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Abstract

In this paper, we propose a controller that stabilizes a holonomic robot with single-integrator dynamics to a target position in
a bounded domain, while preventing collisions with convex obstacles. We assume that the robot can measure its own position
and heading in a global coordinate frame, as well as its relative position vector to the closest point on each obstacle in its
sensing range. The robot has no information about the locations and shapes of the obstacles. We define regions around the
boundaries of the obstacles and the domain within which the robot can sense these boundaries, and we associate each region
with a virtual potential field that we call a local navigation-like function (NLF), which is only a function of the robot’s position
and its distance from the corresponding boundary. We also define an NLF for the remaining free space of the domain, and
we identify the critical points of the NLFs. Then, we propose a switching control law that drives the robot along the negative
gradient of the NLF for the obstacle that is currently closest, or the NLF for the remaining free space if no obstacle is detected.
We derive a conservative upper bound on the tunable parameter of the NLFs that guarantees the absence of locally stable
equilibrium points, which can trap the robot, if the obstacles’ boundaries satisfy a minimum curvature condition. We also
analyze the convergence and collision avoidance properties of the switching control law and, using a Lyapunov argument,
prove that the robot safely navigates around the obstacles and converges asymptotically to the target position. We validate
our analytical results for domains with different obstacle configurations by implementing the controller in both numerical
simulations and physical experiments with a nonholonomic mobile robot.
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1 Introduction

Numerous algorithmically and mathematically rigorous
approaches have been proposed for robot navigation in
environments with obstacles, many requiring prior in-
formation about the environment. We present a switch-
ing control law for safe robot navigation that guaran-
tees obstacle avoidance and convergence to a destination
without using any prior information about the obsta-
cles’ locations and shapes, instead relying only on the
robot’s localization and onboard sensor measurements.
We first review key developments in control schemes for
safe robot navigation, categorized according to the prop-
erties of the environment that must be known, and then
describe our contribution in the context of this work.

⋆ This research was supported by the Arizona State Univer-
sity Global Security Initiative.

Email addresses: hamed.farivarnejad@asu.edu (Hamed
Farivarnejad), asalimil@asu.edu (Amir Salimi Lafmejani),
spring.berman@asu.edu (Spring Berman).

Many existing collision-free navigation control schemes
are based on virtual potential fields and require knowl-
edge of the locations and shapes of the obstacles. Early
works on such control schemes include [19,34,18,36,20],
with the works [34,20] introducing controllers based on
potential fields called navigation functions (NFs) that
produce exact robot navigation to target positions in
generalized sphere worlds. Many subsequent works de-
veloped NF-based control strategies for diverse scenar-
ios. In [8], a combination of NFs and harmonic potential
fields, which satisfy Laplace’s equation, is proposed for
environments in which the free space can be represented
as a chain of connected polygons. Acceleration of the
robot’s convergence to the target position is achieved
in [27] for dynamic environments by merging an NF-
based strategy with the dynamic window approach [12],
and in [29] for static environments in which the robot
starts near the stable manifold of a saddle point of the
NF by using a modified Newton method for nonconvex
optimization. The work [11] presents an algorithm for
automatically tuning the parameters of NFs for sphere
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worlds. In [24], NFs are constructed for tracking a dy-
namic target in environments with star-shaped obsta-
cles. Modified NF-based controllers have been recently
designed for robot navigation to the minimum of a glob-
ally convex potential function in an environment with
convex obstacles [28], and to the minimum of a quadratic
potential function in environments with ellipsoidal ob-
stacles that may be highly eccentric (flat) [21] or star-
shaped obstacles [22]. The works [26,9] solve the naviga-
tion problem on a known star world using a diffeomor-
phic transformation from the star world to a point world
and its inverse.

Barrier certificates [32] and barrier functions [1] have
been used to develop control schemes that prevent a dy-
namical system from entering unsafe or undesired re-
gions of its state space, which is the set of obstacles
when the control objective is collision-free robot naviga-
tion. These approaches require knowledge of the bound-
aries of the unsafe/undesired regions (i.e., the obstacles).
The work [40] presents a control approach that utilizes
barrier certificates to prevent collisions among multiple
robots and between robots and static or dynamic obsta-
cles. The centers and radii of circles that bound the ob-
stacles must be known beforehand. Control barrier func-
tions have been used to implement collision avoidance
in multi-robot systems [7] and rigid body networks [16].

Other collision-free navigation control schemes require
only approximate information about the locations and
shapes of the obstacles. A sliding mode controller is
proposed in [15] to track the gradient of a potential field
that is constructed based on the smallest circle that en-
closes each obstacle. In [30], the robot follows a stochas-
tic approximation of the gradient of an NF, which re-
quires prior estimates of obstacle locations and shapes
according to a probability distribution. Sampling-based
control schemes that combine optimization techniques
and simultaneous localization and mapping (SLAM)
approaches comprise another class of controllers that
rely on a priori partial and/or approximate information
about the environment [4,39,31,38].

There are also collision-free navigation control schemes
that do not rely on prior information about the shapes
and locations of the obstacles, but have limitations on
their performance guarantees, use particular types of
sensor measurements by the robot, and/or require the
robot to continuously update its control inputs via on-
line optimization and continuously update its map of the
environment. The potential-based controller designed
in [13] for cases where the robot’s target position is very
close to an obstacle, extended in [14] to scenarios where
the target position and obstacles are moving, does not
ensure the absence of all local minima that could trap the
robot. The work [33] presents a stochastic source-seeking
scheme for a robot that can measure a signal and is al-
lowed to make contact with the boundaries of the envi-
ronment and obstacles, traveling along these boundaries

until it finds a feasible direction to the signal source. In
[2], a sinusoidal extremum seeking control scheme is pro-
posed that guarantees collision-free navigation of a robot
in environments with convex obstacles; this approach
requires online measurements of the curvature of obsta-
cles that the robot encounters. The work [3] presents a
sensor-based feedback control law for robot navigation in
environments with convex obstacles in which the robot
computes a Voronoi diagram for the environment online.
Although the obstacles may be unknown, an assumption
on their curvature is required (Assumption 2 in [3]).

In this paper, we develop a robot controller that guaran-
tees collision-free navigation to a target location using
minimal on-board sensing, without information about
obstacle locations and shapes. The proposed controller
has a closed-form structure and does not require online
projection/optimization andmapping algorithms, which
are used in the controllers presented in [39,38,3]; thus, it
is simpler and less computationally intensive to imple-
ment on a robot. Both obstacle avoidance and conver-
gence to the target position are enforced by a term in
the controller that is the gradient of a virtual potential
field that we refer to as a local navigation-like function
(NLF), due to its similarity to navigation functions but
its dependence only on local sensor measurements. This
control approach is similar to the potential-based control
law that we designed in [10] for stabilizing a holonomic
robot to a target velocity in an unknown, unbounded
environment with strictly convex obstacles. The main
contributions of this paper are as follows:

(1) We present a closed-form switching controller for
safe navigation of a holonomic mobile robot to a
target position in a bounded domain containing
convex obstacles that are sufficiently separated and
curved. The robot can measure its own position and
heading and its relative position vector to the clos-
est point on any obstacles within its sensing range.
The robot knows the target position and the size
of the domain, but not the locations and shapes of
the obstacles, and it has no predefined trajectory.

(2) We prove that the controller drives the robot
asymptotically to the target position while prevent-
ing collisions with the obstacles and entrapment in
local minima.

(3) We validate our theoretical results in numerical
simulations and experiments with a mobile robot.

2 Preliminaries and Problem Statement

We consider a disk-shaped holonomic robot with radius
r that moves in a planar bounded domain and has a
circular sensing range that extends a distance δc from
the robot’s center. The robot has first-order dynamics (a
single-integrator model), q̇ = u, where q = (x, y)T ∈ R2

denotes the position of the robot’s center in a global
reference frame and u ∈ R2 is the robot’s control input.
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We assume that the domain contains multiple arbitrary
convex obstacles. The control objective is for the robot
to travel to a target position while avoiding collisions
with the obstacles and the domain boundary.We assume
that the target position is the origin of the global frame,
without loss of generality. We first define several terms.

Definition 1 (Domain). A compact, closed and con-
vex subset of R2, whose interior includes the origin (the
target position). The domain and its boundary are de-
noted by D and ∂D, respectively. The domain’s interior
is denoted by I(D) and is defined as I(D) := D \ ∂D.

