

1

Trajectory Waypoint Spacing for Spline-Based Flight Plans

Bryan C.H. Chu

PhD Candidate, GN&C

Arizona State University

Mesa, AZ, USA

Dr. James Keller

Associate Technical Fellow

Flying Qualities

Philadelphia, PA, USA

Dr. Spring Berman

Associate Professor

Arizona State University

Tempe, AZ, USA

ABSTRACT

A new guidance optimization scheme for spacing waypoints on spline trajectories is proposed. This scheme, the

bounded area minimization algorithm, examines sequences of 3 waypoints that sample a given spline trajectory at its

constituent knot locations and moves the interior waypoint to a location on the spline trajectory that minimizes the

bounded area, computed using Green’s theorem, between the trajectory and the straight-line paths (legs) that connect

adjacent waypoints. For spline trajectories defined by more than 3 knots, the algorithm can be applied sequentially to

cover the entire chain of knots. Five motion primitives were chosen to test the performance of the optimization scheme

on piecewise cubic polynomial spline trajectories. Two of these motion primitives (sinusoid and exponential) as well

as two real-world trajectories that have been flight-tested on an MD530F platform were then simulated in a full

nonlinear rotorcraft flight dynamics simulator to quantify and compare the effects of optimized versus baseline

waypoint spacing. The bounded area minimization algorithm was extremely effective at reducing cumulative cross

track error when the waypoint spacing was large enough that the aircraft trajectories closely matched the straight-line

waypoint legs used in the algorithm. A method of determining the smallest waypoint spacing at which the optimization

algorithm is still beneficial was proposed based on varying the wavelength of the ADS-33 Slalom MTE. For densely

sampled spline trajectories that do not have knot spacings large enough to realize the benefits of the optimization

algorithm, knot removal can sometimes reduce the number of waypoints required to represent the trajectory while

maintaining the cumulative cross track error. However, there is no guarantee that subsequent bounded area

minimization results in better performance than the baseline waypoint spacing. Determination of waypoint spacing

for densely sampled spline trajectories is a recommended area of future work. A practical benefit of the bounded area

minimization algorithm is that it requires very little modification to in-service coupled waypoint guidance flight

director and autopilot schemes on existing aircraft, which improves the likelihood of its adoption by reducing the

effort required for formal qualification and certification.

I. INTRODUCTION 1

Humans have long used the concept of waypoints for

navigation, with the earliest waypoints defined as distinctive

natural features and landmarks. With the advent of modern

GPS constellations and other navigational aids, waypoints

associated with precise 3-dimensional points in space could

be easily entered as a latitude, longitude, and altitude in a

flight computer and given as guidance commands to an

automatic flight control system. The earliest automatic flight

plans consisted of sequences of waypoints separated by

considerable distances so that a change in leg (line segment

connecting two waypoints) would occur around once every

15-30 minutes. However, with the proliferation of

autonomous aerial vehicles such as small drones and the push

for urban air mobility, there is a need for autonomous aircraft

to fly more complex trajectories for obstacle avoidance,

traffic re-routing, and contingency management. One method

of defining such trajectories is to sample them in space with

discrete waypoints. However, due to the complex nature of

these trajectories (an accurate approximation requires

Presented at the Vertical Flight Society’s 6th Decennial Aeromechanics

Specialists’ Conference, Santa Clara, CA, USA, Feb 6-8, 2024. Copyright ©
2024 by the Vertical Flight Society. All rights reserved.

piecewise polynomials of degree 3 or higher between

waypoints), the choice of waypoints and spacing between

waypoints is non-trivial, entailing tradeoffs among the

discrepancy between the desired trajectory and its

approximation, the dynamic feasibility of the approximated

trajectory, and its ease of implementation using aircraft

guidance leg-switching logic.

To address this problem, this paper proposes the bounded

area minimization algorithm, an optimal method of placing

the interior waypoint of a sequence of three that minimizes

the bounded area between the original trajectory and the

straight-line path connecting the waypoint sequence. In

addition, the optimization algorithm is applied to trajectories

that have more than three waypoints using a chaining process.

The algorithm is first tested on five motion primitives that are

common components of rotorcraft flight trajectories, and then

on more complex trajectories that can be used for real-time

rotorcraft trajectory planning. Aircraft trajectory tracking

error over optimized and non-optimized waypoint-based

flight plans is compared in a full nonlinear rotorcraft flight

2

dynamics simulation in order to predict and measure the

benefit of using this algorithm. Applications of the algorithm

to in-service aircraft, conditions under which the algorithm

improves or degrades tracking performance, and directions of

future work are also discussed. We first define the type of

flight trajectory that we consider in this work: a piecewise

polynomial spline of degree 3 or higher, which is a typical

output generated by high-level path planners [1] and has been

used for rotorcraft trajectory following in [2], [3], [4], [5], [6],

and [7]. Next, we discuss approaches to sampling an arbitrary

spline or sequence of splines and flying such trajectories using

waypoint switching algorithms. Finally, we describe previous

work on solving the trajectory-tracking and path-following

problems for aircraft and the advantages and shortcomings of

these methods.

A. Trajectory Definition

A typical spline trajectory for flight planning purposes may

be constructed using 150 to 200 knots. Splines are piecewise

continuous polynomial-based trajectories. Each point on a

spline is based on the value of a parameter, typically identified

in notation as 𝑡; a set of polynomial basis functions; and a

vector set of physical locations that permit transcription of

real-valued polynomials evaluated at a specific parameter

value into a location. In this context, knots are the set of

discrete samples of the parameter that are used to shape the

basis functions. The most fundamental basis function set is

the power series. For this basis function set, a knot is defined

as the value of the parameter that sets the point on the spline

where two piecewise polynomials are joined together. When

the parameter, 𝑡, equals a knot value, the corresponding point

on the spline is denoted as a knot point. Because of this

correspondence between knots (real-valued scalars) and the

locations along the spline they produce, this paper will

henceforth refer to knots as the points along the spline,

otherwise known as the knot times. Between each pair of

adjacent knots, the spatial coordinates 𝒑(𝑡) =

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of the spline are parametric polynomials in

terms of the parameter 𝑡. For example, if knot 𝑛 is located at

position 𝒑𝑛 = (𝑥𝑛, 𝑦𝑛 , 𝑧𝑛) in the global coordinate system and

knot 𝑛 + 1 is located at 𝒑𝑛+1 = (𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1), then a

cubic spline segment between knots 𝑛 and 𝑛 + 1 can be

described as follows:

𝒑(𝑡) = 𝐚𝑛,0(𝑡 − 𝑡𝑛)
3 + 𝐚𝑛,1(𝑡−𝑡𝑛)

2 + 𝐚𝑛,2(𝑡 − 𝑡𝑛) + 𝐚𝑛,3,

𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1),

(1)

where 𝐚𝑛,0, 𝐚𝑛,1, 𝐚𝑛,2, 𝐚𝑛,3 ∈ ℝ
3 are vectors of constant

coefficients, 𝑡𝑛 and 𝑡𝑛+1 are the knot parameters at the start

and end of the spline, and we adopt the nomenclature 𝒑(𝑡𝑛) =
 𝒑𝑛, 𝒑(𝑡𝑛+1) = 𝒑𝑛+1. Note that when referring to individual

elements of the vectors of constant coefficients, the following

nomenclature is used: 𝐚𝑛,0 = (𝐶𝑥𝑛,0 , 𝐶𝑦𝑛,0 , 𝐶𝑧𝑛,0), 𝐚𝑛,1 =

(𝐶𝑥𝑛,1 , 𝐶𝑦𝑛,1 , 𝐶𝑧𝑛,1), 𝐚𝑛,2 = (𝐶𝑥𝑛,2 , 𝐶𝑦𝑛,2 , 𝐶𝑧𝑛,2), and 𝐚𝑛,3 =

(𝐶𝑥𝑛,3 , 𝐶𝑦𝑛,3 , 𝐶𝑧𝑛,3). In this paper, we focus only on 2-

dimensional trajectories in the 𝑥𝑦-plane, but our approach can

easily be extended to trajectories in 3-dimensional space as

well as trajectories that include the aircraft heading.

Moreover, polynomials of degree higher than 3 may be used

to define the spline, depending on the application. The works

[8] and [9] provide examples of using spline trajectories for

aircraft path planning and guidance.

There has been considerable work on developing time-based

guidance algorithms to fly splines. For example,

instantaneous velocity, acceleration, and jerk commands can

be obtained from the spline trajectories simply by successive

differentiation of the defining expressions. However, time-

based guidance requires that the aircraft arrive at each

checkpoint on the flight plan precisely in time for future

guidance commands to be accurate and useful. Due to winds,

external disturbances, or unexpected events, it is possible for

the aircraft to fall behind or ahead in time from the desired

position specified by the spline trajectory and thus any time-

based guidance scheme that was based on these trajectory

equations must then be corrected. To circumvent these

challenges, we investigate waypoint-based guidance as a

possible alternative, where the waypoints are defined by

sampling spline trajectories in space. An aircraft can follow

such a flight plan by implementing a waypoint switching

algorithm, described in the next subsection.

B. Waypoint Switching Algorithms

Flying waypoints is not the only way to fly general

trajectories in space. For example, [1] and [10] discuss

methods of trajectory guidance based on proportional-

navigation, a technique that is often used in missile homing

guidance. The work [3] describes a plethora of methods for

tracking nontraditional and curvilinear trajectories, one of

which is waypoint guidance. However, all of the guidance

algorithms except for waypoint guidance require significant

changes to in-service autopilot software, which would incur

considerable cost and necessitate laborious formal

qualification efforts. We chose a spline-following waypoint

guidance approach since it would require minimal changes to

current software and processes, thus facilitating its adoption

on aircraft.

