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Abstract: We consider the problem of optimally guiding a large-scale swarm of underwater
vehicles that is tasked with the indirect control of an advection-diffusion environmental field.
The microscopic vehicle dynamics are governed by a stochastic differential equation (SDE) with
drift. The drift terms model the self-propelled velocity of the vehicle and the velocity field
of the currents. In the mean-field setting, the macroscopic vehicle dynamics are governed by
a Kolmogorov forward equation in the form of a linear parabolic advection-diffusion partial
differential equation (PDE). The environmental field is governed by an advection-diffusion PDE
in which the advection term is defined by the fluid velocity field. The vehicles are equipped with
on-board actuators that enable the swarm to act as a distributed source in the environmental
field, modulated by a scalar control parameter that determines the local source intensity. In this
setting, we formulate an optimal control problem to compute the vehicle velocity and actuator
intensity fields that drive the environmental field to a desired distribution within a specified
amount of time. After proving an existence result for the solution of the optimal control problem,
we discretize and solve the problem using the Finite Element Method (FEM). We show through
numerical simulations the effectiveness of our control strategy in regulating the environmental
field to zero or to a desired distribution in the presence of a double-gyre flow field.

Keywords: Optimal control, advection-diffusion equation, swarm robotics, mean-field
modeling, coupled PDEs, indirect control, underwater vehicles

1. INTRODUCTION

Large collectives of robots, or robotic swarms, are becom-
ing a viable option for a variety of complex missions, such
as coverage, mapping, search-and-rescue, and surveillance
(Dorigo et al., 2021). Controllers for robotic swarms should
satisfy mission requirements while scaling gracefully as
the number of robots N increases. Mean-field models
of robotic swarms (see, e.g., Elamvazhuthi and Berman
(2020)) describe a swarm as a set of probability densities
over space and time; since these models are independent
of N , they can be used to design controllers for arbitrarily
large swarms, with the caveat that the distribution of the
swarm is controlled rather than individual robots.
In this paper, we take advantage of the mean-field model’s
invariance to swarm size by using such a model to design
scalable robotic swarm controllers that achieve indirect
control of a distributed process that evolves according to a
PDE, such as the concentration field of a contaminant in a
⋆ This work was supported by the Italian Ministry of Education,
University and Research (MIUR).

fluid flow. The robots are underwater vehicles that are each
equipped with an actuator that acts as a source for the pro-
cess, and we aim to indirectly control the process through
the coordinated motion of the swarm and the source ac-
tuation. A similar problem has previously been considered
for finite teams of mobile robots, in which individual robot
trajectories are controlled. For example, Cheng and Paley
(2021) present an optimal control approach that uses an
operator-valued Riccati equation to formulate the optimal
actuation as a function of the optimal guidance, and then
recast the problem in terms of the latter alone to jointly
optimize the guidance of the robots and their associated
actuation. Demetriou (2021) describes a path-dependent
reachability approach that takes into account constraints
on the robots’ motion and real-time implementation while
regulating a spatially distributed process using local de-
centralized measurements only.
We define the indirect control problem for a distributed
robotic swarm whose mean-field dynamics are modeled
by a Kolmogorov forward equation in the form of a
linear parabolic advection-diffusion PDE. We formulate an



Fig. 1. Illustration of the indirect control problem. The
environmental field S diffuses from the segment of the
boundary Γd under the advection of a fluid velocity
field F. The vehicle velocity field u and actuator
intensity field k are designed to drive S to a target
distribution.

optimal control problem (OCP) for this mean-field model,
which is coupled with the advection-diffusion dynamics of
the environmental field and prove an existence theorem
for the OCP using techniques for optimal control of
PDEs. Then, we derive a set of first-order necessary
optimality conditions and solve them numerically using a
Finite Element Method (FEM) discretization. Finally, we
evaluate the effectiveness of our control strategy through
numerical simulations of regulation and target tracking
problems in the presence of a double-gyre flow field.

