

Harvard Microrobotics Laboratory

Harvard University

Assembling and Programming

a Pheeno V2 Robot System
An ENG-SCI 91r Research Project

Jonas Hansen

Advised by Dr. Justin Werfel

ADUS: Dr. Chris Lombardo

3 May 2023

Edited by Spring Berman

Table of Contents

Introduction ... 3

Chapter 1: PheenoV2 PCB Assembly Instructions ... 4

Chapter 2: PheenoV2 Parts Assembly... 22

Chapter 3: Raspberry Pi Software Setup Guide .. 23

Chapter 4: Workstation Software Installation and Setup Guide 41

Chapter 5: Pheeno Markov Chain Experiment.. 47

Chapter 6: Results and Final Reflection .. 52

Bibliography .. 56

Introduction

Project Scope and Report

The goal of this project was to assemble a fully functional Pheeno robot (Wilson et al., 2016),

and, if time permitting, implement a swarm algorithm to determine its effectiveness. This report

describes my assembly and software development process for the Pheeno, with the intention of

serving as a thorough guide for anyone interested in building and testing Pheenos of their own.

This guide is my attempt at making the assembly process as clear and bug-free as possible and is

divided up into the following five chapters:

1. Chapter 1 describes the assembly of the printed circuit board (PCB), and tips for how to

go about the process.

2. Chapter 2 outlines the construction of the actual parts of the Pheeno.

3. Chapter 3 is a walkthrough of the software setup for the onboard Raspberry Pi, as well as

how to test simple movements of the Pheeno.

4. Chapter 4 is a setup and installation manual of the “workstation software,” or the

software to be used by the user’s computer to act as the “master” program.

5. Chapter 5 is an overview of how I went about implementing the ACS laboratory Pheeno

Markov chain algorithm, and provides a brief analysis of whether it would prove to be an

effective swarm algorithm given a large group of Pheenos.

Sprinkled throughout these chapters are things I discovered worth noting and failures I

encountered along the way. I reflect on these findings, and suggest what improvements could be

made down the road. I hope that in the future this manual could be used by students or any

hobbyists as a helpful guide for exploring the realm of swarm robotics using the Pheeno

platform.

https://labs.engineering.asu.edu/acs/wp-content/uploads/sites/33/2016/02/WilsonRAL2016Preprint.pdf

Chapter 1: PheenoV2 PCB Assembly

Instructions

Getting Started

This instruction manual is a guide to assembling the printed circuit board (PCB) for the

PheenoV2 robot. The first step of course is to actually have the necessary PCB to solder parts

onto! All the schematics and related files for printing boards for this robot can be found on the

Autonomous Collective Systems (ACS) Laboratory GitHub repository here. For getting boards

printed, I would highly recommend JLCPCB. They are both cheap and efficient, so be sure to get

a good amount of extra boards printed in bulk. You might accidentally fry a board or solder

through some channels, so it’s a good idea to have some backup.

What You’ll Need

Equipment/Tools

 Fine-tipped soldering iron and solder

 Safety goggles/glasses and a fume hood (or some kind of vacuum to safely vent the

solder fumes)

 Crimp tool (for micro-terminal crimping, like this one)

 Pliers

 Diagonal cutters

 Wire strippers

Parts

A complete list of parts can be found on the ACS Laboratory website here.

IN ADDITION, I discovered some extremely helpful modifications that require these female

header pins:

 Female Headers.

https://github.com/ACSLaboratory/pheeno_robot_electronic_schematics
https://jlcpcb.com/
https://www.amazon.com/Engineers-Precision-Crimping-Pliers-Pa-09/dp/B002AVVO7K?th=1
https://acslaboratory.github.io/pheeno-v2/pheeno_bom/
https://www.sparkfun.com/products/115

➔ These headers are for the Teensy3.2 board and Adafruit motor drivers so you can easily

remove them from the PCB if they need to be replaced or if you need to debug some

issues. They can also be used for any other part you want to be easily removable!

➔ Another note that I discovered regarding the 10kΩ resistors:

● The blue 10kΩ resistors are too large for the space allocated on the PCB, so be sure to

use the light brown 10kΩ resistors.

✅ Use these 10kΩ

resistors

🚫 DO NOT use these 10kΩ

resistors

Getting to Know the Board

Figure 1.1: PheenoV2 PCB board without components.

➔ Figure 1.1 above shows a PheenoV2 PCB board without any components attached. Each

region for a component is labeled with the part name/number, and for asymmetric parts,

the bounding box is drawn in such a way to indicate the orientation in which the

designated component should be placed. So for example, when attaching a LP2950

transistor to the board, be sure that the curved side of the transistor lines up with the

curved border of the bounding box, as shown in Figure 1.2 below:

Figure 1.2: Lining up orientation of a part with its designated space on the PCB.

➔ Another thing to note: if you look across the board, you’ll often see parts with square

pads in addition to the usual circular pads. These square pads denote the positive pin (or

“pin 1”) of the part. For example, let’s take a look at this spot that will eventually house a

1000µF capacitor:

Figure 1.3: PCB location for 1000µF capacitor.

We can see that the contact pad on the right is square, and the one on the left is circular.

This means that the positive pin of the capacitor should be inserted into the square pad

and the negative pin into the circular pad. So if you ever get tripped up on which way to

attach a part, just remember this rule!

Assembling the Board

This section describes the process I took to put together the PCB, along with some tips and tricks

I discovered along the way. Feel free to make adjustments as you see fit, especially if you are

already more comfortable with doing things a certain way (e.g. if you have a specific way you

like to solder, if you prefer attaching the larger components first and then the smaller

components, etc.). This is simply a guide with some of my personal reflections on what worked

for me and what did not turn out so great.

Step 1 – IR Transceiver Mounts

What You’ll Need

● 6x 3-pin female headers

https://www.digikey.com/en/products/detail/jst-sales-america-inc/PHR-3/527357

● 18x male breakaway pins

● 18x 24-30 Molex connection terminals

Assembly

1. The first task is to prepare the IR transceiver mounts so we can solder them to the board.

Use some pliers to pull out 18 metal pins from their black plastic encasing in a row male

breakaway pins, like this (grip the black encasing with one pair of pliers/wire cutters and

pull out the metal pins with another pair):

Figure 2.1: Pulling out the metal pins from male breakaway pins.

2. For each 3-pin female header, gather together 3 metal pins and 3 24-30 Molex

connection terminals, like so:

Figure 2.2: Parts needed for the IR transceiver mounts.

https://www.digikey.com/en/products/detail/sullins-connector-solutions/PEC36SAAN/859153
https://www.digikey.com/en/products/detail/jst-sales-america-inc/SPH-002T-P0.5S/527358

3. Now use your crimp tool to crimp each metal pin into a Molex connector. After doing so,

give the metal pin a tug to check that it is in securely.

4. Use your pliers to insert the connectors into the 3-pin female headers, being sure that the

side of the Molex connector with the little overhang is the one that faces the holes of the

3-pin female header. This means that the connector should click into place into the

female header, as shown in Figure 2.3 below.

a. Tip: if you can’t get the Molex connector to fit in the female header, use your

pliers to squeeze the connector more snugly around the metal pin.

Figure 2.3: Assembled IR transceiver mount.

5. Once you have 6 IR transceiver mounts assembled, go ahead and solder them into the

PCB board into their designated spots, as shown in Figure 2.4 below.

Figure 2.4: PCB board with IR transceiver mounts attached.

6. Finally, use your diagonal cutters to trim away the excess metal pins that stick out from

the bottom of the PCB.

