)-dimensional. It is evident
that dimensionality reduction via QR decomposition is essen-
tial for reducing the computational complexity. We follow the
same approach as in [3] for reducing the dimensionality.

F. EKF Updates

We now have the necessary information to compute the
desired Kalman gains to perform an EKF update, i.e., deter-
mine the updated state and covariance estimates. In addition
to augmenting the EKF state, the arrival of a new observation
also augments the covariance matrix necessary for the EKF
updates. In the next section, we perform an evaluation of our
proposed framework.

IV. EXPERIMENTS

We first provide a short description of the experimental
hardware platform, and then describe the results of exper-
iments we conducted to demonstrate the effectiveness of
incorporating 3D points, lines and planes.

A. Experimental Hardware Platform

We instrumented a UAV with an IMU and RGBD camera.
The IMU is an Adafruit 9-DOF Absolute Orientation IMU
Fusion Breakout - BNO055, providing IMU readings at
100 Hz. The RGBD camera is an Intel RealSense D435
that acquires data at 10 Hz1. The experimental hardware is
shown in Figure 2. We employed IMU-camera calibration
as proposed by [34], [35]. The IMU-camera calibration also
provides estimation for the camera’s intrinsic parameters. We
used all the depth frames produced by the RGBD camera,
around 150 frames for each experiment. The compute time
of registration between adjacent frames was around 5 s using
non-optimized Python code; we expect that C++ code with
modest optimization could run at an interactive rate. Due
to restrictions, the results in this paper were obtained by
manually moving the experimental UAV platform.

B. Results

Quantitative Results. We want to evaluate how incorpo-
rating different 3D geometric entities improves the accuracy
of registration for a given texture-poor scene. The scene
is shown in Figure 3(a). In order to be able to perform

1The IMU and camera are integrated in the Intel RealSense D435i, but
we did not have access to that model.

Fig. 3. Point cloud registration results for two environments. (a) Box Scene, (b) registered point clouds for Box Scene from 125 frames, (c) Hallway
Scene, (d) registered point clouds for Hallway Scene from 59 frames.

TABLE I
COMPARISON OF RMSE, THE AVERAGE DEVIATION FROM THE GROUND

TRUTH TRAJECTORY, FOR DIFFERENT COMBINATIONS OF 3D ENTITIES.

Points Lines Planes Pos. RMSE (m) Rot. RMSE (rad)
- - - 0.02465 0.00728
X - - 0.01547 0.00379
- X - 0.01553 0.00380
- - X 0.01554 0.00378
X X - 0.00235 0.00387
X - X 0.00235 0.00388
- X X 0.00548 0.00386
X X X 0.00233 0.00388

a quantitative comparison, we used an OptiTrack motion
capture system [36] to track six infrared reflective markers
mounted on the UAV, using 34 cameras operating at 120 Hz.
The motion capture system produces a pose trajectory, i.e. 3D
locations and orientations, of the UAV and we refer to this as
ground truth. The results are summarized in Table I. Columns
four and five report position and orientation RMS errors,
respectively, between the ground truth and the position and
orientation estimated by our framework. Each row indicates
which 3D entities are incorporated, except for the first row
where we rely on the IMU only, or dead-reckoning. The
errors are largest when none of the 3D entities are used. The
errors are nearly identical when only one of the entities is
incorporated. When incorporating 3D points and lines, and
3D points and planes, the errors improve. However, omitting
3D points but incorporating 3D lines and planes results in an
increased RMS error. A possible explanation for this is that
the lines and planes do not sufficiently constrain all degrees
of freedom in our framework, resulting in drift. Finally, the
inclusion of all three entities gives the lowest RMS error.
We point out that although these are RMS errors, as more
input data are processed, the accumulation of errors causes
the estimated trajectory of the UAV to drift more. As is
evident from Table I, apart from the case when none of
the entities are incorporated, the rotational RMS errors do
not vary significantly among the different combinations. One
explanation for this is the fact that the gyroscope provides
more accurate measurements compared to the accelerometer.

Qualitative Results. Figure 3 shows results of registration
for two different environments. The first environment, the
Box Scene shown in Fig. 3a, was constructed by arrang-
ing several cardboard boxes and foam boards to create a

challenging, feature-poor scene. We discussed quantitative
results for this environment above. The registration result
shown in Fig. 3b is for 125 registered point clouds. The
second environment is a Hallway Scene, depicted in Fig.
3c. The result in Fig. 3d is from 59 registered point clouds.
Although the hallway scene is texture-rich, we only rely on
3D entities from the point cloud data. Both environments
show qualitatively good registration results.

