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Abstract

In this paper we propose a computationally efficient, robust density control strategy for the mean-field model of a robotic
swarm. We formulate a static optimal control problem (OCP) that computes a robot velocity field which drives the swarm to
a target equilibrium density, and we prove the stability of the controlled system in the presence of transient perturbations and
uncertainties in the initial conditions. The density dynamics are described by a linear elliptic advection-diffusion equation in
which the control enters bilinearly into the advection term. The well-posedness of the state problem is ensured by an integral
constraint. We prove the existence of optimal controls by embedding the state constraint into the weak formulation of the
state dynamics. The resulting control field is space-dependent and does not require any communication between robots or
costly density estimation algorithms. Based on the properties of the primal and dual systems, we first propose a method to
accommodate the state constraint. Exploiting the properties of the state dynamics and associated controls, we then construct
a modified dynamic OCP to speed up the convergence to the target equilibrium density of the associated static problem. We
show that the finite-element discretization of the static and dynamic OCPs inherits the structure and several useful properties
of their infinite-dimensional formulations. Finally, we demonstrate the effectiveness of our control approach through numerical
simulations of scenarios with obstacles and an external velocity field.

Key words: Density Control; Optimal Control; Distributed Parameter Systems; Bilinear Control Systems; Finite Element
Method; Mean-field Models.

1 Introduction

Large-scale collectives of robots, or robotic swarms, are
increasingly finding applications in a variety of tasks,
including search-and-rescue missions, infrastructure in-
spection and maintenance, and precision agriculture
[1]. Due to size and cost constraints, the computational
power of a single swarm member is necessarily limited,
which restricts the complexity of its control algorithms.
From a control-theoretic point of view, the challenge is
to synthesize controllers that can be implemented on
swarms of such robots to produce collective behaviors
that achieve specified high-level tasks, in a way that
accommodates the high dimensionality of the system.
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Classical path planning and control algorithms either do
not scale well with the number of robots or do not allow
the designer to specify complex high-level objectives.

Recently, macroscopic descriptions of swarm dynamics
in the form of mean-field models [2] have been used to de-
vise robust path planning algorithms for robotic swarms
to perform collective tasks such as coverage andmapping
(see, e.g., [3]). Mean-field models provide a general prob-
abilistic framework that can be used to design control al-
gorithms for swarms of agents with stochastic behaviors.
In this framework, swarm tasks are specified in terms of
macroscopic population dynamics that are described by
a mean-field model, and this model is used to derive the
robot control policies, which guide the microscopic dy-
namics of individual robots and drive the swarm to col-
lectively reproduce the macroscopic dynamics in expec-
tation. A consistent way of analyzing the performance
of such control policies when they are implemented on a
finite number of robots has been developed in [4]. In the
mean-field setting, the robotic swarm is represented by a
probability density, which is independent of the number
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of robots, that evolves over space and time according to
a Kolmogorov forward equation.

Finite-dimensional mean-field models, e.g., in [5–7], con-
sist of a linear system of ordinary differential equations
(ODEs) describing the dynamics of a swarm that evolves
according to a Markov chain over a finite state space,
comprised of a set of tasks or discrete spatial locations.
Markov chain-based probabilistic algorithms for swarm
density control provide interesting self-healing proper-
ties, but they require an a priori discretization of the
state space to set up the control problem in the Markov-
chain framework. For example, the control laws in [6]
are implicit functions of this state-space discretization,
along with the target swarm density.While the approach
in [6] does not rely on inter-agent communication, other
Markov chain-based approaches do, such as [7], in which
the agents estimate the current swarm distribution over
the state space in a distributed manner.

Infinite-dimensional mean-field models, on the other
hand, represent the agents’ state space as continuous
rather than discrete. One suchmodel is a linear parabolic
advection-diffusion partial differential equation (PDE)
governing the space-time dynamics of a swarm that fol-
lows a deterministic velocity field perturbed by noise,
modeled by a Wiener process, over a continuous state
space. The problem of computing a control law that
steers a swarm of agents with these dynamics toward a
target equilibrium density has previously been formu-
lated as a dynamic optimal control problem (OCP), in
which the state dynamics are defined as the correspond-
ing linear parabolic PDE mean-field model. See, e.g.,
[8] for both theoretical and numerical treatments of the
problem where the control field is null at the boundary,
and [9] for a boundary control application. It is known
that the dynamic control problem is controllable to ev-
ery sufficiently smooth target distribution [10]. When
a dynamic OCP is considered, the resulting control
field is inherently open-loop and depends on the initial
conditions.

Some approaches to swarm density control based on
advection-diffusion PDE mean-field models require
agents to estimate the local swarm density at each
instant, e.g., [11,12]. This is implemented with decen-
tralized estimation algorithms that can be computa-
tionally costly and utilize inter-agent communication,
which requires additional computational resources. A
distributed algorithm for density estimation aimed at
reducing the computational cost is proposed in [13].
Moreover, the feedback control laws that are synthe-
sized in [11,12], defined as the agents’ velocity field,
are inversely proportional to this estimated local den-
sity, which generates unphysically large agent velocities
when the density is small.

In this paper, we propose an optimization-based algo-
rithm for density control of a swarm with advection-

diffusion dynamics that circumvents some limitations of
previous approaches to this problem. In our approach,
the control law is defined as the advection field, i.e., the
velocity field of the swarm. This control law depends only
on space, not on the estimated swarm density or the ini-
tial conditions of the swarm, and does not require inter-
agent communication. The control laws proposed in [6]
also have these characteristics, but are defined as tran-
sition probabilities of a finite-dimensional Markov chain
model, whereas we use an infinite-dimensional mean-
field formulation. Our method is computationally effi-
cient because it entails the solution of a static OCP at
each iteration of a numerical optimization procedure. To
our knowledge, the use of a static OCP, rather than a
dynamic OCP as in the aforementioned prior work, to
compute a control law for swarm density control is novel.

In our approach, the feedback control law is the solu-
tion of this static OCP, whose state dynamics govern
the equilibrium swarm density. The state dynamics con-
sist of a linear elliptic advection-diffusion PDE, which
defines the equilibrium condition of the corresponding
time-dependent parabolic problem. The control field en-
ters bilinearly into the state dynamics. The OCP is de-
signed to compute an equilibrium swarm density that
is as close as possible to a (possibly non-smooth) target
density, while balancing the control expenditure. The
properties of the state operator enable us to show that
the optimal control field globally stabilizes the equilib-
rium density, driving the swarm asymptotically to this
density from every initial condition. For cases where the
initial swarm density is approximately known, we set
up a dynamic OCP which makes use of the static solu-
tion. The dynamic OCP is formulated in a way that en-
sures convergence to the static, globally stabilizing con-
trol field.

The paper is organized as follows. In Section 2, the
infinite-dimensional formulation of the OCP is presented
and analyzed; optimality conditions are then derived to-
gether with a set of useful properties. In Section 3, the
properties of the finite-element discretization of the OCP
are proved and discussed in detail, and a solution al-
gorithm exploiting these properties is proposed. In Sec-
tion 4, two test cases are solved numerically to show the
effectiveness of the proposed strategy. Some conclusions
and directions for future work then follow in Section 5.

