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ABSTRACT 

A new guidance optimization scheme for spacing waypoints on spline trajectories is proposed.  This scheme, the 

bounded area minimization algorithm, examines sequences of 3 waypoints that sample a given spline trajectory at its 

constituent knot locations and moves the interior waypoint to a location on the spline trajectory that minimizes the 

bounded area, computed using Green’s theorem, between the trajectory and the straight-line paths (legs) that connect 

adjacent waypoints.  For spline trajectories defined by more than 3 knots, the algorithm can be applied sequentially to 

cover the entire chain of knots.  Five motion primitives were chosen to test the performance of the optimization scheme 

on piecewise cubic polynomial spline trajectories.  Two of these motion primitives (sinusoid and exponential) as well 

as two real-world trajectories that have been flight-tested on an MD530F platform were then simulated in a full 

nonlinear rotorcraft flight dynamics simulator to quantify and compare the effects of optimized versus baseline 

waypoint spacing.  The bounded area minimization algorithm was extremely effective at reducing cumulative cross 

track error when the waypoint spacing was large enough that the aircraft trajectories closely matched the straight-line 

waypoint legs used in the algorithm.  A method of determining the smallest waypoint spacing at which the optimization 

algorithm is still beneficial was proposed based on varying the wavelength of the ADS-33 Slalom MTE.  For densely 

sampled spline trajectories that do not have knot spacings large enough to realize the benefits of the optimization 

algorithm, knot removal can sometimes reduce the number of waypoints required to represent the trajectory while 

maintaining the cumulative cross track error.  However, there is no guarantee that subsequent bounded area 

minimization results in better performance than the baseline waypoint spacing.  Determination of waypoint spacing 

for densely sampled spline trajectories is a recommended area of future work.  A practical benefit of the bounded area 

minimization algorithm is that it requires very little modification to in-service coupled waypoint guidance flight 

director and autopilot schemes on existing aircraft, which improves the likelihood of its adoption by reducing the 

effort required for formal qualification and certification.

 

I. INTRODUCTION 1  

Humans have long used the concept of waypoints for 

navigation, with the earliest waypoints defined as distinctive 

natural features and landmarks.  With the advent of modern 

GPS constellations and other navigational aids, waypoints 

associated with precise 3-dimensional points in space could 

be easily entered as a latitude, longitude, and altitude in a 

flight computer and given as guidance commands to an 

automatic flight control system.  The earliest automatic flight 

plans consisted of sequences of waypoints separated by 

considerable distances so that a change in leg (line segment 

connecting two waypoints) would occur around once every 

15-30 minutes.  However, with the proliferation of 

autonomous aerial vehicles such as small drones and the push 

for urban air mobility, there is a need for autonomous aircraft 

to fly more complex trajectories for obstacle avoidance, 

traffic re-routing, and contingency management.  One method 

of defining such trajectories is to sample them in space with 

discrete waypoints.  However, due to the complex nature of 

these trajectories (an accurate approximation requires 
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piecewise polynomials of degree 3 or higher between 

waypoints), the choice of waypoints and spacing between 

waypoints is non-trivial, entailing tradeoffs among the 

discrepancy between the desired trajectory and its 

approximation, the dynamic feasibility of the approximated 

trajectory, and its ease of implementation using aircraft 

guidance leg-switching logic.   

To address this problem, this paper proposes the bounded 

area minimization algorithm, an optimal method of placing 

the interior waypoint of a sequence of three that minimizes 

the bounded area between the original trajectory and the 

straight-line path connecting the waypoint sequence.  In 

addition, the optimization algorithm is applied to trajectories 

that have more than three waypoints using a chaining process.  

The algorithm is first tested on five motion primitives that are 

common components of rotorcraft flight trajectories, and then 

on more complex trajectories that can be used for real-time 

rotorcraft trajectory planning.  Aircraft trajectory tracking 

error over optimized and non-optimized waypoint-based 

flight plans is compared in a full nonlinear rotorcraft flight 
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dynamics simulation in order to predict and measure the 

benefit of using this algorithm.  Applications of the algorithm 

to in-service aircraft, conditions under which the algorithm 

improves or degrades tracking performance, and directions of 

future work are also discussed.  We first define the type of 

flight trajectory that we consider in this work: a piecewise 

polynomial spline of degree 3 or higher, which is a typical 

output generated by high-level path planners [1] and has been 

used for rotorcraft trajectory following in [2], [3], [4], [5], [6], 

and [7].  Next, we discuss approaches to sampling an arbitrary 

spline or sequence of splines and flying such trajectories using 

waypoint switching algorithms.  Finally, we describe previous 

work on solving the trajectory-tracking and path-following 

problems for aircraft and the advantages and shortcomings of 

these methods. 

A. Trajectory Definition 

A typical spline trajectory for flight planning purposes may 

be constructed using 150 to 200 knots.  Splines are piecewise 

continuous polynomial-based trajectories.  Each point on a 

spline is based on the value of a parameter, typically identified 

in notation as 𝑡; a set of polynomial basis functions; and a 

vector set of physical locations that permit transcription of 

real-valued polynomials evaluated at a specific parameter 

value into a location.  In this context, knots are the set of 

discrete samples of the parameter that are used to shape the 

basis functions.  The most fundamental basis function set is 

the power series.  For this basis function set, a knot is defined 

as the value of the parameter that sets the point on the spline 

where two piecewise polynomials are joined together.  When 

the parameter, 𝑡, equals a knot value, the corresponding point 

on the spline is denoted as a knot point.  Because of this 

correspondence between knots (real-valued scalars) and the 

locations along the spline they produce, this paper will 

henceforth refer to knots as the points along the spline, 

otherwise known as the knot times.  Between each pair of 

adjacent knots, the spatial coordinates 𝒑(𝑡) = 

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of the spline are parametric polynomials in 

terms of the parameter 𝑡.  For example, if knot 𝑛 is located at 

position 𝒑𝑛 = (𝑥𝑛, 𝑦𝑛 , 𝑧𝑛) in the global coordinate system and 

knot 𝑛 + 1 is located at 𝒑𝑛+1 = (𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1), then a 

cubic spline segment between knots 𝑛 and 𝑛 + 1 can be 

described as follows: 

𝒑(𝑡) = 𝐚𝑛,0(𝑡 − 𝑡𝑛)
3 + 𝐚𝑛,1(𝑡−𝑡𝑛)

2 + 𝐚𝑛,2(𝑡 − 𝑡𝑛) + 𝐚𝑛,3,           

𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), 

                       

( 1 ) 

where 𝐚𝑛,0, 𝐚𝑛,1, 𝐚𝑛,2, 𝐚𝑛,3  ∈ ℝ
3 are vectors of constant 

coefficients, 𝑡𝑛 and 𝑡𝑛+1 are the knot parameters at the start 

and end of the spline, and we adopt the nomenclature 𝒑(𝑡𝑛) =
 𝒑𝑛, 𝒑(𝑡𝑛+1) =  𝒑𝑛+1.  Note that when referring to individual 

elements of the vectors of constant coefficients, the following 

nomenclature is used: 𝐚𝑛,0 = (𝐶𝑥𝑛,0 , 𝐶𝑦𝑛,0 , 𝐶𝑧𝑛,0), 𝐚𝑛,1 =

(𝐶𝑥𝑛,1 , 𝐶𝑦𝑛,1 , 𝐶𝑧𝑛,1),  𝐚𝑛,2 = (𝐶𝑥𝑛,2 , 𝐶𝑦𝑛,2 , 𝐶𝑧𝑛,2), and 𝐚𝑛,3 =

(𝐶𝑥𝑛,3 , 𝐶𝑦𝑛,3 , 𝐶𝑧𝑛,3).  In this paper, we focus only on 2-

dimensional trajectories in the 𝑥𝑦-plane, but our approach can 

easily be extended to trajectories in 3-dimensional space as 

well as trajectories that include the aircraft heading.  

Moreover, polynomials of degree higher than 3 may be used 

to define the spline, depending on the application.  The works 

[8] and [9] provide examples of using spline trajectories for 

aircraft path planning and guidance.  

There has been considerable work on developing time-based 

guidance algorithms to fly splines.  For example, 

instantaneous velocity, acceleration, and jerk commands can 

be obtained from the spline trajectories simply by successive 

differentiation of the defining expressions.  However, time-

based guidance requires that the aircraft arrive at each 

checkpoint on the flight plan precisely in time for future 

guidance commands to be accurate and useful.  Due to winds, 

external disturbances, or unexpected events, it is possible for 

the aircraft to fall behind or ahead in time from the desired 

position specified by the spline trajectory and thus any time-

based guidance scheme that was based on these trajectory 

equations must then be corrected.  To circumvent these 

challenges, we investigate waypoint-based guidance as a 

possible alternative, where the waypoints are defined by 

sampling spline trajectories in space.  An aircraft can follow 

such a flight plan by implementing a waypoint switching 

algorithm, described in the next subsection. 

B. Waypoint Switching Algorithms 

Flying waypoints is not the only way to fly general 

trajectories in space.  For example, [1] and [10] discuss 

methods of trajectory guidance based on proportional-

navigation, a technique that is often used in missile homing 

guidance.  The work [3] describes a plethora of methods for 

tracking nontraditional and curvilinear trajectories, one of 

which is waypoint guidance.  However, all of the guidance 

algorithms except for waypoint guidance require significant 

changes to in-service autopilot software, which would incur 

considerable cost and necessitate laborious formal 

qualification efforts.  We chose a spline-following waypoint 

guidance approach since it would require minimal changes to 

current software and processes, thus facilitating its adoption 

on aircraft.   