Definition 2 (Obstacle). A compact, closed and con-
vex subset of the domain, which does not intersect the
domain’s boundary. The domain contains m ≥ 1 obsta-
cles, which are indexed by i ∈ {1, ...,m}. Obstacle i and
its boundary are denoted by Oi and ∂Oi, respectively.

Definition 3 (Free Space). An open subset of the do-
main which is obtained by removing the obstacles from
the domain’s interior, defined as F := I(D) \

⋃m
i=1 Oi.

Definition 4 (Repulsion Space). Let δi(q) be the
distance from point q ∈ R2 to the boundary of the do-
main for i = 0, or to the boundary of obstacle i for
i ∈ {1, ...,m}. We define the repulsion space Ri as
the following semi-closed subset of the free space F :
Ri = {q ∈ F | 0 < δi(q) ≤ δc} , i = 0, 1, . . . ,m. The re-
pulsion space R0 is the set of points between ∂D and the
closed curve that is offset from this boundary by a dis-
tance δc along the inward normal to ∂D. The repulsion
space Ri, i ∈ {1, ...,m}, is the set of points between ∂Oi

and the closed curve that is offset from this boundary
by a distance δc along the outward normal to ∂Oi. The
boundary of Ri is denoted by ∂Ri.

Definition 5 (Switching Repulsion Surface). If
l ≥ 2 repulsion spaces intersect, then the set of points that
belong to this intersection and are equidistant from the
boundaries of the corresponding obstacles (or the bound-
ary of the domain) is called a switching repulsion sur-
face. If Rσ1 , ..., Rσl

are intersecting repulsion spaces,
where {σ1, ..., σl} ⊆ {0, 1, ...,m}, then the corresponding
switching repulsion surface is defined as

Sσ1...σl
:=
{
q ∈ ∩i∈{σ1,...,σl}Ri | δσ1

(q) = ... = δσl
(q)
}
.

Definition 6 (Safe Space). An open subset of the
free space which is obtained by removing the repulsion
spaces from the free space, defined as SS := F\

⋃m
i=0 Ri.

Remark 7 The safe space has no intersection with any
repulsion space; i.e., SS

⋂
Ri = ∅, i ∈ {0, 1, ...,m}.

Moreover, the safe space and repulsion spaces form a
cover of the free space; i.e., SS

⋃
(
⋃m

i=0 Ri) = F .

An example domain is shown in Fig. 1, with the associ-
ated spaces in Definitions 1–6 illustrated in Fig. 2.

Definition 8 (Closest Collision Point). The line
from the robot’s current position q that is normal to the

boundary of obstacle i intersects the boundary at the clos-
est collision point. This point is denoted by Pi and its
position vector is denoted by qPi

, as shown in Fig. 3.

Definition 9 (Collision V ector). The vector q−qPi

from the closest collision point to the robot’s current
position is called the collision vector. This vector is
denoted by di and is shown in red in Fig. 3.

Wemake the following assumptions about the robot’s ca-
pabilities. The robot has global localization (e.g., GPS)
and has no prior information about the obstacles’ loca-
tions and shapes. The robot canmeasure its own heading
in the global frame, and it can identify the boundaries
of nearby obstacles within its sensing range. We assume
that at each time instant, the robot can measure the dis-
tance δi(q) between its center and the boundary of each
obstacle i within its sensing range (e.g., using infrared
sensors or LIDAR). This distance is the length of the
collision vector di, according to the Projection Theorem
[6]. We also assume that the robot can measure the angle
ϕdi

of the vector −di in its body-fixed frame, e.g., using
LIDAR. By adding ϕdi

+ π rad to the robot’s heading
in the global frame, the robot can obtain the angle of di

in the global frame, which we denote by θdi
.

We also make the following three assumptions. The first,
Assumption 1 in [3], enforces a minimum inter-obstacle
spacing such that the robot can navigate between any
two obstacles. The second defines the (minimal) prior
information that the robot has about the environment.
The third specifies that the obstacles’ boundaries satisfy
a minimum curvature condition.

Assumption 10 The shortest distance between the
boundaries of each pair of obstacles, and the shortest
distance between the boundary of each obstacle and the
domain boundary, both exceed the robot’s diameter, 2r.

Assumption 11 The only information provided to the
robot is the target position and the size of the domain,
defined as the diameter of the smallest circle that contains
it. The radius of this circle is denoted by rD.

Assumption 12 For each obstacle, the curvature κ
at every point along the obstacle’s boundary is strictly
greater than 1/rD (see Appendix F.)

Given the robot’s local sensormeasurements and its min-
imal information about the environment, we aim to de-
sign a control law that can solve the following problem.

Problem 13 We consider a bounded domain, defined
as in Definition 1, whose boundary ∂D is described by
β0(x, y) = 0, where β0 : R2 7→ R is a smooth function.
The domain contains a finite numberm ≥ 1 of convex ob-
stacles, defined as in Definition 2, with arbitrary bound-
aries described by βi(x, y) = 0, i ∈ {1, ...,m}, where each
function βi : R2 7→ R is at least twice continuously dif-
ferentiable. The robot’s target position is in F and is as-

3



Fig. 1. A circular domain with convex obstacles and the
regions that define their associated repulsion spaces.

Fig. 2. Different spaces for the environment shown in Fig. 1.

sumed to be the origin of the global reference frame, with-
out loss of generality. Given Assumptions 10, 11, and 12
and the robot’s initial position, which is in the free space
F , we design a robot control law that uses only local mea-
surements available to the robot to achieve the following
objectives: the robot must (1) asymptotically converge
to the target position; (2) not collide with any obstacle or
the domain boundary ∂D; and (3) never become trapped
by any set of obstacles or between obstacles and ∂D.

3 Local Navigation-Like Functions (NLFs)

The construction of a navigation function (NF) in the
sense of Rimon-Koditschek [34] over a bounded domain
requires prior knowledge of equations that describe the
boundaries of the domain and the obstacles that it con-
tains. Moreover, it is necessary to know the number of
obstacles in order to tune the parameter κ of the NF
(Eq. (10), [34]) such that the NF has no local minima

Fig. 3. Illustration of the closest collision point, the collision
vector, and their associated variables.

that could trap the robot before it reaches its target po-
sition. However, in scenarios where robots must navigate
an uncertain or completely unknown environment, this
information is not available beforehand. To overcome
this limitation, we define functions that are similar in
form to the NFs in [34] but that depend only on locally
sensed information. We refer to these functions as local
navigation-like functions (NLFs). The NLFs are defined
in association with the safe space and each of the repul-
sion spaces, and they are designed in such a way that:
(1) their gradients form a vector field over F such that
a control law that steers the robot in the opposite direc-
tion of the vector field at its current position will achieve
the objectives described in Problem 13; and (2) to cal-
culate the gradient of an NLF, a robot only needs its on-
board measurements of its global position and the colli-
sion vectors associated with obstacles within its sensing
range. We next define the NLFs and establish properties
of their critical points through analysis of their gradi-
ents and Hessians. The proofs of all theoretical results
in this section are provided in the Appendix.

3.1 Safe Space Navigation-Like Function

The safe space NLF, φSS : SS → [0, 1), is defined as

φSS(q) = (qTq)/(qTq + 1). (1)

Proposition 14 If the target position (the origin) is lo-
cated in the safe space SS, then it is the only critical
point of φSS and, further, is the global minimum of φSS .
Otherwise, φSS has no critical point.

Remark 15 Given the form of ∇φSS in Eq. (A.1), the
robot requires only measurements of its own position q to
calculate the gradient of φSS .

3.2 Repulsion Space Navigation-Like Function

The NLF φRi
for repulsion space Ri is defined as

φRi
(q) = (qTq)/(qTq + g(δi)), (2)
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Fig. 4. An illustration of a non-zero norm critical point (Ci)
with the associated parameters (ρ, ρPi , and δi), the closest
collision point (Pi), and the local ξl−ξl⊥ coordinate system.

where g(δi) : R>0 7→ R>0 is the following function of
the robot’s distance from the boundary of the domain
for i = 0 or the boundary of obstacle i ∈ {1, ...,m}:

g(δi) = (δi/δc)
k
, (3)

in which δi := ∥di∥, δc is the radius of the robot’s sensing
range, and k is a strictly positive real number. We can
confirm that φRi

∈ [0, 1) for a bounded domain.We note
that since δi depends on the robot’s position q, g(δi)
is implicitly a function of q. The next two propositions
characterize the critical points of φRi

.