2 The Optimal Control Problem

We consider a swarm of robots, labeled i = 1, ..., N , that
move in a bounded domain Ω ∈ R

2 with boundary ∂Ω.
We assume that each robot i can measure its current
spatial position Xi(t) ∈ Ω at time t and that the ge-
ometry of the domain is known. All robots move with a
controlled velocity u(x, t) ∈ R

2, where x ∈ Ω denotes a
location in the domain. This velocity field can be consid-
ered a state-feedback control law that defines the target
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velocity of the ith robot as u(Xi(t), t), given its position
Xi(t) at time t. This deterministic motion is perturbed
by a two-dimensional Wiener processW(t), which mod-
els uncertainty in the robots’ dynamics that arises from
random external forces on the robots, their inherent sen-
sor and actuator noise, and any “diffusive” exploratory
behaviors that they are programmed to perform. The dif-
fusion coefficient µ > 0 of the Wiener process indicates
the magnitude of this Brownian motion contribution to
the robots’ dynamics. The ith robot’s position evolves
according to the Stochastic Differential Equation
{

dXi(t) = u(Xi, t)dt+
√
2µdW(t) + n(Xi(t))dψ(t)

Xi(0) = Xi,0,

where n(Xi(t)) is the unit normal to the domain bound-
ary at Xi(t) ∈ ∂Ω and ψ(t) ∈ R is a reflecting function,
which ensures that the swarm does not exit the domain.
The associated probability density q(x, t) satisfies the
following linear parabolic PDE:

∂q

∂t
+∇ · (−µ∇q + uq) = 0

complemented with no-flux boundary conditions. When
considering a time-independent control field ū(x), the
associated equilibrium density q̄ satisfies

∇ · (−µ∇q̄ + ūq̄) = 0,

which is a homogeneous linear elliptic advection-
diffusion PDE. Note that an integral constraint of the
form

∫

Ω
q̄dΩ = 1 has to be added to ensure that q repre-

sents a probability density, thus obtaining a well-posed
problem with a nontrivial solution for each control
action ū. We can now formulate a static OCP as

J =
α

2

∫

Ω

(q̄ − z)2dΩ+
β

2

∫

Ω

‖ū‖2 dΩ −→ min
q̄,ū

s.t.

∇ · (−µ∇q̄ + ūq̄) = 0 in Ω

(−µ∇q̄ + ūq̄) · n = 0 on ∂Ω
∫

Ω
q̄ dΩ = 1,

(1)

where α, β > 0 are control weighting constants; z ∈
L2(Ω) is the target density, which is chosen such that
∫

Ω
z dΩ = 1; and q̄ ∈ H1(Ω) is the equilibrium den-

sity, which constitutes the state of our OCP. In (1),
ū ∈ H1(Ω)2 ∩ L∞(Ω)2 denotes the control field, which
acts bilinearly on the state dynamics as an advection
field. The choice of the functional spaces will be justified
in the next section. OCPs with integral state constraints
are difficult to analyze and solve in general; however, in
our case we can eliminate the constraint by formulating
the problem in suitable zero-mean functional spaces to
enforce the mass constraint effectively.

Remark 1 (Notes on practical implementation)
To implement the control strategy in practice, the op-
timal control field u(x, t) can be computed offline and

preprogrammed on the robots (e.g., via a broadcast) prior
to their deployment. Thus, the robots do not require the
computational capabilities to generate their control laws,
but rather need to store this precomputed control field as
a lookup table and use it to determine their target ve-
locity u(Xi(t), t) based on their measured location Xi(t)
at time t. A low-level motion controller programmed on
the robots can be used to achieve this target velocity. The
speed of convergence of the swarm to the target equilib-
rium density depends on the relative magnitudes of the
control field u(x, t) and the diffusion coefficient µ, which
are determined by the selection of the control weighting
constants α, β in the cost functional of the OCP. These
control weightings can be chosen to ensure that u(x, t)
does not exceed velocities that are physically achievable
by the robots in a particular application, while producing
acceptable convergence speeds to the target density. We
note that when the swarm density reaches equilibrium,
robots at locations where ||u|| 6= 0 will keep moving at
this non-zero velocity, potentially expending superfluous
energy. A control law that is a function of the swarm
density, also called a mean-field feedback control law, is
needed to ensure that the swarm achieves microscopic
equilibrium (i.e., the robots stop moving) at the same
time as macroscopic equilibrium [2].

2.1 Analysis and functional setting

From here on, we will not use the overbar to denote
static variables when it is clear from the context. We
briefly review some key properties of problems from [14]
that we can easily adapt to our case to prove asymptotic
stability of the obtained optimal controls. We define the
(infinite-dimensional) family of subspaces of fixed-mean
functions asMc = {v ∈ H1(Ω) :

∫

Ω
vdΩ = c} ⊂ H1(Ω).

The weak formulation associated with the state problem
(1) is: find q ∈M1 such that

a(q, v;u) = 0 ∀v ∈ H1(Ω),

where the bilinear form a is defined as a(q, v;u) =
∫

Ω
(µ∇q · ∇v − u · ∇v q ) dΩ. By restricting our search

for q to the spaceM1, we obtain a well-posed problem.
Indeed, the state solution belongs to the kernel of the
operator Lu : H1(Ω) 7→ H1(Ω)∗ defined by

〈Luq, v〉 = a(q, v;u),

restricted to M1 ⊂ H1(Ω). In [14], it is proven that
the kernel is one-dimensional and defined up to a mul-
tiplicative constant; as a result, the solution is unique
in M1 for every control velocity field u. Furthermore,
it follows from the analysis in [14] that q > 0 a.e. on
Ω and that the eigenvalues of the operator Lu are dis-
crete and nonnegative, with the zero eigenvalue occur-
ring with multiplicity one. Thus, the eigenvalues of Lu

when restricted to anyMc, c > 0, are strictly positive.
We will exploit this property to prove two stability the-
orems for the infinite-dimensional problem and its FEM
discretized counterpart.
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The OCP formulation (1) does not include any weights
on the spatial gradients of the control field. We will in-
troduce a weight on these gradients in the cost functional
such that the OCP yields a control field without steep
gradients, in order to prevent control inputs whose vari-
ations are too large to be implemented on real robots.
Note also that our stochastic single-integrator model will
not accurately represent the microscopic dynamics of an
individual robot if the control signal varies too quickly.
Thus, we define an auxiliary regularized problem with
identical dynamics and the following cost functional:

Jr = J +
βg

2

∫

Ω

||∇u||2 dΩ,

where βg > 0 is the weight associated with the
control gradients and ||∇u|| is the Frobenius norm
of ∇u, defined for every x ∈ Ω as ||∇u(x)|| =
√

√

√

√

2
∑

i=1

2
∑

j=1

∂ui(x)

∂xj

∂ui(x)

∂xj
.

In order to prove the existence of solutions to the OCP
(1) with gradient regularization, it is convenient to re-
formulate the state dynamics with a state that belongs
to M0, which is a closed subspace of H1(Ω). For any
q ∈ M1, we can write the decomposition q = w + 1

|Ω| ,

where w ∈M0 since
∫

Ω
w dΩ =

∫

Ω
q dΩ− 1

|Ω|

∫

Ω
dΩ = 0.

In terms ofw, the weak formulation of the problem reads:
find w ∈M0 such that

a(w, v;u) = −a( 1

|Ω| , v;u) ∀v ∈M0,

where −a( 1
|Ω| , v;u) =

∫

Ω
1
|Ω|u · ∇v dΩ. The regularized

cost functional weights the H1(Ω)2-norm of the control
field u, and therefore it is natural to define the space U
of all controls u as U = H1(Ω)2 ∩ L∞(Ω)2. Associated
with each control u, we can define a linear functional
whose action is Fuv = −a( 1

|Ω| , v;u) =
∫

Ω
1
|Ω|u · ∇v dΩ.

