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Abstract

One potential application of multi-robot systems is collective transport,

a task in which multiple robots collaboratively move a payload that is

too large or heavy for a single robot. In this review, we highlight

a variety of control strategies for collective transport that have been

developed over the past three decades. We characterize the problem

scenarios that have been addressed in terms of the control objective,

the robot platform and its interaction with the payload, and the robots’

capabilities and information about the payload and environment. We

categorize the control strategies according to whether their sensing,

computation, and communication functions are performed by a cen-

tralized supervisor or specialized robot or autonomously by the robots.

We provide an overview of progress toward control strategies that can

be implemented on robots with expanded autonomous functionality in

uncertain environments using limited information, and we suggest di-

rections for future work on developing such controllers.
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1. INTRODUCTION

In many applications that are suitable for robotic systems, in that they involve repetitive

actions or take place in hazardous or remote locations, an object must be transported to

a new location, manipulated into a new configuration, or accelerated to a target velocity.

Examples of such applications include construction, manufacturing, assembly in space and

underwater, transportation and delivery, search-and-rescue operations, disaster response,

mining, and even biomedical applications at the micro-nanoscale (1, 2). When the payload

is too large, bulky, or heavy to be moved by a single robot, a group of robots can be deployed

to achieve the desired objective by exerting forces on the payload simultaneously or in quick

succession, as illustrated in Figure 1. This task is described in the literature as transport or

manipulation, with the modifiers collective, cooperative, coordinated, collaborative, or group

used to indicate that the payload’s movement is produced by the efforts of multiple robots.

In this review, we refer to the task as collective transport or cooperative manipulation.

Controllers for cooperative object manipulation were first designed in the late 1980s and

early 1990s for two or three stationary robotic manipulators with multiple degrees of freedom

(DOFs). The accelerated development of mobile robots in the mid-1990s led to research on

control of collective transport by groups of mobile robots. The proposed controllers often

required reference inputs (such as a target payload location or trajectory) and information

about the system parameters and state (such as geometric and inertial properties of the

payload and measurements of its position and velocity) that the robots can only obtain from

an external observer or a specialized teammate, i.e., a centralized node. These requirements

limit the robots’ ability to operate autonomously during transport using their own sensor

data and computations and enforce their dependence on potential single points of failure.

In this review, we provide an overview of control strategies for collective transport that

have been developed over the past three decades in terms of the extent of autonomous

functionality that they implement in the robot transporters. The organization of the liter-

ature from this perspective distinguishes this review from previous reviews, which classify

collective transport strategies according to the type of controller employed (3) or the in-

teraction mechanisms between the robots and the payload, such as pushing, grasping, and

caging (4, 5). In Section 2, we characterize collective transport problems in terms of the

control objective, the type of robot platform, kinematic constraints between the robots and

payload, and assumptions about the robots’ capabilities and information about the pay-

load and environment. We review control strategies that have been developed to address

these problems in Section 3, categorizing the controllers according to the degree to which

their sensing, computation, and communication functions are centralized. In Section 4,

we discuss the state of the art in work toward controller design for collective transport in

uncertain, unstructured environments, which require more autonomous functionality by the

robot transporters. We conclude in Section 5 with potential directions for future research

on control strategies for such environments.

2. PROBLEM DESCRIPTION

Controllers for multirobot collective transport have been designed for different problem

scenarios, which we characterize here in terms of the control objectives of the transport

task, the type of robot platform used in the transport team, the kinematic constraints on

the composite robot-payload system, the robots’ sensing and communication capabilities,

and the robots’ information about the payload and the environment.
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Figure 1

A planar collective transport task performed by four robots in a bounded domain containing

obstacles. Each robot is attached to the payload with a one-degree-of-freedom manipulator.