Proposition 16 If the target position (the origin) is in
Ri, then it is the global minimum of φRi .

Proposition 17 Given the assumption that the target
position is q = 0, φRi

may have one critical point in
Ri with non-zero norm, i.e. q ̸= 0, if k ∈ R>0 − {2}.

Each obstacle i is associated with one non-zero norm
critical point, Ci, which is in Ri (see Fig. 4). This is
because φRi

is an analytical function in Ri ⊂ R2, which
implies that it admits exactly one non-zero norm critical
point [34].

Proposition 18 The non-zero norm critical point Ci

of φRi is degenerate for i = 0, 1, ...,m.

The following properties are used in the stability analysis
of the proposed controller in the next section.

Remark 19 To calculate the gradient of φRi
, the robot

only requires measurements of its own position q and the
collision vector di, as indicated by Eqs. (B.1) and (C.1).

Remark 20 The values of the repulsion space NLFsφRi

for intersecting repulsion spaces Rσ1
, ...,Rσl

are equal
along the switching repulsion surface Sσ1...σl

(Definition
5), since a robot on this surface is equidistant from the
associated obstacles Oσ1 , ...,Oσl

.

4 Controller Design and Analysis

To define the control law u ∈ R2 in the single-integrator
model of the robot, q̇ = u, we first define the set

Eq = argmax
σ∈{SS,R0,R1,...,Rm}

{φσ(q)} (4)

and denote the cardinality of Eq by nq := |Eq|. The
proposed control law is given by

u = − 1

nq

∑
η∈Eq

∇φη(q). (5)

To execute the control law (5), the robot does not need
to measure its distance from every obstacle or identify
the particular space it is located in; it only needs to
measure and compare its distance from each obstacle
within its sensing range. If the robot is in the safe space
SS, where all obstacles are outside its sensing range,
then the controller uses the gradient of φSS . If the robot
is in the union of multiple repulsion spacesRi and is not
on a switching repulsion surface, then the controller uses
the gradient of the NLF φRi

that has the largest value at
the robot’s current position. By construction, this NLF
is associated with the obstacle i that is closest to the
robot (Eq. (2)). Finally, if the robot is on a switching
repulsion surface Sσ1...σl

, then the controller uses the
average of the gradients of the NLFsφRσ1

, ..., φRσl
of the

corresponding intersecting repulsion spaces. The control
law (5) is a switching control law, since the gradients of
the NLFs could change discontinuously when the robot
crosses a switching repulsion surface or moves from a
repulsion space to the safe space or vice versa.

Substituting (5) into the robot’s equation of motion
q̇ = u, we obtain the closed-loop system, a differential
equation with a discontinuous right-hand side:

q̇ = − 1

nq

∑
η∈Eq

∇φη(q). (6)

Since (5) is a switching control law, the closed-loop sys-
tem (6) represents a switching system composed of mul-
tiple subsystems, each driven by the gradient of the safe
space NLF or a repulsion space NLF. The closed-loop
robot dynamics in each subsystem are given by

q̇ = −∇φσ(q), σ ∈ {SS,R0,R1, ...,Rm} . (7)

We will analyze the stability, convergence, and collision
avoidance properties of system (6) and prove that it
achieves the three objectives described in Problem 13.
The proofs of some of the theoretical results in this sec-
tion are provided in the Appendix.
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4.1 Stability Characteristics of Subsystem Equilibria

In this subsection, we study the stability of the closed-
loop dynamics in an individual subsystem, defined in Eq.
(7), by analyzing the stability characteristics of the equi-
librium points of the subsystem. The equilibrium points
of each subsystem in Eq. (7) are the critical points of
the NLF φσ corresponding to that subsystem. To inves-
tigate the stability properties of these critical points, we
apply Lyapunov’s indirect method. Linearizing Eq. (7)
about the position q∗ of a critical point of φσ, we obtain:

q̇ =
(
−∇2φσ(q

∗)
)
q, σ ∈ {SS,R0,R1, ...,Rm} . (8)

Given linearized model (8), we now analyze the eigen-
values of the Hessian of the corresponding NLF φσ at q∗

and apply the results in Propositions 14, 16, 17, and 18.

Proposition 21 The origin is an asymptotically stable
equilibrium point if it is located in either the safe space
or the union of the repulsion spaces.

Proof. This is concluded from Propositions 14 and 16,
where we proved the positive definiteness of the Hessian
at the origin. Thus, the negative of the Hessian in Eq.
(8) has strictly negative eigenvalues at the origin.

Non-zero norm critical points of repulsion space NLFs
φRi

are other equilibrium points of the subsystems in
Eq. (7). As proved in Proposition 18, these critical points
are degenerate, since their corresponding Hessian matri-
ces each have one zero eigenvalue and one positive eigen-
value. This means that the negative of the Hessian in
Eq. (8) has one zero eigenvalue and one negative eigen-
value, and therefore linearization about the equilibrium
points cannot be used to determine their stability prop-
erties. Instead, we use the center manifold theorem [17]
to investigate their stability properties. We will use the
following two lemmas in this stability analysis.

Lemma 22 Let q∗ be the position of the non-zero norm
critical point of the NLF φRi

, i ∈ {0, 1, ...,m}, in the
global reference frame. We define l as the line through
the origin and q∗ and l⊥ as the line perpendicular to l, as
illustrated in Fig. 4. Then l⊥ and l are the center mani-
fold and stable manifold, respectively, of the correspond-
ing subsystem in (7) (σ = Ri) in a neighborhood of q∗.

Lemma 23 We define a subset Bl⊥(q
∗, ϵ) of the center

manifold as Bl⊥(q
∗, ϵ) = {q ∈ l⊥| ∥q − q∗∥ < ϵ, ϵ > 0}.

If the obstacle’s boundary has sufficiently large curvature
(Assumption 12) at the closest collision point that corre-
sponds to q∗, then there exists a finite ϵ > 0 for which
φRi

(q) is maximal at q∗ for all q ∈ Bl⊥(q
∗, ϵ).

Proposition 24 Given Assumption 12, the non-zero
norm critical point of φRi

, i ∈ {0, 1, ...,m}, is an unsta-
ble equilibrium of the subsystem in Eq. (7) with σ = Ri.

Proof. The existence of a center manifold and a stable
manifold in a neighborhood of a non-zero norm critical
point (Lemma 22), and the fact that φRi(q) is maximal
at q∗ for all q along the center manifold within a distance
ϵ of q∗ if Assumption 12 holds (Lemma 23), show that
there is no neighborhood of q∗ in R2 for which φRi

(q∗)
is a local minimum. Thus, no basin of attraction can be
established for q∗, and it is therefore unstable. 1

4.2 Absence of Equilibria on the Switching Surfaces

In this subsection, we investigate the existence of lo-
cally stable equilibrium points, which could entrap the
robot, and derive conditions that guarantee the absence
of such equilibrium points from all switching surfaces in
the domain. As stated earlier, the robot moves accord-
ing to Eq. (7) in each subsystem of the switching sys-
tem (6). The equilibrium points of each subsystem were
characterized in Section 4.1. The subsystem indexed by
σ ∈ {SS,R0, ...,Rm} is active when the robot’s position
q is in the space σ. A classical (continuously differen-
tiable) solution of Eq. (6), which gives the robot’s tra-
jectory q(t), can be obtained as long as the robot evolves
in a single subsystem. The active subsystem switches
from σ1 to σ2 when the robot leaves space σ1 and enters
space σ2. This state-dependent switching creates switch-
ing surfaces in the robot’s state space. System (6) gives
rise to two types of switching surfaces, illustrated in
Fig. 5: switching repulsion surfaces (Definition 5), and
switching surfaces between the safe space and repulsion
spaces. On a switching surface, Eq. (6) can have equi-
librium points, depending on the directions of the gra-
dients ∇φσ associated with the spaces σ that share the
switching surface. These equilibrium points may be sta-
ble and therefore entrap the robot. In this subsection,
we derive conditions that guarantee the absence of equi-
librium points on both types of switching surfaces.