2. PROBLEM FORMULATION

We consider a swarm of robots, labeled i = 1, ..., N , that
move in a bounded fluid domain Ω ∈ R2. Robot i occupies
position Xi(t) ∈ Ω at time t and moves with velocity
v(x, t) ∈ R2, which is the sum of its self-propelled velocity
u(x, t) and the fluid velocity at its position, F(x). This
motion is perturbed by a 2-dimensional Wiener process
W(t), which models stochasticity arising from inherent
sensor and actuator noise or intentionally programmed
“diffusive” exploratory behaviors. The robot’s position
evolves according to the following SDE:{
dXi(t) = v(Xi, t)dt+

√
2DqdW(t) + n(Xi(t))dψ(t)

Xi(0) = Xi,0,

where Dq > 0 is a diffusion coefficient, n(x) is the unit
normal to the domain boundary ∂Ω at x, and ψ(t) ∈ R is
a reflecting function, which ensures that the swarm does
not exit the domain. We assume that each robot i carries
an on-board actuator that acts as a source of intensity
ki(t) ∈ R in a scalar environmental field S(x, t), x ∈ Ω. We
also assume that part of the boundary, Γd ∈ ∂Ω, acts as a
source with constant intensity Sd for simplicity. The field S
is an advection-diffusion process with diffusion coefficient
DS > 0, modeled by the following PDE problem:
∂S

∂t
−DS∆S + F · ∇S =

N∑
i=1

ki(t)δ(x−Xi(t)) in Ω

S = Sd 1Γd
on ∂Ω

S(x, 0) = S0(x) on Ω× {0},

where 1Γd
is an indicator function. The right-hand side

of the PDE consists of the cumulative effect of the point
sources, which have the same dynamics as the robots
since they are installed on-board. Note that the explicit
dependence of S on space and time is omitted when clear
from the context.
In the limit as N → ∞, we obtain a mean-field model
that describes the evolution of the probability density
q(x, t) of a single robot occupying position x at time t, or
alternatively, the swarm density at this position and time.
For the robot dynamics we consider here, this model takes
the form of a linear parabolic advection-diffusion problem
with no-flux boundary conditions; see, e.g., Sinigaglia et al.
(2022). The coupled system dynamics are therefore:

∂q

∂t
+∇ · (−Dq∇q + uq + Fq) = 0 in Ω

(−Dq∇q + uq + Fq) · n = 0 on ∂Ω
q(x, 0) = q0(x) in Ω× {0},

∂S

∂t
−DS∆S + F · ∇S = kq in Ω

S = Sd 1Γd
on ∂Ω

S(x, 0) = S0(x) on Ω× {0}.

(1)

Note that the right-hand side of the S dynamics is now
the product of the intensity of the distributed actuation
k and the local swarm density q. As a consequence of
this Eulerian perspective, k = k(x, t) varies in both space
and time. The robotic swarm thus aims at controlling the
concentration S of an advection-diffusion field through
a localized actuation field kq that depends on both the
actuator intensity k and the swarm density q at each
spatial location. See Figure 1 for an illustration of the
problem.
Defining the state variables as q and S, the state dynamics
consists of the one-way coupled system of PDEs (1). The
objective of the control problem is then to find the optimal
actuation for u(x, t) and k(x, t) to guide the space-time
evolution of the field S to a target distribution z, which
may be static or dynamic, at a given time T . This control
objective can be easily encoded in a standard quadratic
cost functional of the form:

J =
αT

2

∫
Ω

(S(x, T )− z)2dΩ+
α

2

∫ T

0

∫
Ω

(S − z)2dΩdt

+
β

2

∫ T

0

∫
Ω

∥u∥2 dΩdt+ γ

2

∫ T

0

∫
Ω

k2dΩdt,

(2)
where αT , α, β, γ ≥ 0 are weighting constants. In the
regulation problem, for example, we set z = 0 and seek the
optimal trade-off between effectively regulating the field S
and minimizing the overall energy expended by the swarm
for propulsion motion and source actuation.