Step 2 – Resistors

What You’ll Need

● 1x 61.9kΩ resistor

● 3x 49.9kΩ resistors

● 2x 1MΩ resistors

● 1x 30kΩ resistor

● 7x 10kΩ resistors

● 1x 121Ω resistor (I found that a 120Ω resistor works fine)

● 1x 499Ω resistor

Assembly

1. This step is simply a matter of soldering a bunch of resistors onto the PCB board. Gather

all of the resistors in piles sorted by their resistance, and bend their leads tightly at 90°

angles so that they fit snugly into the board, like this:

https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-61K9/61.9KXBK-ND/13432
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-49K9/49.9KXBK-ND/13414
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-1M/1.00MXBK-ND/13714
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-29R4/29.4XBK-ND/12693
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-10K/10.0KXBK-ND/13219
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-121R/121XBK-ND/12812
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-499R/499XBK-ND/12939

Figure 3.1: Bending resistor leads to insert into the PCB.

2. Once you insert a resistor into its slot, bend one of its leads along the back surface of the

board in one direction and the other lead in the opposite direction, like this:

Figure 3.2: Picture of backside of PCB showing how to

bend inserted leads to secure part for soldering.

 This will secure the resistor in place and make it much easier to solder!

3. Finally, trim away the excess leads sticking out of the bottom of the PCB using your

diagonal cutters.

a. The most important thing is to take your time and not rush—you don’t want to

accidentally burn through a channel on the PCB board or leave a glob of solder

somewhere that might cause a short-circuit down the road.

Step 3 – Capacitors

What You’ll Need

● 12x 0.1µF capacitors

● 2x 1µF capacitors

● 1x 1000µF capacitors

● 1x 470 µF capacitors

● 7x 10µF capacitors

Assembly

1. Gather the capacitors together and check which capacitors are electrolytic/tantalum or

ceramic/film. The polarity matters in electrolytic/tantalum capacitors but does not matter

for ceramic/film capacitors. This means that you need to match the orientation indicated

on the board for the electrolytic/tantalum capacitors whereas the ceramic/film capacitors

can go in either way.

2. Begin to solder the capacitors onto the board, keeping them as tight to the board as

possible (remember you can secure them to the board before soldering by replicating the

bending technique shown in Figure 3.2). Keeping the capacitors tight to the board will

make the board less tall in the end and reduce the possibility of short-circuits.

Step 4 – Molex Headers, Male Breakaway Pins, and Op-Amp

What You’ll Need

● 4x 2-pin Molex Headers

● 2x 2-pin Male Breakaway Pins

● 1x 3-pin Male Breakaway Pins

● 1x Op-Amp (ICL7611)

Assembly

1. Break off two 2-pin male breakaway pins and solder one of them into the “Raspberry Pi

Power” slot and the other into the “11.1V” slot.

2. Break off a 3-pin male breakaway pin and solder it into the “Camera Servo Control” slot.

3. Gather the four 2-pin Molex Headers and solder one into the “LED” slot, one into the

“Pi_PowerSwitch” slot, one into the “MainPowerSwitch” slot, and one into the “12V

Power” slot.

4. Finally, solder the Op-Amp into the “ICL7611” slot, making sure to match the orientation

indicated by the outline.

https://www.digikey.com/product-detail/en/tdk-corporation/FK28X7R1H104K/445-5258-ND/2256738
https://www.digikey.com/product-detail/en/nichicon/UMA1H010MCD2TP/493-10419-1-ND/4312678
https://www.digikey.com/product-detail/en/panasonic-electronic-components/ECA-1CHG102/P5533-ND/245132
https://www.digikey.com/product-detail/en/panasonic-electronic-components/EEU-FR1E471B/P15361CT-ND/3072241
https://www.digikey.com/product-detail/en/panasonic-electronic-components/EEA-GA1E100H/P15799CT-ND/3831166
https://www.digikey.com/product-detail/en/molex-llc/0022232021/WM4200-ND/26667
https://www.digikey.com/product-detail/en/sullins-connector-solutions/PEC36SAAN/S1012E-36-ND/859153
https://www.digikey.com/product-detail/en/sullins-connector-solutions/PEC36SAAN/S1012E-36-ND/859153
https://www.digikey.com/product-detail/en/intersil/ICL7611DCPAZ/ICL7611DCPAZ-ND/821481

Step 5 – Teensy3.2, Adafruit Motor Drivers, and Pololu MiniMU

What You’ll Need

● 2x 36-pin long Female breakaway sockets

● 1x Row of SMC Header Pins (for the underside of the Teensy3.2 board)

● 1x Teensy3.2 board

● 2x Adafruit TB6612 Motor Drivers

● 1x Pololu MiniMU

● Male breakaway pins (should come with the above boards)

Assembly

1. This is probably the trickiest part of the PCB assembly process and requires the most

precision and care. To start off, let’s get our rows of female sockets ready. We’re going

to break off 2x 6-socket rows, 2x 10-socket rows, 2x 7-socket rows, 2x 14-socket rows,

and 1x 5-socket rows. To break off these chunks of sockets, start by removing the pin

after the number of sockets needed using pliers, like I’m doing here for a 14-socket row

(I’m removing the 15th pin):

Figure 4.1: Pulling out the pin after the number of sockets

needed in a row of female sockets.

2. Next, use your diagonal cutters to cut along the socket of the pin you just removed

without cutting into the adjacent sockets, like this:

https://www.digikey.com/en/products/detail/norcomp-inc/25632801RP2/1026577
https://www.digikey.com/product-detail/en/molex-llc/0015912140/WM17453-ND/614769
https://www.microcenter.com/product/454388/pjrccom-teensy-usb-board-v32
https://www.adafruit.com/products/2448
https://www.pololu.com/product/2738
https://www.digikey.com/product-detail/en/molex-llc/0022232021/WM4200-ND/26667

Figure 4.2: Breaking off a 14-socket row using diagonal cutters.

3. Do this for all of the required sockets listed in Step 1.

4. Now carefully and precisely solder these socket rows into the slots for the Teensy3.2

board and the Adafruit Motor Drivers. Keep them as straight as possible. Here was my

first attempt and you can see how the middle socket rows for the Teensy are crooked:

Figure 4.3: Showing a crooked soldering job of inserting

the female socket rows into the PCB.

 Here is what it looked like after I straightened them out a bit:

Figure 4.4: Showing a straighter soldering of the female socket

rows into the PCB.

5. Now let’s prepare the Teensy3.2 board. Use the rows of male breakaway pins that come

in the bag with the Teensy and break off 2x 14-pin rows and 1x 5-pin row. Stick the short

ends of the pins up the bottom of the Teensy and solder them on the top. If you’re having

trouble stabilizing the Teensy, try using some styrofoam to stick the long ends of the pins

into to hold them in place. Make sure the pins are as straight as possible.

6. Now solder the bent side of the row of SMC header pins to the exposed contacts on the

bottom of the Teensy. Solder them as aligned and straight as possible, otherwise you’ll

have a lot of trouble inserting them into the female sockets. The end result should look

like this:

Figure 4.5: Bottom side of Teensy3.2 board with soldered pins.

7. Now break off 2x 6-pin rows and 2x 10-pin rows and solder them to the Adafruit Motor

Drivers (each gets one 6-pin row and one 10-pin row). The result should look like this:

Figure 4.6: Bottom sides of the Teensy board and the two Adafruit boards with

soldered pins.

8. Next, break off a 5-pin row and a single pin and solder them to the MiniMU board.

a. Note: I didn’t use female sockets for the MiniMU because I discovered that it

raised the MiniMU off the PCB such that it blocks the microUSB port on the

Teensy.

9. Go ahead and solder the MiniMU to the PCB board in its allocated space.

10. Wait to insert the Teensy and Adafruit boards into their female sockets until the

rest of the PCB is finished (in case of soldering issues or other things that might risk

damaging these boards).

Step 6 – Transistor and Regulators

What You’ll Need

● 1x Transistor (IRF9530)

● 1x 5V Lower Current Regulator (LP2950)

● 5x 5V Regulator (OKI-78SR)

Assembly

1. Begin by using your pliers to bend the pins on the five 5V OKI-78SR regulators like this:

https://www.digikey.com/product-detail/en/vishay-siliconix/IRF9530PBF/IRF9530PBF-ND/811815
https://www.digikey.com/product-detail/en/texas-instruments/LP2950ACZ-5.0-NOPB/LP2950ACZ-5.0NS-NOPB-ND/148221
https://www.digikey.com/product-detail/en/murata-power-solutions-inc/OKI-78SR-5-1.5-W36-C/811-2196-5-ND/2259781

Figure 5.1: Bending the pins on the OKI-78SR regulator.