4.2.1 Switching repulsion surfaces

If two repulsion spaces Ri and Rj intersect, then a
switching repulsion surface Sij exists. This implies that
the gradient −∇φRi

drives the dynamics of the robot
when it is on the side of the switching surface that con-
tains obstacle i, and −∇φRj

drives its dynamics when
it is on the side that contains obstacle j. The closed-loop
system (6) can have two types of solutions, depending
on the directions of the gradients −∇φRi

and −∇φRj

with respect to the switching surface. If the components
of −∇φRi and −∇φRj that are normal to the switch-
ing surface are pointing in the same direction, then the
solution of the closed-loop system is a Carathéodory so-
lution. In this case, the system trajectory passes through

1 Although q∗ is not technically a saddle point, its stability
properties resemble those of a saddle point. It is stable for
trajectories that start in a set of measure zero (the stable
manifold, l) and unstable for trajectories that start outside l.
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Fig. 5. Illustration of switching repulsion surfaces (red dashed
lines) and switching surfaces between the safe space and
repulsion spaces (purple dashed lines).

the switching surface, and no equilibrium point exists
on the switching surface. If the two components that are
normal to the switching surface point in opposite direc-
tions, then the system has a Filippov solution that sat-
isfies the following differential inclusion [25], defined in
terms of a convex combination of −∇φRi and −∇φRj :

q̇ ∈ Υ(q) := {α(−∇φRi
(q)) +

(1− α)(−∇φRj (q)) : α ∈ [0, 1]}. (9)

Equation (9) describes the dynamics of the robot as:

q̇ =


−∇φRi(q), q ∈ Ri , δi < δj

α(−∇φRi
(q)) + (1− α)(−∇φRj

(q)), q ∈ Sij

−∇φRj
(q), q ∈ Rj , δi > δj (10)

Since the components of −∇φRi
and −∇φRj

that are
normal to the switching surface point in opposite direc-
tions, the system trajectory corresponding to the Filip-
pov solution can only evolve on the switching surface.
At the point where the trajectory reaches the switching
surface, there is a unique convex combination of−∇φRi

and −∇φRj (i.e., a unique value for α in Eq. (9)) that
is tangent to the surface, which defines the direction of
Υ(q) on the surface. The Filippov solution at each point
on the switching surface is represented by the value of α
for which Υ(q) is tangent to the surface at that point.

A trajectory corresponding to a Filippov solution often
chatters about the switching surface. Unlike a sliding
mode controller, our controller is not designed to stabi-
lize the system trajectories to the switching surface; al-
though chattering may occur, the robot will eventually
leave the switching surface if the parameter k is bounded
by the constant derived in Proposition 25 below. Under

this condition, the closed-loop system has no equilibria
on the switching surface, which ensures that the robot
will not become trapped between two obstacles.

Proposition 25 Suppose that a switching repulsion sur-
face Sij exists. Given Assumptions 10 and 11, no equi-
librium point exists on Sij if k in Eq. (3) is chosen to
satisfy k < r/(rD − r).

This result can be generalized to a switching repulsion
surface that is associated with more than two obstacles
(e.g., point A in Fig. 5), as stated in the next corollary.

Corollary 26 Consider a switching repulsion surface
Sσ1...σl

, {σ1, ..., σl} ⊆ {0, 1, ...,m}, that lies within the
intersection of l ≥ 3 repulsion spaces Rσ1 , ...,Rσl

. The
condition in Eq. (G.4) ensures that no equilibrium point
exists on this switching surface.

4.2.2 Switching surfaces between the safe space and re-
pulsion spaces

Suppose that a segment of the boundary ∂Ri of repul-
sion space Ri is adjacent to the safe space SS, form-
ing a switching surface. This implies that the gradient
−∇φRi

drives the dynamics of the robot when it is on
the side of the switching surface that contains obsta-
cle i, and −∇φSS drives its dynamics when it is on the
other side, i.e. in SS. The discussion in Section 4.2.1
about the discontinuity of the right-hand side of Eq. (6)
and the two possible types of solutions to this equation
(Carathéodory and Filippov) also applies to this type of
switching surface. Thus, as in Section 4.2.1, we consider
a Filippov solution to the closed-loop system (6) on the
switching surface between Ri and SS and derive condi-
tions under which the system has no equilibria on this
switching surface, given in the next proposition.

Proposition 27 Given Assumption 11, no equilibrium
point exists on the switching surface between repulsion
space Ri and the safe space SS if k in Eq. (3) is chosen
to satisfy k < δc/(rD − r).

As we show next, this result can be generalized to a
switching surface that is adjacent to SS and is associated
with more than one obstacle (e.g., point B in Fig. 5).

Corollary 28 Consider a switching surface that lies
within the intersection of the boundaries of l ≥ 2 repul-
sion spaces Rσ1 , ...,Rσl

, {σ1, ..., σl} ⊆ {0, 1, ...,m}, and
is adjacent to SS. The condition in Eq. (I.5) ensures that
no equilibrium point exists on this switching surface.

The following theorem guarantees the absence of equi-
librium points on all switching surfaces in the domain.

Theorem 29 Given Assumptions 10 and 11, no equilib-
rium point exists on any switching surface in the domain
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if k in Eq. (3) satisfies the following condition:

k < min(r, δc)/(rD − r). (11)

Proof. The result follows fromCorollaries 26 and 28.

4.3 Convergence Analysis

In this subsection, we study the convergence proper-
ties of the entire closed-loop system (6), which has a
switching structure, and prove the robot’s almost global
asymptotic stability to the target position. As discussed
in Subsection 4.2, system (6) is a differential equation
with a discontinuous right-hand side, which does not sat-
isfy the Lipschitz continuity condition. This implies that
we cannot directly apply Lyapunov’s stability theorems
or LaSalle’s invariance principle to analyze the stability
and convergence properties of the system. To this end,
we apply the concept of multiple Lyapunov functions,
which has been developed for stability analysis of switch-
ing systems (Ch. 3 in [25]). We first state the following
two lemmas, which are used in the analysis afterward.

Lemma 30 Given the closed-loop system (6), which
is composed of the subsystems in Eq. (7), the function
Vσ(q) := φσ(q), σ ∈ {SS,R0,R1, ...,Rm}, is continu-
ous over every solution q(t) of Eq. (6) for t ≥ 0.

Lemma 31 Assume that the robot does not start at a
critical point of φσ(q). Given the subsystems indexed by
σ ∈ {SS,R0, ...,Rm} in Eq. (7), we define tσ,1 and tσ,2 as
the times when the robot enters and leaves space σ, respec-
tively; i.e., q(t) ∈ σ for all t ∈ [tσ,1, tσ,2)

2 . Then for ev-
ery space σ, the function Vσ defined in Lemma 30 strictly
decreases over the time interval [tσ,1, tσ,2). Moreover, the
robot’s trajectory converges to the origin (the target po-
sition) if the origin is in σ. Finally, if there is a non-zero
norm critical point q∗ in σ, and the robot’s trajectory
starts on the stable manifold l of q∗ (i.e., q(0) ∈ l), then
the robot’s trajectory converges to q∗.

We define the set L as the union of the stable manifolds
l of all the non-zero norm critical points in F . We now
state the main result of this subsection.

Theorem 32 Consider the switching closed-loop system
(6) with parameter k satisfying Eq. (11). Every trajectory
of system (6) that starts in F and outside L asymptot-
ically converges to the origin (the target position), and
the origin is almost globally asymptotically stable.

4.4 Collision Avoidance Analysis

Here, we prove that under the control law (5), the robot
never collides with the obstacles or the domain bound-
ary. Theorem 32 directly implies the following result.

2 If the robot starts in space σ, rather than entering it from
another space, then tσ,1 = 0. If the robot converges to a
point in σ, rather than leaving σ, then tσ,2 = ∞.

Corollary 33 Consider the closed-loop system (6) with
parameter k satisfying Eq. (11). The free space F is a
positively invariant set for any trajectory that starts in
F , and consequently no collision occurs between the robot
and the boundaries of the obstacles and the domain.