The generalized Poincaré inequality in H1(Ω) gives

‖w − wΩ‖L2(Ω) ≤ Cp ‖∇w‖L2(Ω) ,

where Cp is the Poincaré constant of the domain Ω
and wΩ =

∫

Ω
w dΩ = 0. Since we therefore have

‖∇w‖L2(Ω) ≤ ‖w‖H1(Ω) ≤
√

1 + C2
p ‖∇w‖L2(Ω),

we can select the norm ‖w‖M0
= ‖∇w‖L2(Ω). We

prove that Fu ∈ M∗
0, the dual of M0, by apply-

ing the Cauchy–Schwarz inequality and the fact that
‖u‖L2(Ω)2 ≤ ‖u‖H1(Ω)2 to obtain

|Fuv| =
∣

∣

∣

∣

∫

Ω

1

|Ω|u · ∇v dΩ
∣

∣

∣

∣

≤ 1

|Ω| ‖u‖L2(Ω)2 ‖∇v‖L2(Ω)

≤
‖u‖H1(Ω)2

|Ω| ‖v‖M0
,

which implies that ‖Fu‖M∗

0
≤ ‖u‖

H1(Ω)2

|Ω| .

We can cast the state equation as the following abstract
variational problem: find w ∈M0 such that

a(w, v;u) = Fuv ∀v ∈M0. (2)

We will now prove the well-posedness of the variational
problem (2) by showing that it satisfies the hypotheses
of Nečas’ theorem [15, Theorem 6.6], that is, continuity
and weak coercivity of the bilinear form on the left-hand
side and continuity of the linear functional on the right-
hand side. The most difficult property to show is the
weak coercivity of the bilinear form a, which we prove
in the following proposition. Weak coercivity is proven
with respect to the pair (M0, L

2
∗(Ω)), where L

2
∗(Ω) de-

notes the space of L2 functions with zero mean. Note
that with this choice of spaces,M0 is continuously and
densely embedded in L2

∗(Ω), so that (M0, L
2
∗(Ω),M∗

0)
is a Hilbert triplet.

Proposition 2 (Weak coercivity of a) For every
control u ∈ H1(Ω)2 ∩ L∞(Ω)2, the bilinear form a is
(M0, L

2
∗(Ω))-weakly coercive, that is, there exist λ > 0

and α > 0 such that

a(v, v;u) + λ

∫

Ω

v2 dΩ ≥ α ‖v‖2M0
,

and we can choose α = µ
2 and λ = 2

µ3C
2
i C

4 ‖u‖4H1(Ω)2 ,

whereCi andC are constants that are defined in the proof.

PROOF. See Appendix A.

We can now use Nečas’ theorem to prove the well-
posedness of the state dynamics in the following theo-
rem, which also provides a stability estimate that will
be used to prove the existence of optimal controls.

Theorem 3 (Well-posedness of state dynamics)
For every u ∈ H1(Ω)2 ∩ L∞(Ω)2, there exists a unique
weak solution w ∈ M0 to the variational problem (2)
and the following stability estimate holds:

‖w‖M0
≤

2 ‖u‖H1(Ω)2

µ |Ω| .

PROOF. See Appendix A.

Note that we can also recover a stability estimate for the
original state variable q ∈M1, since

‖q‖H1(Ω) =

∥

∥

∥

∥

w +
1

|Ω|

∥

∥

∥

∥

H1(Ω)

≤ ‖w‖H1(Ω) +

∥

∥

∥

∥

1

|Ω|

∥

∥

∥

∥

H1(Ω)

= ‖w‖H1(Ω) + 1 ≤
√

C2
p + 1 ‖w‖M0

+ 1

≤
2
√

C2
p + 1 ‖u‖H1(Ω)2

µ |Ω| + 1 := Mq.
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In order to prove the existence of optimal controls, we
first write a decomposition of the target density as z =
d+ 1

|Ω| , where
∫

Ω
d dΩ = 0 and (q − z) = (w − d). Note

that d ∈ L2
∗(Ω). We now consider the following optimal

control problem, which is equivalent to the OCP (1):

J =
α

2

∫

Ω

(w − d)2dΩ+
β

2

∫

Ω

(‖u‖2 + ‖∇u‖2)dΩ −→ min
w,u

s.t.

a(w, v;u) = Fuv ∀v ∈M0,

(3)
where we have chosen βg = β to simplify the notation.

Theorem 4 (Existence of optimal controls) There
exists at least one optimal control pair (w,u) ∈M0 ×U
for the static OCP (3).

PROOF. We verify that the hypotheses of Theorem 9.4
in [16] are satisfied.

• inf(w,u)∈M0×H1(Ω)2 J = µ > −∞, since J =
α
2 ‖w − d‖

2
L2(Ω) +

β
2 ‖u‖

2
H1(Ω)2 ≥ 0.

• Aminimizing sequence (wn,un) is bounded inM0×U .
This is because a control sequence {un} is bounded in
U by definition, and we can determine that the result-
ing state sequence {wn} is bounded in M0 from the

estimate in Theorem 3, ‖wn‖M0
≤ 2‖un‖H1(Ω)2

µ|Ω| .

• The set of feasible state-control pairs is weakly sequen-
tially closed inM0 ×U , which we demonstrate as fol-
lows. Let {un} be a minimizing control sequence that
weakly converges to u. Then, the resulting minimizing
state sequence {wn} is bounded and thus weakly con-
vergent tow. Since both the state and control spaces are
weakly closed, we have that (w,u) ∈ M0 × U . Define
the state constraint G(w,u) ∈ M∗

0 as 〈G(w,u), v〉 =
a(w, v;u) − Fuv. We need to show that G(wn,un) →
G(w,u) in M∗

0. Using the Cauchy–Schwarz inequal-
ity, we obtain

|Fun
v − Fuv| =

∣

∣

∣

∣

∫

Ω

1

|Ω| (un − u) · ∇v dΩ
∣

∣

∣

∣

≤ 1

|Ω| ‖un − u‖L2(Ω)2 ‖∇v‖L2(Ω)

=
1

|Ω| ‖un − u‖L2(Ω)2 ‖v‖M0
→ 0 ∀v ∈M0,

since ‖un − u‖L2(Ω)2 → 0 strongly due to the com-

pactness of the embedding of H1(Ω)2 into L2(Ω)2; see,
e.g., [16, Appendix A.5.11]. It is left to prove that

∫

Ω

−unwn · ∇vdΩ→
∫

Ω

−uw · ∇v dΩ ∀v ∈M0,

which is equivalent to showing that

∫

Ω

(un − u)wn · ∇v dΩ+

∫

Ω

(wn − w)u · ∇v dΩ

→ 0 ∀v ∈M0.

For the first term, we can use the compact embed-
ding of H1(Ω)2 into L4(Ω)2, Holder’s inequality with
(p, q, r) = (4, 4, 2), and the generalized Poincaré in-
equality to demonstrate that
∣

∣

∣

∣

∫

Ω

(un − u)wn · ∇vdΩ
∣

∣

∣

∣

≤ ‖un − u‖L4(Ω)2 ‖wn‖L4(Ω) ‖∇v‖L2(Ω)

≤ C ‖un − u‖L4(Ω)2 ‖wn‖H1(Ω) ‖v‖M0

≤ C
√

1 + C2
p ‖un − u‖L4(Ω)2 ‖wn‖M0

‖v‖M0
→ 0

∀v ∈M0,

since ‖un − u‖L4(Ω)2 → 0 strongly and ‖wn‖M0
,

‖v‖M0
are bounded. For the second term, define

φvw =
∫

Ω
u ·∇v w dΩ for every v ∈M0 and note that

φv is a linear and continuous functional onM0, since

|φvw| ≤ ‖u‖L4(Ω)2 ‖∇v‖L2(Ω) ‖w‖L4(Ω)

≤ C2 ‖u‖H1(Ω)2 ‖v‖M0
‖w‖H1(Ω)

≤ C2
√

1 + C2
p ‖u‖H1(Ω)2 ‖v‖M0

‖w‖M0
.

