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ABSTRACT

The problem of adapting models from a source domain us-
ing data from any target domain of interest has gained promi-
nence, thanks to the brittle generalization in deep neural net-
works. While several test-time adaptation techniques have
emerged, they typically rely on synthetic data augmentations
in cases of limited target data availability. In this paper, we
consider the challenging setting of single-shot adaptation and
explore the design of augmentation strategies. We argue that
augmentations utilized by existing methods are insufficient to
handle large distribution shifts, and hence propose a new ap-
proach SiSTA (Single-Shot Target Augmentations), which
first fine-tunes a generative model from the source domain
using a single-shot target, and then employs novel sampling
strategies for curating synthetic target data. Using experi-
ments with a state-of-the-art domain adaptation method, we
find that SiSTA produces improvements as high as 20% over
existing baselines under challenging shifts in face attribute
detection, and that it performs competitively to oracle models
obtained by training on a larger target dataset. Our codes can
be accessed at github.com/kowshikthopalli/SISTA.

Index Terms— generalization, domain adaptation, aug-
mentation, GANs, single-shot learning

1. INTRODUCTION

Despite producing high accuracies in the i.i.d. setting, deep
models are known to fail unpredictably under real-world dis-
tribution shifts (or domain shifts). Such failures can be po-
tentially mitigated by refining the model weights with data
from the target domain of interest. A large class of approaches
have been explored in this regard; popular examples include
source free domain adaptation (SFDA) [1] and test-time adap-
tation (TTA) [2]. Not surprisingly, the effectiveness of these
approaches can be significantly limited when sufficient target
data is not available. In this paper, we consider the extreme
scenario where only single-shot target data is accessible.
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Driven by the data scarcity challenge in practical settings,
data augmentation has emerged as a common fix for enabling
model adaptation even with limited data. For example, the
recently proposed MEMO [3] leverages pre-specified image
augmentations (e.g., Augmix [4]) to expand the limited tar-
get data and performs test-time adaptation. Note, the suc-
cess of such approaches directly hinges on how well the cho-
sen augmentation can represent the target data distribution,
and hence, in practice, different augmentation techniques may
lead to varying degrees of generalization.

With the goal of advancing test-time adaptation with
single-shot target data, we propose SiSTA a target domain-
aware augmentation technique to synthetically generate target
data, which can be used with any unsupervised domain adap-
tion method for improving model generalization. At its core,
our method relies on deep generative models, in particular
StyleGANv2 [5], for data synthesis. To this end, SiSTA first
adapts the source StyleGAN using a training strategy inspired
from [6], and subsequently employs novel activation pruning
strategies for sampling the target StyleGAN and curating a
synthetic target dataset. Finally, this unlabeled dataset is used
in conjunction with any SFDA method [7] to adapt source
classifiers. Using empirical studies with multiple face at-
tribute detection tasks and a variety of distribution shifts,
we show that SiSTA significantly outperforms existing ap-
proaches and that it performs competitively to oracle models
obtained by adapting with large target domain datasets.

2. BACKGROUND

Data augmentation has become an important tool for devel-
oping generalizable models, especially when operating in
limited data settings. It has been shown that data augmenta-
tion can improve both in-distribution and out-of-distribution
(OOD) accuracies [8]. Existing augmentations can be broadly
viewed in two categories - (i) pixel/geometric corruptions and
(ii) generative augmentations. The former category includes
strategies such as CutMix [9], Cutout [10], Augmix [4],
RandConv [11], mixup [12] and AutoAugment [13]. These
domain-agnostic methods are known to be insufficient to
achieve OOD generalization, especially under large domain



Fig. 1. SiSTA: Assuming access to both the classifier and a StyleGAN from the source domain, we first adapt the generator
to the target domain using a single-shot example. Next, we employ the proposed activation pruning strategies to construct the
synthetic target dataset D̄t. Finally, this dataset is used with any test-time adaptation technique for model refinement.

shifts. To circumvent this, more recent solutions have re-
sorted to generative models (e.g., GANs) for synthesizing
plausible augmentations [14]. Specifically, popular methods
such as MBDG [15], CyCADA [16], GenToAdapt [17] and
[18] have leveraged generative augmentations to better adapt
to unlabeled target domains. However, these methods can be
ineffective in cases of limited target data availability. In this
work, we consider the extreme setting of single-shot target
data and assume no access to source data during adaptation.
Our goal is to obtain generative augmentations using only
single-shot target, which can then be used in conjunction
with any existing SFDA technique [7, 1, 19, 2].