Figure 4 shows an example of detected 3D points, lines
and planes for the Box Scene (Fig. 3a). In general, the
number of detected lines and planes will be low. On the other
hand, there may be an abundance of 3D points, which would
create an imbalance and cause our framework to mainly be
corrected by the 3D points. To avoid this imbalance, we limit
the number of points for registration by dividing the point
cloud of the observed scene into cells and only using a small
number of points per cell. The cell size and number of points
are hyperparameters that are determined by the user.

To verify whether the lack of texture in the Box Scene
indeed hindered 2D visual feature tracking, we employed
ORB-SLAM2 [8] to recover the poses of the UAV and to reg-
ister the point clouds. We found, however, that ORB-SLAM2
was not able to compute the necessary discriminative features
for matching and failed entirely.

In general, the accuracy of our method hinges on the
quality of the point clouds and the ability to extract 3D
features from them.

V. CONCLUSION

We have presented a unified framework to incorporate
3D points, lines and planes for Visual Inertial Odometry.
Our approach is suitable for environments which lack tex-
ture for computing 2D correspondences, which most prior
methods rely on. Our experiments show that by incorpo-
rating all three primitives, we can increase the accuracy
of registration between subsequent frames. The depth or
point clouds acquired with a RGBD camera suffer from
noise, and tracking 3D points may be sensitive to such
noise. By additionally estimating 3D lines and 3D planes,
this noise can be mitigated. To avoid having to estimate
so-called anchor points for 3D lines and planes, we only
consider the directions of these entities. We thus require 3D
lines and planes in different directions to constrain all three
dimensions if we cannot robustly track 3D points. However,

Fig. 4. (Clockwise, from top-left:) Box Scene, detected points, detected
lines and detected planes. To avoid an imbalance due to a relatively large
number of points, we limit the number of points for registration by dividing
the point cloud into cells and only using a small number of points per cell.
The numbers of lines and planes tend to be low, and thus are not restricted.

in some parts of an environment there may not be enough
information to estimate 3D lines and planes in different
directions. In such cases, we can always fall back on dead
reckoning with the IMU until the necessary conditions are
met again, at the expense of some drift. For future work, we
would like to implement our framework on an autonomous
UAV and further demonstrate its usefulness in texture-poor
environments.

REFERENCES

[1] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An overview to
visual odometry and visual SLAM: Applications to mobile robotics,”
Intelligent Industrial Systems, vol. 1, no. 4, pp. 289–311, 2015.

[2] Y. Taguchi, Y. Jian, S. Ramalingam, and C. Feng, “Point-plane SLAM
for hand-held 3D sensors,” in IEEE Intl. Conf. on Robotics and Autom.,
2013, pp. 5182–5189.

[3] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in IEEE Intl. Conf. on
Robotics and Autom., 2007, pp. 3565–3572.

[4] D. Zou, Y. Wu, L. Pei, H. Ling, and W. Yu, “StructVIO: Visual-inertial
odometry with structural regularity of man-made environments,” IEEE
Transactions on Robotics, vol. 35, no. 4, pp. 999–1013, 2019.

[5] B. Huang, J. Zhao, and J. Liu, “A survey of simultaneous localization
and mapping,” arXiv preprint arXiv:1909.05214, 2019.

[6] S. Yuan, H. Wang, and L. Xie, “Survey on localization systems and
algorithms for unmanned systems,” Unmanned Systems, vol. 9, no. 02,
pp. 129–163, 2021.

[7] R. Mur-Artal, J. Montiel, and J. Tardos, “ORB-SLAM: a versatile and
accurate monocular SLAM system,” IEEE Transactions on Robotics,
vol. 31, pp. 1147 – 1163, 10 2015.

[8] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[9] L. Zhang, D. Chen, and W. Liu, “Point-plane SLAM based on line-
based plane segmentation approach,” in IEEE Intl. Conf. on Robotics
and Biomim., 2016, pp. 1287–1292.

[10] D. G. Lowe, “Object recognition from local scale-invariant features,”
in IEEE Intl. Conf. on Comp. Vision, vol. 2, 1999, pp. 1150–1157
vol.2.

[11] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust
features,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof,
and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 404–417.

[12] L. Ma, C. Kerl, J. Stückler, and D. Cremers, “CPA-SLAM: consistent
plane-model alignment for direct RGB-D SLAM,” in IEEE Intl. Conf.
on Robotics and Autom., 2016, pp. 1285–1291.

[13] C. Duan, S. Junginger, J. Huang, K. Jin, and K. Thurow, “Deep
Learning for Visual SLAM in Transportation Robotics: A review,”
Transp. Safety and Env., vol. 1, no. 3, pp. 177–184, 01 2020.