3. THE OPTIMAL CONTROL PROBLEM

In this section, we prove the existence of optimal con-
trols, derive a system of first-order necessary optimality
conditions using the Lagrangian method, and provide a
consistent discretization of the OCP using the FEM.



3.1 Analysis

Both the q and S dynamics satisfy rather standard
advection-diffusion equations of linear parabolic type;
see, e.g., (Manzoni et al., 2021, Chapter 7). The nat-
ural functional space for the swarm density function
q which is subjected to zero-flux Neumann boundary
conditions is q ∈ L2(0, T,H1(Ω)), while the Dirichlet
boundary suggests the choice of S̊ ∈ L2(0, T,H1

0 (Ω))

for the “lifted” field variable S̊ = S − S̃d, where S̃d

is a suitable extension of the boundary datum to the
domain Ω – see, e.g., (Salsa, 2016, Chapter 8). It is
also standard to select ∂q

∂t ∈ L2(0, T,H1(Ω)∗) and ∂S̊
∂t ∈

L2(0, T,H1
0 (Ω)

∗) so that the functional space for q is actu-
ally H1(0, T ;H1(Ω),H1(Ω)∗) = {y ∈ L2(0, T ;H1(Ω)) :
ẏ ∈ L2(0, T ;H1(Ω)∗}, and the same holds true for
S̊, substituting H1 with H1

0 . Therefore, we set Y =
H1(0, T ;H1(Ω),H1(Ω)∗) × H1(0, T ;H1

0 (Ω),H
1
0 (Ω)

∗) as
the state space, i.e., y = (q, S) ∈ Y. As done in, e.g.,
Roy et al. (2018) and Sinigaglia et al. (2022) for simi-
lar problems involving the Kolmogorov forward equation
alone, we consider L∞ spaces for the control fields for
which energy-like inequalities are readily available; that
is, we select U = L2(0, T ;L∞(Ω)2) × L2(0, T ;L∞(Ω)) as
the control space, so that v = (u, k) ∈ U . Besides the
choice of the functional spaces for states and controls, we
make the following standard assumptions:

F ∈ L∞(Ω)2 (A1)
DS , Dq > 0 (A2)

Sd is bounded (A3)
q0, S0 ∈ L2(Ω) (A4)

The weak formulation of the PDE problem governing the
swarm dynamics is: find q ∈ L2(0, T ;H1(Ω)) such that for
a.e. t ∈ (0, T ),∫

Ω

∂q

∂t
ϕdΩ+ aq(q, v;u) = 0

q(0) = q0

(4)

for every ϕ ∈ H1(Ω), where

aq(q, ϕ;u) =

∫
Ω

(Dq∇q · ∇ϕ− (u+ F) · ∇ϕq)dΩ.

The weak formulation of the PDE problem for the “lifted”
variable S̊ is: find S̊ ∈ L2(0, T ;H1

0 (Ω)) such that for a.e.
t ∈ (0, T ),∫

Ω

∂S̊

∂t
ϕ dΩ+ aS(S̊, ϕ) =

∫
Ω

kq ϕ dΩ− aS(S̃d, ϕ)

S̊(0) = S0

(5)

for every ϕ ∈ H1
0 (Ω), where

aS(S, ϕ) =

∫
Ω

DS∇S · ∇ϕ+ F · ∇S ϕdΩ.

We also define the linear functional F ∈ H−1 = H1
0 (Ω)

∗

as Fϕ =
∫
Ω
k q ϕ dΩ − aS(S̃d, ϕ). In the following, we will

need a bound on the operator norm of F , which we prove
in the lemma below.
Lemma 1. (Bound on F ). Let assumptions (A1), (A2),
(A3), and (A4) hold. Then the following bound on the
norm of F holds:

∥F∥H−1(Ω) ≤ Cp ∥kq∥L2(Ω)+(Cp ∥F∥L∞(Ω)2+DS)
∥∥∥∇S̃d

∥∥∥
L2(Ω)

,

where Cp > 0 is the Poincarè inequality constant.