3. PROPOSED APPROACH

We investigate the problem of adapting source domain classi-
fiers using a single-shot target example and propose SiSTA,
a target domain-aware augmentation technique (see Figure 1).
Setup. Formally, we denote the labeled source data as Ds =
{(xi

s, y
i
s)} with images xi

s and labels yis and the single-shot
target example as xt. We assume that we have access to
both the classifier Fs : x → y with parameters Φs and the
StyleGAN-v2 model (generator Gs : z → x with parameters
Θs and discriminator Hs) trained on the source dataset Ds.
Our goal is to generate a synthetic target dataset D̄t = {x̄i

t}
and refine the source classifier to obtain the target hypothesis
Ft(.; Φt) using any domain adaptation method.
Step 1: Source training. We begin by training the source
classifier Fs using labeled data Ds. This is carried out us-
ing cross entropy loss and standard training configurations.
In addition, we build a generative model for the source data
distribution. More specifically, we use the StyleGAN-v2 ar-
chitecture and infer Gs and Hs respectively.
Step 2: Single-shot StyleGAN finetuning. Next, we fine-
tune Gs using only the single-shot example xt, in order to
generate images from the target domain. To this end, we
first invert xt onto the style space of Gs using a pre-trained
encoder, e.g., Pixel2Style2Pixel or shortly PSP [20], which
maps a given image into the style code w+

t ∈ R18×512.

Algorithm 1: Single-shot StyleGAN fine-tuning
Input: Target sample xt, No. of training iterations N ,

Source generator Gs, PSP encoder E.
Output: Target domain StyleGAN Gt.
Invert the target sample to obtain w+

t = E(xt);
for n in 1 to N do

Generate random style latent r ∈ R1×512;
Perform style-mixing, i.e., replace layers 8-18 of w+

t

with r;
Generate image x̂t = Gs(ŵ

+
t );

Update parameters Θt = argminΘ̄ L(x̂t, xt; Hs);
end
return Gt with parameters Θt.

This latent code corresponds to 18 intermediate layers of
StyleGAN-v2. By design, xt may be out of the training dis-
tribution Ps(x) and hence the reconstruction corresponding
to w+

t is more likely to resemble the source domain. Con-
sequently, we need to refine the generator Gs to synthesize
images that are characteristic of the target domain.

We take inspiration from JoJoGAN [6], a recent optimiza-
tion strategy for style transfer in GANs, and update the gen-
erator model parameters based on a loss function defined on
the activation outputs from the frozen discriminator Hs:

Θt = argmin
Θ̄

∑
ℓ

∥Hℓ
s(Gs(w

+
t ; Θ̄))−Hℓ

s(xt)∥, (1)

where Θt refers to the parameters of the updated generator
Gt, Hℓ

s denotes the activations from layer ℓ of the discrimina-
tor Hs, and this objective minimizes the discrepancy between
the target image and the reconstruction from the generator.
Since this optimization can be highly unstable with a sin-
gle xt, we construct attribute-shifted versions of xt through
a style-mixing protocol, wherein the latent codes correspond-
ing to a pre-specified subset of layers in w+

t are replaced with
randomly generated latents obtained by transforming a noise
vector z ∼ N (0, I) with the mapping network in StyleGAN-
v2. In particular, we replace the layers 8 to 18 of w+

t , as it



Algorithm 2: Generating synthetic target data
Input: Target GAN Gt(.; Θt), Source GAN Gs(.; Θs),

Pruning strategy Γ, Pruning ratio p
Output: Sampled image x̄t

Generate a random latent code w+ ∈ R18×512;
for ℓ in 8 to 18 do

β ∼ RandInt(0, 1);
if β == 1 then

Obtain layer ℓ activations hℓ
t from Gt(w

+);
/* Iterate over activation channels Kℓ */
for k in 1 to Kℓ do

τp = p-th percentile of hℓ
t[:, :, k];

if Γ == prune-zero then
hℓ
t[i, j, k] = 0 if hℓ

t[i, j, k] < τp,∀i, j;
else

Obtain activations hℓ
s from Gs(w

+);
hℓ
t[i, j, k] = hℓ

s[i, j, k] if
hℓ
t[i, j, k] < τp,∀i, j;