This allows you to solder them onto the PCB vertically. I discovered that if you don’t

bend the pins and solder these regulators onto the board horizontally, there just isn’t

enough room for them amongst all of the other parts.

2. Now solder these OKI-78SR regulators into their designated slots on the PCB:

Figure 5.2: OKI-78SR regulator on the PCB.

3. Now solder the 5V LP2950 lower current regulator into its spot on the PCB. Bend the

pins to try to get the regulator close to the PCB, but don’t force it too much or the pins

could snap:

Figure 5.3: LP2950 regulator on the PCB.

 Make sure the orientation of the regulator is correct!

4. Finally, solder the IRF9530 transistor into its spot on the PCB, matching the orientation

indicated by the outline:

Figure 5.4: IRF9530 transistor on the PCB.

Step 7 – Bottom Molex Housing

What You’ll Need

● 4x 6-Pin Molex Housings

http://www.digikey.com/product-detail/en/molex-llc/0022013067/WM2004-ND/26439

Assembly

1. The last things you’ll solder to the PCB are the 6-pin Molex Housings. These will be for

the motors! Simply flip the PCB over and solder them into the designated slots like this:

Figure 6.1: 6-pin Molex Housing on the bottom of the PCB.

Note: You are actually only going to use two of these housings (one for the left motor,

one for the right), but soldering two on each side provides you with some options for how

you want to connect the motors later (i.e. if the wires are closer to one side versus the

other, etc.).

Step 8 – Inserting Boards, IR Transceivers, and Inspection

What You’ll Need

● Your completed Teensy3.2 board

● Your completed Adafruit Motor Driver boards

● 6x Sharp IR Transceivers

http://www.digikey.com/product-detail/en/sharp-microelectronics/GP2Y0A41SK0F/425-2819-ND/3884447

Assembly

1. Insert the Teensy and the two Adafruit boards into the female socket slots you made for

them in Step 5.

2. Insert the Sharp IR Transceivers into the 3-pin mounts you made for them in Step 1.

3. Congratulations! You’ve finished the PCB! Inspect all your soldering work and

connections and be sure there are no potential short-circuits or damaged components.

Figure 7.1: Final PCB assembly, with inserted boards and IR transceivers.

Chapter 1 Reflection

Assembling the PCB was definitely tedious, but discovering various tricks to make the process

more streamlined was very rewarding. Bending pins in certain ways or securing components for

easier soldering are tips I hope future readers of this manual find useful and effective. Before I

had put together this PCB, there was a prior PCB that had been assembled yet was not

operational. The first week of my research was spent trying to figure out what was wrong with

this existing PCB and whether it could be salvaged. In the end, I found that several channels had

been burnt through on the backside of the PCB, which might have accounted for the overheating

and instant smell of smoke that arose whenever the board was hooked up to power. Here you can

see a few of the damaged channels:

What’s more is that the major components such as the Teensy3.2 board and the Adafruit Motor

Driver boards were soldered directly to the PCB and would therefore be extremely difficult to

remove for debugging purposes. I decided to build a new PCB from scratch, making adjustments

along the way such as having female socket connections for the Teensy and Adafruit boards so

that they could be easily removed if needed. This also enabled me to go through the entire

assembly process myself and uncover a lot of the tricks highlighted in this chapter.

Chapter 2: PheenoV2 Parts Assembly

Introduction

This phase of building the Pheeno robot was probably the most straightforward. This is because

the construction of the parts (chassis, base, switches, etc.) is essentially identical to that of the

PheenoV1 robot, for which there exists documentation on the ACS Laboratory website. The

GitHub repository provides all the needed STL files for the PheenoV2 robot as well, which are

slightly different from the PheenoV1 STL files but the build is almost exactly the same. As such,

I am not providing in-depth assembly instructions in this chapter, especially since my focus was

more on the PCB design, software setup, and actual deployment and testing.

PheenoV2 STL Files

The STL files can be found here. This includes the STL files for the gripper module, however

my focus for this project report was more concerning the chassis and using it to test obstacle

avoidance software and swarm algorithms.

Parts Assembly Instructions

The instructions for building the chassis, base, mounting parts, wires, and switches can be found

starting with the power cable in the “Underside of Board” section on the ACS Laboratory page

here. Note that the drivetrain might look a little different in these instructions compared to the

one you 3D print from the PheenoV2 STL files. This is only because these instructions are

intended for the PheenoV1 robot, however the process is exactly the same.

https://github.com/ACSLaboratory/pheeno_robot_stl_files
https://acslaboratory.github.io/pheeno-v1/pheeno_construction_content/

Chapter 3: Raspberry Pi Software Setup

Guide

What You’ll Need

For Raspberry Pi Model 3B+

 Desktop Monitor with HDMI port

 USB-A Keyboard

 USB-A Mouse

 Clean MicroSD card (preferably >=8GB) + MicroSD to SD adapter

 SD card reader

 HDMI Male to HDMI Male cable

 MicroUSB power supply (~5V, 2.5A DC output)

For Raspberry Pi Model 4

 Desktop Monitor with HDMI port

 USB Keyboard

 USB Mouse

 Clean MicroSD card (preferably >=8GB) + MicroSD to SD adapter

 SD card reader

 HDMI Male to Micro HDMI Male cable

 USB-C power supply (~5.1V, 3A DC output)

Software Setup

MicroSD Card

1. Our first step will be to install the Ubuntu18.04 operating system onto the MicroSD card.

Download the ubuntu-18.04.5-preinstalled-server-arm64+raspi3.img.xz image from

Ubuntu site.

2. Now insert the MicroSD card into the MicroSD to SD adapter and insert that into a

computer (if your computer does not have an SD card port, you can use an SD card

reader, which is just an adapter from SD card to USB-A, USB-C, etc.).

3. Next, install the Raspberry Pi Imager here and open it once it has installed. You should

see a window like this:

https://cdimage.ubuntu.com/releases/18.04/release/
https://www.raspberrypi.com/software/

4. Now you need to clean your MicroSD card before installing Raspberry Pi OS (if you

already cleaned your card, you can skip to Step 6). Luckily, if you haven’t already done

so, you can do it through the Raspberry Pi Imager. Simply click on “CHOOSE OS,”

scroll down and select the “Erase” option:

5. Now select your MicroSD card for the storage option by clicking on “CHOOSE

STORAGE” and selecting your card:

6. Finally, click “WRITE” and wait for the card to be wiped (shouldn’t take too long).

7. Now we are finally ready to install Ubuntu. Under the “Operating System” option in

Raspberry Pi Imager, select “Use custom” and select the “ubuntu-18.04.5-preinstalled-

server-arm64+raspi3.img.xz” image:

8. Then under the “Storage” option, select your MicroSD card:

9. Before clicking “WRITE,” you can set up some pre-installation settings by clicking the

gear symbol in the bottom right:

10. I would recommend enabling SSH, as this will allow you to access your Raspberry Pi

from your computer/laptop without the need for a separate desktop monitor, keyboard,

and mouse (be sure to set a good password!):

11. Save any changes you made in “Advanced Options” and click “WRITE.” This process

may take a good 30 minutes, so feel free to go grab a snack or play some table tennis.

Booting Up the Raspberry Pi

1. Once the Ubuntu image has finished installing onto your MicroSD card, go ahead and

eject it from your computer in your computer’s “Files” application (or equivalent) and

then pull it out of the port. Insert the MicroSD card into the designated port on the

Raspberry Pi.

2. Now to turn on the Pi, first plug in your monitor via the HDMI cable (into the HDMI port

on the Pi) and then plug in your keyboard and mouse into any of the USB-A ports on the

Pi. Finally, plug your power supply into a wall outlet and then connect it to the power

port on the Pi (micro-USB for Raspberry Pi 3B+, USB-C for Raspberry Pi 4).