Proof. From the definition of F and the Cauchy-Schwarz
and Poincaré inequalities, we have:
|Fϕ| ≤

(
∥kq∥L2(Ω) + ∥F∥L∞(Ω)2

∥∥∥∇S̃d

∥∥∥
L2(Ω)

)
∥ϕ∥L2(Ω)

+DS

∥∥∥∇S̃d

∥∥∥
L2(Ω)

∥∇ϕ∥L2(Ω)

≤ Cp

(
∥kq∥L2(Ω) + ∥F∥L∞(Ω)2

∥∥∥∇S̃d

∥∥∥
L2(Ω)

)
∥∇ϕ∥L2(Ω)

+DS

∥∥∥∇S̃d

∥∥∥
L2(Ω)

∥∇ϕ∥L2(Ω) .

Regrouping the terms and using the definition of operator
norm in H−1(Ω), the result follows. 2

Existence and well-posedness of the state dynamics follow
from the well-posedness of the q dynamics and basic energy
estimates on the S dynamics. This is a consequence of
the one-way coupling from q to S. Following the same
arguments as in Sinigaglia et al. (2022), we have that

∥q∥2H1(0,T ;H1(Ω),H1(Ω)∗) ≤ C0(∥u∥2) ∥q0∥2L2(Ω) .

To prove the well-posedness of the S dynamics, we note
that kq ∈ L2(0, T ;L2(Ω)) since

∥kq∥2L2(0,T ;L2(Ω)) ≤ ∥k∥2L2(0,T ;L∞(Ω)) ∥q∥
2
L2(0,T ;L2(Ω))

≤ C ∥k∥2L2(0,T ;L∞(Ω)) ∥u∥
2
L2(0,T ;L∞(Ω)2) ,

and the latter quantity in the inequality is bounded by the
definition of the control space U . Therefore, S satisfies an
advection-diffusion equation with L2 right-hand side for
which existence and uniqueness results are available – see,
e.g., (Salsa, 2016, Theorem 9.9).
A number of standard a priori estimates can be derived
for the S dynamics as well; see, e.g., (Manzoni et al., 2021,
Theorem 7.1). In particular, it can be shown that

∥S∥2L2(0,T ;H1
0 (Ω)) ≤

e2λT

α0

(
∥S0∥2L2(Ω)+

1

α0
∥F∥2L2(0,T ;H−1(Ω))

)
,

where λ =
∥F∥2

L∞(Ω)2

DS
and α0 = min{DS

2 ,
∥F∥2

L∞(Ω)2

2DS
}. From

Lemma 1 and the bounds on ∥kq∥L2(0,T ;L2(Ω), it is clear
that ∥S∥L2(0,T ;H1

0 (Ω)) is bounded by the control norms on
u and k. Regarding Ṡ = ∂S

∂t , we have that∥∥∥Ṡ∥∥∥2
L2(0,T ;H−1(Ω))

≤ C0 ∥S0∥2L2(Ω) +

(
C0

α0
+ 2) ∥F∥2L2(0,T ;H−1(Ω)) ,

where C0 = 2
α0
e2λT (DS + Cp ∥F∥L∞(Ω)2)

2, since both∥∥∥Ṡ∥∥∥
L2(0,T ;H−1(Ω))

and ∥S∥L2(0,T ;H1
0 (Ω)) are bounded by the

control norms. Therefore, we can conclude that
∥S∥2H1(0,T ;H1

0 (Ω),H−1(Ω))

=
∥∥∥Ṡ∥∥∥2

L2(0,T ;H−1(Ω))
+ ∥S∥2L2(0,T ;H1

0 (Ω))

≤ f(∥k∥L2(0,T ;L∞(Ω)) , ∥u∥L2(0,T ;L∞(Ω)2)),

which will turn out to be useful in the proof of existence
of optimal controls.