2.1. Transport Control Objectives

Prior works on control strategies for collective transport have generally focused on achieving

one or more of the following objectives. Common primary objectives are to stabilize the pay-

load’s configuration and/or velocity to specified reference values, e.g., to move the payload

to a target location, or to drive these variables to track reference trajectories. Secondary

objectives, which enable the robots to complete the primary objectives, include regulating

or minimizing the interaction forces between the robots and the payload in order to prevent

excessively large forces that could damage the payload or the robots, and avoiding collisions

with obstacles in partially or fully unknown environments. In the case where the control

strategy requires explicit inter-robot communication, another secondary objective may be

the maintenance of a connected communication network among the robots.

2.2. Type of Robot Platform

Collective transport control strategies have predominantly been developed for nonholonomic

wheeled mobile robots, which have nonholonomic constraints between their rotational and

translational motion. In some works, the robots move the payload by pushing against it with

their mobile bases, while in others, the robots are each equipped with a one-DOF gripper

or pincer that they use to grasp the payload. Many works propose controllers for mobile

manipulators, which are composed of a mobile base with a multi-DOF manipulator mounted

on top. Mobile manipulators are designed to have sufficient redundancy in their degrees of

freedom to control the configuration and velocity of the robots and the payload as well as

regulate the interaction forces between each robot and the payload. More recently, mobile

robots with three or four omnidirectional wheels and a pincer or multi-DOF manipulator

have been used for collective transport. Such omnidirectional robots have unconstrained

kinematics. In addition to ground robots, collective transport strategies have been designed
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for aerial robots (6), surface vehicles (7, 8), and underwater robots (9, 10).

2.3. Kinematic Constraints Between the Robots and Payload

The robots’ attachment to the payload introduces kinematic constraints on the motion of the

composite robot-payload system. The type of attachment determines the number of DOFs

of the entire system and governs the motion of the robots with respect to the payload. Early

works on cooperative object manipulation by stationary manipulators typically assumed a

rigid grasp between each end effector and the payload, for which the end effector’s position

and orientation relative to the payload’s configuration remain constant. Each attachment

of this type eliminates six DOFs from the total number of DOFs of the robot-payload

system in its configuration space, and thus the manipulators must be highly redundant in

order to perform the task while avoiding deadlock configurations. Given this limitation,

researchers considered another type of attachment called a point grasp, for which the end

effector’s position relative to the payload’s center of mass remains constant while its relative

orientation about one axis can change; i.e., the end effector is connected by a pin joint at a

unique point. This type of attachment is mostly used for planar manipulation tasks, rather

than manipulation in three-dimensional space.

To simplify the controller design and analysis, robots performing collective transport

are often modeled as point masses with double-integrator dynamics. For robots represented

as point masses, a point contact models a rigid attachment of a robot to the payload. In

some collective transport control strategies, particularly ones designed for large populations

of expendable, interchangeable robots called robotic swarms, the robots repeatedly attach

to and detach from the payload, changing the composition of the transport team over time.

Due to these transient contacts with the payload, time-invariant kinematic constraints on

the robot-payload system cannot be derived.

2.4. Robot Sensing and Communication Capabilities

The robots’ onboard sensors and communication devices, as well as any measurements that

they can obtain from external instruments, are key specifications in the formulation of

collective transport problems. In this section, we summarize common assumptions in prior

work about the capabilities of the robots.

Feedback controllers are used to stabilize the position, orientation, translational veloc-

ity, and angular velocity of a mobile robot to reference values or trajectories. The time

evolution of these state variables is given by the solution of a dynamical model describing

the robot’s motion, of which several candidates are described in the previous subsection. To

execute these controllers, the robot must obtain measurements or estimates of the current

values of these variables. One approach is to receive this information from an external

localization system, such as GPS or an indoor positioning system. For example, in indoor

settings, the robots and payload can be localized by tagging them with identification mark-

ers and tracking the markers in real-time using an overhead camera and image-processing

algorithms. Another approach is for the robots to measure or estimate the variables using

their onboard sensors and computational devices. Mobile robots can use odometry sensor

measurements (e.g., from wheel encoders) fused with data from inertial measurement units

to improve the accuracy of their estimated configuration. Robotic manipulators can use

encoders and tachometers to measure their joint angles and joint rates, respectively, in or-

der to determine the position and velocity of their end effector with respect to their base,
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which is a mobile robot in the case of a mobile manipulator. Moreover, mobile manipulators

can measure interaction forces using a force sensor at the robot’s attachment point on the

payload.