5 Simulation Results

We validated our theoretical results with MATLAB sim-
ulations of a holonomic robot with r = 0.1 m and δc =
0.5 m. The robot must navigate from q(0) = [−3 3]T to
qT = [0 0]T in a domain of radius rD = 2.5 m with six
obstacles, whose configuration satisfies Assumption 10.
We set k = 0.04, which satisfies the bound in Eq. (11).
In the first simulation, qT is in R0. Figure 6 plots the
robot’s trajectory q(t) (red dashed line) for t ∈ [0, 12]
s, and Fig. 7 plots the corresponding time evolution of
φσ(q(t)). Figure 6 shows that the robot avoids the obsta-
cles (blue circles and ellipses) and converges to qT within
10 s. The robot’s convergence to qT coincides with the
monotonic convergence of φσ(q(t)) to 0 in Fig. 7, and
the fact that φσ(q(t)) < 1 over the entire trajectory con-
firms that the robot never collides with the boundaries
of the obstacles or the domain, where φσ(q) = 1. In the
second simulation, qT is in SS. Figures 8 and 9 plot q(t)
and φσ(q(t)), respectively, for t ∈ [0, 12] s. Again, the
robot converges to qT within 10 s without colliding with
boundaries; i.e., φσ(q(t)) converges monotonically to 0
while remaining below 1. Figures 7 and 9 show that in
both simulations, the robot has a slow rate of conver-
gence to qT during the first 7 s. This is because the force
of attraction to qT is much smaller than the net repulsion
force from the obstacles during this time. The conver-
gence rate can be increased by reducing k, which would
create smaller repulsion forces that allow the robot to
travel closer to the boundaries.

6 Experimental Implementation and Results

We also tested our controller on a commercial nonholo-
nomic robot, the Turtlebot3 Burger robot [35]. We first
used our method in [23] to convert the controller, which
is designed for a holonomic robot, into one that can be
implemented on a nonholonomic robot. This method can
be applied to any feedback controller, such as the con-
trol law (5), that is based on the gradient of a potential
field φ and is designed for a single-integrator holonomic
robot model in R2 to achieve position stabilization and
obstacle avoidance. Given a nonholonomic robot with a
reference point P at the midpoint of the axis connecting
its wheels, the unicycle kinematic model of the robot is:

ẋ = v cos(ψ), ẏ = v sin(ψ), ψ̇ = ω, (12)

where x := [x y]T is the position of point P in the global
reference frame, v is the speed of this point, ψ is the
robot’s heading angle in the global frame, and ω is the
robot’s angular velocity. Defining µ := ||∇φ||, ϱ := ||x||,
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and γ := tan−1( yx ), the control law (5) is converted into:

v = kvµ, ω = kω
µ

ϱ
sin(ψ − γ), (13)

where kv and kω are controller gains. It is proved in [23]
that if kv < 0 and kω = 2kv, then control law (13) drives
the robot to the origin from almost any initial position
in the domain while preventing it from colliding with the
obstacles and the domain’s boundary. This control law
has no discontinuities since it uses continuous functions
(trigonometric functions of the robot’s heading angle)
that produce a smooth robot trajectory.

The robot estimates its global pose using a fusion of
odometry and IMU sensor data, as described in [23].
It uses its onboard LIDAR to measure its distance to
obstacles within its sensing range, which we truncate
from the maximum range of 3.5 m to δc = 0.6 m. We
tested the controller in two scenarios, which differ in the
number of obstacles, the robot’s initial position q(0), and
the value of k. A video of the experiments is available
at [5]. Scenario 1, in which q(0) = [−3.75 2.0]T m and
k = 0.15, demonstrates that the robot’s trajectory can
switch between Carathéodory and Filippov solutions of
Eq. (6) (see Section 4.2.1). Figure 10 shows that the
robot’s trajectory (red dashed line) chatters when it first
passes between obstacles due to its repeated crossing
of the switching surface between them, and does not
chatter when it next passes between obstacles since they
are relatively far apart. After avoiding the obstacles, the
robot reaches the goal point at 359 s. Scenario 2, in which
q(0) = [−3.75 2.25]T and k = 0.12 or 0.1, illustrates
the effect of k on the robot’s convergence rate to the goal:
when k is decreased, this rate increases (see Section 5).
Figures 11 and 12 show that the robot reaches the goal
at 198 s when k = 0.12 and at 124 s when k = 0.1.

7 Conclusion

We have designed a control scheme for collision-free nav-
igation of a holonomic disk-shaped robot with single-
integrator dynamics in a bounded convex domain that
contains unknown convex obstacles. We introduced vir-
tual potential fields called navigation-like functions and
proposed a switching control law based on the negative
gradient of these functions. The control law only requires
the robots’ local sensor measurements and does not rely
on any information about the obstacles’ locations and
shapes. Moreover, it does not require the robot to solve
online optimization problems or to continuously update
a map of the environment. These features allow the pro-
posed controller to be implemented in a computationally
efficient manner. We analyzed the stability and conver-
gence properties of the robot’s closed-loop dynamics and
derived bounds on the controller parameter that ensure
the absence of local minima that could trap the robot.
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Fig. 6. Robot trajectory in a simulation with qT ∈ R0.

Fig. 7. Value of φσ(q(t)) along the trajectory in Fig. 6.
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Fig. 8. Robot trajectory in a simulation with qT ∈ SS.

One direction for future work is to modify the controller
for navigation in domains that have a non-convex bound-
ary and/or contain non-convex obstacles, and for which
Assumptions 10 and 12 do not hold. This requires deriv-
ing conditions that guarantee the absence of local min-
ima that could arise in concave regions of the obstacles
and domain boundary and in narrow channels in the free
space. Future work can also include modifying the con-
trol law in Eq. (5) to eliminate chattering when the robot
passes over a switching surface. One potential solution is
to use hysteresis switching, which enforces the property
that two consecutive switching events are separated by
a finite time interval, resulting in a hybrid closed-loop
system with both continuous and discrete state variables
[25]. Another possible extension is to adapt the controller
to achieve collision-free navigation in three dimensions.

9



Fig. 9. Value of φσ(q(t)) along the trajectory in Fig. 8.
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Fig. 10. Robot trajectory for a run of Scenario 1; k = 0.15.
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Fig. 11. Robot trajectory for a run of Scenario 2; k = 0.12.

t = 124 s
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Fig. 12. Robot trajectory for a run of Scenario 2; k = 0.1.
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A Proof of Proposition 14

The gradient of φSS can be calculated as:

∇φSS = 2q/(qTq + 1)2. (A.1)

Setting ∇φSS = 0, q = 0 is the only solution, provided
it is in SS. In addition, the Hessian of φSS is given by:

∇2φSS = 2
(
(qTq + 1)I − 4qqT

)
/ (qTq + 1)3, (A.2)

where I ∈ R2×2 is the identity matrix. The Hessian at
q = 0 is equal to 2I, a positive definite matrix. Also,
from Eq. (1), φSS is zero at q = 0 and positive every-
where else. Thus, q = 0 is the global minimum of φSS .
If q = 0 is not in SS, then φSS has no critical point.

B Proof of Proposition 16

The gradient of φRi is calculated as:

∇φRi =
2g(δi)q − (qTq)∇g(δi)

(qTq + g(δi))
2 . (B.1)

Setting ∇φRi
= 0 to find the critical points leads to:

2g(δi)q − (qTq)∇g(δi) = 0. (B.2)

A solution to Eq. (B.2) is q = 0. The Hessian of φRi is:

∇2φRi = (N1(q)−N2(q))/(q
Tq + g)3, (B.3)

in which N1(q),N2(q) ∈ R2×2 are:

N1(q) = (ρ2 + g)
(
2gI − ρ2∇2g + 2(q∇gT −∇gqT )

)
,

N2(q) = 2
(
2gqqT + 2gq∇gT − ρ2∇gqT − ρ2∇g∇gT

)
,

(B.4)

where ρ := ∥q∥. For q = 0,N1 = 2g2I andN2 = 0, and
so the Hessian at the origin is simplified to ∇2φRi

|q=0

= 2
gI, a positive definite matrix. Also, by construction,

φRi
is zero at the origin and positive everywhere else in

Ri. Thus, the origin is the global minimum of φRi .

C Proof of Proposition 17

The gradient of g(δi) in Eq. (B.2), which is the derivative
of g with respect to q, is equal to ∇di

g(δi), since q =
di + qPi

and g is only a function of δi, where δi = ∥di∥
(similar to Eq. (7) in [37], and as proved in Appendix A
of [10]). Also, ∇dig(δi) can be calculated as:

∇di
g(δi) = g

′
(δi)edi

, (C.1)

in which g
′
(δi) is the derivative of g with respect to δi,

and edi
is the unit vector along di. Substituting Eq.