Figure 1 illustrates a string of waypoints, denoted by the open

circles labeled 𝑛 − 1,… , 𝑛 + 2, that sample a spline trajectory

shown in red. Note that the waypoints may or may not

coincide with the points associated with the knots of the

spline. The solid black lines connecting pairs of adjacent

waypoints are the legs of the flight plan, and the dashed line

represents the trajectory of an aircraft that follows the flight

plan. The small filled circles at the intersections of the legs

with the aircraft trajectory represent the points at which the

vehicle changes to the next leg in its flight plan and/or

intercepts the next leg. The waypoint labeled 𝑛 is the

waypoint that the aircraft is currently headed to, 𝑛 − 1 is the

waypoint it has come from, and 𝑛 + 1, 𝑛 + 2,… are the

successive waypoints in the flight plan after waypoint 𝑛. As

the dashed line indicates, the aircraft does not necessarily

3

have to reach waypoint 𝑛 before switching to 𝑛 + 1, and it is

not constrained to stay on the legs for the entire flight.

Figure 1: String of Waypoints Sampling a Spline

Trajectory

The distance from the current TO waypoint at which the

vehicle switches from the current leg to the next leg is known

as the change distance and can be calculated using a variety

of techniques. The techniques we introduce are based on

coordinating banked turns at CRUISE and directed thrust

vectoring in LOW SPEED (LS) flight. Since the boundary

between CRUISE and LS flight is often an arbitrary speed

cutoff, the LS regime will sometimes also be referred to more

accurately as “Directed Thrust.” Figure 2 shows the

geometric setup of an aircraft approaching a leg switching

point in (a) CRUISE and (b) LS flight. The change distance

computation for CRUISE is based on assuming the aircraft

travels at a constant bank angle during the change and thus

inscribes a circle between the waypoint legs. The change

distance computation for LS flight assumes a constant aircraft

acceleration that changes its initial velocity 𝑣𝑖 to a final

velocity, 𝑣𝑓, whose direction is along the new leg. For both

change distance calculations, there is an additional lead

distance, ∆𝑥, that is up to the designer to specify and that

varies between the CRUISE and LS cases. The total change

distance, ∆𝑖𝑗 , and the distance 𝑑𝑖𝑗 between waypoints are

specified in Figure 2 and later used in the constraints for the

optimization problem formulation.

Figure 2: Waypoint Change Distance Formulations for

(a) CRUISE and (b) LS Flight

Given a ground speed 𝑣 which is assumed to be constant in

magnitude throughout the transition (𝑣𝑓 = 𝑣𝑖), ground track

angle change ∆𝜓 , maximum bank angle command limit 𝜙𝑚𝑎𝑥

in CRUISE, maximum planar acceleration command limit

𝑣̇𝑚𝑎𝑥 in LOW SPEED (LS), and local acceleration of gravity

𝑔, the minimum change distance for CRUISE and LS

conditions can be defined as:

∆𝐶𝑅𝑈𝐼𝑆𝐸 =
𝑣2

𝑔 𝑡𝑎𝑛𝜙𝑚𝑎𝑥
𝑡𝑎𝑛 |

Δ𝜓

2
|, ∆𝐿𝑆=

𝑣2√2(1−𝑐𝑜𝑠Δ𝜓)

2𝑣̇𝑚𝑎𝑥

(2)

It is important to note that these change distance computations

are minimums; they do not account for the distance to roll into

a banked turn in the CRUISE condition or the distance to

establish the altered rotor thrust necessary for a direction

change in the LS condition. Thus, real aircraft dynamics,

switching logic, and other unaccounted factors may require

the waypoint separation to be increased, for the vehicle to fly

the proposed trajectory accurately. Figure 3 plots an example

spline trajectory sampled by 180 waypoints, defined as the

knots of the spline, along with the simulated path of an aircraft

that follows this flight plan and the geographic location where

this spline trajectory was flight tested.

Figure 3: Example Waypoint-Sampled Spline

Trajectory (WP = Waypoint, AC = Aircraft)

There is a noticeable discrepancy between the waypoint-

based flight plan and the aircraft trajectory. In this study, we

focus on reducing the spline trajectory tracking error that is

due to the approximation of a given spline by a finite number

of segments (legs); correcting for the tracking error that arises

from the aircraft’s flight dynamics is an avenue for future

work.

C. Previous Work on Trajectory-Tracking and Path-

Following Techniques for Aircraft

Most algorithms developed for aircraft trajectory tracking and

path following attempt to guide the vehicle along a specified

spline or through a sequence of discrete waypoints that are

sampled from the spline. The survey [11] describes some

commonly used path-following algorithms for fixed-wing

UAVs, including carrot-chasing, nonlinear guidance law,

line-of-sight (LOS) guidance, linear quadratic regulator

(LQR) control, and vector field guidance. A unique ahead-

time method for carrot-chasing guidance is discussed in [12].

The nonlinear guidance law approach and its derivation from

the popular proportional-navigation missile homing guidance

algorithm are described in [13], along with results on its

performance in flight tests with several fixed-wing small-

1
(n-1)

2
n

3
n+1

4
n+2

(a) (b)

n-1

n

n+1

r


2



x

x n-1

n

n+1



4

scale aircraft. Various spline-based waypoint guidance

algorithms have been developed and demonstrated in

helicopter simulations and real aircraft, as discussed in [3],

[4], [5], [6], [7], and [14]. Rotorcraft platforms that have in

the past been suitable for developing these algorithms and

could serve as a template for future autonomy development

are described in [15] and [16]. However, none of these works

present a formal methodology for sampling waypoints from a

spline, such as selecting a set of waypoints that optimizes

some property of the resultant flight path. The paper [17]

describes the optimal transition trajectory between a series of

three waypoints, but the waypoint coordinates are assumed to

be fixed beforehand.

II. BOUNDED AREA MINMIZATION

FORMULATION

We assume that the specified flight trajectory (or a

segment of it), which we will refer to simply as the trajectory,

is a smooth planar curve defined by a parametric

representation 𝒑(𝑡) = (𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) in terms of the

parameter, 𝑡. We consider the problem of approximating the

trajectory with two straight-line legs that connect a sequence

of 3 waypoints, labeled 𝑛 − 1, 𝑛, and 𝑛 + 1, that are

constrained on the trajectory and located at positions 𝒒𝑛−1,

𝒒𝑛, and 𝒒𝑛+1 in the plane, respectively. We will refer to the

path consisting of the straight-line legs as the leg path and

denote it by 𝒒(𝑡) = (𝑥𝑞(𝑡), 𝑦𝑞(𝑡)). Note that an aircraft

would not always fly exactly along the leg path, but rather

could begin the transition from one leg to another before or

even after a waypoint is reached, as shown in Figure 1. The

initial and final parameter values are defined as 𝑡𝑛−1 and 𝑡𝑛+1,

respectively, so that 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1] for both 𝒑(𝑡) and 𝒒(𝑡).
The waypoints 𝑛 − 1 and 𝑛 + 1 are fixed at the endpoints of

the trajectory, i.e., 𝒒(𝑡𝑛−1) = 𝒒𝑛−1 ≡ 𝒑(𝑡𝑛−1) and

𝒒(𝑡𝑛+1) = 𝒒𝑛+1 ≡ 𝒑(𝑡𝑛+1). The interior waypoint 𝑛 is

constrained to lie on the trajectory 𝒑 and is initially set at a

location 𝒒(𝑡𝑛) = 𝒒𝑛 ≡ 𝒑(𝑡𝑛). Figure 4 illustrates the

approximation of a spline trajectory by several leg paths with

waypoints defined as the knots of the spline and the interior

waypoint 𝑛 located at different possible points (dashed

circles) along the spline.

The optimization variable is the parameter 𝑡∗ that defines the

optimized location 𝒒(𝑡∗) of the interior waypoint 𝑛. Given a

trajectory 𝒑(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1], our optimization objective is

to find the value of 𝑡∗ for which the leg path 𝒒(𝑡) most closely

approximates 𝒑(𝑡). One possible approach is to find 𝑡∗ that

minimizes the cumulative cross track error, defined in

Appendix A, between 𝒒 and 𝒑. However, based on the

authors’ experience, various numerical challenges arise in the

formulation and solution of an optimization problem with this

quantity as the objective function. Instead, we define the

objective function as the area 𝐴(𝑡) of the bounded region

enclosed by 𝒑(𝑡) and 𝒒(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1]. In Figure 4, 𝐴(𝑡)
is the sum of the blue-shaded regions when 𝒒(𝑡) is defined as

the solid black leg path. Since all parameters used to compute

the area are fixed except for the optimization variable 𝑡∗, we

write the area as 𝐴(𝑡∗). Appendix A demonstrates that

minimizing the area 𝐴(𝑡∗) is equivalent to minimizing the

cumulative cross track error between 𝒒 and 𝒑 for the case

where 𝒑 is defined as one of the two motion primitives

described in Section III.

The optimization problem, which we refer to as the Bounded

Area Minimization Problem, can now be formulated as

follows:

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆: 𝐴(𝑡∗)

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 𝒒(𝑡∗) = 𝒑(𝑡∗) for some 𝑡∗ ∈ [𝑡𝑛−1, 𝑡𝑛+1]

𝒒(𝑡𝑛−1) = 𝒑(𝑡𝑛−1), 𝒒(𝑡𝑛+1) = 𝒑(𝑡𝑛+1)

𝑑𝑛−1,𝑛 > ∆𝑛−1,𝑛, 𝑑𝑛,𝑛+1 > ∆𝑛,𝑛+1

(3)

Solving this problem can be visualized as sliding the interior

waypoint 𝑛 along the trajectory 𝒑, as illustrated in Figure 4,

until it is at a location 𝒑(𝑡∗) for which the area 𝐴(𝑡∗) is

minimized. In Figure 4, the area of the blue shaded region

represents 𝐴(𝑡∗) for which 𝑡∗ = 𝑡𝑛.

Figure 4. Sliding the Interior Waypoint along a

Trajectory for Bounded Area Minimization

The bounded area 𝐴(𝑡∗) can be calculated by applying

Green’s theorem in the plane. In this paper, we only consider

trajectories 𝒑(𝑡) that intersect the leg path 𝒒(𝑡) at three values

of 𝑡: 𝑡𝑛−1, 𝑡∗, and 𝑡𝑛+1. Thus, area 𝐴(𝑡∗) is the sum of the

areas of two bounded regions, each enclosed by 𝒑(𝑡) and

𝒒(𝑡), one for 𝑡 ∈ [𝑡𝑛−1, 𝑡∗] and the other for 𝑡 ∈ [𝑡∗, 𝑡𝑛+1].
Green’s theorem only applies to simply connected regions, so

it must be applied separately to these two regions.