Many collective transport strategies require the robots to explicitly communicate infor-

mation to one another using a wireless ad hoc network or a central router that establishes

connections between the robots. This information often consists of the robots’ configura-

tions and velocities, and can include estimates of the payload’s state variables and geometric

and dynamic parameters if they are unknown and are needed to implement the robots’ feed-

back control laws. Using communication protocols that are designed to achieve consensus

(11), the robots can arrive at common estimate of the payload’s position, velocity, mass,

and other properties. Additionally, interrobot communication can be introduced to improve

the stability properties of adaptive control strategies for collective transport (12).

2.5. Information About the Payload and Environment

Most works on collective transport assume that the robots have prior information about the

dynamics and geometry of the payload or that they obtain this information during transport

through sensor measurements or communication. The payload’s mass and moment of inertia

are commonly assumed to be known to the robots. Many transport strategies that employ

centralized control require that all robots know the magnitude and orientation of the vector

from the payload’s center of mass to the attachment point of each robot on the payload

(the vectors rBi in Figure 1), e.g., in order to compute the grasp matrix (13). In works

where the control objective is trajectory tracking by the payload, it is common to assume

that the robots regularly receive measurements of the position and velocity of the payload’s

center of mass and the payload’s orientation and angular velocity during transport. These

measurements are usually transmitted to the robots by a global observer or a “leader robot.”

Information about the environment, in particular a map of the free space where the

transport team can travel, is implicitly assumed in most research on collective transport.

In many works, reference trajectories for the configuration and velocity of the robots and/or

payload are computed offline by a motion planner, which generates collision-free, reachable

trajectories based on prior information about obstacles and inaccessible regions in the en-

vironment. In a few works, the transport team includes a “leader robot” that has this prior

information (whereas the other robots do not) and assumes the role of the motion plan-

ner. The leader robot is given the reference trajectory offline, or in some cases computes

this trajectory online while the transport team moves the payload. The leader explicitly

communicates the next waypoint on the trajectory to the follower robots, or it conveys this

information through implicit communication, in which the followers estimate the leader’s

intended motion using their local sensor measurements. A few recent works have consid-

ered scenarios in which none of the robots are assigned desired trajectories for the robots

or payload, as discussed in Section 4.

3. EXISTING CONTROL APPROACHES

In this section, we review control strategies for collective transport that have been developed

for the problem scenarios characterized in Section 2. The control strategies can be broadly

classified according to their degree of reliance on a single component of the system for the
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following functions: acquisition of sensor measurements, computation of control commands

based on this sensor feedback, and communication of these commands to the robots’ ac-

tuators to move the payload. In a given control strategy, each of these functions may be

centralized, meaning that it is performed by a single stationary or mobile unit, or decentral-

ized (also called distributed), meaning that each robot performs the function independently

using its own onboard resources, possibly incorporating information that is explicitly shared

by other robots within its local communication range. Centralized functions may be per-

formed by a supervisory agent (14) that does not physically participate in the transport

(i.e., operates externally to the transport team) or by a member of the transport team

called a “leader robot” which has particular sensing, computation, communication, and/or

actuation capabilities that the other team members—the “follower robots”—lack. In the

second case, the control strategy is called a leader-follower controller.

The dependence of a controller on centralized functions reduces its robustness to errors,

failures, and disturbances, since a component that performs such a function is a potential

single point of failure; its loss would render the entire system inoperative. Decentralized

functions introduce redundancy into the system’s operation, thereby improving its robust-

ness properties. Moreover, decentralized functions can be performed by robots with local

sensing and communication capabilities and are scalable with the number of robots, mak-

ing them particularly suited to implementation on robotic swarms. These advantages have

motivated the development of collective transport controllers with decentralized functions.