Figure 1 illustrates a string of waypoints, denoted by the open 

circles labeled 𝑛 − 1,… , 𝑛 + 2, that sample a spline trajectory 

shown in red.  Note that the waypoints may or may not 

coincide with the points associated with the knots of the 

spline.  The solid black lines connecting pairs of adjacent 

waypoints are the legs of the flight plan, and the dashed line 

represents the trajectory of an aircraft that follows the flight 

plan. The small filled circles at the intersections of the legs 

with the aircraft trajectory represent the points at which the 

vehicle changes to the next leg in its flight plan and/or 

intercepts the next leg.  The waypoint labeled 𝑛 is the 

waypoint that the aircraft is currently headed to, 𝑛 − 1 is the 

waypoint it has come from, and 𝑛 + 1, 𝑛 + 2,… are the 

successive waypoints in the flight plan after waypoint 𝑛. As 

the dashed line indicates, the aircraft does not necessarily 
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have to reach waypoint 𝑛 before switching to 𝑛 + 1, and it is 

not constrained to stay on the legs for the entire flight.   

 

Figure 1: String of Waypoints Sampling a Spline 

Trajectory 

The distance from the current TO waypoint at which the 

vehicle switches from the current leg to the next leg is known 

as the change distance and can be calculated using a variety 

of techniques.  The techniques we introduce are based on 

coordinating banked turns at CRUISE and directed thrust 

vectoring in LOW SPEED (LS) flight.  Since the boundary 

between CRUISE and LS flight is often an arbitrary speed 

cutoff, the LS regime will sometimes also be referred to more 

accurately as “Directed Thrust.”  Figure 2 shows the 

geometric setup of an aircraft approaching a leg switching 

point in (a) CRUISE and (b) LS flight.  The change distance 

computation for CRUISE is based on assuming the aircraft 

travels at a constant bank angle during the change and thus 

inscribes a circle between the waypoint legs.  The change 

distance computation for LS flight assumes a constant aircraft 

acceleration that changes its initial velocity 𝑣𝑖 to a final 

velocity, 𝑣𝑓, whose direction is along the new leg.  For both 

change distance calculations, there is an additional lead 

distance, ∆𝑥, that is up to the designer to specify and that 

varies between the CRUISE and LS cases.  The total change 

distance, ∆𝑖𝑗 , and the distance 𝑑𝑖𝑗  between waypoints are 

specified in Figure 2 and later used in the constraints for the 

optimization problem formulation. 

 

Figure 2: Waypoint Change Distance Formulations for 

(a) CRUISE and (b) LS Flight 

Given a ground speed 𝑣 which is assumed to be constant in 

magnitude throughout the transition (𝑣𝑓 = 𝑣𝑖), ground track 

angle change ∆𝜓 , maximum bank angle command limit 𝜙𝑚𝑎𝑥 

in CRUISE, maximum planar acceleration command limit 

𝑣̇𝑚𝑎𝑥 in LOW SPEED (LS), and local acceleration of gravity 

𝑔, the minimum change distance for CRUISE and LS 

conditions can be defined as: 

∆𝐶𝑅𝑈𝐼𝑆𝐸 =
𝑣2

𝑔 𝑡𝑎𝑛𝜙𝑚𝑎𝑥
𝑡𝑎𝑛 |

Δ𝜓

2
|,     ∆𝐿𝑆=

𝑣2√2(1−𝑐𝑜𝑠Δ𝜓)

2𝑣̇𝑚𝑎𝑥
 

( 2 ) 

It is important to note that these change distance computations 

are minimums; they do not account for the distance to roll into 

a banked turn in the CRUISE condition or the distance to 

establish the altered rotor thrust necessary for a direction 

change in the LS condition.  Thus, real aircraft dynamics, 

switching logic, and other unaccounted factors may require 

the waypoint separation to be increased, for the vehicle to fly 

the proposed trajectory accurately.  Figure 3 plots an example 

spline trajectory sampled by 180 waypoints, defined as the 

knots of the spline, along with the simulated path of an aircraft 

that follows this flight plan and the geographic location where 

this spline trajectory was flight tested. 

 

Figure 3: Example Waypoint-Sampled Spline 

Trajectory (WP = Waypoint, AC = Aircraft)    

There is a noticeable discrepancy between the waypoint-

based flight plan and the aircraft trajectory.  In this study, we 

focus on reducing the spline trajectory tracking error that is 

due to the approximation of a given spline by a finite number 

of segments (legs); correcting for the tracking error that arises 

from the aircraft’s flight dynamics is an avenue for future 

work. 

C. Previous Work on Trajectory-Tracking and Path-

Following Techniques for Aircraft 

Most algorithms developed for aircraft trajectory tracking and 

path following attempt to guide the vehicle along a specified 

spline or through a sequence of discrete waypoints that are 

sampled from the spline.  The survey [11] describes some 

commonly used path-following algorithms for fixed-wing 

UAVs, including carrot-chasing, nonlinear guidance law, 

line-of-sight (LOS) guidance, linear quadratic regulator 

(LQR) control, and vector field guidance.  A unique ahead-

time method for carrot-chasing guidance is discussed in [12].  

The nonlinear guidance law approach and its derivation from 

the popular proportional-navigation missile homing guidance 

algorithm are described in [13], along with results on its 

performance in flight tests with several fixed-wing small-
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scale aircraft.  Various spline-based waypoint guidance 

algorithms have been developed and demonstrated in 

helicopter simulations and real aircraft, as discussed in  [3], 

[4], [5], [6], [7], and [14].  Rotorcraft platforms that have in 

the past been suitable for developing these algorithms and 

could serve as a template for future autonomy development 

are described in [15] and [16].  However, none of these works 

present a formal methodology for sampling waypoints from a 

spline, such as selecting a set of waypoints that optimizes 

some property of the resultant flight path.  The paper [17] 

describes the optimal transition trajectory between a series of 

three waypoints, but the waypoint coordinates are assumed to 

be fixed beforehand.   

II. BOUNDED AREA MINMIZATION 

FORMULATION 

We assume that the specified flight trajectory (or a 

segment of it), which we will refer to simply as the trajectory, 

is a smooth planar curve defined by a parametric 

representation 𝒑(𝑡) =  (𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) in terms of the 

parameter, 𝑡.  We consider the problem of approximating the 

trajectory with two straight-line legs that connect a sequence 

of 3 waypoints, labeled 𝑛 − 1, 𝑛, and 𝑛 + 1, that are 

constrained on the trajectory and located at positions 𝒒𝑛−1, 

𝒒𝑛, and 𝒒𝑛+1 in the plane, respectively.  We will refer to the 

path consisting of the straight-line legs as the leg path and 

denote it by 𝒒(𝑡) =  (𝑥𝑞(𝑡), 𝑦𝑞(𝑡)).  Note that an aircraft 

would not always fly exactly along the leg path, but rather 

could begin the transition from one leg to another before or 

even after a waypoint is reached, as shown in Figure 1.  The 

initial and final parameter values are defined as 𝑡𝑛−1 and 𝑡𝑛+1, 

respectively, so that 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1] for both 𝒑(𝑡) and 𝒒(𝑡).  
The waypoints 𝑛 − 1 and 𝑛 + 1 are fixed at the endpoints of 

the trajectory, i.e., 𝒒(𝑡𝑛−1) = 𝒒𝑛−1 ≡ 𝒑(𝑡𝑛−1) and 

𝒒(𝑡𝑛+1) = 𝒒𝑛+1 ≡ 𝒑(𝑡𝑛+1).  The interior waypoint 𝑛 is 

constrained to lie on the trajectory 𝒑 and is initially set at a 

location 𝒒(𝑡𝑛) = 𝒒𝑛 ≡ 𝒑(𝑡𝑛).  Figure 4 illustrates the 

approximation of a spline trajectory by several leg paths with 

waypoints defined as the knots of the spline and the interior 

waypoint 𝑛 located at different possible points (dashed 

circles) along the spline.          

The optimization variable is the parameter 𝑡∗ that defines the 

optimized location 𝒒(𝑡∗) of the interior waypoint 𝑛.  Given a 

trajectory 𝒑(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1], our optimization objective is 

to find the value of 𝑡∗ for which the leg path 𝒒(𝑡) most closely 

approximates 𝒑(𝑡).  One possible approach is to find 𝑡∗ that 

minimizes the cumulative cross track error, defined in 

Appendix A, between 𝒒 and 𝒑.  However, based on the 

authors’ experience, various numerical challenges arise in the 

formulation and solution of an optimization problem with this 

quantity as the objective function.  Instead, we define the 

objective function as the area 𝐴(𝑡) of the bounded region 

enclosed by 𝒑(𝑡) and 𝒒(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1].  In Figure 4, 𝐴(𝑡) 
is the sum of the blue-shaded regions when 𝒒(𝑡) is defined as 

the solid black leg path.  Since all parameters used to compute 

the area are fixed except for the optimization variable 𝑡∗, we 

write the area as 𝐴(𝑡∗). Appendix A demonstrates that 

minimizing the area 𝐴(𝑡∗) is equivalent to minimizing the 

cumulative cross track error between 𝒒 and 𝒑 for the case 

where 𝒑 is defined as one of the two motion primitives 

described in Section III.     

The optimization problem, which we refer to as the Bounded 

Area Minimization Problem, can now be formulated as 

follows: 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆: 𝐴(𝑡∗) 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 𝒒(𝑡∗) = 𝒑(𝑡∗) for some 𝑡∗ ∈ [𝑡𝑛−1, 𝑡𝑛+1] 

𝒒(𝑡𝑛−1) = 𝒑(𝑡𝑛−1),  𝒒(𝑡𝑛+1) = 𝒑(𝑡𝑛+1) 

𝑑𝑛−1,𝑛 > ∆𝑛−1,𝑛,  𝑑𝑛,𝑛+1 > ∆𝑛,𝑛+1  

( 3 ) 

Solving this problem can be visualized as sliding the interior 

waypoint 𝑛 along the trajectory 𝒑, as illustrated in Figure 4, 

until it is at a location 𝒑(𝑡∗) for which the area 𝐴(𝑡∗) is 

minimized.  In Figure 4, the area of the blue shaded region 

represents 𝐴(𝑡∗) for which 𝑡∗ = 𝑡𝑛.  