(C.1) into Eq. (B.2) and incorporating the expressions

for g(δi) and g
′
(δi), Eq. (B.2) can be rewritten as:

ρδk−1
i

δkc
(2δieq − ρkedi

) = 0, (C.2)

where ρ := ∥q∥ and eq is the unit vector along q. There-
fore, the non-zero norm solutions of Eq. (B.2) are the
solutions of:
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2δieq − ρkedi
= 0. (C.3)

Given that this is a vector equation, eq and edi are unit
vectors, and δi, ρ, k > 0, Eq. (C.3) implies that at the
non-zero norm critical points of φRi ,

eq = edi
, (C.4)

2δi = ρk. (C.5)

The vector edi
is normal to the boundary of obstacle i

and points outward from this boundary (Fig. 3). Thus,
the existence of a solution to Eqs. (C.4) and (C.5) de-
pends on the geometry of obstacle i and the obstacle’s
position and orientation with respect to the target posi-
tion. If k = 2, then from Eq. (C.5) we have that ρ = δi,
which implies that Eq. (C.3) has a solution only if the
origin (the target point) is on the boundary of the ob-
stacle, i.e., coincident with the closest collision point Pi

(see Fig. 4). However, this would violate objective (2) in
Problem 13, since the robot would collide with the ob-
stacle in its attempt to reach the target point. We note
that the dependency of a solution to Eq. (C.3) on ρ im-
plies its dependency on the target position, not the ori-
gin of the coordinate system. We have assumed the tar-
get position to be the origin, without loss of generality,
only to simplify the mathematical derivations.

D Proof of Proposition 18

We found that Eqs. (C.4)–(C.5) hold at the non-zero
norm critical point of φRi . Incorporating Eqs. (C.4)–
(C.5) into the Hessian of φRi

, defined by Eqs. (B.3)–
(B.4), we can confirm that N2 = 0 at the critical point,
and the Hessian is simplified to

∇2φRi |q=Ci =
(
2gI − ρ2∇2g

)
/(qTq + g)2. (D.1)

TheHessian of g is obtained from∇2g = ∂
∂q (∇g). Given

Eq. (C.1), the Hessian of g can be rewritten as

∇2g(δi) =
∂

∂q

(
g

′
(δi)edi

)
= g

′′
(δi)edi

eTdi
+ g

′
(δi)

(
∂edi

∂q

)
. (D.2)

Denoting the angle of edi
in the global reference frame

by θdi
(see Fig. 3), and incorporating the equation for

the second derivative of g(δi) with respect to δi, the first
term on the right-hand side of Eq. (D.2) is calculated as:

g
′′
(δi)edie

T
di

=

k(k − 1)

δkc
δ
(k−2)
i

 cos2(θdi
) cos(θdi

) sin(θdi
)

cos(θdi) sin(θdi) sin2(θdi)

 .

Furthermore, by the chain rule, the second term on the
right-hand side of Eq. (D.2) can be rewritten as:

g
′
(δi)

(
∂edi

∂q

)
=

k

δkc
δ
(k−1)
i

(
∂edi

∂eq

)(
∂eq
∂q

)
. (D.3)

The vectors edi
and eq are related via the equation edi

=
R(αi)eq, where R(αi) ∈ R2 is a rotation matrix and
αi := θ−θdi , with θ denoting the angle of q with respect
to the global frame (see Fig. 3). Hence, in Eq. (D.3),
∂edi

/∂eq = R(αi). In addition, we can calculate that:

∂eq
∂q

=
1

ρ

 sin2(θ) − cos(θ) sin(θ)

− cos(θ) sin(θ) cos2(θ)

 . (D.4)

At the non-zero norm critical point, eq = edi (see Eq.
(C.4)), implying that θ = θdi ; thus, R(αi) = R(0) = I.
Also, ρ in Eq. (D.4) can be replaced by 2δi/k from Eq.
(C.5). Hence, the Hessian of g can be written as:

∇2g |q=Ci
=

kδ
(k−2)
i

δkc

(k2 − 1)c2θdi
+ 1 (k2 − 1)cθdi

sθdi

(k2 − 1)cθdi
sθdi

(k2 − 1)s2θdi
+ 1

 , (D.5)

where cθdi
and sθdi

abbreviate cos(θdi
) and sin(θdi

),
respectively. Finally, the Hessian of φRi

at the non-zero
norm critical point can be obtained from Eq. (D.1), and
its determinant and trace can be calculated as:

det
(
∇2φRi

|q=Ci

)
= 0 ∀ i ∈ {1, 2, ...,m} ,

tr
(
∇2φRi |q=Ci

)
=

2− k

2k
∀ i ∈ {1, 2, ...,m} . (D.6)

This demonstrates that at non-zero norm critical points
inside F , which exist when k ∈ (0, 2), one eigenvalue of
∇2φRi is zero and the other is positive.

E Proof of Lemma 22

We define a local coordinate system with its origin lo-
cated at q∗ and its axes denoted by ξl and ξl⊥ (Fig. 4).
The axis ξl lies along l and points in the direction of
edi , and ξl⊥ lies along l⊥ and forms a right-handed co-
ordinate system with ξl. Given a position q in the global
reference frame, we define ξ := [ξl ξl⊥ ]

T ∈ R2 as its co-
ordinates in this local reference frame. Denoting the an-
gle of the vector q∗ with respect to the global frame by
θ∗ and the rotation matrix from the local frame to the
global frame by R(θ∗), the transformation of (q − q∗)
from the global frame to the local frame is given by

ξ = RT (θ∗)(q − q∗). (E.1)
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We define the augmented vectors qa := [qT 1]T ∈ R3,

ξa := [ξT 1]T ∈ R3. Then Eq. (E.1) can be written as

ξa = Tqa , T =

[
RT (θ∗) −RT (θ∗)q∗

01×2 1

]
∈ R3×3.

(E.2)
Also, the linearized system in Eq. (8) can be rewritten
in an augmented form in terms of qa as

q̇a =

[
−∇2φσ(q

∗) 02×1

01×2 0

]
qa, (E.3)

σ ∈ {SS,R0,R1, ...,Rm}. From Eq. (E.2), we have qa =
T−1ξa, which we use to rewrite Eq. (E.3) in terms of ξa:

ξ̇a = T

[
−∇2φσ(q

∗) 02×1

01×2 0

]
T−1ξa. (E.4)

Multiplying the matrices in Eq. (E.4) and removing the
third row and third column (which are all zeros) of the
resulting matrix, Eq. (E.4) is simplified to

ξ̇ =
2− k

2k

[
−1 0

0 0

]
ξ. (E.5)

The matrix in the linearized system (E.5) is in block
diagonal form and has a negative eigenvalue and a zero
eigenvalue for k ∈ (0, 2). Applying Theorem 8.1 in [17],
this implies that the corresponding nonlinear system,
Eq. (7), has a center manifold in the form ξl = h(ξl⊥),
where h is a smooth function. Since the vector field of
system (7) (the negative gradient of the corresponding
NLF, where the gradient is given by Eq. (B.1)) points
along l, we can confirm that the only smooth candidate
for h is the zero function. Consequently, ξl = 0, which
defines the ξl⊥ -axis of the local coordinate system, is
the center manifold of system (7) in a neighborhood of
q∗. Moreover, the ξl-axis, which is associated with the
negative eigenvalue of the matrix in Eq. (E.5), is the
stable manifold of system (7) in a neighborhood of q∗.

F Proof of Lemma 23

From Eq. (E.1), q = q∗+R(θ∗)ξ.We insert this expres-
sion for q into Eq. (2) and rewrite φRi

in terms of ξ:

φRi(q) =
ξT ξ + 2q∗T

RT (θ∗)ξ + q∗T

q∗

ξT ξ + 2q∗TRT (θ∗)ξ + q∗T q∗ + g(δi)
.

The expression q∗T

RT (θ∗)ξ is the inner product of q∗

and the representation of ξ in the global frame, q − q∗.
These two vectors are normal to each other for any q ∈
l⊥. Hence, at any q ∈ Bl⊥ , φRi(q) can be simplified to

φRi |q∈Bl⊥
= (ξT ξ + q∗T

q∗)/(ξT ξ + q∗T

q∗ + g(δi)).