end
end

end
end
return Image x̄t = Gt(w

+; Γ)

is known [21] that the initial layers encode the key seman-
tic content, while the later layers contain style characteristics.
In each iteration of our optimization, a different style-mixed
latent code ŵ+

t is used with (1). Algorithm 1 lists this proce-
dure.
Step 3: Synthetic data generation. Once we obtain the
adapted StyleGAN generator Gt for the target domain, we
can build our synthetic dataset by sampling in its latent space.
Despite the efficacy of such an approach, the inherent discrep-
ancy between the true target distribution Pt(x) and the ap-
proximate Qt(x) (synthetic data) can limit the generalization.
We propose to address this by perturbing the latent represen-
tations from different layers of Gt to realize a more diverse
set of style variations. More specifically, we introduce two
strategies based on activation pruning, which identify all ac-
tivations (at the output of each layer) that are lower than the
pth percentile value and replace them with zero (referred as
prune-zero) or with corresponding activations from the source
GAN Gs (prune-rewind). While the former strategy attenu-
ates the effect of the target generator neurons to synthesize
variations, the latter attempts to implicitly sample along the
geodesic between the source and target domains by mixing
the activations from the two generators. Note, we perform the
pruning only in layers 8-18 so that the semantic content of a
sample is not changed. Algorithm 2 describes the sampling
process and Figure 2 illustrates the synthetic data generated
for a target domain (pencil sketch) using vanilla sampling (or
base), prune-zero and prune-rewind strategies.
Step 4: Source-free UDA: Using the synthetically generated
target domain data, we finally perform source-free adaptation
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Fig. 2. Synthetic data generated using our proposed approach.
In each case, we show the source domain image and the corre-
sponding reconstructions from the target StyleGAN sampling
(base), prune-zero and prune-rewind strategies.

of Fs to obtain the target hypothesis Ft. To this end, we em-
ploy NRC [7], a state-of-the-art SFDA method1, which ex-
ploits the intrinsic neighborhood of the target data. Formally,
NRC uses the following objective:

LNRC = Lneigh + Lself + Lexp + Ldiv, (2)

where Lneigh enforces prediction consistency of a sample with
respect to its neighbors, Lself attempts to reduce the effect of
noisy neighbors and Lexp considers the expanded neighbor-
hood. Finally, Ldiv is the diversity maximization term im-
plemented as the KL divergence between the distribution of
predictions to an uniform distribution.

4. EMPIRICAL RESULTS

Dataset. For our empirical study, we consider the task of face
attribute detection with images from the CelebA-HQ dataset.

Fig. 3. We emulate
real-world shifts with in-
creasing severity.

We used the pre-trained
StyleGAN-v2 from [5] and em-
ulated three different distribu-
tion shifts (referred as domains
A, B, C in Figure 3). CelebA-
HQ is a high-quality large-scale
face attribute dataset with 30000
images, which is split into a
source dataset with 18K images
and the rest was used to con-
struct the target domains. To
emulate varying levels of distri-
bution shift, we employed stan-
dard image manipulation tech-
niques (we release this new benchmark dataset along with our
codes2): (i) Domain A: We used the Stylization technique in
OpenCV with σs = 40 and σr = 0.2; (ii) Domain B: For this

1https://github.com/Albert0147/NRC_SFDA
2SiSTA: https://github.com/kowshikthopalli/SISTA



Attribute: Smiling Attribute: Gender
Methods

Domain A Domain B Domain C Average Domain A Domain B Domain C Average
Source only 89.78 73.68 62.18 75.21 94.47 83.72 69.43 82.54

MEMO (AugMix) 89.34 71.76 59.43 73.51 94.04 82.45 58.51 78.33

MEMO (RandConv) 89.37 71.80 59.27 73.48 94.05 82.45 58.76 78.42

Ours (base) 84.80 82.53 83.29 83.54 94.73 87.52 89.44 90.56

Ours (prune-zero) 88.65 85.75 85.89 86.76 94.75 89.03 93.49 92.42
Ours (prune-rewind) 87.63 83.13 85.99 85.58 94.68 86.38 93.18 91.41