[14] L. Ding and C. Feng, “DeepMapping: Unsupervised map estimation
from multiple point clouds,” in IEEE/CVF Conf. on Comp. Vision Patt.
Recog., June 2019.

[15] M. Milford and A. George, Featureless Visual Processing for SLAM
in Changing Outdoor Environments. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 569–583.

[16] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up SLAM: Semantic
monocular plane SLAM for low-texture environments,” in IEEE/RSJ
Intl. Conf. on Intell. Robots and Sys., 2016, pp. 1222–1229.

[17] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
IEEE Intl. Symp. on Mixed Augm. Real., 2011, pp. 127–136.

[18] S. Zhao and Z. Fang, “Direct depth SLAM: Sparse geometric feature
enhanced direct depth SLAM system for low-texture environments.”
Sensors (Basel), vol. 18, no. 10, 2018.

[19] J. Liu, Z. Meng, and Z. You, “A robust visual SLAM system
in dynamic man-made environments,” Science China Technological
Sciences, vol. 63, no. 9, pp. 1628–1636, 2020.

[20] G. Georgakis, S. Karanam, Z. Wu, J. Ernst, and J. Kosecka, “End-to-
end learning of keypoint detector and descriptor for pose invariant 3D
matching,” in IEEE/CVF Conf. on Comp. Vision and Patt. Recog., Los
Alamitos, CA, USA, June 2018, pp. 1965–1973.

[21] B. A. C. Caldato, R. A. Filho, and J. E. C. Castanho, “ORB-ODOM:
Stereo and odometer sensor fusion for simultaneous localization and
mapping,” in Latin Amer. Robotics Symp., 2017, pp. 1–5.

[22] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
real-time single camera SLAM,” IEEE Trans. on Patt. Anal. Machine
Intell., vol. 29, no. 6, pp. 1052–1067, June 2007.

[23] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” Technical Report, 2006.

[24] F. Zheng, G. Tsai, Z. Zhang, S. Liu, C.-C. Chu, and H. Hu, “Trifo-
VIO: Robust and efficient stereo visual inertial odometry using points
and lines,” in IEEE/RSJ Intl. Conf. on Intell. Robots and Sys., 2018,
pp. 3686–3693.

[25] K. Jung, Y. Kim, H. Lim, and H. Myung, “ALVIO: Adaptive line and
point feature-based visual inertial odometry for robust localization in
indoor environments,” arXiv preprint arXiv:2012.15008, 2020.

[26] X. Luo, Z. Tan, and Y. Ding, “Accurate line reconstruction for point
and line-based stereo visual odometry,” IEEE Access, vol. 7, pp.
185 108–185 120, 2019.

[27] H. Wen, J. Tian, and D. Li, “PLS-VIO: Stereo vision-inertial odometry
based on point and line features,” in Intl. Conf. on High Performance
Big Data and Intelligent Systems (HPBD&IS). IEEE, 2020, pp. 1–7.

[28] X. Li, Y. Li, E. P. Örnek, J. Lin, and F. Tombari, “Co-planar
parametrization for stereo-SLAM and visual-inertial odometry,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6972–6979, 2020.

[29] R. B. Rusu, “Semantic 3D object maps for everyday manipulation
in human living environments,” Ph.D. dissertation, Computer Science
department, Tech. Universitaet Muenchen, Germany, October 2009.

[30] B. Hall and B. Hall, Lie Groups, Lie Algebras, and Representations:
An Elementary Introduction, ser. Graduate Texts in Mathematics.
Springer, 2003.

[31] L. Xiaohu, L. Yahui, and L. Kai, “Fast 3D line segment detection from
unorganized point cloud,” arXiv preprint arXiv:1901.02532, 2019.

[32] H. Ni, X. Lin, X. Ning, and J. Zhang, “Edge detection and feature
line tracing in 3D-point clouds by analyzing geometric properties of
neighborhoods,” Remote Sensing, vol. 8, no. 9, 2016.

[33] C. Dalitz, T. Schramke, and M. Jeltsch, “Iterative Hough Transform
for Line Detection in 3D Point Clouds,” Image Processing On Line,
vol. 7, pp. 184–196, 2017.

[34] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,
“Extending kalibr: Calibrating the extrinsics of multiple IMUs and of
individual axes,” IEEE Intl. Conf. on Robotics and Autom., pp. 4304–
4311, 2016.

[35] R. S. J. Maye, P. Furgale, “Self-supervised calibration for robotic
systems,” IEEE Intell. Vehicles Symp., pp. 473–480, 2013.

[36] OptiTrack, “Robotics applications,” 2021, last accessed: July 2021,
https://optitrack.com/applications/robotics.

