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1. Introduction

1. INTRODUCTION

We consider a directed graph with node set N = {1, . . . , N} and arc set A ⊂ N ×N . The

number of nodes is N and the number of arcs is denoted by A. We denote by xij the flow of

the arc (i, j), and we refer to the vector x = {xij | (i, j) ∈ A} as the flow vector. The separable

convex cost network flow problem is

minimize
∑

(i,j)∈A
fij(xij) (P)

subject to
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji = si, ∀ i ∈ N , (1)

where si are given scalars, fij : � → (−∞,∞] are given convex, closed, proper functions (extended

real-valued, lower semicontinuous, not identically taking the value ∞). We refer to problem (P)

as the primal problem. We have implicitly assumed that there exists at most one arc in each

direction between any pair of nodes, but this assumption is made for notational convenience and

can be easily dispensed with. A flow vector x with fij(xij) < ∞ for all (i, j) ∈ A, which satisfies

the conservation of flow constraint (1) is called feasible. For a given flow vector x, the surplus of

node i is defined as the difference between the supply si and the net outflow from i:

gi = si +
∑

{j|(j,i)∈A}
xji −

∑
{j|(i,j)∈A}

xij . (2)

We will assume that there exists at least one feasible flow vector x such that

f−
ij (xij) < ∞ and f+

ij (xij) > −∞, ∀ (i, j) ∈ A, (3)

where f−
ij (xij) and f+

ij (xij) denote the left and right directional derivative of fij at xij [Roc84,

p. 329].

There is a well-known duality framework for this problem, primarily developed by Rockafel-

lar [Roc70], and discussed in several texts; see e.g. [Roc84], [BeT89]. This framework involves a

Lagrange multiplier pi for the ith conservation of flow constraint (1). We refer to pi as the price

of node i, and to the vector p = {pi | i ∈ N} as the price vector . The dual problem is

minimize q(p) (D)

subject to no constraint on p,

where the dual functional q is given by

q(p) =
∑

(i,j)∈A
qij(pi − pj) −

∑
i∈N

sipi,
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and qij is related to fij by the conjugacy relation

qij(tij) = sup
xij∈�

{xijtij − fij(xij)}.

We will assume throughout that fij is such that qij is real-valued for all (i, j) ∈ A. This is true

for example if each function fij takes the value ∞ outside some compact interval.

It is known (see [Roc84, p. 360]) that, under our assumptions, both the primal problem (P)

and the dual problem (D) have optimal solutions and their optimal costs are the negatives of

each other. The standard optimality conditions for a feasible flow-price vector pair (x, p) to be

primal and dual optimal are

f−
ij (xij) ≤ pi − pj ≤ f+

ij (xij), ∀ (i, j) ∈ A.

These, known as the complementary slackness conditions (CS conditions for short), may be

represented explicitly as

(xij , pi − pj) ∈ Γij , ∀ (i, j) ∈ A,

where

Γij =
{
(xij , tij) ∈ �2 | f−

ij (xij) ≤ tij ≤ f+
ij (xij)

}
is the characteristic curve associated with arc (i, j), as shown in Fig. 1.

The traditional methods for solving the problem of this paper for the case of linear arc

cost functions (when each fij is linear on some closed interval and is ∞ outside the interval)

are primal and dual cost improvement methods, which iteratively improve the primal or the

dual cost function. Recently, methods based on the auction approach have gained attention,

following the original proposal of the auction algorithm for the assignment problem [Ber79], and

the ε-relaxation method [Ber86a], [Ber86b]. These methods may not improve the primal or the

dual cost at any iteration, and they are based on a relaxed version of the CS conditions, called

ε-complementary slackness (ε-CS for short). Their worst-case computational complexity, when

properly implemented, is excellent as shown in [Gol87] (see also [BeE88], [BeT89], [GoT90]).

Their practical performance is also very good, particularly for special classes of problems such as

assignment and max-flow. Furthermore, these methods are well-suited for parallel implementation

(see [BCE95], [LiZ91], [NiZ93]). We will focus on extending one such method, the ε-relaxation

method, to the general convex cost case.