5

Bounded Area Minimization takes advantage of the fact that

the spline trajectory equations are parametrized in time, 𝒕, so

it is easy to evaluate the path integral along the spline and

back along the leg between two successive waypoints.

Green’s Theorem adapted to compute the area of a region D

bounded by a closed curve C is:

𝐴 = ∬ 𝑑𝐴
𝐷

= ∮ (𝐿𝑑𝑥 + 𝑀𝑑𝑦)
𝐶

=
1

2
∮ (−𝑦𝑑𝑥 + 𝑥𝑑𝑦)
𝐶

⇒ 𝐴 =
1

2
∮ (−𝑦𝑥′ + 𝑥𝑦′)
𝑡𝑛

𝑡𝑛−1

𝑑𝑡

 (4)

When applying Green’s Theorem in a right-handed

coordinate system, the area A is positive if the curve C is

traversed in the direction for which the region D is to the left

of the curve when looking down on the x-y plane, as

illustrated in Figure 5 by the clockwise orientation (signified

by the arrows) of the curve that bounds region D.

Figure 5. Application of Green’s Theorem for Bounded

Area Computation

The main advantage of using Green’s Theorem is that the area

enclosed by the trajectory and legs can be written as a function

of the location of the interior waypoint parameter, 𝒕∗. This

allows the area formula to be minimized directly using

gradient-based constrained nonlinear programming.

Moreover, the formula can be applied to trajectories that can

be written as closed-form expressions or as piecewise

polynomial cubic spline approximations. Since this formula

is based only on the geometry of the trajectory and leg path,

the optimization problem does not require a model of the

aircraft’s flight dynamics.

Our optimization procedure finds the minimum area 𝐴(𝑡∗) by

sliding the interior waypoint along the trajectory in two

directions, shown in Figure 6: a “pull” toward waypoint 𝑛 −
1 to parameter value 𝑡∗−, and a “push” toward waypoint 𝑛 +
1 to parameter value 𝑡∗+. The figure also shows the

corresponding areas 𝐴(𝑡∗) (shaded blue), which we denote as

𝐴_ for a pull operation (Figure 6-a) and 𝐴+ for a push

operation (Figure 6-b).

Figure 6: Bounded Area Minimization:

Interior Waypoint (a) Pull and (b) Push Operations

As expected, sliding the interior waypoint along the spline

trajectory changes the area 𝐴(𝑡∗). To further illustrate the

impact of moving the interior waypoint, Figure 7 shows the

effect of pulling or pushing this waypoint on the resultant

aircraft trajectory (represented with a solid red line during the

change from one leg to the next and a dashed red line

otherwise.)

Figure 7: Effect of (a) Pulling and (b) Pushing the

Interior Waypoint on the Aircraft Trajectory

The red aircraft trajectory closely follows the leg path except

for the change segment, where it deviates as the aircraft

switches from one leg to the next. In addition, sliding the

interior waypoint changes the distance between the aircraft

trajectory and the commanded green spline trajectory.

Table 1 outlines the main steps of an algorithm for solving the

optimization problem. The algorithm can be applied to flight

plans that consist of more than three waypoints by iterating

through successive sequences of three waypoints and

optimizing the location of the interior waypoint in the current

sequence. This procedure is used for the complex trajectories

discussed in Section IV.

(a) (b)

n-1

n

n+1

(a) (b)

6

Table 1: Bounded Area Minimization for A Chain of 3-Waypoint Sequences

Algorithm: Bounded Area Minimization Using Green’s Theorem for Spline Trajectory Waypoint Spacing

Input: Times 𝑡𝑛−1, 𝑡𝑛+1 and the corresponding locations of waypoints n – 1, n + 1; trajectory 𝒑(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1],
or a cubic spline approximation of this trajectory with accompanying coefficients

Output: Optimal time 𝑡∗ and the corresponding optimal location of interior waypoint n

Select: Initial guess for time 𝑡∗ = 𝑡𝑛 and the corresponding location of waypoint n

Compute area 𝐴− as a function of 𝑡∗− using Green’s Theorem for the case of pulling waypoint n forward (decreasing

time)

Compute area 𝐴+ as a function of 𝑡∗+ using Green’s Theorem for the case of pushing waypoint n backward (increasing

time)

Minimize both area functions 𝐴− and 𝐴+ subject to the following constraints:

 Minimum distance between successive waypoints must be greater than the change distance, ∆𝑖𝑗 , computed

between legs 𝑛 − 1 and 𝑛 when pulling or legs 𝑛 and 𝑛 + 1 when pushing.

 Decision variables must remain within the following bounds:

𝑡𝑛−1 < 𝑡∗− ≤ 𝑡𝑛 and 𝑡𝑛 ≤ 𝑡∗+ < 𝑡𝑛+1

Move waypoint n to location 𝒑(𝑡∗), where

𝑡∗ = {

𝑡∗−, 𝑖𝑓 𝑡∗− < 𝑡𝑛
𝑡∗+, 𝑖𝑓 𝑡∗+ > 𝑡𝑛

 𝑡𝑛, 𝑖𝑓 𝑡∗+ = 𝑡∗− = 𝑡𝑛

Proceed to the next sequence of 3 waypoints (𝑛 + 1, 𝑛 + 2, 𝑛 + 3)

7

In processing a longer chain of waypoints, it is

recommended to skip 2 waypoints so that the area

optimization algorithm always starts with a waypoint

sequence that has not been already altered in a previous

optimization run.

III. EVALUATION OF OPTIMIZATION

ALGORITHM ON MOTION PRIMITIVES

The area minimization algorithm was tested on five motion

primitives and cubic spline approximations of these

trajectories: straight line, semicircle, sinusoid, decaying

exponential, and logarithmic spiral. For all primitives, the

optimal time 𝑡∗ (yielding the optimal location 𝒑(𝑡∗) of the

interior waypoint) that minimizes the area 𝐴(𝑡∗) was

computed analytically to ensure that the result from the

optimization algorithm was reasonable. The analytical

computation for the straight-line motion primitive is

presented in this section; computations for the remaining

primitives are given in Appendix B. Note that the trajectory

arc length of the motion primitives must be selected with care.

Although the optimization algorithm can be applied to

trajectories of any length, the modeled aircraft physical

capabilities and waypoint guidance switching logic

constraints in the nonlinear flight dynamics simulator

required the waypoint spacing to have some minimum value

to demonstrate reduced cross-track error.

Primitive 1: Straight Line

The straight line is the simplest motion primitive. For a

straight-line trajectory 𝒑, the bounded area minimization

problem does not have a unique solution 𝑡∗ since 𝒑 and 𝒒 are

identical, which implies that 𝐴(𝑡∗) = 0 for all 𝑡∗ ∈
[𝑡𝑛−1, 𝑡𝑛+1] and the cumulative cross-track error between 𝒑

and 𝒒 is zero. The solution can be arrived at from visual

inspection or by writing the expression for 𝐴(𝑡∗) using

Green’s Theorem:

𝐴(𝑡∗) =
1

2
[∫ (−𝑦𝑞𝑥′𝑞 + 𝑥𝑞𝑦′𝑞)𝑑𝑡 +

𝑡𝑛−1

𝑡𝑛

∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛

𝑡𝑛−1

+∫ (−𝑦𝑞𝑥′𝑞 + 𝑥𝑞𝑦′𝑞)𝑑𝑡
𝑡𝑛

𝑡𝑛+1

+∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

]

(5)

Substituting 𝑥𝑞(𝑡) = 𝑥𝑝(𝑡) and 𝑦𝑞(𝑡) = 𝑦𝑝(𝑡) into the

previous formula results in:

𝐴(𝑡∗) =
1

2
[∫ (−𝑦𝑝𝑥

′
𝑝 + 𝑥𝑝𝑦

′
𝑝
) 𝑑𝑡 +

𝑡𝑛−1

𝑡𝑛

∫ (−𝑦𝑝𝑥
′
𝑝 + 𝑥𝑝𝑦

′
𝑝
)𝑑𝑡

𝑡𝑛

𝑡𝑛−1

+∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛

𝑡𝑛+1

+∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

]

(6)

Rearranging terms and inverting the polarity of the second

and fourth integral terms when switching the limits of

integration for them yields the expected result:

𝐴(𝑡∗) =
1

2
[0 + 0] = 0

(7)

This implies that any 𝑡∗ ∈ [𝑡𝑛−1, 𝑡𝑛+1] can be chosen for the

location 𝒑(𝑡∗) of the interior waypoint. In practice, this

requires that a minimum change angle, ∆𝜓, be set under

which the area minimization algorithm is not run, since

round-off error and digit precision makes it very difficult to

draw a completely straight line through three points in space

stored in a computer.

Primitive 2: Semicircle

The semicircle is another commonly used motion primitive in

flight plans. The leg path inscribes a triangle within the

semicircle. The area 𝐴(𝑡∗) is the sum of the areas between

the semicircle and the two segments comprising 𝒒. For both

the trajectory and its cubic spline approximation, the

optimization algorithm computed the optimal time as 𝑡∗ =
7.5𝑠, which places the interior waypoint at a location 𝒑(𝑡∗)
that is equidistant and equally spaced in time from the other

two waypoints.

Primitive 3: Sinusoid

The sinusoid was chosen because it can be used as a basis

function in a Fourier series to represent any periodic signal.

As for the semicircle, the leg path inscribes a triangle within

the half-period of a sinusoid, and the area 𝐴(𝑡∗) is defined

similarly. For both the trajectory and its cubic spline

approximation, the optimization algorithm computed the

optimal time as 𝑡∗ = 7.5𝑠, again placing the interior waypoint

at a location equidistant and equally spaced in time from the

other two waypoints.