We know that q∗T

q∗ is constant. Also, we can confirm
that δi is an implicit function of ∥ξ∥. Defining ξ := ∥ξ∥,
we can rewrite the equation above as

φRi |q∈Bl⊥
= (ξ2 + ρ∗

2

)/(ξ2 + ρ∗
2

+ g(ξ)), (F.1)

where ρ∗ := ∥q∗∥ and g(ξ) := g ◦ δi(ξ). Equation (F.1)
represents the value of φRi(q) at points q ∈ Bl⊥ in terms
of their distance ξ from the position q∗ of the non-zero
norm critical point. The derivative of φRi

|q∈Bl⊥
with

respect to ξ is calculated as

d

dξ
(φRi

|q∈Bl⊥
) =

−g′
(ξ)ξ2 + 2g(ξ)ξ − ρ∗

2

g
′
(ξ)(

ξ2 + ρ∗2 + g(ξ)
)2 , (F.2)

where g
′
(ξ) := d

dξ g(ξ) denotes the derivative of g(ξ) with

respect to ξ, which, by the chain rule, can be calculated
as d

dξ g(ξ) =
dg
dδi

dδi
dξ . Let δ

∗
i := δi(ξ)|ξ=0 denote the dis-

tance between q∗ and the closest collision point on the
obstacle. It is straightforward to show that:

δ∗i ≤ δi(ξ) < ∆i(ξ) := (δ∗i
2+ξ2)

1
2 , ∀ξ ∈ [0,∞). (F.3)

We can also confirm that d
dξ∆i(ξ)|ξ=0 = 0. Since δ∗i

is constant in Eq. (F.3), the squeeze theorem yields
d
dξ δi(ξ)|ξ=0 = 0. This consequently gives g

′
(ξ)|ξ=0 = 0.

We now consider the following two functions:

h1(ξ) := g
′
(ξ)/g(ξ), h2(ξ) := 2ξ/(ξ2 + ρ∗

2

). (F.4)

We can confirm that h1(0) = h2(0) = 0. Given the con-
tinuity of h1(ξ) and h2(ξ) and the fact that ξ ∈ R≥0,
which is a connected set, we can apply the comparison
lemma [17] to show that h1(ξ) > h2(ξ) ∀ξ ∈ (0, ϵ) for
some finite ϵ > 0 if

h
′

1(ξ)|ξ=0 > h
′

2(ξ)|ξ=0. (F.5)

We calculate that h
′

2(ξ)|ξ=0 = 2
ρ∗2 . Using the fact that

g
′′
(ξ) = d

dξ (g
′
(ξ)) = d

dξ (
dg
dδi

dδi
dξ ), we find that

h
′

1(ξ)|ξ=0 =
1

g(ξ)|ξ=0

dg(δi)

dδi

∣∣∣∣
δi=δ∗

i

δ
′′

i (ξ)|ξ=0, (F.6)

where δ
′′

i (ξ) denotes the second derivative of δi(ξ) with
respect to ξ. The Maclaurin series of δi(ξ) is written as:

δi(ξ) = δ∗i + a1ξ + a2ξ
2 + a3ξ

3 + · · · , (F.7)

where an := 1
n!

dn

dξn δi(ξ)|ξ=0. Given this definition, we

have δ
′′

i (ξ)|ξ=0 = 2a2 := κ, the curvature of the obsta-
cle’s boundary at the closest collision point. Substituting
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δ
′′

i (ξ)|ξ=0 = κ into Eq. (F.6), using the resulting expres-

sion for h
′

1(ξ)|ξ=0 in the inequality (F.5), and writing δ∗i
as 1

2kρ
∗ from Eq. (C.5), we obtain the condition

κ > 1/ρ∗, (F.8)

which guarantees the inequality h1(ξ) > h2(ξ) ∀ξ ∈
(0, ϵ). This inequality can be rewritten as:

−g′
(ξ)ξ2 + 2g(ξ)ξ − ρ∗

2

g
′
(ξ)

g(ξ)
(
ξ2 + ρ∗2

) < 0, ∀ ξ ∈ (0, ϵ). (F.9)

The denominator of the fraction in inequality (F.9) is
strictly positive. This implies that the numerator is
strictly negative. Moreover, the numerator is the same
as the numerator of d

dξ (φRi |q∈Bl⊥
) in Eq. (F.2). Given

the positiveness of the denominator of d
dξ (φRi

|q∈Bl⊥
),

we can thus conclude that d
dξ (φRi

|q∈Bl⊥
) is strictly neg-

ative, and therefore that φRi
|q∈Bl⊥

is strictly decreasing

for all ξ ∈ [0, ϵ). This demonstrates that φRi
|q∈Bl⊥

is

maximal at ξ = 0 for all ξ ∈ [0, ϵ). Since ξ = 0 when
q = q∗ and ξ ∈ [0, ϵ) when q ∈ Bl⊥(q

∗, ϵ), we conclude
that φRi(q) is maximal at q∗ for all q ∈ Bl⊥(q

∗, ϵ). By
substituting the maximum possible value for ρ∗, which is
rD, into Eq. (F.8), we obtain the following conservative
lower bound on κ: κ > 1/rD. This inequality imposes a
minimum curvature on the obstacles’ boundaries.

G Proof of Proposition 25

By Assumption 10, the shortest distance between the
boundaries of obstacles i and j is greater than 2r. If there
exists an equilibrium point (q̇ = 0) on the switching
repulsion surface Sij , then by Eq. (10), we have that

α(−∇φRi
(q)) + (1− α)(−∇φRj

(q)) = 0. (G.1)

Using the fact that δi = δj on the switching surface, and
writing the expressions for −∇φRi

and −∇φRj
using

Eqs. (B.1) and (C.1), Eq. (G.1) becomes:

2g(δs)eq − ρg
′
(δs)

(
αedi

+ (1− α)edj

)
= 0, (G.2)

where δs := δi = δj . We now derive a conservative upper
bound on the parameter k in the NLF φRi , defined by
Eqs. (2) and (3). When the robot is on the switching
repulsion surface, as illustrated in Fig. G.1, the repulsive
force on it has the largest possible component in the
direction opposite to eq when edi

= edj
3 and edi

= eq.
By substituting edi

= edj
= eq into Eq. (G.2), we can

reduce it to the scalar equation:

2g(δs)− ρg
′
(δs) = 0. (G.3)

3 This is a theoretical scenario that would not happen in
practice; we use it here to find a conservative bound on k.

Fig. G.1. Illustration of the vector field components that
act on a robot when it is located on a switching repul-
sion surface between two obstacles i and j. The vector
field ∇φRi , which defines the robot’s controller on the side
of the switching surface containing obstacle i, is the sum
of an attractive component ∇φa

Ri
and a repulsive compo-

nent ∇φr
Ri

; the vector field ∇φRj is defined similarly. The
theoretical scenario that results in Eq. (G.3) happens if
∇φa

Ri
+∇φa

Rj
= ∇φr

Ri
+∇φr

Rj
.

To prevent the existence of an equilibrium point, and to
ensure that the robot converges to the origin (the target
position), the attraction term in this equation must ex-

ceed the repulsion term, i.e., 2g(δs) > ρg
′
(δs). Using Eq.

(3), this inequality can be simplified to 2δs > kρ. From
Assumption 10, the robot’s radius r is the smallest pos-
sible value of δs, and from Assumption 11, the distance
2rD−2r is the largest possible value of ρ (i.e., the longest
straight-line distance that the robot’s center can travel
across the domain). Given this minimum value of δs and
maximum value of ρ, the inequality 2δs > kρ becomes
2r > 2k(rD − r), which yields the following conservative
upper bound on k:

k < r/(rD − r). (G.4)

H Proof of Corollary 26

The convex combination of vector fields −∇φRσi
,

i ∈ {1, ..., l}, is given by Υ(q) :=
∑l

i=1 −αi∇φRσi
(q),

where αi ∈ [0, 1] for all i ∈ {1, ..., l} and
∑l

i=1 αi = 1.
The differential inclusion in Eq. (9) and the expression
in Eq. (10) for the robot dynamics in Sσ1...σl

are rede-
fined in terms of this convex combinationΥ(q). Then, if
there exists an equilibrium point on Sσ1...σl

, by Eq. (10)

we have that
∑l

i=1 αi∇φRσi
(q) = 0. Using the fact that

δσ1
= δσ2

= ... = δσl
on Sσ1...σl

, and writing −∇φRσi
in

terms of Eqs. (B.1) and (C.1), this equation becomes:

2g(δs)eq − ρg
′
(δs) (

l∑
i=1

αiedσi
) = 0, (H.1)

where δs := δσ1
= δσ2

= ... = δσl
. Again, we consider

the repulsive force on the robot with the largest possible
component in the direction opposite to eq, which occurs
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when eq = edσ1
= edσ2

= ... = edσl
. This simplifies the

sum in Eq. (H.1) to
∑l

i=1 αi edσi
= eq, and the equa-

tion can be reduced to Eq. (G.3). This shows that choos-
ing k small enough to satisfy Eq. (G.4) also guarantees
the absence of an equilibrium on a switching repulsion
surface that is equidistant from three or more obstacles.