We define the control-to-state operator as the map (S, q) =
Ξ[u, k] which associates to each control function v ∈ U
with a corresponding state y ∈ Y. The following result
regarding the Fréchet differentiability of the control-to-
state operator is also needed to prove existence of optimal
controls.
Lemma 2. (Differentiability of the control-to-state map).
Let assumptions (A1), (A2), (A3), and (A4) hold. Then
the control-to-state map (S, q) = Ξ[u, k] is Fréchet
differentiable and the directional derivative (zS , zq) =
Ξ′[u, k](h, l) at (u, k) ∈ U in the direction (h, l) ∈ U is
the solution of the coupled PDE system:
∂zq
∂t

+∇ · (−Dq∇zq + uzq + Fzq) = −∇ · (h q) in Ω

(−Dq∇zq + uzq + Fzq) · n = −h · n q on ∂Ω

zq(x, 0) = 0 in Ω× {0},

∂zS
∂t

−DS∆zS + F · ∇zS = kzq + lq in Ω

zS = 0 on ∂Ω
zS(x, 0) = 0 on Ω× {0}.

Proof. (Sketch) The derivation of the equations govern-
ing the sensitivity zq of the swarm dynamics, and bounds
on the norm of zq, can be found e.g. in Roy et al. (2018)
and Sinigaglia et al. (2022). On the other hand, the expres-
sion for the dynamics of zS can be obtained by formally
computing the directional derivative, that is, the limit
lims→0

S(u+sh,k+sl)−S(u,k)
s . Bounds on zS are obtained by

adapting the above results on the norm of S, and noting
that by the triangular inequality, ∥kzq + lq∥L2(0,T ;L2(Ω)) ≤
∥kzq∥L2(0,T ;L2(Ω))+∥lq∥L2(0,T ;L2(Ω)) , so that continuity of
the sensitivity zq and zS with respect to variations of the
control functions h, l can be easily obtained, thus proving
the differentiability of the control-to-state map. 2

We are now ready to prove a result concerning the exis-
tence of optimal controls.
Theorem 3. (Existence of optimal controls). Let assump-
tions (A1), (A2), (A3), and (A4) hold. Then there ex-
ists an optimal control v̄ = (ū, k̄) that minimizes the
cost functional (2) subject to the dynamics (1), that is,
ȳ = (S̄, q̄) = Ξ[ū, k̄].

Proof. (Sketch) Existence results for bilinear optimal
control problems involving the Kolmogorov forward equa-
tion with space-time dependent controls have been proved
in Sinigaglia et al. (2022), Roy et al. (2018), and references
therein. Choosing a minimizing sequence (un, kn), due to
the weak* sequential compactness of the control space, we
have that

un
∗
⇀ ū (weakly star) in L2(0, T ;L∞(Ω)2)

kn
∗
⇀ k̄ (weakly star) in L2(0, T ;L∞(Ω))

Due to the bounds on S and q, we also have that the
resulting sequence (Sn, qn) = Ξ[un, qn] is bounded and
thus weakly convergent in Y to (S̄, q̄) ∈ Y, see e.g. (Evans,
2010, Appendix S, Theorem 3). It remains to prove that:∫ T

0

∫
Ω

knqn ϕdΩ dt→
∫ T

0

∫
Ω

k̄q̄ ϕ dΩ dt

for each ϕ ∈ L2(0, T ;H1
0 (Ω)). To this end, we write

∫ T

0

∫
Ω

(
knqn − q̄k̄

)
ϕdΩdt

=

∫ T

0

∫
Ω

q̄ϕ
(
kn − k̄

)
dΩdt+

∫ T

0

∫
Ω

(qn − q̄) knϕdΩdt.

Since q̄ϕ ∈ L2(0, T ;L1(Ω)), the dual of L2(0, T ;L∞(Ω)),
and kn

∗
⇀ k̄, the first integral tends to zero by Lebesgue’s

dominated convergence theorem. To analyze the second
integral, we use the Aubin-Lions Lemma (see, e.g., (Man-
zoni et al., 2021, Appendix A, Theorem A.19)) to ensure
that qn → q̄ strongly in L2(0, T ;L2(Ω)). Then we obtain:

|
∫ T

0

∫
Ω

(qn − q̄) knϕdΩdt| ≤

∥kn∥L2(0,T ;L∞(Ω)) ∥ϕ∥L2(0,T ;L2(Ω)) ∥qn − q̄∥L2(0,T ;L2(Ω)) = 0.