 

Figure 4. Sliding the Interior Waypoint along a 

Trajectory for Bounded Area Minimization 

The bounded area 𝐴(𝑡∗) can be calculated by applying 

Green’s theorem in the plane.  In this paper, we only consider 

trajectories 𝒑(𝑡) that intersect the leg path 𝒒(𝑡) at three values 

of 𝑡: 𝑡𝑛−1, 𝑡∗, and 𝑡𝑛+1.  Thus, area 𝐴(𝑡∗) is the sum of the 

areas of two bounded regions, each enclosed by 𝒑(𝑡) and 

𝒒(𝑡), one for 𝑡 ∈ [𝑡𝑛−1, 𝑡∗] and the other for 𝑡 ∈ [ 𝑡∗, 𝑡𝑛+1].  
Green’s theorem only applies to simply connected regions, so 

it must be applied separately to these two regions.   
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Bounded Area Minimization takes advantage of the fact that 

the spline trajectory equations are parametrized in time, 𝒕, so 

it is easy to evaluate the path integral along the spline and 

back along the leg between two successive waypoints.  

Green’s Theorem adapted to compute the area of a region D 

bounded by a closed curve C is: 

𝐴 = ∬ 𝑑𝐴
𝐷

= ∮ (𝐿𝑑𝑥 + 𝑀𝑑𝑦)
𝐶

=
1

2
∮ (−𝑦𝑑𝑥 + 𝑥𝑑𝑦)
𝐶

 

⇒ 𝐴 =
1

2
∮ (−𝑦𝑥′ + 𝑥𝑦′)
𝑡𝑛

𝑡𝑛−1

𝑑𝑡 

          ( 4 ) 

When applying Green’s Theorem in a right-handed 

coordinate system, the area A is positive if the curve C is 

traversed in the direction for which the region D is to the left 

of the curve when looking down on the x-y plane, as 

illustrated in Figure 5 by the clockwise orientation (signified 

by the arrows) of the curve that bounds region D. 

 

Figure 5. Application of Green’s Theorem for Bounded 

Area Computation 

The main advantage of using Green’s Theorem is that the area 

enclosed by the trajectory and legs can be written as a function 

of the location of the interior waypoint parameter, 𝒕∗.  This 

allows the area formula to be minimized directly using 

gradient-based constrained nonlinear programming.  

Moreover, the formula can be applied to trajectories that can 

be written as closed-form expressions or as piecewise 

polynomial cubic spline approximations. Since this formula 

is based only on the geometry of the trajectory and leg path, 

the optimization problem does not require a model of the 

aircraft’s flight dynamics.   

Our optimization procedure finds the minimum area 𝐴(𝑡∗)  by 

sliding the interior waypoint along the trajectory in two 

directions, shown in Figure 6: a “pull” toward waypoint 𝑛 −
1 to parameter value 𝑡∗−, and a “push” toward waypoint 𝑛 +
1  to parameter value 𝑡∗+. The figure also shows the 

corresponding areas 𝐴(𝑡∗) (shaded blue), which we denote as 

𝐴_ for a pull operation (Figure 6-a) and 𝐴+ for a push 

operation (Figure 6-b). 

 

Figure 6: Bounded Area Minimization:  

Interior Waypoint (a) Pull and (b) Push Operations 

As expected, sliding the interior waypoint along the spline 

trajectory changes the area 𝐴(𝑡∗).  To further illustrate the 

impact of moving the interior waypoint, Figure 7 shows the 

effect of pulling or pushing this waypoint on the resultant 

aircraft trajectory (represented with a solid red line during the 

change from one leg to the next and a dashed red line 

otherwise.) 

Figure 7: Effect of (a) Pulling and (b) Pushing the 

Interior Waypoint on the Aircraft Trajectory 

The red aircraft trajectory closely follows the leg path except 

for the change segment, where it deviates as the aircraft 

switches from one leg to the next.  In addition, sliding the 

interior waypoint changes the distance between the aircraft 

trajectory and the commanded green spline trajectory.   

Table 1 outlines the main steps of an algorithm for solving the 

optimization problem. The algorithm can be applied to flight 

plans that consist of more than three waypoints by iterating 

through successive sequences of three waypoints and 

optimizing the location of the interior waypoint in the current 

sequence.  This procedure is used for the complex trajectories 

discussed in Section IV.   

  

 

(a)                                               (b) 

 

 
n-1

n

n+1
 

(a)              (b) 
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Table 1: Bounded Area Minimization for A Chain of 3-Waypoint Sequences 

Algorithm: Bounded Area Minimization Using Green’s Theorem for Spline Trajectory Waypoint Spacing 

Input: Times 𝑡𝑛−1, 𝑡𝑛+1 and the corresponding locations of waypoints n – 1, n + 1; trajectory 𝒑(𝑡), 𝑡 ∈  [𝑡𝑛−1, 𝑡𝑛+1], 
or a cubic spline approximation of this trajectory with accompanying coefficients 

Output: Optimal time 𝑡∗ and the corresponding optimal location of interior waypoint n 

Select: Initial guess for time 𝑡∗ = 𝑡𝑛 and the corresponding location of waypoint n 

 

Compute area 𝐴− as a function of 𝑡∗− using Green’s Theorem for the case of pulling waypoint n forward (decreasing 

time) 

 

Compute area 𝐴+ as a function of 𝑡∗+ using Green’s Theorem for the case of pushing waypoint n backward (increasing 

time) 

 

Minimize both area functions 𝐴− and 𝐴+ subject to the following constraints:  

 Minimum distance between successive waypoints must be greater than the change distance, ∆𝑖𝑗 , computed 

between legs 𝑛 − 1 and 𝑛 when pulling or legs 𝑛 and 𝑛 + 1 when pushing. 

 

 Decision variables must remain within the following bounds:  

𝑡𝑛−1 < 𝑡∗− ≤ 𝑡𝑛    and    𝑡𝑛 ≤ 𝑡∗+ < 𝑡𝑛+1 

 

Move waypoint n to location 𝒑(𝑡∗), where   

𝑡∗ = {

𝑡∗−, 𝑖𝑓  𝑡∗− < 𝑡𝑛 
𝑡∗+, 𝑖𝑓  𝑡∗+ > 𝑡𝑛 

            𝑡𝑛, 𝑖𝑓  𝑡∗+ = 𝑡∗− = 𝑡𝑛

 

Proceed to the next sequence of 3 waypoints (𝑛 + 1, 𝑛 + 2, 𝑛 + 3)  
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In processing a longer chain of waypoints, it is 

recommended to skip 2 waypoints so that the area 

optimization algorithm always starts with a waypoint 

sequence that has not been already altered in a previous 

optimization run. 

 

III. EVALUATION OF OPTIMIZATION 

ALGORITHM ON MOTION PRIMITIVES 

The area minimization algorithm was tested on five motion 

primitives and cubic spline approximations of these 

trajectories: straight line, semicircle, sinusoid, decaying 

exponential, and logarithmic spiral.  For all primitives, the 

optimal time 𝑡∗ (yielding the optimal location 𝒑(𝑡∗) of the 

interior waypoint) that minimizes the area 𝐴(𝑡∗) was 

computed analytically to ensure that the result from the 

optimization algorithm was reasonable.  The analytical 

computation for the straight-line motion primitive is 

presented in this section; computations for the remaining 

primitives are given in Appendix B.  Note that the trajectory 

arc length of the motion primitives must be selected with care. 

Although the optimization algorithm can be applied to 

trajectories of any length, the modeled aircraft physical 

capabilities and waypoint guidance switching logic 

constraints in the nonlinear flight dynamics simulator 

required the waypoint spacing to have some minimum value 

to demonstrate reduced cross-track error.      

Primitive 1: Straight Line  

The straight line is the simplest motion primitive.  For a 

straight-line trajectory 𝒑, the bounded area minimization 

problem does not have a unique solution 𝑡∗ since 𝒑 and 𝒒 are 

identical, which implies that 𝐴(𝑡∗) = 0 for all 𝑡∗ ∈
[𝑡𝑛−1, 𝑡𝑛+1] and the cumulative cross-track error between 𝒑 

and 𝒒 is zero.  The solution can be arrived at from visual 

inspection or by writing the expression for 𝐴(𝑡∗) using 

Green’s Theorem: 

𝐴(𝑡∗) =
1

2
[∫ (−𝑦𝑞𝑥′𝑞 + 𝑥𝑞𝑦′𝑞)𝑑𝑡 +

𝑡𝑛−1

𝑡𝑛

∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛

𝑡𝑛−1

+∫ (−𝑦𝑞𝑥′𝑞 + 𝑥𝑞𝑦′𝑞)𝑑𝑡
𝑡𝑛

𝑡𝑛+1

+∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

] 

( 5 ) 

Substituting 𝑥𝑞(𝑡) = 𝑥𝑝(𝑡) and 𝑦𝑞(𝑡) = 𝑦𝑝(𝑡) into the 

previous formula results in: 

𝐴(𝑡∗) =
1

2
[∫ (−𝑦𝑝𝑥

′
𝑝 + 𝑥𝑝𝑦

′
𝑝
) 𝑑𝑡 +

𝑡𝑛−1

𝑡𝑛

∫ (−𝑦𝑝𝑥
′
𝑝 + 𝑥𝑝𝑦

′
𝑝
)𝑑𝑡

𝑡𝑛

𝑡𝑛−1

+∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛

𝑡𝑛+1

+∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

] 

( 6 ) 

Rearranging terms and inverting the polarity of the second 

and fourth integral terms when switching the limits of 

integration for them yields the expected result: 

𝐴(𝑡∗) =
1

2
[0 + 0] = 0 

( 7 ) 

This implies that any 𝑡∗ ∈ [𝑡𝑛−1, 𝑡𝑛+1] can be chosen for the 

location 𝒑(𝑡∗) of the interior waypoint.  In practice, this 

requires that a minimum change angle, ∆𝜓, be set under 

which the area minimization algorithm is not run, since 

round-off error and digit precision makes it very difficult to 

draw a completely straight line through three points in space 

stored in a computer. 