I Proof of Proposition 27

We follow the same procedure as in the proof of Propo-
sition 25. An equilibrium point (q̇ = 0) exists on the
switching surface between Ri and SS if

α(−∇φSS(q)) + (1− α)(−∇φRi
(q)) = 0. (I.1)

Using the fact that δi = δc and, consequently, g(δi) =

1 and g
′
(δi) = k/δc on the boundary ∂Ri of Ri, and

writing the expressions for −∇φSS and −∇φRi
using

Eqs. (A.1), (B.1), and (C.1), Eq. (I.1) becomes:

2eq − (1− α)(k/δc)ρedi
= 0. (I.2)

On the switching surface, the repulsive force on the robot
has the largest possible component in the direction op-
posite to eq when edi

= eq. In this case, we can reduce
Eq. (I.2) to the scalar equation

2− (1− α)(k/δc)ρ = 0. (I.3)

To prevent the existence of an equilibrium point and en-
sure the robot’s convergence to the origin, the attraction
term in this equation must exceed the repulsion term:

2 > (1− α)(k/δc)ρ. (I.4)

The right-hand side of Eq. (I.4) is maximized whenα = 0
and ρ = 2rD − 2r, the largest possible value of ρ. For
these values of α and ρ, Eq. (I.4) can be rearranged as
the following conservative upper bound on k:

k < δc/(rD − r). (I.5)

J Proof of Corollary 28

We follow the same procedure as in the proof of Corollary
26. The convex combination of vector fields −∇φSS(q)
and −∇φRσi

(q), i ∈ {1, ..., l}, is given by Υ(q) :=

−αss∇φSS(q) −
∑l

i=1 αi∇φRσi
(q), where αss, αi ∈

[0, 1] for all i ∈ {1, ..., l} and αss +
∑l

i=1 αi = 1. The
differential inclusion in Eq. (9) and the expression in
Eq. (10) for the robot dynamics on the switching sur-
face are redefined in terms of Υ(q).Thus, there is an
equilibrium q on the switching surface if αss∇φSS(q)+∑l

i=1 αiφRσi
(q) = 0. Using the fact that δσ1

= δσ2
=

... = δσl
on the switching surface, and writing −∇φSS

and −∇φRσi
in terms of Eqs. (A.1), (B.1), and (C.1),

this equation becomes:

2

(
αss + g(δs)

l∑
i=1

αi

)
eq − ρg

′
(δs)

(
l∑

i=1

αiedσi

)
= 0,

(J.1)

where δs := δσ1
= δσ2

= ... = δσl
. This distance equals

δc on the boundaries of the repulsion spaces, and there-
fore on the switching surface, which implies that g(δs) =

1 and g
′
(δs) = k/δc on the switching surface. Using the

fact that αss +
∑l

i=1 αi = 1, Eq. (J.1) is reduced to

2eq − ρ(k/δc) (

l∑
i=1

αiedσi
) = 0. (J.2)

On the switching surface, the largest possible repulsive
force on the robot in the direction opposite to eq occurs
when eq = edσ1

= edσ2
= ... = edσl

. Then, the sum in

Eq. (J.2) is simplified to
∑l

i=1 αi edσi
= (
∑l

i=1 αi) eq =

(1−αss)eq, and the equation can be reduced to Eq. (I.3),
with αss in place of α. Finally, setting the attraction
term in the equation higher than the repulsion term to
prevent the existence of an equilibrium point and to en-
sure the robot’s convergence to the origin, we obtain the
inequality in Eq. (I.4), with αss in place of α. This gives
the same conservative upper bound on k as Eq. (I.5).

K Proof of Lemma 30

The safe space NLF φSS(q) in Eq. (1) and the repulsion
space NLF φRi

(q) in Eq. (2) are continuous functions
by construction. We first consider the case where the
robot crosses a switching repulsion surface Sσ1...σl

that
lies within the intersection of l ≥ 2 repulsion spaces
Rσ1 , ...,Rσl

, {σ1, ..., σl} ⊆ {0, 1, ...,m}. When the robot
is on the switching surface, the distances δi, and hence
the values of g(δi) and φRi

(q), are the same for all i ∈
{σ1, ..., σl}. Therefore, the NLFs φRi

(q), i ∈ {σ1, ..., σl},
are continuous at all points on this switching surface. In
addition, we consider the case where the robot crosses
a switching surface that lies within the intersection of
the boundaries of l ≥ 1 repulsion spaces Rσ1

, ...,Rσl
,

{σ1, ..., σl} ⊆ {0, 1, ...,m}, and is adjacent to SS. When
the robot is on the switching surface, the distances δi,
i ∈ {σ1, ..., σl}, are all equal to δc, and therefore g(δi) =
1, which implies that φRi(q) = φSS(q). Thus, the NLFs
φRi(q), i ∈ {σ1, ..., σl}, and φSS(q) are continuous at
all points on this switching surface.

L Proof of Lemma 31

The time derivative of Vσ over t ∈ [tσ,1, tσ,2) is V̇σ(t) =

φ̇σ(t) = (∇φσ(q(t)))
T
q̇(t). Inserting the expression for

q̇ from Eq. (7), we obtain V̇σ(t) = −∥∇φσ(q(t))∥2 ,
which is non-positive in σ. Since Vσ is positive definite,
which is straightforward to confirm, this expression for
V̇σ(t)indicates that Vσ is strictly decreasing over t ∈
[tσ,1, tσ,2). By LaSalle’s invariance principle, the robot’s
trajectory converges to the largest invariant set in E =
{q ∈ σ | ∥∇φσ(q)∥ = 0}, the set of critical points of φσ:
the origin and non-zero norm critical points.

M Proof of Theorem 32

Suppose a trajectory q(t) starts in F and outside L, and
then passes through a sequence of spaces σ1, σ2, ..., σn,
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where each σi ∈ {SS,R0,R1, ...,Rm}. Then the corre-
sponding functions Vσ1(q), Vσ2(q), ..., Vσn(q) comprise
a sequence of strictly decreasing functions (Lemma 31),
for which Vσi(q(t)) = Vσi+1(q(t)) at the time t = tσi+1,1

when the trajectory leaves σi and enters σi+1 (Lemma
30). Given that k satisfies the bound in Theorem 29, we
can invoke Theorem 3.1 in [25] to conclude that the ex-
istence of this continuous sequence of strictly decreas-
ing, positive definite functions indicates that q(t) con-
verges asymptotically to a critical point of φσn

. Since
q(t) starts outside L, this point cannot be a non-zero
norm critical point, and the origin is the only remaining
candidate. Thus, q(t) asymptotically converges to the
origin. On the other hand, if a trajectory starts on the
stable manifold l ∈ L of a non-zero norm critical point
q∗, then it asymptotically converges to q∗. Since L is a
set of measure zero in F , we cannot establish basins of
attraction of the non-zero norm critical points. This im-
plies that the origin is an almost globally asymptotically
stable equilibrium point of system (6).

N Proof of Corollary 33

We know that φσ(q) ∈ [0, 1) for each space σ ∈
{SS,R0,R1, ...,Rm}, and therefore φσ(q(0)) ∈ [0, 1)
for q(0) ∈ F . If q(0) /∈ L, then from the proof of Theo-
rem 32, there is a sequence of strictly decreasing, posi-
tive definite functions Vσ1(q), Vσ2(q), ..., Vσn(q) which
correspond to the sequence of spaces σ1, σ2, ..., σn that
the trajectory q(t) passes through. This implies that for
each σ ∈ {σ1, σ2, ..., σn}, φσ(q(t)) ∈ [0, 1) for all t ≥ 0.
Thus, the robot’s trajectory remains in F for all t ≥ 0,
and so the robot never collides with the domain bound-
ary, where φR0

= 1, or the boundary of an obstacle i,
where φRi

= 1. If q(0) ∈ l, where l ∈ L is the stable
manifold of a non-zero norm critical point q∗, then the
trajectory q(t) monotonically converges to q∗ due to the
robot’s first-order dynamics. Therefore, the trajectory
also remains in F , and so the robot does not collide with
the boundary of an obstacle or the domain boundary.
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