Consequently, φv ∈M∗
0, and therefore we can write

∫

Ω

(wn −w)u · ∇v dΩ = φvwn − φvw → 0 ∀v ∈M0

using the definition of weak convergence inM0.

• J is sequentially weakly lower semicontinuous. This
can be shown by observing that since J can be written as
a sum of norms, J = α

2 ‖w − d‖
2
L2(Ω)+

β
2 ‖u‖

2
H1(Ω)2 , it

is convex and continuous onM0×U and thus is weakly
lower semicontinuous; see, e.g., [16, Proposition 9.1].

By applying [16, Theorem 9.4], the result follows.

Before deriving a system of first-order necessary opti-
mality conditions, we need to show that the control-to-
state map Ξ : U → M0, which associates to a control
u the resulting state w = Ξ[u], is Fréchet differentiable,
that is, Ξ ∈ C1(U ,M0). We prove this property in the
following proposition.

Proposition 5 (Control-to-state differentiability)
The control-to-state map Ξ : U → M0 is Fréchet dif-
ferentiable. Furthermore, its action s = Ξ′[u]h in the
control direction h at a state-control pair (w,u) satisfies
the following sensitivity equations:
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−µ∆s+∇ · (su) = −∇ · (qh) in Ω

(−µ∇s+ us) · n = −q h · n on ∂Ω
∫

Ω
s dΩ = 0,

(4)

where q = w + 1
|Ω| belongs toM1.

PROOF. See Appendix A.

Note that we did not use the boundedness of the con-
trol functions u in the proofs of Theorems 3 and 4 and
Proposition 5, and therefore H1(Ω)2 could be chosen as
the control space as well. However, we choose the control
space H1(Ω)2 ∩ L∞(Ω)2 because bounded controls are
physically realistic for our application, and L∞-norms
will be used in the proof of the well-posedness of the
state and control problems in the dynamic case.

2.2 Optimality Conditions

Following a Lagrangian approach (see, e.g., [16, Chapter
9]), we can recover a system of first-order necessary op-
timality conditions for the static problem. We will cast
the optimality conditions in terms of the original state
variable q, since this formulation is more convenient to
use in the numerical treatment of the OCP. We intro-
duce the following Lagrangian functional:

L = J −
∫

Ω

∇ · (−µ∇q + uq)λqdΩ+ λm

(

∫

Ω

qdΩ− 1
)

,

where λq ∈ H1(Ω) is the multiplier function associated
with the state constraint and λm ∈ R is the scalar multi-
plier associated with the conservation of mass constraint,
which fixes the unique solution to the state problem (1).
The adjoint equation can be obtained by setting the
Gâteaux derivative of the Lagrangian functional with
respect to a state variation to zero. Using integration
by parts twice and substituting in the no-flux boundary
conditions on the state dynamics (see, e.g., [9, Section
III.B] for a detailed derivation), the adjoint equation is:

−µ∆λq − u · ∇λq = α (q − z) + λm in Ω

∇λq · n = 0 on ∂Ω

Note that the adjoint/dual problem has a pure Neumann
structure, so we can select λq ∈M0. It is also important
to note that an explicit equation for the scalar multiplier
λm is not given. However, it is shown in [14] that an
additional condition on the right-hand side must hold,

∫

Ω

(

α (q̄ − z) + λm

)

v̂u dΩ = 0, (5)

for v̂u in the kernel of the operator Lu. Note that q =
av̂u, where a ∈ R is fixed by q being a probability density.
Hence, the right-hand side of the adjoint equation must
be orthogonal to the state. This condition is preserved by
the FEM discretization and will be used to compute λm.
The Euler equation is obtained by setting the Gâteaux
derivative of the Lagrangian functional with respect to
a vector control variation to zero. Following a procedure
similar to the adjoint derivation, we obtain:

−βg∆u+ β u+∇λqq = 0. (6)

The optimal control for βg = 0 has interesting proper-
ties, which we prove in the following proposition.

Proposition 6 (Structure of the optimal control)
The optimal control solution u⋆ of the OCP (1) is tan-
gent to the boundary ∂Ω of the domain Ω.

PROOF. The optimal control solves the Euler equation
(6). Therefore, u⋆ = − 1

β
∇λ⋆qq⋆, where λ⋆q solves the ad-

joint equation so that we have:

u⋆ · n = − 1

β
∇λ⋆qq⋆ · n = 0 on ∂Ω

due to the adjoint boundary conditions.

The boundary condition on the optimal control enables
the density dynamics to avoid obstacles. This is an ad-
vantage over density control laws that only depend on
the target density z, and thus cannot have this property.

2.3 Dynamic OCP

We can now formulate the associated dynamic OCP on
a time interval [0, T ], where T denotes both the final
time and the width of the interval, without loss of gen-
erality. It is known that for sufficiently large T , both the
infinite-dimensional formulation of this kind of problem
and, consistently, its discrete FEM formulation exhibit
the so-called turnpike behavior [17,18]. In other words,
the dynamics of the optimal state, adjoint, and control
triple will progress through three stages: first, a tran-
sient stage that is determined by the initial conditions;
then, a “steady-state” stage in which the optimal triple
is approximately constant and asymptotically close to
an equivalent static OCP; and finally, another transient
stage that is determined by the terminal conditions.

In our setting, it is natural to require the optimal solution
of the dynamic problem to converge to its static coun-
terpart. In this way, if the initial conditions are known,
we can speed up the transient to the optimal equilibrium
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density. Thanks to the turnpike property, it is then suffi-
cient to set the cost functional for the dynamic problem
as:

Jt =
α

2

∫ T

0

∫

Ω

(q − q̄⋆)2dt dΩ+
β

2

∫ T

0

∫

Ω

‖u− ū⋆‖2 dt dΩ

+
βg

2

∫ T

0

∫

Ω

‖∇(u− ū⋆)‖2 dt dΩ (7)

with state dynamics:

∂q

∂t
+∇ · (−µ∇q + uq) = 0 in Ω× (0, T )

(−µ∇q + uq) · n = 0 on ∂Ω× (0, T )

q(x, 0) = q0(x) on Ω× {0},

(8)

and the additional box constraint |u(x, t)| ≤ ‖ū⋆‖L∞(Ω)2

for every x ∈ Ω and a.e. on t ∈ (0, T ), which ensures that
the magnitude of the dynamic control action does not
exceed the magnitude of its static counterpart, in an L∞

sense. Note that the dynamic OCP weights the distance
between the dynamic state variable q(t) and its optimal
static equilibrium. Because of this, the final transient
due to the turnpike property is eliminated, ensuring con-
vergence to the static optimal state-control pair.

Due to the no-flux boundary conditions, the setM1 is
forward invariant for the dynamics (8); that is, the sys-
tem is mass-conservative. It is easy to show this prop-
erty: defining m(t) =

∫

Ω
q(x, t)dΩ, we have that

ṁ =

∫

Ω

∂q

∂t
dΩ = −

∫

Ω

∇ · (−µ∇q + uq)dΩ

=

∫

∂Ω

(−µ∇q + uq) · ndΩ = 0.

(9)

Note also that the integral constraint on the density q
need not be taken into account explicitly, due to the
mass-preserving property of the state equation and the
fact that q0 ∈M1.

The adjoint equation for the dynamic OCP (7)-(8) is:

−∂λq
∂t
− µ∆λq − u · ∇λq = α (q − q̄⋆) in Ω× (0, T )

∇λq · n = 0 on ∂Ω× (0, T )

λq(x, T ) = 0 on Ω× {T},

while the Euler equation or reduced gradient can be writ-
ten as

∇Jt = −βg∆(u− ū⋆) + β (u− ū⋆) +∇λqq. (10)

Moreover, for a sufficiently large time interval (0, T ),
the turnpike property implies that after a transient due

to the initial conditions, u⋆(t) → ū⋆ and q⋆(t) → q̄⋆.
This can be interpreted as a robustness property: even
if the initial conditions are not exactly known, the con-
vergence to the optimal steady-state control action still
ensures convergence to the target density, since the equi-
librium induced by ū⋆ is globally asymptotically stable.
The global asymptotic stability of this equilibrium is es-
tablished by the following theorem.