The following subsections group existing controllers for collective transport into three

categories, depending on whether their sensing, computation, and communication functions

are centralized or decentralized. If the three functions are all centralized or all decentralized,

then we refer to the controller as fully centralized or fully decentralized, respectively. If at

least one of the functions is decentralized and the other(s) are centralized, we refer to

the controller as partially decentralized. We note that the robot control laws in the fully

decentralized strategies may require a reference input that is provided offline, such as the

target payload position or velocity.

3.1. Fully Centralized Controllers

Fully centralized control schemes rely on models of the kinematics and dynamics of the

robots and payload and measurements of their configurations and velocities, and possibly

the interaction forces between the robots and the payload. A supervisory agent obtains

these measurements and uses them to compute control commands, which it then transmits

to the robots. The first controllers for cooperative manipulation, developed for stationary

robotic manipulators in the late 1980s and early 1990s, were fully centralized. One of

the earliest works extended a hybrid position/force controller, originally designed for a

single manipulator, to multiple manipulators (15). Feedback linearization via a nonlinear

feedback control law, which was motivated by the widely used computed torque method, was

frequently applied to obtain decoupled linear closed-loop dynamical models for the robots

and the payload (16, 17).

Schneider & Cannon (18) proposed a cooperative manipulation strategy based on

impedance control of the payload, in which the manipulators control the payload’s motion

such that it tracks a specified impedance behavior as it converges to a desired configuration.

Multiple impedance control, proposed by Moosavian & Papadopoulos (19), is a modification

of this technique that controls the impedance behavior of the manipulators as well as the
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payload for improved stability properties. Chang et al. (20) presented the augmented object

model, an equivalent model for the dynamics of the composite manipulator–object system

that inherits the configuration space of the object. A controller that is designed to achieve

a desired objective in the augmented object model, such as position regulation, trajectory

tracking, or impedance control, will impose the same behavior on the manipulated object.

Nikou et al. (21) presented a centralized nonlinear model predictive controller for cooper-

ative manipulation. This controller requires a mathematical model of the kinematics and

dynamics of every robot and the robot–payload system, as well as information about the

location and geometry of each obstacle in the environment. The energy-optimal controller

developed by Verginis & Dimarogonas (22) is a centralized strategy that minimizes the

internal forces, which are the components of the interaction forces that do not contribute

to the payload’s motion.

Centralized control approaches have also been proposed for collective transport by

robotic swarms. Becker et al. (23) used a single input signal to steer a swarm of robots

around an environment and push an object encountered by the swarm to a target con-

figuration. Another example is the controller presented by Shahrokhi et al. (24), where

an external observer (a human or a central computer) tracks the mean position and mean

velocity of the robots in the swarm and communicates appropriate control commands to

the robots in order to push the payload toward a target location.

3.2. Partially Decentralized Controllers

Leader-follower controllers with decentralized components began to be developed in the late

1990s and early 2000s. Many works delegated certain functions of the central supervisory

unit to one or more “leader robots” which, unlike the follower robots, may have information

about the transport team, the payload, and the environment. Some leader-follower control

schemes employ centralized sensing and communication with decentralized computation:

The leader acquires data (through its own measurements) on the payload’s position and

velocity and transmits this information to the followers, which calculate and execute the

control commands using their onboard processors. Other leader-follower strategies use de-

centralized sensing with centralized computation and communication: Each follower collects

data with its onboard sensors and transmits these measurements to the leader, which then

calculates the control commands and sends them back to the followers to execute.

One of the earliest leader-follower controllers for collective transport, proposed by Stil-

well & Bay (25), does not rely on explicit interrobot communication. In this control strategy,

the leader knows the target direction of transport and applies a force to drive the payload

in this direction. The followers estimate the leader’s intended direction of motion through

force sensor measurements at their points of contact with the payload, stabilize the pay-

load’s rotation, and move it in this direction. Kosuge et al. (26, 27) employed a similar

strategy, in which the robot dynamics are modeled by a first-order differential equation

under the assumption that each robot’s velocity is controlled with appropriate feedback

compensation. Chaimowicz et al. (28) and Sugar & Kumar (29) proposed controllers that

maintain prescribed forces at the robots’ attachment points on the payload. The controllers

rely on explicit communication between the leader and the followers, and different robots

can assume the leadership role during transport; e.g., a follower that detects an obstacle

can request leadership in order to avoid it.