Oracle 92.34 87.92 88.80 89.69 96.91 92.13 95.42 94.82

Attribute: Arched Eyebrows Attribute: Mouth Slightly Open
Methods

Domain A Domain B Domain C Average Domain A Domain B Domain C Average
Source only 72.94 51.29 56.71 60.31 88.24 80.36 60.61 76.40

MEMO (AugMix) 72.72 51.23 56.38 60.11 88.22 80.30 60.60 76.37

MEMO (RandConv) 72.66 51.26 56.44 60.12 88.11 80.27 60.49 76.29

Ours (base) 76.39 73.57 65.37 71.78 91.07 82.49 69.84 81.13

Ours (prune-zero) 79.23 74.41 63.57 72.40 92.36 84.75 73.31 83.47

Ours (prune-rewind) 78.26 73.91 69.68 73.95 91.72 83.11 77.22 84.02
Oracle 81.85 72.94 80.09 78.29 92.94 88.39 87.78 89.70

Table 1. Domain-aware augmentation significantly improves generalization. We report the single-shot SFDA performance
(Accuracy %) across different face attribute detection tasks and domain shifts. SiSTA consistently improves upon MEMO
while also being competitive to the oracle. Through bold and underline formatting, we denote the top two performing methods.

shift, we used the PencilSketch technique in OpenCV with
σs = 40 and σr = 0.04; and (iii) Domain C: This challenging
domain shift was created by converting each color image to
grayscale, and then performing pixel-wise division with a
smoothed, inverted grayscale image. In our experiments, one
randomly chosen example from each target domain was used
for performing adaptation, and the performance on the entire
target set of 12, 000 images is reported. We consider 4 facial
attribute detection tasks: (i) Smiling (ii) Gender (iii) Arched
Eyebrows and (iv) Mouth Slightly Open.
Experiment Setup. (a) Source model training: To obtain
the source model Fs we fine-tune a Imagenet pre-trained
ResNet-50 with labeled source data. We use a learning rate
of 1e − 4, Adam optimizer and train for 30 epochs; (b)
StyleGAN fine-tuning: For Algorithm 1, we set N = 300;
(c) Synthetic data curation: In Algorithm 2, we set p = 20%
for prune-rewind and p = 50% for prune-zero strategies,
and generated 1000 samples in each case. Note, we experi-
mented by varying the size of D̄t (between 100 and 10, 000).
We found the performance to improve steadily until 1000
and no significant benefits were observed beyond 1000.; (d)
NRC SFDA training: For NRC, we set both neighborhood
and expanded neighborhood sizes at 5. Finally, we adapt Fs

using SGD with momentum of 0.9 and learning rate of 1e−3.
Baselines. In addition to the vanilla source-only baseline (no
adaptation), we perform comparisons to the recent MEMO [3]
technique - an online SFDA method which enforces predic-
tion consistency between a image and its augmented vari-
ants. In particular, we implement MEMO with two popular
augmentation strategies namely Augmix and RandConv [11].
Finally, we report the oracle performance i.e., NRC perfor-

mance when all 12000 unlabeled target data are available as
opposed to our single-shot setting.
Findings. From Table 1, it can be observed that, SiSTA pro-
duces an average improvement of ∼ 10% (across the three
domain shifts) compared to the source-only baseline as well
as the state-of-the-art MEMO. This improvement can be di-
rectly attributed to the efficacy of our generative augmenta-
tions, which can more effectively reflect the characteristics
of the target domain than the pre-specified augmentations.
While MEMO performs comparably to the source-only base-
line at mild domain shifts (Domain A), it fairs poorly under
severe shifts (Domain C). This clearly evidences the limita-
tion of pixel-level corruptions used by MEMO in handling
large domain shifts. Furthermore, with our approach, using
the proposed activation pruning strategies leads to consistent
improvements over the naı̈ve sampling (base), due to the in-
creased diversity in the curated target dataset. Finally, despite
using only single-shot data, SiSTA performs competitively to
the oracle model obtained by using the entire target set (12K
samples) for adaptation (2%− 6% gaps on average).

5. CONCLUSION

In this paper, we explored the use of generative augmenta-
tions for test-time adaptation, when only a single-shot target
is available. Through a combination of StyleGAN fine-tuning
and novel sampling strategies, we were able to curate syn-
thetic target datasets that effectively reflect the characteristics
of any target domain. Our future work includes theoretically
understanding the behavior of different pruning techniques
and extending our approach beyond classifier adaptation.
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