One possibility for dealing with the convex cost case is to use efficient ways to reduce the

problem to an essentially linear cost problem by piecewise linearization of the arc cost func-

tions; see [Mey79], [KaM84], [Roc84]. Another possibility is to use differentiable unconstrained
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optimization methods, such as coordinate descent [BHT87], conjugate gradient [Ven91], and

adaptations of other nonlinear programming methods [HaH93], [Hag92], or fixed point methods

[BeE87], [TBT90]. However, these methods require that the dual cost function be differentiable,

which essentially amounts to the primal cost functions being strictly convex. A more general

alternative, which applies to nondifferentiable dual cost functions as well, is to use an extension

of the primal or dual cost improvement methods developed for the linear cost case. In particular,

there have been proposals of primal cost improvement methods in [Wei74] and more recently in

[KaM93]. There have also been proposals of dual cost improvement methods: the fortified de-

scent method [Roc84] that extends the primal-dual method of Ford and Fulkerson [FoF62], and

the relaxation method of [BHT87] that extends the corresponding linear cost relaxation method

of [Ber85] and [BeT88]. These methods maintain, together with the price vector, a flow vector

that satisfies the ε-CS conditions, and progressively work towards primal feasibility. The flow

vector becomes feasible at termination.

fij(xij)

xij xij

pi - pj 

Figure 1: A cost function fij and its corresponding characteristic curve.

In this paper we develop and analyze the first extension of an auction method, the ε-

relaxation method, to the convex arc cost case.1 (An analogous extension of the auction/sequential

shortest path method given in [Ber92], which has also been incorporated in the latest release of

the RELAX code [BeT94], is developed in the forthcoming Ph.D. thesis of the second author

1 We have learned that the same method was independently developed and analyzed by

DeLeone, Meyer, and Zakarian [DMZ95]. The results of their computational tests qualitatively

agree with ours.

4



     

1. Introduction

[Pol95].) Our method is based on the ε-CS conditions first introduced in [BHT87] for the case of

convex arc costs. In particular, we say that the flow vector x and the price vector p satisfy ε-CS

if and only if

fij(xij) < ∞, and f−
ij (xij) − ε ≤ pi − pj ≤ f+

ij (xij) + ε, ∀ (i, j) ∈ A. (4)

(see Fig. 2).

xij

pi - pj

Figure 2: A visualization of the ε-CS conditions as a cylinder around the

characteristic curve (bold line) The shaded area represents flow-price differential

pairs that satisfy the ε-CS conditions.

It was shown in [BHT87] that if a feasible flow-price vector pair (x, p) satisfies ε-CS, then

x and p are primal and dual optimal, respectively, within a factor that is proportional to ε (see

the following Prop. 6). Our method is similar to the ε-relaxation method for linear cost network

flow problems. It iteratively modifies the price vector, while effecting attendant flow changes that

maintain the ε-CS conditions. The method terminates with a feasible flow-price vector pair which,

however, satisfies ε-CS rather than CS. There is a fundamental difference from the other dual

descent methods for nondifferentiable dual cost problems: the price changes are made exclusively

along coordinate directions, that is, one price at a time, and a price change need not improve

the dual cost. However, because the flow-price vector pair (x, p) maintained by the ε-relaxation

method satisfies ε-CS rather than CS, there is more freedom in adjusting the flow-price vector

pair towards feasibility, even though the pair obtained when the method terminates is optimal

only within a factor proportional to ε.
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The method of this paper essentially provides a mechanism to move around the ε-CS diagram

of Fig. 2 while changing one price at a time, and working towards primal feasibility. There

is a variety of mechanisms for effecting such price changes and Fig. 3 illustrates some of the

possibilities. In particular, starting from a point on the characteristic curve of arc (i, j), we can

follow any direction around that point and change the price pi or the price pj , and/or the flow

xij simultaneously until (xij , pi − pj) is either on the characteristic curve or is within a distance

of ε above or below the characteristic curve of arc (i, j). For example, if node i has positive

surplus, by increasing the flow of an outgoing arc (i, j) or by decreasing the flow of an incoming

arc (j, i), the surplus of i will be decreased, while the surplus of j will be increased by an equal

amount. This is the basic mechanism for moving flow from nodes of positive surplus to nodes of

negative surplus, thus working towards primal feasibility. It is possible, however, that node i has

positive surplus, while the flow of none of the outgoing arcs (i, j) can be increased and the flow

of none of the incoming arcs (j, i) can be decreased without violating the ε-CS conditions. In this

case the method increases the price of node i in order to “make room” in the ε-CS diagram for

a subsequent flow change.

xij

pi - pj

Γij

Figure 3: Starting from any point on the characteristic curve (dark points) of

arc (i, j), a new point on the characteristic curve can be obtained in a variety of

ways. The figure depicts a few such examples where the flow and price differential

for arc (i, j) are changed simultaneously according to some linear relation.