The leader-follower strategy used by Wang & Schwager (30, 31) is a consensus-based
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approach that does not rely on explicit communication between the robots. The leader

knows the desired payload trajectory to the goal and can exert a torque on the payload and

measure its angular velocity, and the followers use their local measurements of the payload’s

motion to reach a consensus on the magnitude and the direction of their applied forces. In

another work by the same authors (32), the leader—which could be a robot or a human

teleoperator or physical teammate—applies a force to move the load over a predefined path,

and the followers estimate the direction of the object movement using force measurements

at their attachment points and apply forces in this estimated direction to assist the leader.

Tsiamis et al. (33) employed a similar strategy, in which the leader achieves a desired

trajectory tracking behavior via an impedance control law, and the followers estimate the

leader’s intended motion using a prescribed performance estimator and apply a similar

impedance control law.

Another approach, presented by Yufka & Ozkan (34), considers the payload to be the

leader; the followers (the transporting robots) use a path-planning approach to preserve

their initial positions and orientations with respect to the virtual leader (the payload) during

the transport. Verginis et al. (35) proposed a decentralized nonlinear model predictive

control approach that relies on the leader’s information about the dynamics and geometry

of the payload and communication to the followers, and the followers compute their own

control inputs. The decentralized impedance controller presented by Carey & Werfel (36)

requires the leader to initiate the payload motion by applying a force in the direction

of the target position, and does not require explicit communication or information about

the physical properties of the payload. Gabellieri et al. (37) described a control strategy

that can utilize multiple leaders and does not rely on explicit communication. This work

employed a force regulation scheme at each robot’s attachment point on the payload and

studied the effect of the number of leaders on the controller performance at stabilizing the

payload to a desired configuration.

3.3. Fully Decentralized Controllers

Fully decentralized controllers for collective transport were initially developed in the mid-

2000s. One of the earliest works on decentralized control of cooperating robots proposed

the application of the augmented object model at each robot’s grasp point (38). Dickson

et al. (39) presented a decentralized impedance control scheme that avoids the need for a

centralized controller—which was required in the work by Schneider & Cannon (18)—by

using a decentralized algorithm to estimate external forces on the payload. The decen-

tralized impedance control strategy developed by Pierri et al. (40), which was designed

for trajectory tracking by a payload with initially unknown inertial properties, includes an

initialization phase in which the robots estimate the inertia tensor of the payload. Liu et

al. (41) proposed a decentralized computed torque scheme that requires a dynamical model

of each robot and analyzed its efficacy for cases with and without force-sensing capabili-

ties. Krovi and colleagues (42, 43) addressed decentralized kinematic control of cooperative

payload manipulation by nonholonomic mobile manipulators.

In many fully decentralized control approaches to collective transport, all robots in the

transport team are assumed to have identical hardware and controllers. The decentralized

potential-based approach presented by Song & Kumar (44) requires the robots to have

information about the payload’s position at each time instant. The authors showed that

the stability of the proposed method is affected by the robots’ configuration around the
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payload. In the decentralized coordination algorithm proposed by Kennedy et al. (45), the

robots use explicit communication with their neighbors to converge to a distribution that

minimizes their interaction forces and achieves a desired wrench to move the payload. Fink

et al. (46, 47) presented a decentralized control strategy for collective transport without

explicit communication in a bounded domain containing circular obstacles. The positions

and radii of the obstacles and the equation of the domain boundary are known to the robots,

and the controller composes vector fields that guide the robots to approach the payload,

surround it, and transport it to a goal location while avoiding interrobot collisions. Chen

et al. (48) considered a scenario where the payload is significantly larger than the robots,

and the robots push the payload only if it occludes their line of sight to the goal. Habibi

et al. (49) presented four algorithms that enable the robots to estimate the centroid of

the payload, rotate the payload, and transport it over certain marked points that can be

recognized by a guide robot.