3. The bootup process should automatically begin.

Installing Necessary Software and Packages

Catkin Installation and Setup

1. Catkin is ROS’ official build system, responsible for handling package distributions and

cross-compiling. It comes installed with ROS, but if you need to get it on Ubuntu you can

run this:

pi@raspberrypi:~ $ sudo apt-get install catkin

2. Next we need to source our ROS environment. This can be done with this:

pi@raspberrypi:~ $ source

/opt/ros/<YOUR_ROS_VERSION>/setup.bash

*Note: be sure to replace <YOUR_ROS_VERSION> with the name of the ROS version you

have installed (e.g. melodic for Melodic, kinetic for Kinetic, noetic for Noetic,

etc.).

3. Now let’s create and build a catkin workspace where we can run all our ROS processes

down the road. First, create and enter a catkin directory like this:

pi@raspberrypi:~ $ cd

pi@raspberrypi:~ $ mkdir -p ~/catkin_ws/src

pi@raspberrypi:~ $ cd ~/catkin_ws/

4. Now build the workspace like this:

pi@raspberrypi:~/catkin_ws$ catkin_make

*Note: if you get an error message after running this saying catkin isn’t installed, it

probably means you haven’t sourced the environment properly, so check out Step 2

above.

5. ** VERY IMPORTANT STEP **

To avoid having to source environments every time you startup your computer, we’re

going to permanently source all the necessary setup.bash files (for ROS and catkin)

by adding the source commands to the ~/.profile and ~/.bashrc scripts, which you

can do by running the following:

pi@raspberrypi:~ $ echo "source

/opt/ros/<YOUR_ROS_VERSION>/setup.bash" >> ~/.profile

pi@raspberrypi:~ $ echo "source

/opt/ros/<YOUR_ROS_VERSION>/setup.bash" >> ~/.bashrc

pi@raspberrypi:~ $ echo "source

~/catkin_ws/devel/setup.bash" >> ~/.profile

pi@raspberrypi:~ $ echo "source

~/catkin_ws/devel/setup.bash" >> ~/.bashrc

*Note: be sure to replace <YOUR_ROS_VERSION> with the name of the ROS version you

have installed (e.g. melodic for Melodic, kinetic for Kinetic, noetic for Noetic,

etc.).

Installing ROS Onto the Raspberry Pi

1. We can install ROS straight from the terminal! Open up the Terminal application on

your Raspberry Pi and run the following command to setup the ROS repository:

pi@raspberrypi:~ $ sudo sh -c ‘echo “deb

http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main”

> /etc/apt/sources.list.d/ros-latest.list’

2. Next we’ll need to add the official ROS key to authenticate the ROS installation process

(and avoid hackers wanting to intercept your Raspberry Pi internet traffic). This key is

universal for all ROS versions. To do this, run the following command:

pi@raspberrypi:~ $ sudo apt-key adv --keyserver

'hkp://keyserver.ubuntu.com:80' --recv-key

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

3. Now we’ll want to update and upgrade the Raspberry Pi’s package information, which

we can do with the following:

pi@raspberrypi:~ $ sudo apt-get update && sudo apt-get

upgrade

4. Finally, we can install the full Desktop suite for ROS Melodic:

pi@raspberrypi:~ $ sudo apt install ros-melodic-desktop-

full

Setting Up a ROS Environment

1. If you didn’t already do so in Step 5 of the Catkin Installation and Setup section, setup

the “.bashrc” file so that the ROS environment variables are automatically added to

your bash session every time you boot up your Raspberry Pi:

pi@raspberrypi:~ $ echo "source

/opt/ros/melodic/setup.bash" >> ~/.bashrc

pi@raspberrypi:~ $ source ~/.bashrc

2. Now let’s install some of the package dependencies needed for building ROS packages:

a. For Python 3:

pi@raspberrypi:~ $ sudo apt-get install -y python3-rosdep

python3-rosinstall-generator python3-wstool python3-

rosinstall build-essential cmake

b. For Python 2:

pi@raspberrypi:~ $ sudo apt-get install -y python-rosdep

python-rosinstall-generator python-wstool python-rosinstall

build-essential cmake

3. Finally, we’re gonna initialize rosdep, which enables you to easily install a lot of system

dependencies for ROS development:

pi@raspberrypi:~ $ sudo rosdep init

pi@raspberrypi:~ $ rosdep update

Installing Additional Necessary Packages

1. Now we’ll install some additional packages that will be needed to run the robot

successfully! First, let’s install pip:

pi@raspberrypi:~ $ sudo apt-get install python-pip python3-

pip python-dev

2. Now using pip:

pi@raspberrypi:~ $ sudo -H pip install setuptools wheel

cmake picamera numpy

a. Tip: if installing via pip like this gives an error, try the following method:

pi@raspberrypi:~ $ python3 -m pip install

setuptools wheel cmake picamera numpy

3. Next we’ll install OpenCV, an awesome library for dealing with anything related to

computer vision and image manipulation:

pi@raspberrypi:~ $ sudo apt install python-opencv python3-

opencv

b. Tip: if installing via apt like this gives an error, try the following method:

pi@raspberrypi:~ $ python3 -m pip install python-

opencv python3-opencv

4. Finally, we’ll install the ROS distribution for CV Bridge, a handy package for converting

certain messages into variables that OpenCV knows how to read:

pi@raspberrypi:~ $ sudo apt install ros-melodic-cv-bridge

Testing the Raspberry Pi Camera

1. A crucial component of the Pheeno robot is its camera, as it allows it to analyze and pick

out certain objects in its environment. Before doing this, however, let’s test it out to make

sure that it works! First, make sure your Raspberry Pi is turned off and plug in your

camera into the Raspberry Pi via the ribbon cable. Once secured, boot up your Raspberry

Pi as you normally would.

2. Next, we’ll need to first enable the camera on the Raspberry Pi. Launch the raspi-

config tool by doing:

pi@raspberrypi:~ $ sudo raspi-config

3. Use the arrow keys to go down to “Interfacing Options” and hit enter:

4. On the next screen, hit enter on the “Camera” option:

5. On the next screen, when prompted “Would you like the camera interface to be

enabled?,” make sure “Yes” is highlighted and hit enter:

6. On the next screen, hit enter when “Ok” is highlighted and then press the right arrow key

twice (to highlight “Finish” on the raspi-config home screen) and hit enter to exit out

of raspi-config.

7. Another thing we’ll need to add is a specific module to allow OpenCV to interface with

the Raspberry Pi camera. I had this bug come up several times, and this fix worked

wonders. Open the modules.conf file as root like so:

pi@raspberrypi:~ $ sudo nano /etc/modules-

load.d/modules.conf

8. Add the following as a new line in the file:

bcm2835-v4l2

9. Save the file and reboot your Raspberry Pi.

10. Now your camera is enabled! To test it, simply run the following:

pi@raspberrypi:~ $ raspivid -t 10000

This should display a live feed of what the camera sees on your monitor for 10 seconds.

If you see this, then your camera is all set up and ready to go!

Arduino and Teensy Setup

1. Now let’s get started with setting up the software needed to upload code to the Pheeno

robot itself. First, you’ll need to install Arduino onto the Raspberry Pi, which can be done

here.