Primitive 4: Decaying Exponential

The decaying exponential was chosen to represent those

trajectories which involve asymptotic approaches to a desired

state. As for the semicircle and sinusoid, three waypoints can

be used to inscribe a triangular path within the decaying

exponential. The optimal time was computed as 𝑡∗ = 4.8𝑠 for

the exact trajectory and 𝑡∗ = 4.6𝑠 for its cubic spline

approximation. This 0.2-second time discrepancy can be

attributed to the error between the exponential function and

its cubic spline approximation. In our flight simulation tests

at 15 knots (see Figure 8-b), it did not produce a significant

difference in the interior waypoint locations. Even at 60

knots, a 0.2-second delay results in a position error that is less

than 27.5 ft, the diameter of the main rotor of the MD530F

platform.

Primitive 5: Logarithmic Spiral

The logarithmic spiral was used as a motion primitive because

it represents a trajectory with a continuously changing radius

8

of curvature. Figure 17 shows a plot of this trajectory with

three waypoints spaced 1.5𝑠 apart (a total of 3.0𝑠 between

waypoints 𝑛 − 1 and 𝑛 + 1), with the constants defined as

𝛼 = 2𝜋, 𝑏 = 0.2. The optimization algorithm computed the

optimal time as 𝑡∗ = 1.68𝑠 for the exact trajectory and 𝑡∗ =
1.64𝑠 for the cubic spline approximation. This makes sense

since the radius of curvature is constantly increasing, and

therefore the interior waypoint must be pushed forward

slightly from the optimal time for a semicircle (constant

radius of curvature), which would be at the time midpoint

1.5𝑠. The small difference between the optimized solution for

the exact trajectory and its cubic spline approximation was

due to the discrepancy between these two curves and was

deemed inconsequential (a 0.04-second delay corresponds to

a position error of less than 5 feet at 60 knots, smaller than the

error for the exponential trajectory).

The cubic spline approximations to the motion primitive

trajectories were generated by specifying the time, position,

and velocity boundary conditions at the three waypoints

which sampled the original trajectory and then solving for the

cubic coefficients that met these constraints. The trajectories

for the five motion primitives were defined with the lengths

and traversal times listed in the second column of Table 2,

which were chosen based on an aircraft’s typical ground

speed. The third, fourth, and fifth columns of Table 2 list the

times 𝑡∗ that were computed from the optimization algorithm.

The third column shows the optimization results for the exact

trajectories, whereas the fourth and fifth columns show the

results for the cubic spline approximations. There are two

times 𝑡∗ listed for the spline approximations because these

approximations required different area expressions in the

optimization algorithm (see Table 2), depending on whether

the interior waypoint 𝑛 was pulled forward from its original

time 𝑡𝑛 (𝑡∗ < 𝑡𝑛) or pushed backward (𝑡∗ > 𝑡𝑛).

Table 2: Optimal Times Computed for Motion

Primitive Trajectories and their Cubic Spline

Approximations

Motion Primitive

𝒕∗

(traj)

𝒕∗ pull

(spl)

𝒕∗ push

(spl)
Straight Line

• 1000ft travel

• 𝑡𝑛+1 = 15𝑠

0.5𝑡𝑛+1 0.5𝑡𝑛+1 0.5𝑡𝑛+1

Semicircle

• 500ft radius

• 𝑡𝑛+1 = 15𝑠

0.5𝑡𝑛+1 0.5𝑡𝑛+1 0.5𝑡𝑛+1

Sinusoid

• 500ft amplitude

• 𝑡𝑛+1 = 15𝑠

0.5𝑡𝑛+1 0.5𝑡𝑛+1 0.5𝑡𝑛+1

Decaying Exponential

• 1000ft initial point

• 𝑡𝑛+1 = 15𝑠

0.32𝑡𝑛+1 0.30𝑡𝑛+1 0.5𝑡𝑛+1

Logarithmic Spiral

• 500ft initial radius

• 𝑡𝑛+1 = 3𝑠

0.56𝑡𝑛+1 0.5𝑡𝑛+1 0.55𝑡𝑛+1

Table 2 shows that the optimization algorithm converges to

the same time 𝑡∗ for the straight line, semicircle, and sinusoid

motion primitives and their cubic spline approximations. The

small discrepancies between the optimal times 𝑡∗ computed

for the exponential and logarithmic spiral primitives and their

spline approximations are since cubic splines cannot be fit to

these trajectories without error; thus, the optimal times 𝑡∗ for

the exact trajectories and their spline approximations are

slightly different. As mentioned previously, these

discrepancies produce differences in interior waypoint

location that are all within a single rotor diameter of the

MD530F platform when cruising at 60 knots.

IV. EVALUATION OF OPTIMIZATION

ALGORITHM IN FLIGHT SIMULATIONS

In addition to the motion primitives, the optimization

algorithm was tested on cubic spline approximations of

complex real-world trajectories, labeled Trajectory A and

Trajectory B, that lack closed-form parametric

representations. We then flew the cubic spline

approximations of the motion primitives and the complex

trajectories with both optimized and non-optimized waypoint

spacing in a nonlinear flight dynamics simulator

representative of an MD530F airframe. For the motion

primitives, the optimized solutions show a clear reduction in

cross-track error compared to the non-optimized solutions,

even in the presence of wind. However, for the complex

trajectories, there are certain cases where the optimized

waypoint spacing yields similar or increased cross-track error

compared to non-optimized waypoint spacing.

Table 3 summarizes the cumulative and maximum cross-track

errors for all the simulation cases that were run. All

percentage increases and decreases are relative to the

corresponding cross-track errors from simulations run for the

same trajectory with equal-time waypoint spacing. For the

motion primitives, the time of waypoint 𝑛 − 1 is 𝑡𝑛−1 = 0𝑠,
so equal-time waypoint spacing corresponds to the case where

waypoint 𝑛 is at half the time of waypoint 𝑛 + 1, or 𝑡𝑛 =
0.5𝑡𝑛+1.

9

Table 3: Cross-Track Error Results from Flight

Simulations for Primitives and Complex Trajectories in

Calm Air

For the Exponential 15 kt Low-Speed (LS) primitive, note the

closeness of the results for the cases where 𝑡𝑛 is defined as the

optimal time 𝑡∗ for the exact trajectory (Optimum Exact) or

for its cubic spline approximation (Optimum Spline). This

result and the graphical results from Figure 8-b confirm that

the small difference in 𝑡∗ computed for the exact exponential

trajectory and its cubic spline approximation (see Table 2)

does not significantly impact flight performance.

Sinusoidal and Decaying Exponential Motion Primitives:

The sinusoid motion primitive was approximated by a leg

path with three waypoints spaced approximately 1000 ft apart,

flown with an entry ground speed of 60 knots CRUISE.

Trajectories were simulated in calm air and with winds up to

15 knots out of 60 degrees. As Figure 8-a shows, the effect

of the simulated wind did not significantly change the

aircraft’s trajectory.

Figure 8: Simulated Aircraft Paths for the

Sinusoidal and Decaying Exponential Trajectories

The exponential motion primitive was approximated by a leg

path with three waypoints spaced approximately 500 ft apart,

flown with an entry ground speed of 15 knots in LS mode.

Trajectories were simulated in calm air with no wind. The

time 𝑡𝑛 of the interior waypoint was set to the fractions 0.1,

0.25, 0.32 (Optimum Exact), 0.30 (Optimum Spline), 0.5, and

0.75 of the total traversal time (𝑡𝑛+1 − 𝑡𝑛−1; 𝑡𝑛−1 = 0). As

Figure 8-b shows, the aircraft flight paths for the cases where

𝑡𝑛 = 0.32𝑡𝑛+1 and 𝑡𝑛 = 0.30𝑡𝑛+1 are very similar.

For both motion primitives, setting the time 𝑡𝑛 of the interior

waypoint to the optimal time considerably reduced the cross-

track error values relative to cases with a non-optimized 𝑡𝑛,

as shown in Table 3.

Trajectory A:

Trajectory A is composed of piecewise cubic polynomials and

is based on flight-tested trajectories in Mesa, AZ on an

MD530F airframe during the 2013 timeframe. It is based on

a typical approach path that a helicopter might take while

avoiding obstacles at high and low speeds, starting from 600ft

AGL enroute to a hover landing. The waypoint spacing for

these trajectories, Δ𝑡 = 𝑡𝑛 − 𝑡𝑛−1 for all pairs of sequential

waypoints 𝑛 − 1, 𝑛, was approximately 1 second. We refer to

this as the baseline waypoint spacing, for which all the

waypoints and knot points coincide. For the purposes of this

study, the trajectory was projected onto the x-y plane. The

trajectory and the simulated helicopter flight paths for both

the baseline and optimized waypoint spacings are shown in

Figure 9. In the figure legends, “Spl” is the spline with knots

labeled “Knots” that defines Trajectory A; “ACBase” is the

helicopter’s path when flying the waypoints with baseline

spacing, labeled “ToBase;” and “ACOpt” is the helicopter’s

path when flying the waypoints with optimized spacing,

labeled “ToOpt.