Theorem 7 The optimal solution q̄⋆(ū⋆) of problem (1)
is globally asymptotically stable on the mass-preserving
subspaceM1.

PROOF. Existence and uniqueness of q̄⋆(ū⋆) follows
fromTheorem 3. To show global asymptotic stability, con-
sider the Lyapunov function V = 1

2

∫

Ω
(q − q̄⋆)2dΩ. De-

fine the error e := q − q̄⋆ and note that e ∈ M0. V is
positive onM0 and vanishes only for q = q̄⋆. The time
derivative of V along the solution of the state equation is:

V̇ =

∫

Ω

e
∂q

∂t
dΩ = −

∫

Ω

e∇ · (−µ∇q + ū⋆q)dΩ

= −
∫

Ω

e∇ · (−µ∇e+ ū⋆e)dΩ

= −
∫

Ω

(µ ‖∇e‖2 − ū⋆ · ∇e e) dΩ = −〈Lū⋆e, e〉,

where we have substituted the steady-state condition ∇ ·
(−µq̄⋆ + ū⋆q̄) = 0 and the no-flux boundary conditions.

Now, the final expression of V̇ is a weak formulation as-
sociated with the state operator, and it is formulated on
M0. It is proven in [14] that this operator is strictly pos-

itive on this subspace, and thus V̇ < 0.

3 Analysis of the Discretized OCP

The FEM discretization inherits the structure of the
infinite-dimensional problem and, in particular, the
state dynamics reduce to a kernel-finding problem with
a unique solution determined by the discretized inte-
gral mass constraint. In the static problem, the FEM
discretization of the state dynamics is

(

A− B
⊤
x ux − B

⊤
y uy

)

q = 0, F⊤q− 1 = 0;

the adjoint dynamics are given by

(

A− Bxux − Byuy

)

λq = αM(q− z) + λmF; (11)

and the Euler equation can be expressed as

βMuux + βgAuux + λ
⊤
q Bxq = 0,

βMuuy + βgAuuy + λ
⊤
q Byq = 0.
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In these equations, A and M are the usual stiffness and
mass matrices, while Bx is a rank-3 tensor defined as
Bx,ijk =

∫

Ω
∂φi

∂x
φjφk dΩ and By is defined in a similar

way. For an alternative and equivalent way of defining
the FEM matrices, see [9]. The vectors q, z, λq ∈ R

Nq

denote the coefficients of the FEM basis functions for
the state, target, and adjoint variables, respectively. The
entries of the vector F ∈ R

Nq are defined as Fi =
∫

Ω
φi dΩ, where φi is the corresponding FEM basis func-

tion. Given this definition, the mass of an FEM variable

vh =
∑N

i=1 φivi is simply:

∫

Ω

vhdΩ =
N
∑

i=1

∫

Ω

φi dΩ vi = F⊤v.

With a slight abuse of notation, we group the FEM
discretizations of the x and y components of the control
action as u = [ux uy]

⊤ and define B = Stack3(Bx,By),
where the Stack3 operation stacks Bx and By along
the third direction. In this way, we can compactly write
Bxux + Byuy = Bu; note that Bu is a matrix. The
transpose operation on B is defined as B⊤

ijk = Bjik. The
transpose of the state matrix, A − Bu, can be easily
seen to be the discrete adjoint matrix, A being sym-
metric. This, in turn, implies full commutativity of the
Discretize-then-Optimize (DtO) and Optimize-then-
Discretize (OtD) solution methods for this problem; see
[9] and [16, Ch. 6] for more details.

The semi-discrete set of modified optimality conditions
arising from the discretization (in space) of the dynamic
problem is:

M q̇+ (A− B
⊤u)q = 0, t ∈ (0, T ), q(0) = q0; (12a)

−M λ̇q + (A− Bu)λq = αMq(q− q̄⋆), t ∈ (0, T ),

λq(T ) = 0; (12b)

(

βMu + βgAu

)

(ux − ū⋆
x) + λ

⊤
q B

⊤
x q = 0, t ∈ (0, T )

(

βMu + βgAu

)

(uy − ū⋆
y) + λ

⊤
q B

⊤
y q = 0, t ∈ (0, T ),

where we have used the definition of B to compactly
write both the state and adjoint dynamics. We remark
that in the static problem, we solve for a constant vector
ū ∈ R

2Nu , while in the dynamic problem, our unknowns
q = q(t),u = u(t) are time-dependent.

3.1 Properties of FEM discretization

We define the mass-preserving linear subspace arising
from the FEM discretization as M̃c = {v ∈ R

Nq :
F⊤v = c} for some total mass c > 0. In the following, we

will need in particular M̃0 and M̃1; note the close paral-
lel with their infinite-dimensional counterpartsM0 and

M1. We can now prove a number of useful properties
that the FEM approximation inherits from the infinite-
dimensional problem, thus making it a consistent (and
elegant) discretization of the OCP.

Proposition 8 For each u ∈ R
2Nu , 1 ∈ Ker(A − Bu)

and the dimension of Ker(A − Bu) is 1; that is,
Span(Ker(A− Bu)) = {1}.

PROOF. The matrix A−Bu is the FEM discretization
of the adjoint PDE operator, which is defined up to a
constant since the adjoint system is a pure Neumann
problem. In FEM terms, this constant corresponds to the
vector 1 ∈ R

Nq ; see, e.g., [19].

From Proposition 8, a simple yet useful result follows
for the discretized state problem, also ensuring its well-
posedness. This result is stated below.

Proposition 9 The kernel of the state matrix (A−B⊤u)
is one-dimensional, that is, Dim(Ker(A − B

⊤u)) = 1
∀u ∈ R

2Nu .

PROOF. Rank(A− B
⊤u) = Rank(A− Bu) = Nq − 1,

and thus Dim(Ker(A− B
⊤u)) = 1.

We denote the vector spanning the kernel of A−B
⊤u as

v(u) and note that the kernel ofA−Bu is spanned by the
vector of ones, 1, for every control action u ∈ R

2Nu . The
previous results allow us to prove the following proposi-
tion regarding the mass-preserving property of the semi-
discrete system.

Proposition 10 The FEM discretization of the state
equation in the dynamic OCP,

M q̇+ (A− B
⊤u)q = 0, t ∈ (0, T ), q(0) = q0,

is mass-conservative with respect to the FEM mass func-

tion md(t) =
∫

Ω

∑Nq

i=1 φiqidΩ = F⊤q. That is, ṁd = 0
for every control action u.

PROOF. We can use the relation F = M1 (see, e.g.,
[19]), Proposition 8, and the semi-discrete state dynam-
ics to obtain:

ṁd = F⊤q̇ = 1⊤M q̇ = −1⊤(A− B
⊤u)q = 0.

Proposition 10 constitutes the finite-dimensional ana-
logue of Equation (9). In other words, by choosing q0 ∈
M̃1, we have that q(t) ∈ M̃1 for a.e. t ∈ (0, T ), which
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means that the linear subspace M̃1 is forward invariant
for the semi-discrete dynamics.

We are now ready to prove a useful stability theorem
which ensures that for every control action ū, the result-
ing equilibrium is unique and globally asymptotically
stable on the relative mass-preserving subspace, which
we assume to be M̃1. Without loss of generality, we
prove this result for the equilibrium density induced by
the optimal control ū⋆.