2. Now clone the pheeno_arduino repository in your home directory by doing:

pi@raspberrypi:~ $ cd ~

pi@raspberrypi:~ $ git clone

https://github.com/ACSLaboratory/pheeno_arduino.git

3. Next you’ll need to install the pre-made Arduino libraries for the PheenoV2. To do this,

copy the contents of the “lib” folder in the pheeno_arduino repo to the

“[PATH_TO_ARDUINO]/libraries/” folder, where “[PATH_TO_ARDUINO]” is the path to

the Arduino installation:

pi@raspberrypi:~ $ cd ~/pheeno_arduino/lib

pi@raspberrypi:~/pheeno_arduino/lib$ cp *

/[PATH_TO_Arduino]/libraries/

4. Now in order for ROS to work with Arduino, we’ll need to install some ROS-related

libraries so that the Raspberry Pi can interface with the Arduino through serial

connection. For ROS Melodic, do the following:

pi@raspberrypi:~ $ sudo apt-get install \

 ros-melodic-rosserial ros-melodic-rosserial-client \

 ros-melodic-rosserial-python ros-melodic-rosserial-

arduino

5. Once installed, source the ROS setup.bash file in order to access these libraries:

pi@raspberrypi:~ $ source /opt/ros/melodic/setup.bash

6. To build these files, run the following:

pi@raspberrypi:~ $ cd ~/pheeno_arduino/lib/

https://www.arduino.cc/en/software

pi@raspberrypi:~/pheeno_arduino/lib$ rosrun

rosserial_arduino make_libraries.py

7. Now to set up the Teensy Board! To do so, follow the instructions here. This will show

you how to install and use a handy Arduino add-on for the Teensy called Teensyduino.

a. Tip: Be sure to download the Linux udev rules file for the Teensy and copy it to

your /etc/udev/rules.d/ directory like so:

pi@raspberrypi:~ $ sudo cp 00-teensy.rules

/etc/udev/rules.d/

I ran into the problem of the Teensy not running any of the Arduino code I was

sending to it until I realized I had not downloaded this file!

8. Finally, let’s try uploading a program to the robot! At this phase, we will just upload

directly from Arduino (we will get to using ROS later!). To do so, first plug in the Teensy

to your Raspberry Pi via a USB A to microUSB cable. A green light should begin to

blink on the Teensy.

9. Launch the Arduino application and in the “Tools” menu at the top, navigate to the

“Board” option and select “Teensy3.2”.

10. Also in “Tools,” go to the “Port” option and select the port that the Teensy is connected

to.

11. Go to “File” and open the “RandomWalkExample.ino” file located in the

“~/pheeno_arduino/lib/PheenoV2Basic/examples/RandomWalkExample/” folder.

12. Now press the button on the Teensy to launch the Teensyduino loader program.

13. Back in the Arduino IDE, verify the “RandomWalkExample.ino” code by clicking the

checkmark button in the top left and once verified, upload it to the Teensy by clicking the

arrow button to the right of the checkmark.

14. Once uploaded, press the button on the Teensy one more time.

15. Make sure the robot is on a flat surface and won’t fall off the edge of a table.

16. Plug in the battery and flip the switches on.

17. Within a few seconds, your Pheeno should start driving around in random directions!

18. Try uploading the “RandomWalkObstacleAvoidExample.ino” example and watch as

the Pheeno dodges obstacles in its path!

https://www.pjrc.com/teensy/td_download.html
https://www.pjrc.com/teensy/00-teensy.rules

Pheeno ROS Setup

After installing ROS and catkin, let’s set up the Pheeno ROS software.

Pheeno ROS Installation

1. First, enter the catkin workspace you created (outlined in the Catkin Installation and

Setup section):

pi@raspberrypi:~ $ cd ~/catkin_ws/src

2. Next clone the ACS Laboratory pheeno_ros repository:

// For ROS Indigo

pi@raspberrypi:~/catkin_ws/src$ git clone -b indigo-devel

https://github.com/acslaboratory/pheeno_ros.git

// For ROS Kinetic

pi@raspberrypi:~/catkin_ws/src$ git clone -b kinetic-devel

https://github.com/acslaboratory/pheeno_ros.git

// For ROS Melodic

pi@raspberrypi:~/catkin_ws/src$ git clone -b melodic-devel

https://github.com/acslaboratory/pheeno_ros.git

3. Now let’s get the rosserial package, which will be required for communication

between the Raspberry Pi and the Teensy board:

// For ROS Indigo

pi@raspberrypi:~/catkin_ws/src$ git clone -b indigo-devel

https://github.com/ros-drivers/rosserial.git

// For ROS Kinetic

pi@raspberrypi:~/catkin_ws/src$ git clone -b jade-devel

https://github.com/ros-drivers/rosserial.git

// For ROS Melodic

pi@raspberrypi:~/catkin_ws/src$ git clone -b melodic-devel

https://github.com/ros-drivers/rosserial.git

4. We’ll also want the common_msgs package to get additional message types like Twist and

action messages:

// For ROS Indigo

pi@raspberrypi:~/catkin_ws/src$ git clone -b indigo-devel

https://github.com/ros/common_msgs.git

// For ROS Kinetic

pi@raspberrypi:~/catkin_ws/src$ git clone -b jade-devel

https://github.com/ros/common_msgs.git

// For ROS Melodic —> We’ll use Noetic for common_msgs

pi@raspberrypi:~/catkin_ws/src$ git clone -b noetic-devel

https://github.com/ros/common_msgs.git

5. Next we’ll get the actionlib package:

// For ROS Indigo

pi@raspberrypi:~/catkin_ws/src$ git clone -b indigo-devel

https://github.com/ros/actionlib.git

// For ROS Kinetic

// NO Kinetic branch, however actionlib should come

// pre-installed so it shouldn’t be an issue

// For ROS Melodic

pi@raspberrypi:~/catkin_ws/src$ git clone -b melodic-devel

https://github.com/ros/actionlib.git

6. Now we’ll need the cv_bridge package to have some helpful functions for converting

image messages in ROS to OpenCV Mat variables:

// For ROS Indigo

pi@raspberrypi:~/catkin_ws/src$ git clone -b indigo

https://github.com/ros-perception/vision_opencv.git

// For ROS Kinetic

pi@raspberrypi:~/catkin_ws/src$ git clone -b kinetic

https://github.com/ros-perception/vision_opencv.git

// For ROS Melodic

pi@raspberrypi:~/catkin_ws/src$ git clone -b melodic

https://github.com/ros-perception/vision_opencv.git

7. And last but not least, we’ll need the all important pheeno_ros package:

// For ROS Indigo

pi@raspberrypi:~/catkin_ws/src$ git clone -b indigo-devel

https://github.com/acslaboratory/pheeno_ros.git

// For ROS Kinetic

pi@raspberrypi:~/catkin_ws/src$ git clone -b kinetic-devel

https://github.com/acslaboratory/pheeno_ros.git

// For ROS Melodic

pi@raspberrypi:~/catkin_ws/src$ git clone -b melodic-devel

https://github.com/acslaboratory/pheeno_ros.git

8. Now let’s finally install the packages by building your catkin workspace and installing

in your ~/catkin_ws/ directory:

pi@raspberrypi:~/catkin_ws/src$ cd ~/catkin_ws/

pi@raspberrypi:~/catkin_ws$ catkin_make -j2

pi@raspberrypi:~/catkin_ws$ catkin_make install -j2

Preparing the Raspberry Pi for Remote Connection

1. Now before we get to setting up the software on your master computer, we need to

prepare the Raspberry Pi to be able to accept remote ROS commands from this master

computer. The first step is something that will save you a lot of headaches down the road:

setting up a terminal network and static IP address. There are a lot of steps for this, but

trust me, it’s worth it. The ACS Laboratory website has excellent instructions on how to

do this in the “Setting Up the WiFi Connection” section here.