Primitive/

Trajectory

Cases Run Cumulative

Cross-Track

Error ∆

Maximum

Cross-Track

Error ∆

Sinusoid

(Cubic

Spline)

60kt

CRUISE

𝑡𝑛 = 0.25𝑡𝑛+1 +65.9% +161.2%

𝑡𝑛 = 0.5𝑡𝑛+1

(Optimum Exact

and Spline)

N/A N/A

𝑡𝑛 = 0.75𝑡𝑛+1 +139.8% +301.6%

Exponential

(Cubic

Spline)

15kt LS

𝑡𝑛 = 0.25𝑡𝑛+1 -9.0% -6.0%

𝑡𝑛 = 0.5𝑡𝑛+1 N/A N/A

𝑡𝑛 = 0.75𝑡𝑛+1 +98.0% +81.3%

𝑡𝑛 = 0.32𝑡𝑛+1

(Optimum Exact)

-50.5% -52.9%

𝑡𝑛 = 0.30𝑡𝑛+1

(Optimum Spline)

-52.2% -57.6%

Trajectory

A

Optimized

Waypoint Spacing

+9.1% +19.6%

Trajectory

B

Optimized

Waypoint Spacing
-3.1% -11.7%

(a) (b)

10

Figure 9: Trajectory A (with Zoomed-In Segments) and Simulated Flight Paths for Baseline and Optimized

Waypoint Spacings

(a) (b)

 (c) (d)

b

c

d

11

It is evident from Figure 9 that the optimization algorithm

converges to a solution, as there are noticeable cases where

the optimized waypoints (purple squares) are pulled backward

or pushed forward with respect to the knots (cyan open

circles.) However, since the knots of the spline are so close

together (~100 – 200 ft apart), the optimized waypoints are as

well, and the aircraft is unable to react fast enough to reach

the next leg in the optimized flight plan before the guidance

logic switches to the subsequent leg. Thus, the aircraft often

cannot track the waypoints with either baseline or optimized

spacing, as indicated in Figure 9 by the discrepancies between

the simulated flight paths (ACBase, ACOpt) and the spline

(Spl). In this case, the discrepancy between ACOpt and Spl

exceeds the discrepancy between ACBase and Spl; Table 3

shows that the optimized waypoint spacing in fact yielded

larger cross-track errors than the baseline waypoint spacing.

Trajectory B:

Trajectory B is similar to Trajectory A, except for differences

in the aggressiveness of the simulated aircraft’s turns and

decelerations when flying waypoints along the trajectories.

Table 4 lists the attributes of the two trajectories that were

implemented in the simulations. As shown in Table 3, the

optimized waypoint spacing for Trajectory B produced a

slight reduction in cross-track error compared to the baseline

waypoint spacing.

Table 4: Trajectory A vs. Trajectory B Comparison

Attribute Trajectory

A

Trajectory

B

Starting Altitude AGL (ft) 600 ft 600 ft

Entry Speed (knots) 100 knots 100 knots

Number of Knots 180 180

Maximum Deceleration (ft/s2) -3.22 ft/s2 -6.44 ft/s2

Maximum Bank Angle (deg) 20 deg 30 deg

Maximum Roll Rate (deg/s) 15 deg/s 15 deg/s

Maximum Heading Rate (deg/s) 15 deg/s 15 deg/s

Average Knot Spacing (s) 1.439 s 0.958 s

Average Knot Separation (ft) 158.96 ft 150.50 ft

Trajectory C: Discretely Chirped Sinusoid ADS-33

Slalom MTE Based Trajectories

To investigate the detrimental impact of decreased waypoint

spacing on the effectiveness of the optimization algorithm, a

series of trajectories based on the ADS-33 slalom MTE [18]

were flown in the simulator at both CRUISE and Directed

Thrust/Low Speed (LS) conditions, starting with the

recommended wavelengths in the ADS-33 requirement

specification and slowly decreasing the wavelength if cross-

track error specifications are met or increasing the wavelength

if not. Note that the ADS-33 slalom MTE was originally

designed as an extremely challenging maneuver to push the

limits of human piloted handling qualities and was used to

grade the acceptability of the agility of a platform. We now

propose to use it as a method to determine useful waypoint

spacing for autonomous VTOL platforms. It should be

emphasized that the wavelength of the commanded sinusoid

trajectory was not changed during the maneuver, as is

typically done for a “chirped sinusoid” used for handling

qualities assessment and system identification. Instead, the

wavelength was changed after the maneuver was complete,

and the simulation was run again with the reduced

wavelength. After a sweep of maneuvers was run, each with

a different wavelength, the results were examined in post-

processing. An example ADS-33 Slalom MTE trajectory is

illustrated in Figure 10.

Figure 10: ADS-33 Slalom MTE from [18]

The simulated flight paths for the ADS-33 Slalom MTE

trajectories at CRUISE and LS conditions are shown in Figure

11 and Figure 12, respectively. The figure legends indicate

the wavelength in feet of each sinusoidal trajectory, and the

circles mark the waypoints for each trajectory. The ground

speeds were chosen from the performance specifications of

the maneuver: GVE desired for CRUISE and DVE adequate

for LS conditions. The simulations were run out of ground

effect to avoid the risk of ground impact or the vehicle

transitioning between altitude conditions that were in and out

of ground effect. As shows for the CRUISE cases, there is a

certain wavelength range at which the rotorcraft can no longer

follow the commanded sinusoidal trajectory, can no longer

preserve the shape of the sinusoid or follow the leg paths, and

in many cases cannot meet the cross-track error requirements

for the ADS-33 Slalom MTE (turns shall be at least 50 ft from

the centerline, with a maximum lateral error of 50 ft). A

similar trend can be seen in Figure 12 for the LS cases. For

large wavelengths and waypoint spacings, the rotorcraft

closely follows the leg paths between waypoints as expected.

However, as the wavelength decreases to ~200 – 300 ft, the

vehicle starts skipping waypoints, has difficulty tracking the

commanded sinusoidal trajectory, and in extreme cases loses

control and completely exits the course (e.g., at 𝜆 = 200 𝑓𝑡).
Figure 13 shows a reduced set of flight paths for both the

CRUISE and LS conditions so that the transition between

meeting and not meeting the minimum requirements of the

maneuver can be more easily visualized.

12

Figure 11: Simulated Flight Paths for Discretely Chirped ADS-33 Slalom MTE Trajectories at CRUISE

Figure 12: Simulated Flight Paths for Discretely Chirped ADS-33 Slalom MTE Trajectories at Directed

Thrust/Low Speed (LS)

13

Figure 13: Subset of Simulated Flight Paths for Discretely Chirped ADS-33 Slalom MTE Trajectories

The wavelength 𝜆 at which the maneuver requirements are

not met determines the minimum waypoint spacing, Δ𝑠𝑝 ≈

𝜆/4, for the optimization to be effective. Table 5

summarizes these lower bounds on 𝜆 and Δ𝑠𝑝 from the

simulations. Note that for the CRUISE condition, the case 𝜆

= 1500 ft did not meet the cross-track error requirements but

did preserve the shape of the commanded trajectory, and the

case 𝜆 = 2000 ft both met the cross-track requirements and

preserved the shape of the trajectory. For the LS condition,

the case 𝜆 = 300 ft showed large deviations from the

commanded trajectory but nearly met the cross-track error

requirements, whereas the case 𝜆 = 400 ft both preserved the

shape of the trajectory and met the cross-track error

requirements. To more accurately determine the lower

bounds on 𝜆 and Δ𝑠𝑝, simulations may be run for trajectories

with 𝜆 between 1500 and 2000 ft for the CRUISE condition

and 𝜆 between 300 and 400 ft for the LS condition.

Table 5: Lower Bounds on Discretely Chirped Slalom

Wavelength (𝝀) and Waypoint Spacing (𝚫𝒔𝒑)

 LS (15 knots) CRUISE (60 knots)

Preserves

Shape of

Trajectory

𝜆 > 300 𝑓𝑡

Δ𝑠𝑝 > 75 𝑓𝑡

𝜆 > 1500 𝑓𝑡

Δ𝑠𝑝 > 375 𝑓𝑡

Meets Cross-

Track Error

Requirements

𝜆 ≥ 400 𝑓𝑡

Δ𝑠𝑝 ≥ 100 𝑓𝑡

𝜆 ≥ 2000 𝑓𝑡

Δ𝑠𝑝 ≥ 500 𝑓𝑡

Note that the bounds in Table 5 were obtained for the

particular simulation configuration, outer loop guidance

implementation, and vehicle platform used in this study. The

minimum recommended waypoint spacing will depend on the

type of aircraft and guidance logic, and should be re-

confirmed for any new simulation configuration or from flight

tests. For cases where flight testing is not possible, this

spacing can be obtained by running nonlinear flight

simulations. However, if possible, flight testing of the

discretely chirped slaloms would be the fastest way to

determine the minimum recommended waypoint spacing

under CRUISE and LS conditions for which the optimization

algorithm reduces cross-track error.

Limitations of the Optimization Algorithm:

In general, the optimization algorithm produces the greatest

improvement in cross-track error when the aircraft trajectory

closely matches the leg path through the waypoints, which is

often the case when the waypoints are spaced far apart. As

the waypoint spacing is decreased, the aircraft dynamics and

waypoint leg-switching logic tend to cause the aircraft to

deviate from the prescribed leg path, so that the assumption

of the Bounded Area Minimization Problem that the leg path

closely approximates the aircraft trajectory is no longer valid

and the legacy guidance controller starts having difficulty to

accurately execute the flight plan. Under these

circumstances, modifying the baseline waypoint spacing

using the optimization algorithm is not always beneficial, and

in some cases is detrimental. Future work involves clearly

characterizing the conditions under which the optimization

algorithm is and is not beneficial, and confirming the results

with real aircraft flight test data.

Knot and Waypoint Reduction for Trajectories A and B:

Since the optimized waypoint spacing did not yield consistent

improvement over the baseline waypoint spacing for

Trajectories A and B, we investigated the effect on cross-track

error of removing knots from these spline trajectories before

14

optimizing the waypoint spacing. The works [19] and [20]

discuss systematic methods of knot reduction for B-splines,

but these methods are typically very computationally

expensive and involve considerable use of heuristics in

determining error thresholds. Thus, they were not pursued.

Simpler knot reduction schemes, such as removing waypoints

based on a minimum threshold for the change angle between

successive legs, were also tested. However, once enough

waypoints were removed to meet the minimum spacing

required for optimization to be effective (see Table 5), the

cross-track error from flying the reduced-knot trajectory with

baseline waypoint spacing was already considerably larger

than this error for the original (denser) baseline spacing, so

that optimizing the waypoint spacing was deemed to be moot.

This is evidence that the method for optimally spacing

waypoints on dense splines to reduce cross-track error is not

based on bounded area minimization, and is a topic that

should be researched in depth in the future.