Theorem 11 For every optimal control ū⋆, the result-
ing optimal equilibrium density q̄⋆(ū⋆) is unique and
globally asymptotically stable.

PROOF. Since Dim(Ker(A − B
⊤ū⋆)) = 1, the equilib-

rium density has the form q̄⋆(ū⋆) = kv(ū⋆), where v(ū⋆)
is the vector spanning the one-dimensional kernel of the
state dynamics and k ∈ R has to be determined. Imposing
the condition q̄⋆ ∈ M̃1, that is F

⊤q̄⋆(ū⋆) = 1, we obtain
a unique solution. The bilinear form a(q, v;u) that arises
from the weak formulation of the state equation is associ-
ated with an operator with nonnegative eigenvalues when
q, v belong to the zero-mean space. We proved that the
FEM solution q(t) remains on the mass-preserving sub-

space M̃1. Defining B ∈ R
Nq×Nq−1 as a basis for M̃0 ⊂

R
Nq , there exist vectors ẇ(t), w̄⋆ ∈ R

Nq−1 such that
q̇(t) = Bẇ(t) and q̄⋆ = Bw̄⋆+ 1

|Ω|1. Furthermore, since

the FEM approximation selects qh, vh ∈ Vh ⊂ H1(Ω), the
strict positivity of the operator on the mass-preserving
subspace implies that:

a(vh, vh; ū
⋆) = v⊤B⊤(A− B

⊤ū⋆)Bv > 0

for every v ∈ R
Nq−1. Now, consider the candidate Lya-

punov function l(q) = 1
2 (q− q̄⋆)⊤M(q− q̄⋆). It is clear

that l > 0 ∀q 6= q̄⋆, since the mass matrix M is pos-
itive definite. Using the previous results, we show that
l̇ < 0 along solutions of the semi-discrete FEM dynam-
ics M q̇ + (A − B

⊤ū⋆)q = 0. Indeed, since the bilinear

form a(q, v;u) is strictly positive onM0,M̃0 ⊂M0 and
q(t)− q̄⋆ = Bw(t) for somew(t) ∈ R

Nq−1, we have that

l̇ = (q− q̄⋆)⊤M q̇ = − (q− q̄⋆)⊤(A− B
⊤ū⋆)q

= −(q− q̄⋆)⊤(A− B
⊤ū⋆)(q− q̄⋆)

= −w⊤B⊤(A− B
⊤ū⋆)Bw < 0.

3.2 Solution algorithm

Exploiting the properties of the algebraic systems gov-
erning the state and adjoint variables, we can derive a
numerical algorithm to compute the reduced gradient.
The main difficulty is to find the Lagrange multiplier
λm associated with the mass constraint. By projecting

the discrete adjoint equation on the kernel of the state
equation, we can recover an equation for λm. Then, some
care is needed in the numerical treatment of the adjoint
system. Since it results from the discretization of a pure
Neumann problem, the adjoint problem comprises a sin-
gular system with a one-dimensional kernel spanned by
1 [19]. This, in turn, means that its solution is defined up
to an arbitrary constant. Following [19], a more robust
way to solve the adjoint system is to look for solutions
which have zero mean. In the infinite-dimensional for-
mulation, this amounts to requiring that

∫

Ω
λqdΩ = 0,

which in the FEM discretization readily translates to
F⊤

λq = 0. Note the duality with the state system, which
should satisfy F⊤q = 1. For the sake of brevity, we just
provide the FEMdiscretization of the optimization prob-
lem whose solution provides the adjoint system. An as-
sociated variational formulation in continuous space can
also be derived (see, e.g., [19]). For fixed controls, the ad-
joint solution solves the linearly constrained, quadratic
optimization problem:

1

2
λ
⊤
q (A− Bu)λq −

(

αMq(q− z) + λmF
)⊤

λq −→ min
λq

s.t. F⊤
λq = 0, (13)

where λm can be computed using the kernel properties
of the state system and the adjoint system. The KKT
system arising from Problem (13) is a well-posed sparse
linear system.

The explicit computation of λm utilizes the kernel prop-
erties of the state matrix. Left-multiplying the adjoint
equation (11) by v(u), and applying the result in Propo-
sition 9, we obtain

αv(u)⊤M(q−z)+λmv(u)⊤F = v(u)⊤
(

A−Bu
)

λq = 0,

which can be used to compute λm. Note that this condi-
tion ensures the well-posedness of the adjoint equation
and corresponds to Equation (5). We illustrate the prop-
erties of the discretized OCP in Figure 1.

The iterative quasi-Newton methods outlined in Algo-
rithm 2 and Algorithm 3 are used to compute the so-
lution of a static OCP or dynamic OCP, respectively,
given the FEM discretization of the OCP. These algo-
rithms calculate the reduced gradient using Algorithm 1,
which is computationally efficient for the following rea-
sons. First, it does not require reassambly of the FEM
matrices, thanks to the tensorial formulation of the bi-
linear control operator. Second, it employs the adjoint
method, which (as is well-known from the optimization
literature) is able to compute the reduced gradient in-
dependently of the dimensions of the controls, which in
our case can be arbitrarily large, depending on the FEM
discretization. Note that in Algorithms 2 and 3, the re-
duced Hessian H is approximated by a matrix of the
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Fig. 1. Illustration of the main properties of the FEM dis-
cretization. Top left: Duality between state and adjoint when
the adjoint is solved with a zero-mean constraint. Top right:
Interpretation of the state problem as an eigenvector opti-
mization problem for the kernel of the state operator, which
is spanned by v(u). Bottom left: From any initial condition

in M̃1, the state asymptotically converges to q̄⋆ while re-
maining in M̃1. Bottom right: Dynamic optimization proce-
dure exploiting knowledge of the initial condition and of the
static optimal solution.

Algorithm 1 Reduced gradient computation with inte-
gral density constraint

1: Input: Control vector u
2: Outputs: Reduced gradient ∇uJ̃(u), state vector

q(u)

3: v(u)← Span

(

Ker
(

A− B
⊤u
)

)

⊲ Solve variational

problem (3)

4: q(u)← v(u) ·
(

v(u)⊤F
)−1

5: λm ← −αv(u)⊤Mq(q− z) ·
(

v(u)⊤F
)−1

6: λq ← Solve Problem (13)
⊲ Compute reduced gradient:

7: ∇ux
J̃ = βMuux + λ

⊤
q B

⊤
x q

8: ∇uy
J̃ = βMuuy + λ

⊤
q B

⊤
y q

form βMu + βgAu, not the FEM equivalent of the re-
duced Hessian, which is both harder to derive and more
difficult to compute. For a derivation of second-order
necessary conditions for a similar problem, see [20]; an
alternative numerical treatment based on the conjugate
gradient method, which does not require the computa-
tion of the reduced Hessian, can be found in [21].