2. Next we need to allow for remote unknown IP address connections. To do this, run the

following:

pi@raspberrypi:~ $ echo “export ROSLAUNCH_SSH_UNKNOWN=1” >>

~/.bashrc

pi@raspberrypi:~ $ source ~/.bashrc

3. We’ll also want to enable ssh on the Raspberry Pi:

pi@raspberrypi:~ $ sudo systemctl enable ssh

pi@raspberrypi:~ $ sudo systemctl start ssh

4. Lastly, we’ll need to create an environment setup file in the Catkin workspace on the

Raspberry Pi so the master computer knows how to set up the Pi once it establishes a

remote connection with it. To do this, go into your “catkin_ws” directory, create a file

named “env.sh,” and open it like this:

pi@raspberrypi:~ $ cd ~/catkin_ws

pi@raspberrypi:~/catkin_ws$ touch env.sh

pi@raspberrypi:~/catkin_ws$ nano env.sh

5. Paste the following into the open “env.sh” file:

#!/bin/bash

export ROS_MASTER_URI=http://[YOUR_COMPUTER’S_IP]:11311

export ROS_IP=[YOUR_RASPBERRY_PI’S_IP]

export ROS_HOSTNAME=[YOUR_RASPBERRY_PI’S_IP]

source /opt/ros/melodic/setup.bash

source ~/catkin_ws/devel/setup.bash

exec "$@"

https://acslaboratory.github.io/pheeno-v2/raspberry_pi_content/#setting-up-the-wifi-connection

Replacing [YOUR_COMPUTER’S_IP] and [YOUR_RASPBERRY_PI’S_IP] with the static IP

addresses you created in Step 1.

6. Type Ctrl+X, then Y, and then Enter to save the file.

7. Finally, we want to make the file executable. To do this, run the following:

pi@raspberrypi:~/catkin_ws$ chmod +x env.sh

8. Congratulations! Now your Raspberry Pi is all good to go. Let’s head on over to your

computer to set up the workstation software.

Chapter 3 Reflection and Next Steps

One area that I would like to delve deeper into is using a Raspberry Pi 3 versus a Raspberry Pi 4.

The current Pheeno uses a Raspberry Pi 3, for which the standard Ubuntu 18.04 operating system

and ROS Melodic software are supported. The installation of these for the Raspberry Pi 4 proved

to be more challenging, and required me to test out different Ubuntu images just to find one

compatible with the newer hardware of the Raspberry Pi 4. I was worried that using a different

image might affect the performance of ROS on the Pi, however since I wouldn’t be running

extremely memory intensive ROS software, this turned out not to be an issue.

Chapter 4: Workstation Software Installation

and Setup Guide

Workstation ROS and Catkin Installation

Workstation ROS

1. The first and perhaps most important step in the initial installation process is to check

what version of ROS is already installed. The ROS version will impact how we install

and set up the rest of the software.

a. IF ROS IS NOT INSTALLED you should refer back to previous Installing ROS

Onto the Raspberry Pi section (the steps are exactly the same) or go to the ROS

installation page. This project was run on ROS Melodic Morenia for Ubuntu

18.04. I would therefore recommend getting this version for your system

(although ROS recommends Noetic Ninjemys for Ubuntu 20.04 and other newer

operating systems, but I can’t guarantee this project will work on newer versions).

Workstation Catkin

1. The installation and setup process for Catkin is identical to the one we did earlier for

the Raspberry Pi. Follow the instructions in the Catkin Installation and Setup section in

the previous chapter (except this time do them in the terminal on your master computer).

Pheeno ROS Setup + Pheeno Simulator Setup

The installation process for Pheeno ROS is the same as the one we did for the Raspberry Pi.

However, this time we will also go through how to install and run the Pheeno ROS Simulator

and test some programs virtually before deploying them to the robot.

Workstation Computer Pheeno ROS Installation

1. To install Pheeno ROS onto the workstation computer, following the same steps as in the

Pheeno ROS Installation section in the previous chapter. Make sure to do it in your

Catkin workspace!

http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Installation

Running the Pheeno ROS Simulator

1. The Pheeno ROS Simulator is a great way to test out code in a virtual environment

before moving onto the real thing. This simulator relies on Gazebo, which comes fully

integrated into the ROS Melodic, ROS Noetic, and ROS distributions, but we’ll need

some additional packages as well. Run the following to install them (replacing melodic

with whatever your ROS version is):

$ sudo apt install ros-melodic-gazebo-ros-pkgs ros-melodic-

gazebo-ros-control

$ sudo apt install ros-melodic-urdf ros-melodic-xacro ros-

melodic-rviz

2. Next, in your “~/catkin_ws/src” directory, clone the ACS Laboratory

pheeno_ros_sim repository using the following command:

// For ROS Indigo

~/catkin_ws/src$ git clone -b indigo-devel

https://github.com/acslaboratory/pheeno_ros_sim.git

// For ROS Kinetic

~/catkin_ws/src$ git clone -b kinetic-devel

https://github.com/acslaboratory/pheeno_ros_sim.git

// For ROS Melodic

~/catkin_ws/src$ git clone -b melodic-devel

https://github.com/acslaboratory/pheeno_ros_sim.git

3. Now with pheeno_ros, pheeno_ros_sim, and all the relevant packages built and

installed, let’s try booting up the simulator! First, navigate to the

~/catkin_ws/src/pheeno_ros_sim/launch directory:

$ cd ~/catkin_ws/src/pheeno_ros_sim/launch

4. Now we’ll use roslaunch to launch the testbed.launch file:

~/catkin_ws/src/pheeno_ros_sim/launch$ roslaunch

testbed.launch

5. If all goes well, Gazebo should have been launched and you should see the following

window open up:

 IF YOU AN ERROR WHEN TRYING TO RUN STEP 2:

● This probably means the setup.bash file was not sourced. See Step 5 in the

Catkin Installation and Setup section.

6. If Step 5 above was successful, then you can try running more of the pre-installed

.launch files in the ~/catkin_ws/src/pheeno_ros_sim/launch directory! This can be

done like this:

$ cd ~/catkin_ws/src/pheeno_ros_sim/launch

~/catkin_ws/src/pheeno_ros_sim/launch$ roslaunch

<NAME_OF_LAUNCH_FILE>

*Note: the view_pheeno_rviz.launch and view_pheeno_with_camera_rviz.launch

launch files might throw the following error when trying to launch them:

[ERROR] [1675883790.196822]: Could not find the GUI,

install the 'joint_state_publisher_gui' package

 To fix this, simply install the joint-state-publisher-gui package:

$ sudo apt install ros—<YOUR_ROS_VERSION_NAME>-joint-state-

publisher-gui

 where <YOUR_ROS_VERSION_NAME> is replaced with melodic, kinetic, etc.

7. If you want to try making your own launch files, the ACS Laboratory website has a page

on how to do that here.

Sending ROS Commands to the Robot

1. Now we’re ready to start sending commands to the Pheeno robot remotely from your

computer using ROS. Given that the Raspberry Pi and workstation software are set up

correctly, this is actually a fairly simple process. First let’s head into the

“~/catkin_ws/src/pheeno_ros/launch/” directory.

$ cd ~/catkin_ws/src/pheeno_ros/launch/

2. In the directory you’ll notice a few pre-existing launch files. Go ahead and open the

“pheeno_obstacle_avoidance.launch” file using nano just to see what it looks like.

You’ll notice two nodes, one for running the serial connection between the Raspberry Pi

and the Teensy3.2 board and the second for running the “obstacle_avoidance.py”

program:

https://acslaboratory.github.io/pheeno_ros_sim/pheeno-ros-sim-guide/

3. We need a way to actually connect to the Pheeno’s Raspberry Pi remotely, so we’re

going to create a new launch file in the same directory. Use touch to create a file called

“remote_pheeno_obstacle_avoidance.launch” and use nano to fill it with the

following:

<launch>
 <group ns="pheeno_41">
 <machine name="pheeno_41_remote"

 address="[YOUR_RASPBERRY_PI’S_IP_ADDRESS]"
 env-loader="~/catkin_ws/env.sh"
 user="[YOUR_RASPBERRY_PI’S_USERNAME]"
 password="[YOUR_RASPBERRY_PI’S_PASSWORD]"
 default="false">

 </machine>
 <node machine="pheeno_41_remote" name="serial_node"
 pkg="rosserial_python"

 type="serial_node.py" args="/dev/ttyACM0/">
 <node machine="pheeno_41_remote"
 name="pheeno_obstacle_avoidance"

 pkg="pheeno_ros" type="obstacle_avoidance.py"
 args="-n 41"/>

 </group>
</launch>

Be sure to replace the “address,” “user,” and “password” values with the

ones specific to your Raspberry Pi. The “pheeno_41” name is also arbitrary;

you can call it whatever you want! Just be sure to be consistent with the naming

throughout the file.