Primitive 2: Semicircle  

The semicircle is another commonly used motion primitive in 

flight plans.  The leg path inscribes a triangle within the 

semicircle.  The area 𝐴(𝑡∗) is the sum of the areas between 

the semicircle and the two segments comprising 𝒒.  For both 

the trajectory and its cubic spline approximation, the 

optimization algorithm computed the optimal time as 𝑡∗ =
7.5𝑠, which places the interior waypoint at a location 𝒑(𝑡∗) 
that is equidistant and equally spaced in time from the other 

two waypoints.   

Primitive 3: Sinusoid 

The sinusoid was chosen because it can be used as a basis 

function in a Fourier series to represent any periodic signal.  

As for the semicircle, the leg path inscribes a triangle within 

the half-period of a sinusoid, and the area 𝐴(𝑡∗) is defined 

similarly.  For both the trajectory and its cubic spline 

approximation, the optimization algorithm computed the 

optimal time as 𝑡∗ = 7.5𝑠, again placing the interior waypoint 

at a location equidistant and equally spaced in time from the 

other two waypoints.     

Primitive 4: Decaying Exponential 

The decaying exponential was chosen to represent those 

trajectories which involve asymptotic approaches to a desired 

state.  As for the semicircle and sinusoid, three waypoints can 

be used to inscribe a triangular path within the decaying 

exponential.  The optimal time was computed as 𝑡∗ = 4.8𝑠 for 

the exact trajectory and 𝑡∗ = 4.6𝑠 for its cubic spline 

approximation.  This 0.2-second time discrepancy can be 

attributed to the error between the exponential function and 

its cubic spline approximation. In our flight simulation tests 

at 15 knots (see Figure 8-b), it did not produce a significant 

difference in the interior waypoint locations.  Even at 60 

knots, a 0.2-second delay results in a position error that is less 

than 27.5 ft, the diameter of the main rotor of the MD530F 

platform. 

Primitive 5: Logarithmic Spiral 

The logarithmic spiral was used as a motion primitive because 

it represents a trajectory with a continuously changing radius 
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of curvature. Figure 17 shows a plot of this trajectory with 

three waypoints spaced 1.5𝑠 apart (a total of 3.0𝑠 between 

waypoints 𝑛 − 1 and 𝑛 + 1), with the constants defined as 

𝛼 = 2𝜋, 𝑏 = 0.2.  The optimization algorithm computed the 

optimal time as 𝑡∗ = 1.68𝑠 for the exact trajectory and 𝑡∗ =
1.64𝑠 for the cubic spline approximation.  This makes sense 

since the radius of curvature is constantly increasing, and 

therefore the interior waypoint must be pushed forward 

slightly from the optimal time for a semicircle (constant 

radius of curvature), which would be at the time midpoint 

1.5𝑠. The small difference between the optimized solution for 

the exact trajectory and its cubic spline approximation was 

due to the discrepancy between these two curves and was 

deemed inconsequential (a 0.04-second delay corresponds to 

a position error of less than 5 feet at 60 knots, smaller than the 

error for the exponential trajectory).   

The cubic spline approximations to the motion primitive 

trajectories were generated by specifying the time, position, 

and velocity boundary conditions at the three waypoints 

which sampled the original trajectory and then solving for the 

cubic coefficients that met these constraints.  The trajectories 

for the five motion primitives were defined with the lengths 

and traversal times listed in the second column of Table 2, 

which were chosen based on an aircraft’s typical ground 

speed.  The third, fourth, and fifth columns of Table 2 list the 

times 𝑡∗ that were computed from the optimization algorithm.  

The third column shows the optimization results for the exact 

trajectories, whereas the fourth and fifth columns show the 

results for the cubic spline approximations.  There are two 

times 𝑡∗ listed for the spline approximations because these 

approximations required different area expressions in the 

optimization algorithm (see Table 2), depending on whether 

the interior waypoint 𝑛 was pulled forward from its original 

time 𝑡𝑛 (𝑡∗ < 𝑡𝑛) or pushed backward (𝑡∗ > 𝑡𝑛). 

Table 2: Optimal Times Computed for Motion 

Primitive Trajectories and their Cubic Spline 

Approximations 

Motion Primitive 

 
𝒕∗ 

(traj) 

𝒕∗ pull  

(spl) 

𝒕∗ push  

(spl) 
Straight Line 

• 1000ft travel 

• 𝑡𝑛+1 = 15𝑠 
 

0.5𝑡𝑛+1 0.5𝑡𝑛+1 0.5𝑡𝑛+1 

Semicircle 

• 500ft radius 

• 𝑡𝑛+1 = 15𝑠 
 

0.5𝑡𝑛+1 0.5𝑡𝑛+1 0.5𝑡𝑛+1 

Sinusoid 

• 500ft amplitude 

• 𝑡𝑛+1 = 15𝑠 
 

0.5𝑡𝑛+1 0.5𝑡𝑛+1 0.5𝑡𝑛+1 

Decaying Exponential 

• 1000ft initial point 

• 𝑡𝑛+1 = 15𝑠 
 

0.32𝑡𝑛+1 0.30𝑡𝑛+1 0.5𝑡𝑛+1 

Logarithmic Spiral 

• 500ft initial radius 

• 𝑡𝑛+1 = 3𝑠 
 

0.56𝑡𝑛+1 0.5𝑡𝑛+1 0.55𝑡𝑛+1 

Table 2 shows that the optimization algorithm converges to 

the same time 𝑡∗ for the straight line, semicircle, and sinusoid 

motion primitives and their cubic spline approximations.  The 

small discrepancies between the optimal times 𝑡∗ computed 

for the exponential and logarithmic spiral primitives and their 

spline approximations are since cubic splines cannot be fit to 

these trajectories without error; thus, the optimal times 𝑡∗ for 

the exact trajectories and their spline approximations are 

slightly different.  As mentioned previously, these 

discrepancies produce differences in interior waypoint 

location that are all within a single rotor diameter of the 

MD530F platform when cruising at 60 knots. 

IV. EVALUATION OF OPTIMIZATION 

ALGORITHM IN FLIGHT SIMULATIONS  

In addition to the motion primitives, the optimization 

algorithm was tested on cubic spline approximations of 

complex real-world trajectories, labeled Trajectory A and 

Trajectory B, that lack closed-form parametric 

representations.  We then flew the cubic spline 

approximations of the motion primitives and the complex 

trajectories with both optimized and non-optimized waypoint 

spacing in a nonlinear flight dynamics simulator 

representative of an MD530F airframe.  For the motion 

primitives, the optimized solutions show a clear reduction in 

cross-track error compared to the non-optimized solutions, 

even in the presence of wind.  However, for the complex 

trajectories, there are certain cases where the optimized 

waypoint spacing yields similar or increased cross-track error 

compared to non-optimized waypoint spacing.   

Table 3 summarizes the cumulative and maximum cross-track 

errors for all the simulation cases that were run. All 

percentage increases and decreases are relative to the 

corresponding cross-track errors from simulations run for the 

same trajectory with equal-time waypoint spacing.  For the 

motion primitives, the time of waypoint 𝑛 − 1 is 𝑡𝑛−1 = 0𝑠, 
so equal-time waypoint spacing corresponds to the case where 

waypoint 𝑛 is at half the time of waypoint 𝑛 + 1, or 𝑡𝑛 =
0.5𝑡𝑛+1. 
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Table 3: Cross-Track Error Results from Flight 

Simulations for Primitives and Complex Trajectories in 

Calm Air 

For the Exponential 15 kt Low-Speed (LS) primitive, note the 

closeness of the results for the cases where 𝑡𝑛 is defined as the 

optimal time 𝑡∗ for the exact trajectory (Optimum Exact) or 

for its cubic spline approximation (Optimum Spline).  This 

result and the graphical results from Figure 8-b confirm that 

the small difference in 𝑡∗ computed for the exact exponential 

trajectory and its cubic spline approximation (see Table 2) 

does not significantly impact flight performance. 

Sinusoidal and Decaying Exponential Motion Primitives: 

The sinusoid motion primitive was approximated by a leg 

path with three waypoints spaced approximately 1000 ft apart, 

flown with an entry ground speed of 60 knots CRUISE.  

Trajectories were simulated in calm air and with winds up to 

15 knots out of 60 degrees.  As Figure 8-a shows, the effect 

of the simulated wind did not significantly change the 

aircraft’s trajectory.   

 

Figure 8: Simulated Aircraft Paths for the 

Sinusoidal and Decaying Exponential Trajectories 

The exponential motion primitive was approximated by a leg 

path with three waypoints spaced approximately 500 ft apart, 

flown with an entry ground speed of 15 knots in LS mode.  

Trajectories were simulated in calm air with no wind.  The 

time 𝑡𝑛 of the interior waypoint was set to the fractions 0.1, 

0.25, 0.32 (Optimum Exact), 0.30 (Optimum Spline), 0.5, and 

0.75 of the total traversal time (𝑡𝑛+1 − 𝑡𝑛−1;  𝑡𝑛−1 = 0). As 

Figure 8-b shows, the aircraft flight paths for the cases where 

𝑡𝑛 = 0.32𝑡𝑛+1 and 𝑡𝑛 = 0.30𝑡𝑛+1 are very similar. 