Bai & Wen (50, 51) considered the transport of a flexible payload, modeling the reaction

force between each robot and the payload as the gradient of a nonlinear potential function

that describes the load deformation. In the strategy used by Bais et al. (52), the payload

weight is distributed among robots with heterogeneous load-carrying capabilities, and the

payload is transported along a desired trajectory. Kalat et al. (53) proposed a decentralized

control approach where each robot coordinates its actions with a virtual teammate located

at the robot’s mirror position with respect to the payload’s center of mass. Rubenstein et

al. (54) used an approach that assumes that all the robots know the target direction to the

goal, and the robots’ applied forces on the payload are calculated from a simple velocity

feedback control law.

In the decentralized approach presented by Culbertson & Schwager (55), the robots have

a common reference model for the desired payload motion and use an adaptive controller

to compensate for the effect of friction on the payload. Adaptive robust control approaches

have been recently proposed for planar and three-dimensional cooperative manipulation

(12, 56, 57, 58, 59, 60, 61, 62). These approaches combine a stabilizing term with a regres-

sion term in the controller in order to achieve stabilization in the presence of parameter

uncertainties. They require either prior information about the robots’ distribution around

the payload or feedback on the payload’s motion.

Recently, decentralized learning schemes have also been proposed for cooperative ma-

nipulation. Li et al. (63) used a dynamic recurrent neural network to solve a quadratic

program, which computes cooperative kinematic controllers for redundant manipulators us-

ing partially known information about the payload and the teammates. Ding et al. (64)

used reinforcement learning to design two decentralized approaches to cooperative manipu-

lation: one that applies Q-learning with individual reward functions, and one that utilizes

game-theoretic techniques. The first approach exhibits more robustness to different reward

structures than the second. Zhang et al. (65) applied deep reinforcement learning to a

collective transport task in a bounded environment, where two robots must transport a

slender payload through a narrow passage in the boundary of the domain.

Some decentralized methods require robots to communicate their measurements to each

other in order to estimate unknown parameters of the payload (66, 67). More recently,

Dohmann & Hirche (68) proposed an event-triggered communication strategy with dis-

tributed impedance control to improve the stability and robustness of cooperative manip-

ulation of unknown payloads in unknown environments. Other approaches do not rely on

communication or prior information about the payload’s dynamics (69) but require a su-
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pervisor to define trajectories beforehand for the robots and the payload (33, 70, 71). The

distributed optimization algorithm presented by Shorinwa & Schwager (72) employs explicit

interrobot communication to guarantee convergence of the payload’s tracking errors to zero

and ensure that the robots avoid collisions with obstacles in the environment.

4. CURRENT PROGRESS ON OPEN CHALLENGES

A majority of the control strategies discussed in Section 3 rely on at least one of the fol-

lowing assumptions: predefined trajectories for the payload or robots, explicit interrobot

communication, knowledge of the robots’ distribution around the payload, and information

about the locations, dynamics, and geometry of the robots, the payload, and any obstacles

in the domain. While these assumptions may be valid for collective transport applications

in known, structured environments, such as automated warehouses and factories, they may

not be realistic for applications in uncertain, unstructured environments. For example,

debris that the robots are deployed to clear after a disaster, or materials that the robots

extract in mines, can constitute both payloads and obstacles with unknown properties.

The robots may not have access to a global localization system such as GPS when they

transport payloads underwater, underground, and in extraterrestrial environments. Sta-

ble multirobot communication networks may be difficult or impossible to maintain due to

restricted onboard power and limited communication range and bandwidth.

Applications of collective transport under these conditions motivate the development

of new control strategies that can be implemented with minimal prior information, local

sensor measurements, and no explicit interrobot communication or global localization. One

striking source of inspiration in nature for such control strategies is the behavior of group

food retrieval by particular species of ants (73, 74, 75). The actions of ants during group

retrieval are decentralized, in the sense that they are influenced by locally perceived infor-

mation as they navigate back to their nest. The ants are able to transport a wide range

of food items even though they do not follow predefined trajectories, use explicit commu-

nication, or have prior information about the payload, the number and distribution of ants

around it, or the locations and geometries of obstacles in the environment (76).