4. All we’ve done here is add the “machine” argument to the launch file. What this does is

it tells ROS to first connect to the Pheeno’s Raspberry Pi and then launch the serial and

obstacle_avoidance nodes on that Raspberry Pi.

5. Now before running the launch file, plug the battery into your Pheeno and flip the

switches on. Be sure the Pheeno won’t drive off of an elevated surface or knock

something over nearby.

6. In the same launch directory, run the following:

~/catkin_ws/src/pheeno_ros/launch$ roslaunch

remote_pheeno_obstacle_avoidance.launch

7. If all goes well, your computer should connect with the Pheeno and the Pheeno should

begin running its obstacle avoidance program! Play around with creating launch files like

this and running different nodes/programs.

Chapter 4 Reflection and Next Steps

The success of the workstation software working to connect to the Pheeno remotely via ROS was

heavily dependent on the Raspberry Pi software functioning properly. One inconvenience I

encountered during this process was that I had not set up a static IP address for the Raspberry Pi,

so every time the IP address changed, I had to go back into the launch files and manually edit the

address whenever I wanted to run ROS remotely from my computer. This just goes to show the

importance of Step 1 in Preparing the Raspberry Pi for Remote Connection, something I had

totally neglected in my first run through of the setup process.

The latest ROS version that the workstation software currently supports is ROS Melodic, which

was released in 2018 and has an end-of-life date of May 2023 (the time period this report was

submitted). I had to go through the installation process of Melodic myself in order to know what

worked and what didn’t for the sake of preparing this guide.

Chapter 5: Pheeno Markov Chain

Experiment

Introduction

I was able to implement this Pheeno Markov Chain Experiment from (Deshmukh et al., 2018),

which is an approach for controlling a robot swarm using only the information that each

individual robot can gather from its local environment. Although intended for a group of

multiple robots, I successfully deployed this algorithm to the single robot I had developed as a

proof of concept that this decentralized Markov chain approach was functional. I managed to

continuously receive information from the Pheeno about its state and could read its relative

position in a field of view from an overhead camera.

What You’ll Need

● A completed Pheeno robot with all the software outlined in the previous chapters.

● A computer with all the software described in Chapter 4: Workstation Software

Installation and Setup Guide.

● A USB camera to plug into your workstation computer (this will be the overhead camera

for the experiment), like this one.

● Some yellow paper or yellow tape.

Setup and Installation

1. The first step will be to download the Pheeno Markov chain software. On your

computer, download the “pheeno_markov_chain-master” folder from here and extract it

to your “~/catkin_ws/src/“ directory. You should now have the folder

“~/catkin_ws/src/pheeno_markov_chain“ on your computer.

2. Now before we build the software, there are a few errors that I encountered in this

process that took me some time to solve. To save you from having to debug these

yourself, here is what you can do preemptively:

a. Open the “pheeno_cam.py” file by doing:

$ nano

~/catkin_ws/src/pheeno_markov_chain/scripts/pheeno_cam.py

https://labs.engineering.asu.edu/acs/wp-content/uploads/sites/33/2018/01/Deshmukh_RAL_2018_Final.pdf
https://a.co/d/9fNYjt1
https://www.dropbox.com/s/vt5hf9j4eoq7eye/pheeno_markov_chain-master.zip?dl=0&file_subpath=%2Fpheeno_markov_chain-master

b. Scroll down to the line containing “contours, _ = cv2.findContours(“, as

highlighted below (should be line 81):

c. Add “_, “ to the beginning of this line so it becomes “_, contours, _ =

cv2.findContours(“. In other words:

 Change this:

contours, _ = cv2.findContours(

 To this:

_, contours, _ = cv2.findContours(

d. Save the file.

e. The reason for this edit is due to an error I was getting that said “ValueError: too

many values to unpack” when calling cv2.findContours(). Adding “_, “ to this

line silences this error because it assigns the extra values needing to be unpacked

to “_”.

3. Now it’s time to build and install the project using Catkin. Navigate to the

“~/catkin_ws/” directory and run a “catkin_make” and then a “catkin_make

install,” like so:

$ cd ~/catkin_ws/

~/catkin_ws$ catkin_make -j4

~/catkin_ws$ catkin_make install -j4

4. Now one error that I ran into and you likely will too has to do with the “Controller.h”

file that is created after this installation. Here is the changes you’ll need to make to fix

this error:

a. Open the “Controller.h” file like this:

$ cd ~/catkin_ws/devel/include/pheeno_markov_chain/

~/catkin_ws/devel/include/pheeno_markov_chain$ nano

Controller.h

b. Change the <> to “” in the #include

<pheeno_markov_chain/ControllerRequest.h> and #include

<pheeno_markov_chain/ControllerResponse.h> lines, like this:

 Change this:

#include <pheeno_markov_chain/ControllerRequest.h>

#include <pheeno_markov_chain/ControllerResponse.h>

 To this:

#include “pheeno_markov_chain/ControllerRequest.h”

#include “pheeno_markov_chain/ControllerResponse.h”

c. Finally, build and install again by doing:

~/catkin_ws/devel/include/pheeno_markov_chain$ cd

~/catkin_ws/

~/catkin_ws$ catkin_make -j4

~/catkin_ws$ catkin_make install -j4

Deploying to the Pheeno Robot

1. Now let’s go into how to go about actually running the Pheeno Markov chain with a

robot. To do so, we are going to adjust the existing launch files in the

pheeno_markov_chain repository. Navigate to the

“~/catkin_ws/src/pheeno_markov_chain/launch/” directory and open the

“pheeno_41.launch” file. You should see this:

2. Now go ahead and edit the following in the file:

a. Change the “<group ns=“pheeno_41”>” value to be whatever you would like to

identify the Pheeno with (could be “pheeno_1”, “pheeno_67”, etc.).

i. Tip: One thing you could do would be to identify the Pheeno by the last

digits of its static IP address that you set up in Step 1 of the Preparing the

Raspberry Pi for Remote Connection section. In the image above, you can

see that the Pheeno was named “pheeno_41” since its IP address ends in

“41.”

b. Change the “<machine name=“pheeno_41_remote”>” accordingly.

c. Important: change the “address=“192.168.119.41”” to the static IP address

you set up for your Pheeno robot.

d. Change the “env-loader” to be the “env.sh” file we created in the

“~/catkin_ws/” directory (so it would be “env-

loader=“~/catkin_ws/env.sh””).

e. Change “user” and “password” to the username and password of your Raspberry

Pi.

f. Save the file.

3. Next we need to set up the overhead camera. Plug in the camera to a USB port on your

computer and secure it at least two meters above the surface upon which the Pheeno will

be driving. Make sure the camera is pointing directly downwards.

4. Now attach the yellow paper or yellow tape to the top of the Pheeno so that it covers

most of the top of the Pheeno. This is so that the overhead camera can recognize the

Pheeno using OpenCV (yellow is the default color, but this can be easily changed in the

view_pheenos.py code).

5. Now we’re just about ready to deploy! Plug the battery into the Pheeno and flip the

switches on.

6. In terminal on your computer, run the following to launch the launch file you just edited:

$ cd ~/catkin_ws/src/pheeno_markov_chain/launch/

~/catkin_ws/src/pheeno_markov_chain/launch$ roslaunch

pheeno_41.launch

7. Now with this running, run the following to initialize the Markov chain experiment:

~/catkin_ws/src/pheeno_markov_chain/launch$ roslaunch

markov_chain_experiment.launch

8. If all goes well, you should see a live feed of the overhead view from the camera on your

computer, with a centroid tracking the Pheeno robot as it moves. Congratulations! The

Pheeno Markov chain has been successfully deployed!