The paper is organized as follows. In Section 2 we present the ε-relaxation method extended

6



        

2. The ε-Relaxation Method

to solve convex cost problems. In Section 3, we show that this method terminates with a near

optimal flow-price vector pair and, in Section 4, we provide a complexity analysis for the method.

In Section 5, we describe a version of this method that uses both price increase and decrease

steps and, in Section 6, we report our computational experience with the methods of Sections 2

and 5 on some convex linear/quadratic cost problems. Our test results show that, on problems

where some (possibly all) arcs have strictly convex cost, the new method outperforms, often by an

impressive margin, earlier relaxation methods. Significantly, our method seems to be minimally

affected by ill-cnditioning in the dual problem. We do not know of any other method for which

this is true.

2. THE ε-RELAXATION METHOD

For a flow-price vector pair (x, p) satisfying ε-CS, we define for each node i ∈ N its push

list as the set of arcs

{
(i, j) | ε/2 < pi − pj − f+

ij (xij) ≤ ε
}
∪

{
(j, i) | −ε ≤ pj − pi − f−

ji (xji) < −ε/2
}
. (5)

Figure 4 illustrates when an arc (i, j) is in the push list of i and when it is in the push list of

j. We note that a more general definition of the push list can be given by replacing the term

ε/2 with βε, where β is a scalar with 0 < β < 1. The subsequent analysis applies, with minor

modifications, to the corresponding version of the ε-relaxation method to be given shortly.

xij

pi - pj
Γij

xij

pi - pj
Γij

For the flow price
pairs in the shaded
region, arc (i,j) is 
in the push list of i.

For the flow price
pairs in the shaded
region, arc (i,j) is 
in the push list of j.

Figure 4: A visualization of the conditions satisfied by a push list arc. The

shaded area represents flow-price differential pairs corresponding to a push list

arc.
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An arc (i, j) [or (j, i)] in the push list of i is said to be unblocked if there exists a δ > 0 such

that

pi − pj ≥ f+
ij (xij + δ),

[or pj − pi ≤ f−
ji (xji − δ), respectively]. For an unblocked push list arc, the supremum of δ for

which the above relation holds is called the flow margin of the arc. The flow margin of an arc

(i, j) is illustrated in Fig. 5. An important property is the following:

Proposition 1: The arcs in the push list of a node are unblocked.

Proof: Assume that for an arc (i, j) ∈ A we have

pi − pj < f+
ij (xij + δ), ∀ δ > 0.

Since the function f+
ij is right continuous, this yields

pi − pj ≤ lim
δ↓0

f+
ij (xij + δ) = f+

ij (xij),

and thus (i, j) cannot be in the push list of node i. A similar argument proves that an arc (j, i) ∈ A
such that

pj − pi > f−
ji (xji − δ), ∀ δ > 0,

cannot be in the push list of node i. Q.E.D.

xij+δ

pi - pj

lij uijxij

Γij

+ε/2

-ε/2

pi - pj

lij uijyijyij - δ

Γij

+ε/2

-ε/2

The flow margin
and a flow push
on an unblocked
arc (i,j) of the
push list of i.

The flow margin
and a flow push
on an unblocked
arc (i,j) of the
push list of j.

Figure 5: The flow margin of an unblocked push list arc.

For a given pair (x, p) satisfying ε-CS, consider an arc set A∗ that contains all push list arcs

oriented in the direction of flow change. In particular, for each arc (i, j) in the push list of a node
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i we introduce an arc (i, j) in A∗ and for each arc (j, i) in the push list of node i we introduce an

arc (i, j) in A∗. The set of nodes N and the set A∗ define the admissible graph G∗ = (N ,A∗).

Note that an arc can be in the push list of at most one node, so the admissible graph is well

defined.

The ε-relaxation method starts with a flow-price vector pair (x, p) satisfying ε-CS, and such

that the corresponding admissible graph G∗ is acyclic. One possibility is to select an initial price

vector p0 and to set the initial arc flow for every arc (i, j) ∈ A to

xij = sup{ξ | f+
ij (ξ) ≤ p0

i − p0
j − ε/2}. (6)

It can be seen that with this choice, ε-CS is satisfied for every arc (i, j) ∈ A, and that the initial

admissible graph is empty and thus acyclic.

In the typical iteration of the method, we select a node i with positive surplus, and we

perform one or more of the following two operations:

(a) A price rise on node i, which increases the price pi by the maximum amount that maintains

ε-CS, while leaving all arc flows unchanged.