Since Ω is bounded, the weak* convergence of un ∈
L2(0, T ;L∞(Ω)2) to some ū ∈ L2(0, T ;L∞(Ω)2) im-
plies weak convergence of un to ū in L2(0, T ;L2(Ω)2).
The same holds for k; that is, kn weakly converges
to k̄ in L2(0, T ;L2(Ω)). Then, exploiting the fact that
Sn weakly converges to S̄ in L2(0, T ;H1

0 (Ω)) and that
J(S,u, k) is convex and continuous in L2(0, T,H1

0 (Ω)) ×
L2(0, T ;L2(Ω)2)× L2(0, T ;L2(Ω)), we conclude that

J(S̄, ū, k̄) ≤ lim
n→∞

inf J(Sn, ūn, kn) = inf J.

Therefore, the pair (ȳ, v̄) is an optimal pair for the consid-
ered optimal control problem. 2

We note that uniqueness of an optimal solution is not
guaranteed, due to the bilinear way in which both controls
u and k enter into the coupled system dynamics.

3.2 Optimality Conditions

We now derive a system of first-order necessary optimality
conditions using the Lagrangian multipliers method. For
the problem at hand, the Lagrangian can be defined as

L = J −
∫ T

0

∫
Ω

λq

(
∂q

∂t
+∇ · (−Dq∇q + uq)

)
dΩdt

+

∫ T

0

∫
Ω

λS

(
kq − ∂S

∂t
+DS∆S

)
dΩdt.

(6)

Note that we have defined adjoint fields λq and λS that
are related to the state dynamics of both q and S. The
adjoint dynamics for λq and λS thus satisfy:

−∂λq
∂t

−Dq∆λq − u · ∇λq = k λS in Ω

∇λq · n = 0 on ∂Ω
λq(x, T ) = 0 in Ω× {T},

−∂λS
∂t

−DS∆λS − F · ∇λS = α (S − z) in Ω

λS = 0 on ∂Ω
λS(x, T ) = αT (S(x, T )− z) in Ω× {T},

which are obtained by taking the first variation of the
Lagrangian along variations in swarm density q and the
environmental field S, respectively. Note that the coupling
between the adjoint fields is dual with respect to the state
dynamics. The coupling is from q to S in the state system,
while it is from λS to λq in the adjoint system. The dual of
the forcing term k q in the S dynamics is the forcing term
kλS in the λq dynamics.



The reduced gradients of J with respect to u and k can
therefore be expressed as

∇Ju = βu+ q∇λq,
∇Jk = γk + q λS ,

(7)

by taking the first variations of the Lagrangian in the
directions of u and k, respectively. Note that, despite k
entering linearly into the S dynamics, the reduced gradient
∇Jk depends on the dynamics of the swarm density q.
This is a consequence of the multiplicative nature of the
S forcing term k q.

3.3 Numerical Discretization

The OCP with coupled system dynamics (1) is discretized
in the state variables S and q using the Finite Element
Method (FEM). The discretized state dynamics are

Mqq̇+
(
Aq −B⊤

F − B⊤u
)
q = 0

MSṠ+
(
AS −B⊤

F

)
S = Ckq

q(0) = q0

S(0) = S0,

(8)

where B is the rank-3 transport coefficient tensor defined
by Bijk =

∫
Ω

∂ϕj

∂x ϕi ϕk dΩ; Bu is the tensor vector product
defined by (Bu)ij =

∑Nu

k=1 Bijk uk; C is the reaction tensor
defined by Cijk =

∫
Ω
ϕjϕi ϕk dΩ; and M , B, and A are

the usual FEM mass, transport, and stiffness matrices,
respectively.
The discretization of the adjoint system is:

−Mqλ̇q +
(
Aq −BF − Bu

)
λq = kC⊤λS

−MSλ̇S +ASλS = αMS(S− z)
λq(T ) = 0
λS(T ) = αTMS(S(T )− z).