Chapter 5 Reflection and Next Steps

This setup and installation guide is a must for anyone trying to use this swarm algorithm, even if

they are an expert on ROS. I discovered a handful of bugs and installation errors along the way,

some of which took days to pinpoint and resolve. I therefore hope that these instructions spare

future users from these impediments and allow them to spend more time on development and

testing! Ultimately, I was able to successfully install this software, and as a proof of concept for

implementing the Pheeno Markov chain experiment, this attempt was quite effective.

Chapter 6: Results and Final Reflection

Results

After months of research and development, I ended up with a fully functioning Pheeno robot

system, as well as additional ROS software that could be deployed to the robot to test programs

such as obstacle avoidance and decentralized Markov chains. Additionally, I was also able to run

simulations of the Pheeno programs using Gazebo, and could test with as many robots as needed.

To document my results, I took several videos of both the Gazebo simulations and of course the

robot in action:

● This video demonstrates the Single Pheeno robot simulation.

● Here is a Multiple Pheeno robot simulation.

● This video shows the Pheeno running a Random walk with obstacle avoidance program

that was deployed using ROS from the workstation computer.

Here is a photo of the completed Pheeno without the gripper module:

https://drive.google.com/file/d/1luLB9Af6liwH9aIsx6N3oF65_T6Jp25I/view?usp=drivesdk
https://drive.google.com/file/d/1fowaoak8ns6czu1GmEo1WWkw6cn_YDUh/view?usp=drivesdk
https://drive.google.com/file/d/1E3WeVAgJnoe8TDzl3wNnGW8msm9GEq1e/view?usp=drivesdk

Here is a photo of the Pheeno with the gripper module mounted on top:

Future Work

Another experiment I started to run and would want to continue looking into is tracking the

Pheeno robot’s position, movement, and orientation using fiducial codes. A fiducial marking—

similar to a QR code—is printed out onto a piece of paper and attached to the top of the Pheeno,

and can be read using the overhead camera. The fiducial is generated using a Python program,

and represents a unique two-digit number. Below is a screenshot of the view from the overhead

camera as it reads the fiducial for the number “42”:

This was my initial test of this program and I have yet to explore how to get position and

orientation data based on the fiducial reading. In contrast with the Pheeno Markov chain

experiment, which is decentralized since each Pheeno reports its own data, this would be a more

centralized program, as the workstation computer is reading the data from all of the Pheenos at

once using the overhead camera. This would be an excellent test to see which method is more

effective in terms of swarm control and manipulation, but would of course require building some

additional Pheeno robots. The code for this fiducial approach can be found here.

The last area for future development is the gripper module. For this report, I decided to focus

more on the base and drivetrain assembly as these are most essential for swarm testing. Software

for the gripper module does exist on the ACS Laboratory website, but this is for a different

gripper design than the one on the current Pheeno robot. The current gripper was developed by a

previous student, and consists of a claw controlled by a servo motor which rests on a platform

that can rotate using a second servo motor. The claw also sits on a rail system attached to force

sensors so that when the gripper is pushing or pulling on something in a given direction, the

force sensors can read in these push-pull forces as data. With multiple robots, the idea is that this

data is then communicated to the rest of the swarm to determine its overall movement. Because

of the need for more than one Pheeno robot to perform this experiment, I chose to wait to report

on the gripper in more detail until additional robots could be built.

https://github.com/ACSLaboratory/pheeno_robot_code
https://github.com/ACSLaboratory/pheeno_robot_code/tree/master/raspberry_pi/pythonGripper

Final Reflection

As I made my way through the development process of the Pheeno robot, I encountered

challenges, setbacks, and unexpected errors, both on the hardware side and the software side. I

had to find workarounds to some of these obstacles in order to continue onto the next step. One

such obstacle was very early on when I was trying to set up a Raspberry Pi 4 Model B with the

necessary software for the Pheeno system. The Pheeno software reliably runs only on Ubuntu

18.04, as this is the supported operating system for ROS Melodic (the latest ROS version that

works for the Pheeno). The issue is that Ubuntu 18.04 is too old for the Raspberry Pi 4 models,

so when trying to boot up the Pi with Ubuntu 18.04 installed, it gives an error saying that newer

software is needed in order for the Pi to run. My “workaround” required a lot of trial and error of

different Ubuntu images until I found one that worked for the Pi. I discovered that this specific

image was not ideal for running ROS, however given that not too much processing was required

for the Pheeno code, it ended up functioning just fine.

Although these challenges were time consuming, they led me to uncover many different tips and

tricks that could be used to avoid them, or at least minimize their time consumption. This was

especially true for the PCB assembly process, where coming up with clever methods of soldering

and constructing components made the build procedure much smoother. These kinds of design

tricks were part of the entire motivation for creating an instruction manual like this one, and

actually proved to be rather fun to discover.

Bibliography

Vaibhav Deshmukh, Karthik Elamvazhuthi, Shiba Biswal, Zahi Kakish, and Spring Berman.

“Mean-Field Stabilization of Markov Chain Models for Robotic Swarms: Computational

Approaches and Experimental Results.” IEEE Robotics and Automation Letters (RA-L),

3(3):1985-1992, 2018.

Sean Wilson, Ruben Gameros, Michael Sheely, Matthew Lin, Kathryn Dover, Robert Gevorkyan,

Matt Haberland, Andrea Bertozzi, and Spring Berman. “Pheeno, A Versatile Swarm

Robotic Research and Education Platform.” IEEE Robotics and Automation Letters (RA-

L), 1(2):884-891, 2016.

	Introduction
	Project Scope and Report

	Chapter 1: PheenoV2 PCB Assembly Instructions
	Getting Started
	What You’ll Need
	Equipment/Tools
	Parts
	Getting to Know the Board
	Assembling the Board
	Step 1 – IR Transceiver Mounts
	What You’ll Need
	Assembly

	Step 2 – Resistors
	What You’ll Need
	Assembly

	Step 3 – Capacitors
	What You’ll Need
	Assembly

	Step 4 – Molex Headers, Male Breakaway Pins, and Op-Amp
	What You’ll Need
	Assembly

	Step 5 – Teensy3.2, Adafruit Motor Drivers, and Pololu MiniMU
	What You’ll Need
	Assembly

	Step 6 – Transistor and Regulators
	What You’ll Need
	Assembly

	Step 7 – Bottom Molex Housing
	What You’ll Need
	Assembly

	Step 8 – Inserting Boards, IR Transceivers, and Inspection
	What You’ll Need
	Assembly

	Chapter 1 Reflection

	Chapter 2: PheenoV2 Parts Assembly
	Introduction
	PheenoV2 STL Files
	Parts Assembly Instructions

	Chapter 3: Raspberry Pi Software Setup Guide
	What You’ll Need
	For Raspberry Pi Model 3B+
	For Raspberry Pi Model 4
	Software Setup
	MicroSD Card
	Booting Up the Raspberry Pi
	Installing Necessary Software and Packages
	Catkin Installation and Setup
	Installing ROS Onto the Raspberry Pi
	Setting Up a ROS Environment
	Installing Additional Necessary Packages

	Testing the Raspberry Pi Camera
	Arduino and Teensy Setup
	Pheeno ROS Setup
	Pheeno ROS Installation
	Preparing the Raspberry Pi for Remote Connection
	Chapter 3 Reflection and Next Steps

	Chapter 4: Workstation Software Installation and Setup Guide
	Workstation ROS and Catkin Installation
	Workstation ROS
	Workstation Catkin
	Pheeno ROS Setup + Pheeno Simulator Setup
	Workstation Computer Pheeno ROS Installation
	Running the Pheeno ROS Simulator
	Sending ROS Commands to the Robot
	Chapter 4 Reflection and Next Steps

	Chapter 5: Pheeno Markov Chain Experiment
	Introduction
	What You’ll Need
	Setup and Installation
	Deploying to the Pheeno Robot
	Chapter 5 Reflection and Next Steps

	Chapter 6: Results and Final Reflection
	Results
	Future Work
	Final Reflection

	Bibliography