V. PRACTICAL IMPLICATIONS

The proposed bounded area minimization algorithm provides

a means of spacing waypoints on an arbitrary commanded

spline trajectory in order to reduce tracking error. For aircraft

with coupled waypoint guidance software already in-service,

this algorithm allows for closer tracking of spline trajectories

without the need to modify core GN&C algorithms on safety-

critical flight computer systems and the ensuing formal

qualification effort that would follow any safety-critical

software change. It should be noted that there are many

algorithms in the published literature that may be higher-

performing in terms of tracking error, but all require a

significant change to software and thus significant formal

qualification testing. Figure 14 shows the approximate

minimum waypoint spacing for several aircraft classes

relative to the minimum change distance for CRUISE and LS

conditions. Comparing the values from Table 5 of the lower

bound on waypoint spacing for the CRUISE (375-500 ft) and

LS (75-100 ft) conditions, we see that the minimum waypoint

spacing for production vehicles either falls within these

ranges or is much higher (e.g., the approximate minimum

Cargo/Utility spacing is ~600 ft for both CRUISE and LS

conditions). The Scout waypoint spacing of 100 – 150 ft was

used as the baseline waypoint spacing for Trajectories A and

B for demonstration purposes; it has not entered production

vehicles to the authors’ knowledge. This data shows why the

optimization algorithm did not consistently improve tracking

performance for Trajectories A and B, but also indicates that

it could significantly improve tracking performance for other

classes of production vehicles with more benign trajectories.

Figure 14: Minimum Change Distance vs. Approximate

Minimum Waypoint Spacing for Production Aircraft

VI. CONCLUSIONS AND FUTURE WORK

The proposed optimization algorithm is a useful method for

defining a sequence of waypoints that closely tracks a

complex flight trajectory. It does not require any major

software updates to existing aircraft and can take advantage

of existing infrastructure and code. The algorithm is not

applicable to cases where the baseline waypoint spacing is

dense. The minimum waypoint spacing for which the

algorithm produces useful solutions can be determined with

test flights along discretely chirped sinusoidal slalom

trajectories, either in a flight dynamics simulator or with real

aircraft. Future work involves modifying the optimization

algorithm to extend the range of scenarios for which it is

beneficial, such as revising it to compute spacing for

sequences of four waypoints instead of three (given that four

knots can capture changes in curvature of a spline that three

knots cannot) and relaxing the constraint that waypoints must

be located on the spline trajectory.

Author contacts:

 Bryan C. H. Chu, bcchu1@asu.edu

James Keller, james.f.keller@boeing.com

 Spring Berman, spring.berman@asu.edu

(a) (b)

Passenger Jetliner

LS PlannerCRUISE Planner

Cargo/Utility

Scout

Scout

Cargo/Utility

mailto:bcchu1@asu.edu
mailto:spring.berman@asu.edu

15

APPENDIX A

EQUIVALENCE OF MINIMIZING AREA AND CROSS-

TRACK ERROR

Figure 15 illustrates the quantities that are used to compute

the cross-track error (𝑦) and the cross-track velocity (𝑦̇) of an

arbitrary point 𝑃, located at coordinates (𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) for some

time t on a given trajectory, with respect to a leg between two

waypoints 𝑛 and 𝑛 + 1. The angles 𝜓, 𝜓𝐿, and 𝜓𝑡𝑟𝑘 denote

the aircraft heading, leg heading, and ground track angle,

respectively, all relative to North. The distances 𝑑𝑁 and 𝑑𝐸

denote the north and east components, respectively, of the

distance of point 𝑃 to waypoint 𝑛 + 1. The velocities 𝑣𝑁, 𝑣𝐸 ,

and 𝑣𝐺 represent the north, east, and total ground velocities of

the vehicle, which are used for cross-track velocity and

change distance computations.

Figure 15: Cross-Track Error and Cross-Track

Velocity Definitions

Using the geometry in Figure 15 (with 𝑑𝑥 = 𝑑𝑁 and

𝑑𝑦 = 𝑑𝐸), the cumulative cross-track error, 𝑠𝑐𝑢𝑚(𝑡∗),

between a trajectory and the first leg can be computed as:

𝑠𝑐𝑢𝑚(𝑡∗) = ∫ {(𝑑𝑥sin 𝜓𝐿) − (𝑑𝑦cos 𝜓𝐿)}𝑑𝑡
𝑡∗

𝑡𝑛−1

(8)

We will show that for trajectories defined as the semicircle

and sinusoid motion primitives in Section III, the same value

of time 𝑡∗ minimizes both 𝑠𝑐𝑢𝑚(𝑡∗) and the area 𝐴(𝑡∗) of the

bounded region enclosed by the trajectory and its

approximation by a leg path through a sequence of three

waypoints. We do this by deriving the expressions for

𝑠𝑐𝑢𝑚(𝑡∗) and 𝐴(𝑡∗), computing their derivatives with respect

to 𝑡∗, setting them equal to zero, and then solving each

equation for the resulting value of 𝑡∗, which minimizes the

expressions. The optimal times 𝑡∗ that minimize 𝐴(𝑡∗) are

computed in Appendix B; here, we derive the expressions for

𝑠𝑐𝑢𝑚(𝑡∗) for the semicircular and sinusoidal trajectories.

We first consider the semicircular trajectory, whose

coordinates (𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) are defined by the parametric

equations (15). If the origin of the coordinate system is placed

at waypoint 𝑛 − 1, then the expressions for distances 𝑑𝑥 and

𝑑𝑦 can be written as follows for the leg between waypoints

𝑛 − 1 and 𝑛:

𝑑𝑥 = 𝑥𝑛 − 𝑥𝑝(𝑡) = 𝐶𝑥𝑛,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡 − 𝑡𝑛−1))]

𝑑𝑦 = 𝑦𝑛 − 𝑦𝑝(𝑡) = 𝐶𝑦𝑛,3 [1 − 1 + cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡 − 𝑡𝑛−1) − 𝜋)]

(9)

The expressions for 𝑑𝑥 and 𝑑𝑦 for the leg between waypoints

𝑛 and 𝑛 + 1 are similar, with the coefficients redefined as

𝐶𝑥𝑛+1,3 , 𝐶𝑦𝑛+1,3 and the leg heading 𝜓𝐿 updated for this leg.

We define 𝜓𝐿𝑖_𝑗 as the heading of the leg between waypoints

𝑖 and 𝑗. Substituting the expressions for 𝑑𝑥 and 𝑑𝑦 into Eq.

(9), the cumulative cross-track error can be evaluated as the

sum of two integrals (one for each leg):

𝑠𝑐𝑢𝑚(𝑡∗)

= ∫

{

 (𝐶𝑥𝑛,3 [1 − sin(

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛−1_𝑛)

− (𝐶𝑦𝑛,3 [1 − 1 + cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛−1_𝑛)}

𝑑𝑡

𝑡∗

𝑡𝑛−1

+∫

{

 (𝐶𝑥𝑛+1,3 [1 − sin(

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓 𝐿𝑛_𝑛+1)

− (𝐶𝑦𝑛+1,3 [1 − 1 + cos(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛_𝑛+1)}

𝑑𝑡

𝑡𝑛

𝑡∗

(10)

Taking the derivative of the above expression with respect to

the optimal time 𝑡∗ for the interior waypoint 𝑛, applying the

Fundamental Theorem of Calculus, and setting the resulting

expression to zero yields:

𝑑

𝑑𝑡∗
𝑠𝑐𝑢𝑚 = 0

=
(𝐶𝑥𝑛,3 [1 − sin(

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛−1_𝑛)

−(𝐶𝑦𝑛,3 [cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛−1_𝑛)

+(𝐶𝑥𝑛+1,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛_𝑛+1)

+(𝐶𝑦𝑛+1,3 [cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛_𝑛+1)

 (11)

This equation is satisfied when 𝑡∗ = 𝑡𝑛, since for this

trajectory,

𝑡∗ = 𝑡𝑛 ⇒
𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

=
1

2

(12)

As shown in Appendix B, the time 𝑡∗ = 𝑡𝑛 also minimizes the

area 𝐴(𝑡∗).

16

The argument for the sinusoidal trajectory is similar. The

coordinates 𝑥𝑝(𝑡), 𝑦𝑝(𝑡) of this trajectory are defined by the

parametric equations (19). The derivative of the cumulative

cross-track error expression for the sinusoid can be written as:

𝑑

𝑑𝑡∗
𝑠𝑐𝑢𝑚 = 0

=
𝑑

𝑑𝑡∗

[

∫

{

 (𝐶𝑥𝑛,3 [1 − 𝑠𝑖𝑛 (

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡− 𝑡𝑛−1))] 𝑠𝑖𝑛 𝜓𝐿𝑛−1_𝑛)

−(𝐶𝑦𝑛,3 [1 − 2 ⋅
(𝑡− 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] 𝑐𝑜𝑠 𝜓𝐿𝑛−1_𝑛) }

𝑑𝑡
𝑡∗

𝑡𝑛−1

+∫

{

 (𝐶𝑥𝑛+1,3 [1 − 𝑠𝑖𝑛 (

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡− 𝑡𝑛−1))] 𝑠𝑖𝑛 𝜓𝐿𝑛_𝑛+1)

−(𝐶𝑦𝑛+1,3 [1 − 2 ⋅
(𝑡− 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] 𝑐𝑜𝑠 𝜓𝐿𝑛_𝑛+1) }

𝑑𝑡
𝑡𝑛

𝑡∗

]

(13)

Taking the derivative of this expression with respect to 𝑡∗,
applying the Fundamental Theorem of Calculus, and setting

the resulting expression to zero gives:

𝑑

𝑑𝑡∗
𝑠𝑐𝑢𝑚 = 0

 =

 (𝐶𝑥𝑛,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛−1𝑛)

−(𝐶𝑦𝑛,3 [1 − 2 ⋅
(𝑡∗ − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] cos 𝜓𝐿𝑛−1𝑛)

−(𝐶𝑥𝑛+1,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛𝑛+1)

+(𝐶𝑦𝑛+1,3 [1 − 2 ⋅
(𝑡∗ − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] cos 𝜓𝐿𝑛_𝑛+1)

(14)

This is true for 𝑡∗ = 𝑡𝑛, which also minimizes the area 𝐴(𝑡∗)
as shown in Appendix B.