Algorithm 2 Modified Newton method for static OCP

1: Input: Initial guess u0 of control vector
2: Outputs: Optimal control ū⋆ and q̄⋆(ū⋆)
3: H ← βMu + βgAu

4: u(0) ← u0

5: for i = 0 : maxIterations do
6: ∇J(u(i)),q(u(i))← Algorithm1(u(i))
7: J ← 1

2α(q(u
(i)) − z)⊤Mq(q(u

(i)) − z) +
1
2u

(i)⊤Hu(i) ⊲ Spatial discretization of cost
functional in Eq. (3)

8: d(i) ← Solve Hd(i) = −∇J(u(i))
9: τ ← ArmijoBacktracking(J,d(i),u(i)) ⊲ Line

search
10: u(i+1) ← u(i) + τd(i) ⊲ Update control
11: if

∥

∥∇J(u(i))
∥

∥ < tolerance then

12: ū⋆ ← u(i)

13: q̄⋆(ū⋆)← q(u(i))
14: return
15: end if
16: end for

Algorithm 3 Modified Newton method for dynamic
OCP

1: Inputs: Initial guess u0 of control vector, initial
state q0, final time T , number of time steps Nt

2: Outputs: Optimal control u⋆(t) and q(u⋆(t))
3: H ← βMu + βgAu

4: ū⋆, q̄⋆ ← Algorithm2(u0) ⊲ Solve static OCP
5: u(0) ← Repmat(ū⋆, Nt) ⊲ Nt copies of ū

⋆

6: for i = 0 : maxIterations do
7: q(i) ← StateDyn(u(i), T,q0) ⊲ Solve Eq. (12a)
8: J ← 1

2α(q
(i) − q̄⋆)⊤Mq(q

(i) − q̄⋆) +
1
2 (u

(i) − ū⋆)⊤H(u(i) − ū⋆) ⊲ Spatial discretization
of cost functional in Eq. (7)

9: Jt ← Trapezoidal integration of J over time

10: λ
(i)
q ← AdjointDyn(u(i),q(i), q̄⋆, T ) ⊲ Solve Eq.

(12b)

11: ∇Jt(u(i))← H(u(i) − ū⋆) + λ
(i)⊤

q B
⊤q(i)

12: d(i) ← Solve Hd(i) = −∇Jt(u(i))
13: τ ← ArmijoBacktracking(Jt,d

(i),u(i)) ⊲ Line
search

14: u(i+1) ← u(i) + τd(i) ⊲ Update control
15: if

∥

∥∇Jt(u(i))
∥

∥ < tolerance then

16: u⋆(t)← u(i)

17: q(u⋆(t))← q(i)

18: return
19: end if
20: end for

4 Numerical Simulations

In this section, we show the effectiveness of our con-
trol algorithm through numerical simulations of two test
cases. In both cases, the computational domain is dis-
cretized into a triangular mesh with Nq degrees of free-
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dom, and the time interval [0, T ], where T = 3 [s], is
discretized into Nt time steps of length ∆t = 0.03 [s].
The resulting fully discrete optimization problem hasNq

state variables and 2Nq control variables in the static
case, while in the dynamic case the number of variables
is multiplied by Nt. We set Nq = 2704 in test case 1 and
Nq = 3831 in test case 2. Computations are carried out
in MATLAB using a modified version of the redbKit

library [22] to assemble the FEM matrices and tensors
and the TensorToolbox [23] to perform efficient tensor
computations.

In both test cases, the diffusion coefficient is normalized
to µ = 1, and the control weightings α, β, and βg are
selected using a trial-and-error procedure to obtain sat-
isfactory tracking performance. We note that the diffu-
sion coefficient µ influences the L2-norm of the optimal
tracking error,

∫

Ω
(q̄⋆ − z)2dΩ: for higher µ, a stronger

control field (i.e., higher robot velocities) is needed to
constrain the optimal equilibrium density q̄⋆ to a given
distance from the target density z, requiring the control
weighting β to be reduced. Thus, in the test cases, our
choices µ = 1 and β ≪ α result in very fast convergence
of the swarm to the target equilibrium density. However,
as noted in Remark 1, the control weightings could be
adjusted to ensure that the robots in a particular real-
world application can physically achieve the computed
velocity field.

In test case 1, we define the domain as Ω = [−1, 1]2 \
B(0, 0.2), where B(x, r) denotes the two-dimensional
ball centered at x with radius r. The ball B(0, 0.2) rep-
resents a circular obstacle which must be avoided by
the density dynamics. Figure 2 plots the target den-
sity z and the numerical solution of the static optimiza-
tion problem, comprised of the equilibrium density q̄⋆

and control field ū⋆, along with the norm of ū⋆. The
plots show that the equilibrium density is smooth, non-
negative, and close to the target density, and that the
control field varies smoothly over the domain and does
not have steep gradients. We simulated the system un-
der the constant control field ū⋆ for three different initial
densities. Figure 3 shows that for each initial condition,
ū⋆ stabilizes the discretized state q to the corresponding
optimal equilibrium density q̄⋆. We then solve the mod-
ified dynamic problem to optimize the convergence rate

to equilibrium from the initial condition q
(1)
0 , which is

defined as a Gaussian density centered at (−0.5,−0.5).
Figure 4 shows that the time-varying control field u⋆(t)
produces faster convergence to the optimal equilibrium
density than ū⋆ and that u⋆(t) → ū⋆ for sufficiently
large T . Figure 5, which plots several snapshots of the
density evolution under both control fields, shows that
u⋆(t) at t = 0 [s] exhibits its highest magnitude near the
peak of the initial density; this concentration of control
effort enables it to drive the swarm around the obstacle
to the target equilibrium density faster than ū⋆.

Fig. 2. Test case 1. Equilibrium density q̄⋆ and control field
ū⋆ computed from the static optimization problem, in which
z is a non-smooth target function. The control weights are
α = 1, β = 10−3, and βg = 10−5.
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Fig. 3. Test case 1. Convergence in the L2 norm to the op-
timal equilibrium q̄⋆ from three different initial conditions,

q
(1)
0 , q

(2)
0 , and q

(3)
0 , where q

(1)
0 and q

(2)
0 are Gaussian den-

sities centered at (−0.5,−0.5) and (−0.5, 0.5), respectively,

and q
(3)
0 is the uniform density over the domain Ω.

In test case 2, we consider a scenario with an external
velocity field b ∈ L∞(Ω)2 and a more complex domain
Ω with multiple obstacles. Introducing the drift velocity
field b into the weak formulation of the state equation
in the static OCP, we obtain the following problem: find
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Fig. 4. Test case 1. Convergence in the L2 norm of the so-
lution of the dynamic optimization problem to its static
counterpart. Left: Norm convergence of the density q to the
optimal equilibrium q̄⋆ under the constant control field ū⋆

(green) and the time-varying control field u⋆(t) (blue). Right:
Norm convergence of u⋆(t) to ū⋆.

Fig. 5. Test case 1. Evolution of density contours (black)
under the control fields (blue), ū⋆ (left) and u⋆(t) (right).

q ∈M1 such that

∫

Ω

(

µ∇q · ∇v − (u+ b) q∇v
)

dΩ = 0 ∀v ∈ H1(Ω).

The discretization of this state equation is:

(

A− B
⊤u−B⊤

)

q = 0,

where B is the transport matrix associated with b, de-
fined as Bij =

∫

Ω
b · ∇φi φj dΩ. The state equation in

the dynamic OCP is modified in a similar way. Note
that the additional advection term does not affect the
results that we have previously derived for the OCPs.
Figure 6 plots the target density z, the solution q̄⋆, ū⋆

of the static optimization problem, and the norm of
ū⋆, which exhibit similar properties to the correspond-
ing plot for the other test case. The drift field b is de-
fined as b = [− sin(πx1) cos(πx2); cos(πx1) sin(πx2)].
We solved the dynamic problem to obtain the time-
varying control field u⋆(t) that optimizes the conver-
gence rate of the density to q̄⋆ from an initial condi-
tion defined as the indicator function of a square that
is located at the bottom-left of the domain. Figure 7
compares the convergence rate of the density to the cor-
responding equilibrium under b alone (uncontrolled),
b+ū⋆, and b+u⋆(t). The uncontrolled density converges
to the equilibrium induced by b, while ū⋆ stabilizes q̄⋆

and u⋆(t) speeds up the convergence to this equilibrium.