(9)

Finally, the reduced gradient discretization is:
∇Ju = βMuu+ q⊤Bλq

∇Jk = γMkk+ q⊤C⊤λS .
(10)

We can apply the same reasoning as in Sinigaglia et al.
(2022) to perform numerical gradient computation. There-
fore, we use the Discretize-then-Optimize (DtO) approach
(see e.g., (Manzoni et al., 2021, Chapter 8)) to numeri-
cally solve the problem while avoiding inconsistencies in
the gradient computation. In order to do so, the discrete
Lagrangian must be computed and differentiated. This
computation, which is very similar to the one in our pre-
vious work (see Sinigaglia et al. (2022) for a more detailed
treatment of the problem for the swarm dynamics alone),
is not reported here due to space constraints.
Since the coupling is one-way, at each time step we advance
the dynamics of the swarm density q and then solve the
problem for S. Using similar reasoning, we first solve the
discrete adjoint dynamics with respect to λS , and then the
adjoint problem for λq. It can be checked that carrying
out the optimization at the continuous level and then
discretizing the optimality conditions, that is, adopting the
Optimize-then-Discretize (OtD) approach, results in the
same system of equations at the semi-discrete level; up to
choosing a suitable time-discretization, the two approaches
fully commute.

4. SIMULATION RESULTS

In this section, we present numerical simulation results
that show the effectiveness of our control strategy. The
computational domain Ω = [0, 1]2 is discretized into a
triangular mesh with Ns = 2, 788 degrees of freedom, and
the time interval [0, T ] is discretized into Nt = 61 time
steps, where the final time is T = 1.5(s). The resulting
fully discrete optimization problem has 510,204 control
variables and 170,068 state variables. A steady double-gyre
flow field is chosen as the fluid velocity field F.
Using the DtO method, the reduced gradient is computed
with respect to the control variables only. Computations
are carried out in MATLAB using a modified version of
the redbKit (Quarteroni et al. (2015)) library to assemble
the FEMmatrices and tensors. The nonlinear optimization
software Ipopt (Wächter and Biegler (2006)) is then used
to solve the resulting nonlinear optimization problem.
Two test cases are considered. In Test Case 1, we solve a
regulation problem with target distribution z = 0 and the
Dirichlet boundary condition illustrated in Figure 1, with
S = Sd = 10 along Γd. Test Case 2 is a tracking problem
with z = S0(x) and a homogeneous Dirichlet boundary
condition. In Figure 2, we compare the controlled and un-
controlled dynamics of the total mass of the environmental
field S, defined as mS(t) =

∫
Ω
S(·, t)dΩ, for the two test

cases. For Test Case 1, the uncontrolled steady-state value
of mS(t) depends on the equilibrium balance between the
mass generated along Γd and the mass absorbed along the
rest of the boundary. In the controlled case, however, the
robotic swarm drives mS(t) to zero through coordinated
motion, defined by their self-propelled velocity u, and the
intensity k of their distributed actuation. In Test Case
2, the uncontrolled mass mS(t) exponentially converges
to zero due to diffusion and the homogeneous Dirichlet
boundary condition, while the controlled mass mS(t) is
driven to

∫
Ω
S0(·)dΩ due to the efforts of the swarm to

maintain S at its initial condition S0(x). Figure 3 shows
snapshots of the swarm density dynamics under the action
of the controls and the fluid velocity field for Test Case
1. Figure 4 compares snapshots of the controlled and
uncontrolled dynamics of S for Test Case 1, and Figure
5 presents snapshots of the optimal actuation k for this
case. Finally, snapshots of the controlled dynamics of S
for Test Case 2 are shown in Figure 6.
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