For both motion primitives, setting the time 𝑡𝑛 of the interior 

waypoint to the optimal time considerably reduced the cross-

track error values relative to cases with a non-optimized 𝑡𝑛, 

as shown in Table 3. 

Trajectory A: 

Trajectory A is composed of piecewise cubic polynomials and 

is based on flight-tested trajectories in Mesa, AZ on an 

MD530F airframe during the 2013 timeframe.  It is based on 

a typical approach path that a helicopter might take while 

avoiding obstacles at high and low speeds, starting from 600ft 

AGL enroute to a hover landing.  The waypoint spacing for 

these trajectories, Δ𝑡 = 𝑡𝑛 − 𝑡𝑛−1 for all pairs of sequential 

waypoints 𝑛 − 1, 𝑛, was approximately 1 second.  We refer to 

this as the baseline waypoint spacing, for which all the 

waypoints and knot points coincide.  For the purposes of this 

study, the trajectory was projected onto the x-y plane.  The 

trajectory and the simulated helicopter flight paths for both 

the baseline and optimized waypoint spacings are shown in 

Figure 9.  In the figure legends, “Spl” is the spline with knots 

labeled “Knots” that defines Trajectory A; “ACBase” is the 

helicopter’s path when flying the waypoints with baseline 

spacing, labeled “ToBase;” and “ACOpt” is the helicopter’s 

path when flying the waypoints with optimized spacing, 

labeled “ToOpt.

Primitive/ 

Trajectory 

Cases Run Cumulative 

Cross-Track 

Error ∆ 

Maximum 

Cross-Track 

Error ∆ 

Sinusoid 

(Cubic 

Spline) 

60kt 

CRUISE 

𝑡𝑛 =  0.25𝑡𝑛+1  +65.9% +161.2% 

𝑡𝑛 =  0.5𝑡𝑛+1 

(Optimum Exact 

and Spline) 

N/A N/A 

𝑡𝑛 =  0.75𝑡𝑛+1 +139.8% +301.6% 

Exponential 

(Cubic 

Spline) 

15kt LS 

𝑡𝑛 =  0.25𝑡𝑛+1 -9.0% -6.0% 

𝑡𝑛 =  0.5𝑡𝑛+1   N/A N/A 

𝑡𝑛 =  0.75𝑡𝑛+1 +98.0% +81.3% 

𝑡𝑛 = 0.32𝑡𝑛+1 

(Optimum Exact) 

-50.5% -52.9% 

𝑡𝑛 = 0.30𝑡𝑛+1 

(Optimum Spline) 

-52.2% -57.6% 

Trajectory 

A 

Optimized 

Waypoint Spacing 

+9.1% +19.6% 

Trajectory 

B 

Optimized 

Waypoint Spacing 
-3.1% -11.7% 

 

(a)                                     (b) 
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Figure 9: Trajectory A (with Zoomed-In Segments) and Simulated Flight Paths for Baseline and Optimized 

Waypoint Spacings  

  

 

(a)                                                                                                     (b) 

 

       (c)                                               (d) 

 

b

c

d
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It is evident from Figure 9 that the optimization algorithm 

converges to a solution, as there are noticeable cases where 

the optimized waypoints (purple squares) are pulled backward 

or pushed forward with respect to the knots (cyan open 

circles.)  However, since the knots of the spline are so close 

together (~100 – 200 ft apart), the optimized waypoints are as 

well, and the aircraft is unable to react fast enough to reach 

the next leg in the optimized flight plan before the guidance 

logic switches to the subsequent leg.  Thus, the aircraft often 

cannot track the waypoints with either baseline or optimized 

spacing, as indicated in Figure 9 by the discrepancies between 

the simulated flight paths (ACBase, ACOpt) and the spline 

(Spl).  In this case, the discrepancy between ACOpt and Spl 

exceeds the discrepancy between ACBase and Spl; Table 3 

shows that the optimized waypoint spacing in fact yielded 

larger cross-track errors than the baseline waypoint spacing.       

Trajectory B: 

Trajectory B is similar to Trajectory A, except for differences 

in the aggressiveness of the simulated aircraft’s turns and 

decelerations when flying waypoints along the trajectories.  

Table 4 lists the attributes of the two trajectories that were 

implemented in the simulations.  As shown in Table 3, the 

optimized waypoint spacing for Trajectory B produced a 

slight reduction in cross-track error compared to the baseline 

waypoint spacing.   

Table 4: Trajectory A vs. Trajectory B Comparison 

Attribute Trajectory 

A 

Trajectory 

B 

Starting Altitude AGL (ft) 600 ft 600 ft 

Entry Speed (knots) 100 knots 100 knots 

Number of Knots 180 180 

Maximum Deceleration (ft/s2) -3.22 ft/s2 -6.44 ft/s2 

Maximum Bank Angle (deg) 20 deg 30 deg 

Maximum Roll Rate (deg/s) 15 deg/s 15 deg/s 

Maximum Heading Rate (deg/s) 15 deg/s 15 deg/s 

Average Knot Spacing (s) 1.439 s 0.958 s 

Average Knot Separation (ft) 158.96 ft 150.50 ft 

Trajectory C: Discretely Chirped Sinusoid ADS-33 

Slalom MTE Based Trajectories 

To investigate the detrimental impact of decreased waypoint 

spacing on the effectiveness of the optimization algorithm, a 

series of trajectories based on the ADS-33 slalom MTE [18] 

were flown in the simulator at both CRUISE and Directed 

Thrust/Low Speed (LS) conditions, starting with the 

recommended wavelengths in the ADS-33 requirement 

specification and slowly decreasing the wavelength if cross-

track error specifications are met or increasing the wavelength 

if not.  Note that the ADS-33 slalom MTE was originally 

designed as an extremely challenging maneuver to push the 

limits of human piloted handling qualities and was used to 

grade the acceptability of the agility of a platform.  We now 

propose to use it as a method to determine useful waypoint 

spacing for autonomous VTOL platforms.  It should be 

emphasized that the wavelength of the commanded sinusoid 

trajectory was not changed during the maneuver, as is 

typically done for a “chirped sinusoid” used for handling 

qualities assessment and system identification.  Instead, the 

wavelength was changed after the maneuver was complete, 

and the simulation was run again with the reduced 

wavelength.  After a sweep of maneuvers was run, each with 

a different wavelength, the results were examined in post-

processing.  An example ADS-33 Slalom MTE trajectory is 

illustrated in Figure 10. 

 

Figure 10: ADS-33 Slalom MTE from [18] 

The simulated flight paths for the ADS-33 Slalom MTE 

trajectories at CRUISE and LS conditions are shown in Figure 

11 and Figure 12, respectively.  The figure legends indicate 

the wavelength in feet of each sinusoidal trajectory, and the 

circles mark the waypoints for each trajectory.  The ground 

speeds were chosen from the performance specifications of 

the maneuver: GVE desired for CRUISE and DVE adequate 

for LS conditions.  The simulations were run out of ground 

effect to avoid the risk of ground impact or the vehicle 

transitioning between altitude conditions that were in and out 

of ground effect.  As shows for the CRUISE cases, there is a 

certain wavelength range at which the rotorcraft can no longer 

follow the commanded sinusoidal trajectory, can no longer 

preserve the shape of the sinusoid or follow the leg paths, and 

in many cases cannot meet the cross-track error requirements 

for the ADS-33 Slalom MTE (turns shall be at least 50 ft from 

the centerline, with a maximum lateral error of 50 ft).  A 

similar trend can be seen in Figure 12 for the LS cases.  For 

large wavelengths and waypoint spacings, the rotorcraft 

closely follows the leg paths between waypoints as expected.  

However, as the wavelength decreases to ~200 – 300 ft, the 

vehicle starts skipping waypoints, has difficulty tracking the 

commanded sinusoidal trajectory, and in extreme cases loses 

control and completely exits the course (e.g., at 𝜆 = 200 𝑓𝑡).  
Figure 13 shows a reduced set of flight paths for both the 

CRUISE and LS conditions so that the transition between 

meeting and not meeting the minimum requirements of the 

maneuver can be more easily visualized.  



 
12 

 

 

 

 

 

Figure 11: Simulated Flight Paths for Discretely Chirped ADS-33 Slalom MTE Trajectories at CRUISE 

 

 

Figure 12: Simulated Flight Paths for Discretely Chirped ADS-33 Slalom MTE Trajectories at Directed 

Thrust/Low Speed (LS)
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Figure 13: Subset of Simulated Flight Paths for Discretely Chirped ADS-33 Slalom MTE Trajectories  

The wavelength 𝜆 at which the maneuver requirements are 

not met determines the minimum waypoint spacing,  Δ𝑠𝑝 ≈

𝜆/4, for the optimization to be effective.  Table 5 

summarizes these lower bounds on 𝜆 and Δ𝑠𝑝 from the 

simulations.  Note that for the CRUISE condition, the case 𝜆 

= 1500 ft did not meet the cross-track error requirements but 

did preserve the shape of the commanded trajectory, and the 

case 𝜆 = 2000 ft both met the cross-track requirements and 

preserved the shape of the trajectory.  For the LS condition, 

the case 𝜆 = 300 ft showed large deviations from the 

commanded trajectory but nearly met the cross-track error 

requirements, whereas the case 𝜆 = 400 ft both preserved the 

shape of the trajectory and met the cross-track error 

requirements.  To more accurately determine the lower 

bounds on 𝜆 and Δ𝑠𝑝, simulations may be run for trajectories 

with 𝜆 between 1500 and 2000 ft for the CRUISE condition 

and 𝜆 between 300 and 400 ft for the LS condition. 