5 Conclusions

In this paper, we have proposed a density control strat-
egy for swarms of robots that follow single-integrator
advection-diffusion dynamics. We formulated and solved
an Optimal Control Problem (OCP) based on the mean-
field model of the swarm to compute a space-dependent
control field, defined as the robots’ velocity field, that
does not require inter-robot communication or density
estimation algorithms for implementation. We proved
that the equilibrium density of the controlled system
is globally asymptotically stable, thus demonstrating
that the optimal control law is robust to transient per-
turbations and independent of the initial conditions.
For cases where the initial condition is approximately
known, a modified dynamic OCP was formulated to
speed up convergence to the optimal equilibrium den-
sity. Thanks to the turnpike property, the optimal solu-
tion of the dynamic OCP converges to its static counter-
part, thus ensuring the stability and robustness of the
control law computed by this OCP. The analysis of the
static and dynamic OCPs has been consistently carried
out for both their infinite-dimensional formulations and
their finite-dimensional discretizations. Implementation
of our control approach in practice would require mod-
eling pairwise robot interactions using a nonlocal advec-
tion term in the mean-field PDE, as well as incorporat-
ing the robots’ real-world motion constraints.
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Fig. 6. Test case 2. Equilibrium density q̄⋆ and control field
ū⋆ computed from the static optimization problem, in which
z is a non-smooth target function composed of the disjoint
union of two characteristic functions. The drift vector field
b is shown in red in the bottom-left plot, in addition to the
control vector field ū⋆ in blue. The control weights are α = 1,
β = 10−3, and βg = 10−5.
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Fig. 7. Test case 2. L2-distance between the optimal equilib-
rium density q̄⋆ and the density q under the sum of the drift
velocity field b and (red) no control velocity field; (green)
the optimal constant control field ū⋆; and (blue) the optimal
time-varying control field u⋆(t).

A Proofs of Selected Results

Proof of Proposition 2: Using Holder’s inequal-
ity with (p, q, r) = (4, 2, 4), the elementary inequality

ab ≤ ǫa2 + b2

4ǫ for any ǫ > 0 and a, b > 0, and the
Gagliardo-Nirenberg interpolation inequality [24, Chap-

ter 9] ‖v‖2L4(Ω) ≤ Ci ‖v‖L2(Ω) ‖∇v‖L2(Ω), where Ci is

the interpolation constant, we have

∫

Ω

|u · ∇v v| dΩ ≤ ‖u‖L4(Ω)2 ‖∇v‖L2(Ω) ‖v‖L4(Ω)

≤ ǫ ‖∇v‖2L2(Ω) +
‖u‖2L4(Ω)2 ‖v‖

2
L4(Ω)

4ǫ

≤ ǫ ‖∇v‖2L2(Ω) +
Ci ‖u‖2L4(Ω)2 ‖v‖L2(Ω) ‖∇v‖L2(Ω)

4ǫ

≤ (ǫ+ η) ‖∇v‖2L2(Ω) +
C2

i ‖u‖
4
L4(Ω)2

64ǫ2η
‖v‖2L2(Ω)

≤ (ǫ+ η) ‖∇v‖2L2(Ω) +
C2

i C
4 ‖u‖4H1(Ω)2

64ǫ2η
‖v‖2L2(Ω)

for every ǫ, η > 0, whereC > 0 is the continuity constant
of the embedding of H1(Ω)2 into L4(Ω)2. Hence,

a(v, v;u) + λ

∫

Ω

v2 dΩ ≥ (µ− ǫ− η) ‖∇v‖2L2(Ω)

+

(

λ−
C2

i C
4 ‖u‖4H1(Ω)2

64ǫ2η

)

‖v‖2L2(Ω) .

By setting ǫ = µ
4 and η = µ

4 in the inequality above, it

is sufficient to choose λ ≥ 1
µ3C

2
i C

4 ‖u‖4H1(Ω)2 to ensure

that

a(v, v;u) + λ

∫

Ω

v2 dΩ

≥ µ

2
‖∇v‖2L2(Ω) +

(

λ−
C2

i C
4 ‖u‖4H1(Ω)2

µ3

)

‖v‖2L2(Ω)

≥ µ

2
‖∇v‖2L2(Ω) =

µ

2
‖v‖2M0

.

Proof of Theorem 3: We verify that the hypotheses
of Nečas’ theorem are satisfied. The bilinear form a is
continuous since

|a(w, v)| =
∣

∣

∣

∣

∫

Ω

(

µ∇w · ∇v − w u · ∇v
)

dΩ

∣

∣

∣

∣

≤ µ ‖w‖M0
‖v‖M0

+ ‖u‖L4(Ω)2 ‖w‖L4(Ω) ‖∇v‖L2(Ω)

≤ µ ‖w‖M0
‖v‖M0

+ C2 ‖u‖H1(Ω)2 ‖w‖H1(Ω) ‖∇v‖L2(Ω)

≤ µ ‖w‖M0
‖v‖M0

+ C2
√

1 + C2
p ‖u‖H1(Ω)2 ‖∇w‖L2(Ω) ‖∇v‖L2(Ω)

=
(

µ+ C2
√

1 + C2
p ‖u‖H1(Ω)2

)

‖w‖M0
‖v‖M0

,

where we used the generalized Poincaré inequality and
the continuity of the embedding of H1(Ω) into L4(Ω).
The bilinear form a is weakly coercive according to
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Proposition 2, and the linear functional Fu is contin-
uous. Then Nečas’ theorem guarantees the existence
and uniqueness of a weak solution w ∈ M0 to the vari-
ational problem (2), as well as the stability estimate

‖w‖M0
≤

‖Fu‖M∗

0

α
, where α is the weak coercivity

constant. Then the result follows since we can select
α = µ

2 by Proposition 2 and we have shown that

‖Fu‖M∗

0
≤ ‖u‖

H1(Ω)2

|Ω| .

Proof of Proposition 5: The weak formulation of (4)
is

a(s, v;u) = Fqhv ∀v ∈M0,

where Fqhv =
∫

Ω
qh · ∇v dΩ. We find that Fqh ∈ M∗

0,
since

|Fqhv| ≤ ‖h‖L4(Ω)2 ‖q‖L4(Ω) ‖∇v‖L2(Ω)

≤ C2 ‖h‖H1(Ω)2 ‖q‖H1(Ω) ‖v‖M0

≤ C2Mq ‖h‖H1(Ω)2 ‖v‖M0

and ‖Fqh‖M∗

0
≤ C2Mq ‖h‖H2(Ω)2 . We can use Nečas’

theorem to establish the existence and uniqueness of so-
lutions to the sensitivity equations (4) and the stability
estimate

‖s‖M0
≤

2C2Mq ‖h‖H1(Ω)2

µ
.

It remains to prove that the residual ‖R‖M0
:=

‖Ξ[u+ h]− Ξ[u]− Ξ′[u]h‖M0
→ 0 faster than ‖h‖H1(Ω)2 .

It can be shown that R satisfies the equation

a(R, v;u+ h) =

∫

Ω

sh · ∇v dΩ ∀v ∈M0,

where the linear functional on the right-hand side is
bounded; indeed, we can obtain the following upper
bound:
∣

∣

∣

∣

∫

Ω

sh · ∇v dΩ
∣

∣

∣

∣

≤ ‖h‖L4(Ω)2 ‖s‖L4(Ω) ‖∇v‖L2(Ω)

≤ C2
√

1 + C2
p ‖h‖H1(Ω)2 ‖s‖M0

‖v‖M0

≤
2C4

√

1 + C2
p Mq ‖h‖2H1(Ω)2

µ
‖v‖M0

.

Then the stability estimate from Nečas’ theorem gives

‖R‖M0
≤

4C4
√

1 + C2
p Mq ‖h‖2H1(Ω)2

µ2
,

and thus
‖R‖

M0

‖h‖
H1(Ω)2

→ 0 as ‖h‖H1(Ω)2 → 0, which implies

Fréchet differentiability.
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