Thus far, efforts have been made toward developing multirobot transport strategies

that exhibit this impressive robustness to uncertainty and individual failures and errors.

A few works have proposed control strategies for robots with limited information about

the payload and the environment. The motion-planning scheme presented by Desai et

al. (77) employs a numerical optimization algorithm to produce collective transport by two

mobile robots in an environment with static obstacles. The heuristic methodology of Pereira

et al. (78) was one of the earliest works on collective transport in unstructured dynamic

environments. The centralized kinematics controller proposed by Tanner et al. (79) was one

of the first control strategies for collective transport to not require predefined trajectories;

moreover, it does not require information about the payload dynamics. The positions and

shapes of the obstacles are given to the robots, which apply potential-based control laws

that are designed using a novel extension of navigation functions (80) to steer the payload

around the obstacles without colliding with them or entering singular configurations.

Berman and colleagues (81, 82) used hybrid dynamical models of collective transport

by ants, developed from experimental observations, to derive decentralized control policies

for robots in obstacle-free environments. These robot controllers, as well as the controller

described by Kube & Bonabeau (83), mimic the attachment–detachment behavior observed
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in ants, rely only on local sensor information, and do not require prior information about

the payload. The decentralized controllers described in other papers by Berman and col-

leagues (84, 85, 86) address position and velocity control of the payload in obstacle-free

environments without predefined trajectories or information about the payload geometry

or dynamics. Bechlioulis & Kyriakopoulos (87) presented a leader-follower control strategy

in which the leader knows the desired payload pose and the positions and shapes of obsta-

cles in the environment. Following the gradient of a navigation function (80), the leader

steers the payload around the obstacles while the followers estimate the leader’s intended

trajectory for the payload via prescribed performance estimation laws.

5. CONCLUSION

In this review, we have formulated problem scenarios for collective transport by multirobot

systems that have commonly been addressed in the literature, and we have categorized

different approaches to these problems according to the degree to which they rely on sensor

information and control commands from a single centralized component. We have also

discussed progress on the open challenge of developing controllers for collective transport

that can be implemented on robots with limited information in uncertain environments.

We conclude here with suggestions on how to approach the development of controllers for

collective transport in problem scenarios that still present unsolved challenges.

It remains an open problem to design fully decentralized control strategies for collective

transport in environments that contain obstacles with unknown positions and geometries

where robots lack global position information and have limited onboard resources. For

robots with identical capabilities and information, a possible first step is to model the

robots as point masses with double-integrator dynamics, since the simplicity of the resulting

dynamical model of the composite payload–robot system facilitates the controller design and

analysis. A controller can first be formulated for collective transport in a bounded convex

domain that contains unknown convex obstacles. The controller can be based on obstacle

avoidance control schemes that require limited information about the obstacles, such as

the optimization method presented by Arslan & Koditschek (88) and controllers based on

navigation-like functions described by Farivarnejad (89). The main challenge in applying

these methods is to derive conditions that guarantee collision avoidance and the absence of

locally stable equilibrium points (local minima) that could trap the transport team.

These works do not address the elimination of local minima in domains that have a

nonconvex boundary and/or contain nonconvex obstacles. A possible starting point to do

so is to design a controller for a single robot in this scenario by redesigning a controller

from Arslan & Koditschek (88) or Farivarnejad (89) or applying the closed-form approach

for moving obstacles presented by Huber et al. (90), and then adapting the controller to

collective transport tasks. Other candidate approaches include the use of deep learning

and reinforcement learning algorithms or the techniques of regular extremum seeking (91)

and stochastic extremum seeking (92). Controllers for point-mass robots can be extended

to be implementable on mobile manipulators, whose redundancy can be utilized to achieve

secondary control objectives. Such objectives can include the regulation of interaction forces

between the robots and the payload; the minimization of internal forces within the payload,

which do not contribute to the payload’s motion and could be large enough to break it; and

the resolution of deadlocks if the transport team becomes stuck between obstacles.
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