(b) A flow push (also called a δ-flow push) along an arc (i, j) [or along an arc (j, i)], which

increases (i, j) [or decreases (j, i)] by an amount δ ∈ (0, gi], while leaving all node prices

unchanged.

The iteration is as follows.

Typical Iteration of the ε-Relaxation Method

Step 1: Select a node i with positive surplus gi; if no such node exists, terminate the method.

Step 2: If the push list of i is empty, go to Step 3. Otherwise, choose an arc from the push list of i

and perform a δ-flow push towards the opposite node j, where

δ = min{gi, flow margin of arc}.

If the surplus of i becomes zero, go to the next iteration; otherwise go to Step 2.

Step 3: Increase the price pi by the maximum amount that maintains ε-CS. Go to the next iteration.

We make the following observations about the ε-relaxation method:

1. The method preserves ε-CS and the prices are monotonically nondecreasing. This is evident

from the initialization and Step 3 of the method.

9



   

3. Termination of the ε-Relaxation Method

2. Once the surplus of a node becomes nonnegative, it remains nonnegative for all subsequent

iterations. The reason is that a flow push at a node i cannot make the surplus of i negative

(cf. Step 2), and cannot decrease the surplus of neighboring nodes.

3. If at some iteration a node has negative surplus, then its price must be equal to its initial

price. This is a consequence of observation 2 above and the fact that price changes occur

only on nodes with positive surplus.

3. TERMINATION OF THE ε-RELAXATION METHOD

To prove the termination of the ε-relaxation method of Section 2, we first prove that the

total number of price rises that the method can perform is bounded.

Proposition 2: Each price rise increment in the ε-relaxation method is at least ε/2.

Proof: We first note that a price rise on a node i occurs only when its push list is empty. Thus

for every arc (i, j) ∈ A we have pi − pj − f+
ij (xij) ≤ ε/2, and for every arc (j, i) ∈ A we have

pj −pi−f−
ji (xji) ≥ −ε/2. This implies that all elements of the following sets of positive numbers:

S+ =
{
pj − pi + f+

ij (xij) + ε | (i, j) ∈ A
}
,

S− =
{
pj − pi − f−

ji (xji) + ε | (j, i) ∈ A
}

are greater than or equal to ε/2. Since a price rise at i increases pi by the increment γ =

min{S+ ∪ S−}, the result follows. Q.E.D.

The following proposition bounds the total number of price increases that the ε-relaxation

method can perform on any node. The proof is patterned after that for the linear cost case

[Ber86a], [BeE88].

Proposition 3: Assume that for some integer K ≥ 1, the initial price vector p0 for the

ε-relaxation method satisfies Kε-CS together with some feasible flow vector x0. Then, the ε-

relaxation method performs at most 2(K + 1)(N − 1) price rises per node.

Proof: Consider the pair (x, p) at the beginning of an ε-relaxation iteration. Since the surplus

vector g = (g1, . . . , gN ) is not zero, and the flow vector x0 is feasible, we conclude that for each

node s with gs > 0 there exists a node t with gt < 0 and a path H from t to s that contains no
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cycles and is such that:

xij > x0
ij , ∀ (i, j) ∈ H+, (7)

xij < x0
ij , ∀ (i, j) ∈ H−, (8)

where H+ is the set of forward arcs of H and H− is the set of backward arcs of H. [This can

be seen from the Conformal Realization theorem ([Roc84] or [Ber91]) as follows. For the flow

vector x−x0, the net outflow from node t is −gt > 0 and the net outflow from node s is −gs < 0

(here we ignore the flow supplies), so, by the Conformal Realization Theorem, there is a path H

from t to s that contains no cycle and conforms to the flow x− x0, that is, xij − x0
ij > 0 for all

(i, j) ∈ H+ and xij − x0
ij < 0 for all (i, j) ∈ H−. Eqs. (7) and (8) then follow.]

From Eqs. (7) and (8), and the convexity of the functions fij for all (i, j) ∈ A, we have

f−
ij (xij) ≥ f+

ij (x
0
ij), ∀ (i, j) ∈ H+, (9)

f+
ij (xij) ≤ f−

ij (x
0
ij), ∀ (i, j) ∈ H−. (10)

Since the pair (x, p) satisfies ε-CS, we also have that

pi − pj ∈ [f−
ij (xij) − ε, f+

ij (xij) + ε], ∀ (i, j) ∈ A. (11)

Similarly, since the pair (x0, p0) satisfies Kε-CS, we have

p0
i − p0

j ∈ [f−
ij (x

0
ij) −Kε, f+

ij (x
0
ij) + Kε], ∀ (i, j) ∈ A. (12)

Combining Eqs. (9)-(12), we obtain

pi − pj ≥ p0
i − p0

j − (K + 1)ε, ∀ (i, j) ∈ H+,

pi − pj ≤ p0
i − p0

j + (K + 1)ε, ∀ (i, j) ∈ H−.