Table 5: Lower Bounds on Discretely Chirped Slalom 

Wavelength (𝝀) and Waypoint Spacing (𝚫𝒔𝒑) 

 LS (15 knots) CRUISE (60 knots) 

Preserves 

Shape of 

Trajectory 

𝜆 > 300 𝑓𝑡 

Δ𝑠𝑝 > 75 𝑓𝑡 

𝜆 > 1500 𝑓𝑡 

Δ𝑠𝑝 > 375 𝑓𝑡 

Meets Cross-

Track Error 

Requirements 

𝜆 ≥ 400 𝑓𝑡 

Δ𝑠𝑝 ≥ 100 𝑓𝑡 

𝜆 ≥ 2000 𝑓𝑡 

Δ𝑠𝑝 ≥ 500 𝑓𝑡 

Note that the bounds in Table 5 were obtained for the 

particular simulation configuration, outer loop guidance 

implementation, and vehicle platform used in this study.  The 

minimum recommended waypoint spacing will depend on the 

type of aircraft and guidance logic, and should be re-

confirmed for any new simulation configuration or from flight 

tests.  For cases where flight testing is not possible, this 

spacing can be obtained by running nonlinear flight 

simulations.  However, if possible, flight testing of the 

discretely chirped slaloms would be the fastest way to 

determine the minimum recommended waypoint spacing 

under CRUISE and LS conditions for which the optimization 

algorithm reduces cross-track error. 

Limitations of the Optimization Algorithm: 

In general, the optimization algorithm produces the greatest 

improvement in cross-track error when the aircraft trajectory 

closely matches the leg path through the waypoints, which is 

often the case when the waypoints are spaced far apart.  As 

the waypoint spacing is decreased, the aircraft dynamics and 

waypoint leg-switching logic tend to cause the aircraft to 

deviate from the prescribed leg path, so that the assumption 

of the Bounded Area Minimization Problem that the leg path 

closely approximates the aircraft trajectory is no longer valid 

and the legacy guidance controller starts having difficulty to 

accurately execute the flight plan.  Under these 

circumstances, modifying the baseline waypoint spacing 

using the optimization algorithm is not always beneficial, and 

in some cases is detrimental.  Future work involves clearly 

characterizing the conditions under which the optimization 

algorithm is and is not beneficial, and confirming the results 

with real aircraft flight test data. 

Knot and Waypoint Reduction for Trajectories A and B: 

Since the optimized waypoint spacing did not yield consistent 

improvement over the baseline waypoint spacing for 

Trajectories A and B, we investigated the effect on cross-track 

error of removing knots from these spline trajectories before 
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optimizing the waypoint spacing.  The works [19] and [20] 

discuss systematic methods of knot reduction for B-splines, 

but these methods are typically very computationally 

expensive and involve considerable use of heuristics in 

determining error thresholds.  Thus, they were not pursued.  

Simpler knot reduction schemes, such as removing waypoints 

based on a minimum threshold for the change angle between 

successive legs, were also tested. However, once enough 

waypoints were removed to meet the minimum spacing 

required for optimization to be effective (see Table 5), the 

cross-track error from flying the reduced-knot trajectory with 

baseline waypoint spacing was already considerably larger 

than this error for the original (denser) baseline spacing, so 

that optimizing the waypoint spacing was deemed to be moot.  

This is evidence that the method for optimally spacing 

waypoints on dense splines to reduce cross-track error is not 

based on bounded area minimization, and is a topic that 

should be researched in depth in the future.  

V. PRACTICAL IMPLICATIONS 

The proposed bounded area minimization algorithm provides 

a means of spacing waypoints on an arbitrary commanded 

spline trajectory in order to reduce tracking error.  For aircraft 

with coupled waypoint guidance software already in-service, 

this algorithm allows for closer tracking of spline trajectories 

without the need to modify core GN&C algorithms on safety-

critical flight computer systems and the ensuing formal 

qualification effort that would follow any safety-critical 

software change.  It should be noted that there are many 

algorithms in the published literature that may be higher-

performing in terms of tracking error, but all require a 

significant change to software and thus significant formal 

qualification testing.  Figure 14 shows the approximate 

minimum waypoint spacing for several aircraft classes 

relative to the minimum change distance for CRUISE and LS 

conditions.  Comparing the values from Table 5 of the lower 

bound on waypoint spacing for the CRUISE (375-500 ft) and 

LS (75-100 ft) conditions, we see that the minimum waypoint 

spacing for production vehicles either falls within these 

ranges or is much higher (e.g., the approximate minimum 

Cargo/Utility spacing is ~600 ft for both CRUISE and LS 

conditions).  The Scout waypoint spacing of 100 – 150 ft was 

used as the baseline waypoint spacing for Trajectories A and 

B for demonstration purposes; it has not entered production 

vehicles to the authors’ knowledge.  This data shows why the 

optimization algorithm did not consistently improve tracking 

performance for Trajectories A and B, but also indicates that 

it could significantly improve tracking performance for other 

classes of production vehicles with more benign trajectories. 

 

 

 

 

Figure 14: Minimum Change Distance vs. Approximate 

Minimum Waypoint Spacing for Production Aircraft 

 

VI. CONCLUSIONS AND FUTURE WORK 

The proposed optimization algorithm is a useful method for 

defining a sequence of waypoints that closely tracks a 

complex flight trajectory.  It does not require any major 

software updates to existing aircraft and can take advantage 

of existing infrastructure and code.  The algorithm is not 

applicable to cases where the baseline waypoint spacing is 

dense. The minimum waypoint spacing for which the 

algorithm produces useful solutions can be determined with 

test flights along discretely chirped sinusoidal slalom 

trajectories, either in a flight dynamics simulator or with real 

aircraft.  Future work involves modifying the optimization 

algorithm to extend the range of scenarios for which it is 

beneficial, such as revising it to compute spacing for 

sequences of four waypoints instead of three (given that four 

knots can capture changes in curvature of a spline that three 

knots cannot) and relaxing the constraint that waypoints must 

be located on the spline trajectory. 
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APPENDIX A 

EQUIVALENCE OF MINIMIZING AREA AND CROSS-

TRACK ERROR 

Figure 15 illustrates the quantities that are used to compute 

the cross-track error (𝑦) and the cross-track velocity (𝑦̇) of an 

arbitrary point 𝑃, located at coordinates (𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) for some 

time t on a given trajectory, with respect to a leg between two 

waypoints 𝑛 and 𝑛 + 1.  The angles 𝜓, 𝜓𝐿, and 𝜓𝑡𝑟𝑘 denote 

the aircraft heading, leg heading, and ground track angle, 

respectively, all relative to North.  The distances 𝑑𝑁 and 𝑑𝐸 

denote the north and east components, respectively, of the 

distance of point 𝑃 to waypoint 𝑛 + 1.  The velocities 𝑣𝑁, 𝑣𝐸 , 

and 𝑣𝐺  represent the north, east, and total ground velocities of 

the vehicle, which are used for cross-track velocity and 

change distance computations. 

Figure 15: Cross-Track Error and Cross-Track 

Velocity Definitions 

Using the geometry in Figure 15 (with 𝑑𝑥 = 𝑑𝑁 and 

𝑑𝑦 = 𝑑𝐸), the cumulative cross-track error, 𝑠𝑐𝑢𝑚(𝑡∗), 

between a trajectory and the first leg can be computed as: 

𝑠𝑐𝑢𝑚(𝑡∗) = ∫ {(𝑑𝑥sin 𝜓𝐿) − (𝑑𝑦cos 𝜓𝐿)}𝑑𝑡
𝑡∗

𝑡𝑛−1

 

( 8 ) 

We will show that for trajectories defined as the semicircle 

and sinusoid motion primitives in Section III, the same value 

of time 𝑡∗ minimizes both 𝑠𝑐𝑢𝑚(𝑡∗) and the area 𝐴(𝑡∗) of the 

bounded region enclosed by the trajectory and its 

approximation by a leg path through a sequence of three 

waypoints.  We do this by deriving the expressions for 

𝑠𝑐𝑢𝑚(𝑡∗) and 𝐴(𝑡∗), computing their derivatives with respect 

to 𝑡∗, setting them equal to zero, and then solving each 

equation for the resulting value of 𝑡∗, which minimizes the 

expressions.  The optimal times 𝑡∗ that minimize 𝐴(𝑡∗) are 

computed in Appendix B; here, we derive the expressions for 

𝑠𝑐𝑢𝑚(𝑡∗) for the semicircular and sinusoidal trajectories. 

We first consider the semicircular trajectory, whose 

coordinates (𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) are defined by the parametric 

equations (15).  If the origin of the coordinate system is placed 

at waypoint 𝑛 − 1, then the expressions for distances 𝑑𝑥 and 

𝑑𝑦 can be written as follows for the leg between waypoints 

𝑛 − 1 and 𝑛: 

𝑑𝑥 = 𝑥𝑛 − 𝑥𝑝(𝑡) = 𝐶𝑥𝑛,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡 − 𝑡𝑛−1))] 

𝑑𝑦 = 𝑦𝑛 − 𝑦𝑝(𝑡) = 𝐶𝑦𝑛,3 [1 − 1 + cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡 − 𝑡𝑛−1) − 𝜋)] 

( 9 ) 

The expressions for 𝑑𝑥 and 𝑑𝑦 for the leg between waypoints 

𝑛 and 𝑛 + 1 are similar, with the coefficients redefined as 

𝐶𝑥𝑛+1,3 , 𝐶𝑦𝑛+1,3  and the leg heading 𝜓𝐿  updated for this leg. 

We define 𝜓𝐿𝑖_𝑗 as the heading of the leg between waypoints 

𝑖 and 𝑗.  Substituting the expressions for 𝑑𝑥 and 𝑑𝑦 into Eq. 