17

APPENDIX B

ANALYTICAL SOLUTION OF OPTIMAL TIME FOR

MOTION PRIMITIVES

Here, we derive the optimal time 𝑡∗ that minimizes the area

𝐴(𝑡∗) of the bounded region enclosed by a trajectory 𝒑(𝑡),
defined as one of four motion primitives, and the

corresponding leg path 𝒒(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1].

Primitive 2: Semicircle

The parametric equations for the coordinates of the

semicircular trajectory are:

𝑥𝑝(𝑡) = 𝐴 sin(𝜔(𝑡 − 𝑡𝑛−1))

= 𝐶𝑥𝑛,3 ⋅ sin (
𝜋

(𝑡𝑛+1 − 𝑡𝑛−1)
⋅ (𝑡 − 𝑡𝑛−1))

 𝑦𝑝(𝑡) = 𝐴 [1 + cos(𝜔(𝑡 − 𝑡𝑛−1) + 𝜑)]

= 𝐶𝑦𝑛,3 ⋅ [1 + cos (
𝜋

(𝑡𝑛+1 − 𝑡𝑛−1)
⋅ (𝑡 − 𝑡𝑛−1) − 𝜋)]

(15)

The area 𝐴(𝑡∗) is the difference between the area bounded by

the semicircle and the line between waypoints 𝑛 − 1 and 𝑛 +
1, which we denote by 𝐴𝑠𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑙𝑒 , and the area of the

inscribed triangle with vertices at waypoints 𝑛 −
1, 𝑛, and 𝑛 + 1, denoted by 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒:

𝐴(𝑡∗) = 𝐴𝑠𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑙𝑒 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
𝜋𝑟2

2
−
1

2
𝑏ℎ,

Using the parametric equations (15), this area can be written

as:

𝐴(𝑡∗) =
𝜋𝑟2

2
−
1

2
(2𝑟)𝑥𝑝(𝑡∗)

= [
𝜋𝑟2

2
− 𝑟𝐶𝑥𝑛,3 sin (𝜋 ⋅

𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

)]

(16)

Taking the derivative of expression (16) with respect to 𝑡∗
and setting the derivative to zero yields the value of 𝑡∗ that

minimizes 𝐴(𝑡∗), which determines the location 𝒑(𝑡𝑛) of the

interior waypoint along the semicircle trajectory 𝒑:

𝑑𝐴

𝑑𝑡∗
= 0 − 𝑟𝜋 ⋅

1

𝑡𝑛+1 − 𝑡𝑛−1
⋅ cos (𝜋 ⋅

𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

)

(17)

⇒ 𝑡∗ = 𝑡𝑛, since
𝑡𝑛−𝑡𝑛−1

𝑡𝑛+1−𝑡𝑛−1
=

1

2

(18)

Plugging this value for 𝑡∗ into the equations (15) for the

semicircle coordinates, we find that the interior waypoint

should be placed at the point (𝑥𝑞(𝑡∗) = 𝐶𝑥𝑛,3 , 𝑦𝑞(𝑡∗) = 𝐶𝑦𝑛,3),

which is the peak of the semicircle.

Primitive 3: Sinusoid

The parametric equations for the coordinates of the half-wave

sinusoidal trajectory are:

𝑥𝑝(𝑡) = 𝐴 sin(𝜔(𝑡 − 𝑡𝑛−1))

= 𝐶𝑥𝑛,3 sin (
𝜋

(𝑡𝑛+1 − 𝑡𝑛−1)
(𝑡 − 𝑡𝑛−1))

𝑦𝑝(𝑡) = 2𝐴 [
(𝑡 − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] = 2𝐶𝑦𝑛,3 ⋅ [

(𝑡 − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
]

(19)

The area 𝐴(𝑡∗) is the difference between the area bounded by

the half-wave sinusoid trajectory and the line between

waypoints 𝑛 − 1 and 𝑛 + 1, denoted by 𝐴𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 , and the

area of the inscribed triangle, 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒:

𝐴(𝑡) = 𝐴𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 𝐶𝑥𝑛,3∫ sin(𝑡) 𝑑𝑡
𝜋

0

−
1

2
𝑏ℎ

⇒ 𝐴(𝑡∗) = 𝐶𝑥𝑛,3∫ sin(𝑡) 𝑑𝑡
𝜋

0

−
1

2
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)𝑥𝑝(𝑡∗)

⇒ 𝐴(𝑡∗) = 𝐶𝑥𝑛,3 [2 −
1

2
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)sin (𝜋 ⋅

𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

)]

(20)

where the expression for 𝑥𝑝(𝑡∗) is from the parametric

equations (19). The derivative of 𝐴(𝑡∗) with respect to 𝑡∗ is:

𝑑𝐴

𝑑𝑡∗
= 0 −

1

2
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3) ⋅

𝜋𝐶𝑥𝑛,3
𝑡𝑛+1 − 𝑡𝑛−1

⋅ cos (𝜋 ⋅
𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

)

(21)

When set equal to zero, this derivative has the same solution

for 𝑡∗ as Eq. (17):

𝑡∗ = 𝑡𝑛

Plugging this value for 𝑡∗ into the sinusoid coordinates (19),

we find that the interior waypoint should be placed at

(𝑥𝑞(𝑡∗) = 𝐶𝑥𝑛,3 , 𝑦𝑞(𝑡∗) = 𝐶𝑦𝑛,3), the peak of the sinusoid.

Primitive 4: Decaying Exponential

The parametric equations for the coordinates of the decaying

exponential trajectory are:

𝑥𝑝(𝑡) = 𝐶𝑥𝑛−1,3 ⋅ 𝑒
−𝑦𝑝(𝑡)

𝑦𝑝(𝑡) = 2 ⋅ 𝐶𝑦𝑛,3 ⋅ [
𝑡 − 𝑡𝑛−1

𝑡𝑛+1 − 𝑡𝑛−1
]

(22)

As illustrated in Figure 16, the area 𝐴(𝑡∗) can be written as

the difference between the area 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒1 of the triangle

(outlined in red) with vertices at the origin, waypoint 𝑛 − 1,

and waypoint 𝑛 + 1, and the sum of the area 𝐴𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

18

under the exponential trajectory between times 𝑡𝑛−1 and 𝑡𝑛+1

and the area 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2 of the triangle with vertices at the three

waypoints 𝑛 − 1, 𝑛, and 𝑛 + 1:

𝐴(𝑡∗) = 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒1 − (𝐴𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2)

(23)

Figure 16: Bounded Area Associated with Decaying

Exponential

We define 𝐴𝑏 ≡ 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒1 − 𝐴𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 . Given the

parametric equations (22), this area is computed as:

𝐴𝑏 =
1

2
𝐶𝑥𝑛−1,3𝐶𝑦𝑛+1,3 −∫ 𝐶𝑥𝑛−1,3 ⋅ 𝑒

−𝑦𝑝(𝑡)
𝑡𝑛+1

𝑡𝑛−1

𝑑𝑡

(24)

Note that this area is not a function of 𝑡∗. The area 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2

depends on the location of the interior waypoint 𝑛, and

therefore is a function of 𝑡∗. This area is computed by

multiplying the triangle’s base, the distance between

waypoints 𝑛 − 1 and 𝑛 + 1, by its height, the perpendicular

distance between waypoint 𝑛 and its base:

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2(𝑡∗) =

(

√(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)

2
+ (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

2

2

)

 ⋅

(

(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)(𝐶𝑦𝑛+1,3 − 𝑦𝑝(𝑡∗)) − (𝐶𝑥𝑛+1,3 − 𝑥𝑝(𝑡∗))(𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

√(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)
2
+ (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

2

)

(25)

By Eq. (23), taking the derivative of 𝐴(𝑡∗) with respect to 𝑡∗
yields:

𝑑𝐴

𝑑𝑡∗
= 0 +

𝑑

𝑑𝑡∗
(
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)(𝐶𝑦𝑛+1,3 − 𝑦𝑝(𝑡∗))

2
)

 −
𝑑

𝑑𝑡∗
(
(𝐶𝑥𝑛+1,3 − 𝑥𝑝(𝑡∗))(𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

2
)

(26)

When set equal to zero, the solution of this equation is the

value of 𝑡∗ that minimizes 𝐴(𝑡∗), which determines the

location 𝒑(𝑡∗) of the interior waypoint 𝑛 along the

exponential trajectory 𝒑. Setting Eq. (26) equal to zero and

substituting in the expressions for the trajectory coordinates (

22), we obtain the following:

−(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)(
𝑑

𝑑𝑡∗
𝑦𝑝(𝑡∗)) = −(

𝑑

𝑑𝑡∗
𝑥𝑝(𝑡∗)) (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

⇒ −(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3) (2 ⋅ 𝐶𝑦𝑛,3 ⋅ [
1

𝑡𝑛+1 − 𝑡𝑛−1
])

= 2 ⋅ 𝐶𝑦𝑛,3 ⋅ [
1

𝑡𝑛+1 − 𝑡𝑛−1
]

⋅ (𝐶𝑥𝑛−1,3 ⋅ 𝑒
−𝑦𝑝(𝑡∗)) (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

(27)

This equation can be solved for the 𝑥𝑝 coordinate of the

exponential at time 𝑡∗:

𝑥𝑝(𝑡∗) = 𝐶𝑥𝑛−1,3 ⋅ 𝑒
−𝑦𝑝(𝑡∗) = −

𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3
𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3

(28)

The above equality was found from a graphical solution to be

𝑡∗ = 4.8𝑠 when (𝐶𝑥𝑛−1,3 = 5, 𝐶𝑦𝑛,3 = 2.5) which closely

matches the solution computed using the optimization

algorithm for the Bounded Area Minimization Problem, as

described in Section III.

Primitive 5: Logarithmic Spiral

The parametric equations for the coordinates of the

logarithmic spiral trajectory are given by:

𝑦𝑝(𝑡) = 𝛼𝑒
𝑏𝑡sin (𝑡)

𝑥𝑝(𝑡) = 𝛼𝑒
𝑏𝑡cos (𝑡)

(29)

As shown in Figure 17,the bounded area between the leg path

and the spiral can be written as the difference between the area

bounded by the spiral and the line between waypoints 𝑛 −
1 and 𝑛 + 1, which we denote by 𝐴𝑠𝑝𝑖𝑟𝑎𝑙, and the area of the

inscribed triangle with vertices at waypoints 𝑛 −
1, 𝑛, and 𝑛 + 1, denoted by 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 .