Applying the above inequalities for all arcs of the path H, we get

pt − ps ≥ p0
t − p0

s − (K + 1)|H|ε, (13)

where |H| denotes the number of arcs of the path H. We observed earlier that if a node has

negative surplus at some time, then its price is unchanged from the beginning of the method

until that time. Thus pt = p0
t . Since the path contains no cycles, we also have that |H| ≤ N − 1.

Therefore, Eq. (13) yields

ps − p0
s ≤ (K + 1)|H|ε ≤ (K + 1)(N − 1)ε. (14)
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Since only nodes with positive surplus can increase their prices and, by Prop. 2, each price rise

increment is at least ε/2, we conclude from Eq. (14) that the total number of price rises that can

be performed for node s is at most 2(K + 1)(N − 1). Q.E.D.

The result of the preceding proposition is remarkable in that the bound on the number of

price changes is independent of the cost functions, but depends only on

K0 = min{K ∈ {0, 1, 2, . . .} | (x0, p0) satisfies Kε-CS for some feasible flow vector x0 },

which is the minimum multiplicity of ε by which CS is violated by the starting price together

with some feasible flow vector. This result will be used later to prove a particularly favorable

complexity bound for the method. Note that K0 is well defined for any p0 because, for all K

sufficiently large, Kε-CS is satisfied by p0 and the feasible flow vector x satisfying Eq. (3).

In order to show that the number of flow pushes that can be performed between successive

price increases is finite, we first prove that the method maintains the acyclicity of the admissible

graph.

Proposition 4: The admissible graph remains acyclic throughout the ε-relaxation method.

Proof: We use induction. Initially, the admissible graph G∗ is empty, so it is trivially acyclic.

Assume that G∗ remains acyclic for all subsequent iterations up to the mth iteration for some

m. We will prove that after the mth iteration G∗ remains acyclic. Clearly, after a flow push

the admissible graph remains acyclic, since it either remains unchanged, or some arcs are deleted

from it. Thus we only have to prove that after a price rise at a node i, no cycle involving i is

created. We note that, after a price rise at node i, all incident arcs to i in the admissible graph

at the start of the mth iteration are deleted and new arcs incident to i are added. We claim that

i cannot have any incoming arcs which belong to the admissible graph. To see this, note that,

just before a price rise at node i, we have from (4) that

pj − pi − f−
ji (xji) ≤ ε, ∀ (j, i) ∈ A,

and since each price rise is at least ε/2, we must have

pj − pi − f−
ji (xji) ≤

ε

2
, ∀ (j, i) ∈ A,

after the price rise. Then, by Eq. (5), (j, i) cannot be in the push list of node j. By a similar

argument, we have that (i, j) cannot be in the push list of j for all (i, j) ∈ A. Thus, after a price

increase at i, node i cannot have any incoming incident arcs belonging to the admissible graph,

so no cycle involving i can be created. Q.E.D.
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We say that a node i is a predecessor of a node j in the admissible graph G∗ if a directed

path from i to j exists in G∗. Node j is then called a successor of i. Observe that flow is pushed

towards the successors of a node and since G∗ is acyclic, flow cannot be pushed from a node to

any of its predecessors. A δ-flow push along an arc in G∗ is said to be saturating if δ is equal to

the flow margin of the arc. By our choice of δ (see Step 2 of the method), a nonsaturating flow

push always exhausts (i.e., sets to zero) the surplus of the starting node of the arc. Thus we have

the following proposition.

Proposition 5: The number of flow pushes between two successive price increases (not nec-

essarily at the same node) performed by the ε-relaxation method is finite.

Proof: We observe that a saturating flow push along an arc removes the arc from the admissible

graph, while a nonsaturating flow push does not add a new arc to the admissible graph. Thus

the number of saturating flow pushes that can be performed between successive price increases

is at most A. It will thus suffice to show that the number of nonsaturating flow pushes that

can be performed between saturating flow pushes is finite. Assume the contrary, that is, there is

an infinite sequence of successive nonsaturating flow pushes, with no intervening saturating flow

push. Then, the surplus of some node i0 must be exhausted infinitely often during this sequence.