(9), the cumulative cross-track error can be evaluated as the 

sum of two integrals (one for each leg): 

𝑠𝑐𝑢𝑚(𝑡∗)

= ∫

{
 
 

 
 (𝐶𝑥𝑛,3 [1 − sin(

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛−1_𝑛)

− (𝐶𝑦𝑛,3 [1 − 1 + cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛−1_𝑛)}

 
 

 
 

𝑑𝑡

𝑡∗

𝑡𝑛−1

+∫

{
 
 

 
 (𝐶𝑥𝑛+1,3 [1 − sin(

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓 𝐿𝑛_𝑛+1)

− (𝐶𝑦𝑛+1,3 [1 − 1 + cos(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛_𝑛+1)}

 
 

 
 

𝑑𝑡

𝑡𝑛

𝑡∗

 

( 10 ) 

Taking the derivative of the above expression with respect to 

the optimal time 𝑡∗ for the interior waypoint 𝑛, applying the 

Fundamental Theorem of Calculus, and setting the resulting 

expression to zero yields: 

𝑑

𝑑𝑡∗
𝑠𝑐𝑢𝑚 = 0 

=
(𝐶𝑥𝑛,3 [1 − sin(

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛−1_𝑛)

−(𝐶𝑦𝑛,3 [cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛−1_𝑛)

 

+(𝐶𝑥𝑛+1,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛_𝑛+1) 

+(𝐶𝑦𝑛+1,3 [cos (
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1) − 𝜋)] cos 𝜓𝐿𝑛_𝑛+1) 

 ( 11 ) 

This equation is satisfied when 𝑡∗ = 𝑡𝑛, since for this 

trajectory, 

𝑡∗ = 𝑡𝑛   ⇒    
𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

=
1

2
 

( 12 ) 

As shown in Appendix B, the time 𝑡∗ = 𝑡𝑛 also minimizes the 

area 𝐴(𝑡∗). 
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The argument for the sinusoidal trajectory is similar.  The 

coordinates 𝑥𝑝(𝑡), 𝑦𝑝(𝑡) of this trajectory are defined by the 

parametric equations (19).  The derivative of the cumulative 

cross-track error expression for the sinusoid can be written as:  

𝑑

𝑑𝑡∗
𝑠𝑐𝑢𝑚 = 0 

=
𝑑

𝑑𝑡∗

[
 
 
 
 

∫

{
 
 

 
 (𝐶𝑥𝑛,3 [1 − 𝑠𝑖𝑛 (

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡− 𝑡𝑛−1))] 𝑠𝑖𝑛 𝜓𝐿𝑛−1_𝑛)

−(𝐶𝑦𝑛,3 [1 − 2 ⋅
(𝑡− 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] 𝑐𝑜𝑠 𝜓𝐿𝑛−1_𝑛) }

 
 

 
 

𝑑𝑡
𝑡∗

𝑡𝑛−1

+∫

{
 
 

 
 (𝐶𝑥𝑛+1,3 [1 − 𝑠𝑖𝑛 (

𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡− 𝑡𝑛−1))] 𝑠𝑖𝑛 𝜓𝐿𝑛_𝑛+1)

−(𝐶𝑦𝑛+1,3 [1 − 2 ⋅
(𝑡− 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] 𝑐𝑜𝑠 𝜓𝐿𝑛_𝑛+1) }

 
 

 
 

𝑑𝑡
𝑡𝑛

𝑡∗

]
 
 
 
 

 

( 13 ) 

Taking the derivative of this expression with respect to 𝑡∗, 
applying the Fundamental Theorem of Calculus, and setting 

the resulting expression to zero gives: 

𝑑

𝑑𝑡∗
𝑠𝑐𝑢𝑚 = 0 

    =

 (𝐶𝑥𝑛,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛−1𝑛)

−(𝐶𝑦𝑛,3 [1 − 2 ⋅
(𝑡∗ − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] cos 𝜓𝐿𝑛−1𝑛)

 

−(𝐶𝑥𝑛+1,3 [1 − sin(
𝜋

𝑡𝑛+1 − 𝑡𝑛−1
⋅ (𝑡∗ − 𝑡𝑛−1))] sin 𝜓𝐿𝑛𝑛+1) 

+(𝐶𝑦𝑛+1,3 [1 − 2 ⋅
(𝑡∗ − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] cos 𝜓𝐿𝑛_𝑛+1) 

( 14 ) 

This is true for 𝑡∗ = 𝑡𝑛, which also minimizes the area 𝐴(𝑡∗) 
as shown in Appendix B. 
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APPENDIX B 

ANALYTICAL SOLUTION OF OPTIMAL TIME FOR 

MOTION PRIMITIVES 

Here, we derive the optimal time 𝑡∗ that minimizes the area 

𝐴(𝑡∗) of the bounded region enclosed by a trajectory 𝒑(𝑡), 
defined as one of four motion primitives, and the 

corresponding leg path 𝒒(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛+1].   

Primitive 2: Semicircle  

The parametric equations for the coordinates of the 

semicircular trajectory are: 

𝑥𝑝(𝑡) = 𝐴 sin(𝜔(𝑡 − 𝑡𝑛−1))

= 𝐶𝑥𝑛,3 ⋅ sin (
𝜋

(𝑡𝑛+1 − 𝑡𝑛−1)
⋅ (𝑡 − 𝑡𝑛−1)) 

    𝑦𝑝(𝑡) = 𝐴 [1 + cos(𝜔(𝑡 − 𝑡𝑛−1) + 𝜑)] 

= 𝐶𝑦𝑛,3 ⋅ [1 + cos (
𝜋

(𝑡𝑛+1 − 𝑡𝑛−1)
⋅ (𝑡 − 𝑡𝑛−1) − 𝜋)] 

( 15 ) 

The area 𝐴(𝑡∗) is the difference between the area bounded by 

the semicircle and the line between waypoints 𝑛 − 1 and 𝑛 +
1, which we denote by 𝐴𝑠𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑙𝑒 , and the area of the 

inscribed triangle with vertices at waypoints 𝑛 −
1, 𝑛, and 𝑛 + 1, denoted by 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒: 

𝐴(𝑡∗) =  𝐴𝑠𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑙𝑒 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
𝜋𝑟2

2
−
1

2
𝑏ℎ, 

Using the parametric equations ( 15 ), this area can be written 

as: 

𝐴(𝑡∗) =
𝜋𝑟2

2
−
1

2
(2𝑟)𝑥𝑝(𝑡∗) 

= [
𝜋𝑟2

2
− 𝑟𝐶𝑥𝑛,3 sin (𝜋 ⋅

𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

)] 

( 16 ) 

Taking the derivative of expression ( 16 ) with respect to 𝑡∗ 
and setting the derivative to zero yields the value of 𝑡∗ that 

minimizes 𝐴(𝑡∗), which determines the location 𝒑(𝑡𝑛) of the 

interior waypoint along the semicircle trajectory 𝒑: 

𝑑𝐴

𝑑𝑡∗
= 0 − 𝑟𝜋 ⋅

1

𝑡𝑛+1 − 𝑡𝑛−1
⋅ cos (𝜋 ⋅

𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

) 

( 17 ) 

⇒ 𝑡∗ = 𝑡𝑛, since 
𝑡𝑛−𝑡𝑛−1

𝑡𝑛+1−𝑡𝑛−1
=

1

2
 

( 18 ) 

Plugging this value for 𝑡∗ into the equations ( 15 ) for the 

semicircle coordinates, we find that the interior waypoint 

should be placed at the point (𝑥𝑞( 𝑡∗) = 𝐶𝑥𝑛,3 , 𝑦𝑞( 𝑡∗) = 𝐶𝑦𝑛,3), 

which is the peak of the semicircle. 

Primitive 3: Sinusoid  

The parametric equations for the coordinates of the half-wave 

sinusoidal trajectory are: 

𝑥𝑝(𝑡) = 𝐴 sin(𝜔(𝑡 − 𝑡𝑛−1))

= 𝐶𝑥𝑛,3 sin (
𝜋

(𝑡𝑛+1 − 𝑡𝑛−1)
(𝑡 − 𝑡𝑛−1)) 

𝑦𝑝(𝑡) = 2𝐴 [
(𝑡 − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] = 2𝐶𝑦𝑛,3 ⋅ [

(𝑡 − 𝑡𝑛−1)

(𝑡𝑛+1 − 𝑡𝑛−1)
] 

( 19 ) 

The area 𝐴(𝑡∗) is the difference between the area bounded by 

the half-wave sinusoid trajectory and the line between 

waypoints 𝑛 − 1 and 𝑛 + 1, denoted by 𝐴𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 , and the 

area of the inscribed triangle, 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒: 

𝐴(𝑡) =  𝐴𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 𝐶𝑥𝑛,3∫ sin(𝑡) 𝑑𝑡
𝜋

0

−
1

2
𝑏ℎ 

⇒ 𝐴(𝑡∗) = 𝐶𝑥𝑛,3∫ sin(𝑡) 𝑑𝑡
𝜋

0

−
1

2
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)𝑥𝑝(𝑡∗) 

⇒ 𝐴(𝑡∗) = 𝐶𝑥𝑛,3 [2 −
1

2
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)sin (𝜋 ⋅

𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

)] 

( 20 ) 

where the expression for 𝑥𝑝(𝑡∗) is from the parametric 

equations (19). The derivative of 𝐴(𝑡∗) with respect to 𝑡∗ is: 

𝑑𝐴

𝑑𝑡∗
= 0 −

1

2
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3) ⋅

𝜋𝐶𝑥𝑛,3
𝑡𝑛+1 − 𝑡𝑛−1

⋅ cos (𝜋 ⋅
𝑡∗ − 𝑡𝑛−1
𝑡𝑛+1 − 𝑡𝑛−1

) 

( 21 ) 

When set equal to zero, this derivative has the same solution 

for 𝑡∗ as Eq. (17): 

𝑡∗ = 𝑡𝑛 

Plugging this value for 𝑡∗ into the sinusoid coordinates ( 19 ), 

we find that the interior waypoint should be placed at 

(𝑥𝑞( 𝑡∗) = 𝐶𝑥𝑛,3 , 𝑦𝑞( 𝑡∗) = 𝐶𝑦𝑛,3), the peak of the sinusoid. 