19

Figure 17: Bounded Area Associated with Logarithmic

Spiral

The red circle represents the point on the line between the

exterior waypoints 𝑛 − 1 and 𝑛 + 1 that is closest to the

interior waypoint 𝑛. The equation of the line segment

between waypoints 𝑛 − 1 and 𝑛+1 can be written in terms of

the parameter 𝑡 as follows:

𝑦𝑞(𝑡) = 𝑦𝑛−1 +
𝑡 − 𝑡𝑛−1

𝑡𝑛+1 − 𝑡𝑛−1
(𝑦𝑛+1 − 𝑦𝑛−1)

 𝑥𝑞(𝑡) = 𝑥𝑛−1 +
𝑡 − 𝑡𝑛−1

𝑡𝑛+1 − 𝑡𝑛−1
(𝑥𝑛+1 − 𝑥𝑛−1)

(30)

Defining 𝑦𝑝(𝑡), 𝑥𝑝(𝑡) as in Eq. (30) and 𝑦𝑞(𝑡), 𝑥𝑞(𝑡) as in Eq.

(31), the area 𝐴𝑠𝑝𝑖𝑟𝑎𝑙 is obtained using Green’s Theorem by

integrating the curve along the spiral trajectory from 𝑛 − 1 to

𝑛 + 1 and back along the dotted line from 𝑛 + 1 to 𝑛 − 1:

𝐴𝑠𝑝𝑖𝑟𝑎𝑙 =
1

2
[∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡

𝑡𝑛+1

𝑡𝑛−1

+∫ (−𝑦𝑞𝑥′𝑞 + 𝑥𝑞𝑦′𝑞)𝑑𝑡
𝑡𝑛−1

𝑡𝑛+1

]

(31)

The area of the inscribed triangle, 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, can be computed

by defining the distance between 𝑛 − 1 and 𝑛 + 1 as the

triangle’s base, 𝑏, and the distance between the base and

waypoint 𝑛 (the length of the red dotted line in Figure 17) as

the triangle’s height, ℎ. Since the location 𝒑(𝑡∗) of waypoint

𝑛 on the spiral determines this height, ℎ and therefore 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

can be written as functions of the decision variable 𝑡∗:

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑡∗) =
𝑏ℎ(𝑡∗)

2

(32)

The distance 𝑏 is fixed and thus does not depend on 𝑡∗. The

distance ℎ(𝑡∗) can be computed based on the known equation

for the distance between an arbitrary point and a line through

two different points. The bounded area between the spiral and

the leg path is then given by:

𝐴(𝑡∗) = 𝐴𝑠𝑝𝑖𝑟𝑎𝑙 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑡∗)

(33)

The minimum value of this area is obtained by taking the

derivative of the expression 𝐴(𝑡∗) with respect to 𝑡∗ and

setting the resultant equal to zero. This operation yields:

𝑑

𝑑𝑡∗
𝐴(𝑡∗) = 0 ⇒

𝑑

𝑑𝑡∗
[𝑦𝑝(𝑡∗)] = [

𝑦𝑛+1 − 𝑦𝑛−1
𝑥𝑛+1 − 𝑥𝑛−1

] ⋅
𝑑

𝑑𝑡∗
[𝑥𝑝(𝑡∗)]

(34)

Solving for 𝑡∗ gives 1.69𝑠, which is also very close to the

numerical solution of the optimization algorithm, as described

in Section III. The constants for the parametric coordinates

were 𝛼 = 2𝜋 and b = 0.2.

20

ACKNOWLEDGMENTS

The authors would like to acknowledge the following parties

for their influence in making this paper a reality.

• Don Caldwell for his excellent mentorship, wry

sense of humor, practical experience flying

helicopters, and in-depth knowledge designing and

developing automatic flight control systems for

them. But most importantly for always reminding us

to ask “Who is John Galt?”

• Dino Cerchie for his vision recognizing and

nurturing the MD530F platform as the ideal

surrogate as an autonomy testbed decades before

others caught on.

• Bill Pellerin for always reminding us that C-code

won’t write itself, and that it’s 5-o’clock somewhere.

• Navid Dadkhah for his ability to manipulate splines

and informal lessons on conversational Farsi.

• Graham Drozeski for reminding us that “good

enough” is always the enemy of true progress.

• Denis Kosygin for his excellent introduction to the

story of Queen Dido and derivations of the

isoperimetric problem using Green’s Theorem in

MAT 203 freshman year at Fine Hall, Princeton

University.

• Jacob Walrath for reminding us all what is possible

if one truly puts their heart and mind to a task.

• Chris Colosi for providing his perspectives from

time spent in Philadelphia, PA, Mesa, AZ, Everett,

WA, and abroad in the United Kingdom.

• Russell Enns for his introspective conversations on

life, liberty, and the pursuit of happiness.

• Ram Janakiram for always asking the next question.

As always, there are many, many more people that

contributed greatly to this paper than the above mentioned

that may have been omitted so the authors wish to

acknowledge all of them now.

REFERENCES

[1] S. M. Lavalle, Planning Algorithms, New

York: Cambridge University Press, 2006.

[2] P. Petit, J. Wartmann, B. Fragniere and S.

Greiser, "Waypoint based online trajectory

generation and following control for the

ACT/FHS," in AIAA SciTech Forum, San Diego,

CA, 2019.

[3] J. Paduano, G. Drozeski, N. Dadkhah, S.

Scherer, D. Cerchie, M. Hardesty, C. Cameron, J.

Graham, B. Chu and et al, "TALOS: An Unmanned

Cargo Delivery System for Rotorcraft Landing to

Unprepared Sites," in American Helicopter Society

71st Annual Forum, Virginia Beach, VA, May 5,

2015.

[4] S. Choudhury, S. Arora and S. Scherer, "The

Planner Ensemble and Trajectory Executive: A

High Performance Motion Planning System with

Guaranteed Safety," in AHS 70th Annual Forum,

Montreal, 2014.

[5] Takahashi, Fujizawa and Lusardi,

"Comparison of Autonomous Flight Control

Performance Between Partial- and Full-Authority

Helicopters," Journal of Guidance, Control, and

Dynamics, vol. 45, no. 5, pp. 885-901, February

2022.

[6] Takahashi, Fujizawa, Lusardi and Whalley,

"Autonomous Guidance and Flight Control on a

Partial-Authority Black Hawk Helicopter,"

Journal of Aerospace Information Systems, vol. 18,

no. 10, 2021.

[7] M. Whalley, M. D. Takahashi and H. Mansur,

""Flight Test Results for a New Mission-Adaptive

Autonomy System on the RASCAL JUH-60A

Black Hawk"," in American Helicopter Society

72nd Annual Forum, West Palm Beach, Florida,

May 17-19, 2016.

[8] S. Scherer, L. Chamberlain and S. Singh,

"Autonomous Landing at Unprepared Sites by a

Full-Scale Helicopter," Robotics and Autonomous

Systems, vol. 60, no. 12, pp. 1542-1562, 2012.

[9] J. Keller et al, "Coordinated Path Planning for

Fixed-Wing UAS Conducting Persistent

Surveillance Missions," in IEEE Transactions on

Automated Science and Engineering, Vol. 14, No.

1, pp. 17 - 24, Jan 2017.

[10] F. Nawaz, P. Tekade and A. Ratnoo, "On

Obstacle Avoidance Charactersitics of

Proportional Navigation Guidance," in AIAA

SciTech Forum, Orlando, FL, 2020.

[11] P. B. Sujit, S. Saripalli and J. B. Sousa,

"Unmanned Aerial Vehicle Path Following: A

Survey and Analysis of Algorithms for Fixed-

Wing Unmanned Aerial Vehicles," in IEEE

Control Systems Magazine, 2014.

[12] S. H. Lee, S. W. Hur, Y. Y. Kwak, Y. H. Nam

and C. J. Kim, "Ahead-time Approach to Carrot-

chasing Guidance Law for an Accurate Trajectory-

21

tracking Control," International Journal of

Control, Automation and Systems, 2021.

[13] S. Park, J. Deyst and J. How, "A New

Nonlinear Guidance Logic for Trajectory

Tracking," in AIAA Guidance, Navigation, and

Control Conference and Exhibit, 2004.

[14] O. Halbe and M. Hajek, "Online Waypoint

Trajectoy Generation Using State-Dependent

Riccati Equation," Journal of Guidance, Control,

and Dynamics, Vol. 42, No. 12, pp. 2687-2693

December 2019.

[15] D. Cerchie, D. Caldwell and B. Chu, "ULB

Guidance, Navigation, and Control Laws and

Evaluation of their Performance During Shipboard

Operations," in AHS International Specialist's

Meeting on Unmanned Rotorcraft, Mesa, AZ,

2012.

[16] A. Gubbels et al, "The NRC Bell 412

Advanced Systems Research Aircraft - Facility

Description and Results of Initial In-Flight

Evaluation," in American Helicopter Society 58th

Annual Forum, Montreal, 2002.

[17] S. Hota and D. Ghose, "Optimal Transition

Trajectory for Waypoint Following," in IEEE

International Conference on Control Applications,

Hyderabad, India, 2013.

[18] "ADS-33E-PRF, Aeronautical Design

Standard Perforamance Specification Handling

Qualities Requirements for Military Rotorcraft,"

US Army Aviation and Missile Command,

Aviation Engineering Directorate, Redstone

Arsenal, Alabama, 2000.

[19] T. Lyche and K. Morken, "A Data-Reduction

Strategy for Splines with Applications to the

Approximation of Functions and Data," IMA

Journal of Numerical Analysis, vol. 8, pp. 185-208,

1988.

[20] T. Lyche and K. Morken, "Knot removal for

parametric B-spline curves and surfaces,"

Computer Aided Geometric Design, vol. 4, pp.

217-230, 1987.