Primitive 4: Decaying Exponential 

The parametric equations for the coordinates of the decaying 

exponential trajectory are: 

𝑥𝑝(𝑡) = 𝐶𝑥𝑛−1,3 ⋅ 𝑒
−𝑦𝑝(𝑡) 

𝑦𝑝(𝑡) = 2 ⋅ 𝐶𝑦𝑛,3 ⋅ [
𝑡 − 𝑡𝑛−1

𝑡𝑛+1 − 𝑡𝑛−1
] 

( 22 ) 

As illustrated in Figure 16, the area 𝐴(𝑡∗) can be written as 

the difference between the area 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒1 of the triangle 

(outlined in red) with vertices at the origin, waypoint 𝑛 − 1, 

and waypoint 𝑛 + 1, and the sum of the area 𝐴𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙  
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under the exponential trajectory between times 𝑡𝑛−1 and 𝑡𝑛+1 

and the area 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2 of the triangle with vertices at the three 

waypoints 𝑛 − 1, 𝑛, and 𝑛 + 1: 

𝐴(𝑡∗) = 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒1 − (𝐴𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2) 

( 23 ) 

Figure 16: Bounded Area Associated with Decaying 

Exponential 

We define 𝐴𝑏 ≡ 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒1 − 𝐴𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 .  Given the 

parametric equations ( 22 ), this area is computed as:  

𝐴𝑏 =
1

2
𝐶𝑥𝑛−1,3𝐶𝑦𝑛+1,3 −∫ 𝐶𝑥𝑛−1,3 ⋅ 𝑒

−𝑦𝑝(𝑡)
𝑡𝑛+1

𝑡𝑛−1

𝑑𝑡 

( 24) 

Note that this area is not a function of 𝑡∗.  The area 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2 

depends on the location of the interior waypoint 𝑛, and 

therefore is a function of 𝑡∗.  This area is computed by 

multiplying the triangle’s base, the distance between 

waypoints 𝑛 − 1 and 𝑛 + 1, by its height, the perpendicular 

distance between waypoint 𝑛 and its base: 

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒2(𝑡∗) =

(

 
√(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)

2
+ (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

2

2

)

 ⋅ 

(

 
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)(𝐶𝑦𝑛+1,3 − 𝑦𝑝(𝑡∗)) − (𝐶𝑥𝑛+1,3 − 𝑥𝑝(𝑡∗))(𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

√(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)
2
+ (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

2

)

  

( 25 ) 

By Eq. (23), taking the derivative of 𝐴(𝑡∗) with respect to 𝑡∗ 
yields: 

𝑑𝐴

𝑑𝑡∗
= 0 +

𝑑

𝑑𝑡∗
(
(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)(𝐶𝑦𝑛+1,3 − 𝑦𝑝(𝑡∗))

2
) 

               −
𝑑

𝑑𝑡∗
(
(𝐶𝑥𝑛+1,3 − 𝑥𝑝(𝑡∗))(𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3)

2
) 

( 26 ) 

When set equal to zero, the solution of this equation is the 

value of 𝑡∗ that minimizes 𝐴(𝑡∗), which determines the 

location 𝒑(𝑡∗) of the interior waypoint 𝑛 along the 

exponential trajectory 𝒑.  Setting Eq. (26) equal to zero and 

substituting in the expressions for the trajectory coordinates ( 

22 ), we obtain the following: 

−(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3)(
𝑑

𝑑𝑡∗
𝑦𝑝(𝑡∗)) = −(

𝑑

𝑑𝑡∗
𝑥𝑝(𝑡∗)) (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3) 

⇒ −(𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3) (2 ⋅ 𝐶𝑦𝑛,3 ⋅ [
1

𝑡𝑛+1 − 𝑡𝑛−1
])

= 2 ⋅ 𝐶𝑦𝑛,3 ⋅ [
1

𝑡𝑛+1 − 𝑡𝑛−1
]

⋅ (𝐶𝑥𝑛−1,3 ⋅ 𝑒
−𝑦𝑝(𝑡∗)) (𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3) 

( 27 ) 

This equation can be solved for the 𝑥𝑝 coordinate of the 

exponential at time 𝑡∗: 

𝑥𝑝(𝑡∗) = 𝐶𝑥𝑛−1,3 ⋅ 𝑒
−𝑦𝑝(𝑡∗) = −

𝐶𝑥𝑛+1,3 − 𝐶𝑥𝑛−1,3
𝐶𝑦𝑛+1,3 − 𝐶𝑦𝑛−1,3

 

( 28 ) 

The above equality was found from a graphical solution to be  

𝑡∗ = 4.8𝑠 when (𝐶𝑥𝑛−1,3 = 5, 𝐶𝑦𝑛,3 = 2.5)  which closely 

matches the solution computed using the optimization 

algorithm for the Bounded Area Minimization Problem, as 

described in Section III.   

Primitive 5: Logarithmic Spiral  

The parametric equations for the coordinates of the 

logarithmic spiral trajectory are given by: 

𝑦𝑝(𝑡) = 𝛼𝑒
𝑏𝑡sin (𝑡) 

𝑥𝑝(𝑡) = 𝛼𝑒
𝑏𝑡cos (𝑡) 

( 29 ) 

As shown in Figure 17,the bounded area between the leg path 

and the spiral can be written as the difference between the area 

bounded by the spiral and the line between waypoints 𝑛 −
1 and 𝑛 + 1, which we denote by 𝐴𝑠𝑝𝑖𝑟𝑎𝑙, and the area of the 

inscribed triangle with vertices at waypoints 𝑛 −
1, 𝑛, and 𝑛 + 1, denoted by 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 . 
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Figure 17: Bounded Area Associated with Logarithmic 

Spiral 

The red circle represents the point on the line between the 

exterior waypoints 𝑛 − 1 and 𝑛 + 1 that is closest to the 

interior waypoint 𝑛.  The equation of the line segment 

between waypoints 𝑛 − 1 and 𝑛+1 can be written in terms of 

the parameter 𝑡 as follows:   

𝑦𝑞(𝑡) = 𝑦𝑛−1 +
𝑡 − 𝑡𝑛−1

𝑡𝑛+1 − 𝑡𝑛−1
(𝑦𝑛+1 − 𝑦𝑛−1) 

 𝑥𝑞(𝑡) = 𝑥𝑛−1 +
𝑡 − 𝑡𝑛−1

𝑡𝑛+1 − 𝑡𝑛−1
(𝑥𝑛+1 − 𝑥𝑛−1) 

( 30 ) 

Defining 𝑦𝑝(𝑡),  𝑥𝑝(𝑡) as in Eq. (30) and 𝑦𝑞(𝑡),  𝑥𝑞(𝑡) as in Eq. 

(31), the area 𝐴𝑠𝑝𝑖𝑟𝑎𝑙 is obtained using Green’s Theorem by 

integrating the curve along the spiral trajectory from 𝑛 − 1 to 

𝑛 + 1 and back along the dotted line from 𝑛 + 1 to 𝑛 − 1:  

𝐴𝑠𝑝𝑖𝑟𝑎𝑙 =
1

2
[∫ (−𝑦𝑝𝑥′𝑝 + 𝑥𝑝𝑦′𝑝)𝑑𝑡

𝑡𝑛+1

𝑡𝑛−1

+∫ (−𝑦𝑞𝑥′𝑞 + 𝑥𝑞𝑦′𝑞)𝑑𝑡
𝑡𝑛−1

𝑡𝑛+1

] 

( 31 ) 

The area of the inscribed triangle, 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, can be computed 

by defining the distance between 𝑛 − 1 and 𝑛 + 1 as the 

triangle’s base, 𝑏, and the distance between the base and 

waypoint 𝑛 (the length of the red dotted line in Figure 17) as 

the triangle’s height, ℎ.  Since the location 𝒑(𝑡∗) of waypoint 

𝑛 on the spiral determines this height, ℎ and therefore 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 

can be written as functions of the decision variable 𝑡∗: 

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑡∗) =
𝑏ℎ(𝑡∗)

2
 

( 32 ) 

The distance 𝑏 is fixed and thus does not depend on 𝑡∗.  The 

distance ℎ(𝑡∗) can be computed based on the known equation 

for the distance between an arbitrary point and a line through 

two different points.  The bounded area between the spiral and 

the leg path is then given by: 

𝐴(𝑡∗) = 𝐴𝑠𝑝𝑖𝑟𝑎𝑙 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑡∗) 

( 33 ) 

The minimum value of this area is obtained by taking the 

derivative of the expression 𝐴(𝑡∗) with respect to 𝑡∗ and 

setting the resultant equal to zero.  This operation yields:   

𝑑

𝑑𝑡∗
𝐴(𝑡∗) = 0 ⇒

𝑑

𝑑𝑡∗
[𝑦𝑝(𝑡∗)] = [

𝑦𝑛+1 − 𝑦𝑛−1
𝑥𝑛+1 − 𝑥𝑛−1

] ⋅
𝑑

𝑑𝑡∗
[𝑥𝑝(𝑡∗)] 

( 34 ) 

Solving for 𝑡∗ gives 1.69𝑠, which is also very close to the 

numerical solution of the optimization algorithm, as described 

in Section III.  The constants for the parametric coordinates 

were 𝛼 = 2𝜋 and b = 0.2.   
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