This can happen only if the surplus of some predecessor i1 of i0 is exhausted infinitely often during

the sequence. Continuing in this manner we construct an infinite succession of predecessor nodes

{ik}. Thus some node in this sequence must be repeated, which is a contradiction since the

admissible graph is acyclic. Q.E.D.

By refining the proof of Prop. 5, we can further show that the number of flow pushes between

successive price increases is at most (N +1)A, from which a complexity result for the ε-relaxation

method may be derived. However, we will defer the analysis of complexity to Section 4, where

an implementation of the method with sharper complexity bound will be presented.

Propositions 3 and 5 prove that the ε-relaxation method terminates. Upon termination,

we have that the flow-price vector pair satisfies ε-CS and that the flow vector is feasible since

the surplus of all nodes will be zero. The following proposition, due to [BHT87], shows that the

flow vector and the price vector obtained upon termination are primal optimal and dual optimal

within a factor that is essentially proportional to ε.

Proposition 6: For each ε > 0, let x(ε) and p(ε) denote any flow and price vector pair

satisfying ε-CS with x(ε) feasible and let ξ(ε) denote any flow vector satisfying CS together with

13
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p(ε) [note that ξ(ε) need not be feasible]. Then

0 ≤ f
(
x(ε)

)
+ q

(
p(ε)

)
≤ ε

∑
(i,j)∈A

|xij(ε) − ξij(ε)| .

Furthermore, f
(
x(ε)

)
+ q

(
p(ε)

)
→ 0 as ε → 0.

Proposition 6 does not give an estimate of how small ε has to be in order to achieve a certain

degree of optimality. However, in the common case where finiteness of the arc cost functions fij

imply lower and upper bounds on the arc flows, that is,

−∞ < bij = inf
ξ
{ξ | fij(ξ) < ∞} ≤ sup

ξ
{ξ | fij(ξ) < ∞} = cij < ∞,

Prop. 6 together with the fact q
(
p(ε)

)
≥ −f∗ yields the estimate

0 ≤ f
(
x(ε)

)
− f∗ ≤ εA max

(i,j)∈A
|cij − bij |,

where f∗ is the optimal cost of (P). Similarly, we obtain

0 ≤ q
(
p(ε)

)
− q∗ ≤ εA max

(i,j)∈A
|cij − bij |,

where q∗ is the optimal cost of (D).

4. COMPLEXITY ANALYSIS FOR THE ε-RELAXATION METHOD

We now derive a bound on the running time of the ε-relaxation method. Because the cost

functions are convex, it is not possible to express the size of the problem in terms of the problem

data. To deal with this difficulty, we introduce a set of simple operations performed by the

method, and we estimate the number of these operations. In particular, in addition to the usual

arithmetic operations with real numbers, we consider the following operations:

(a) Given the flow xij of an arc (i, j), calculate the cost fij(xij), the left derivative f−
ij (xij),

and the right derivative f+
ij (xij).

(b) Given the price differential tij of an arc (i, j), calculate sup{ξ | f+
ij (ξ) ≤ tij} and inf{ξ |

f−
ij (ξ) ≥ tij}.

Operation (a) is needed to compute the push list of a node and a price increase increment;

operation (b) is needed to compute the flow margin of an arc and the flow initialization of Eq.

(6). We will thus estimate the total number of simple operations performed by the method (see

the following Prop. 8).
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To obtain a sharper complexity bound, we introduce an order in which the nodes are chosen

in iterations. This rule is based on the sweep implementation of the ε-relaxation method, which

was introduced in [Ber86a] and was analyzed in more detail in [BeE88], [BeT89], and [BC91]

for the linear cost network flow problem. All the nodes are kept in a linked list T , which is

traversed from the first to the last element. The order of the nodes in the list is consistent with

the successor order implied by the admissible graph, that is, if a node j is a successor of a node

i, then j must appear after i in the list. If the initial admissible graph is empty, as is the case

with the initialization of Eq. (6), the initial list is arbitrary. Otherwise, the initial list must be

consistent with the successor order of the initial admissible graph. The list is updated in a way

that maintains the consistency with the successor order. In particular, let i be a node on which

we perform an ε-relaxation iteration, and let Ni be the subset of nodes of T that are after i in

T. If the price of i changes, then node i is removed from its position in T and placed in the

first position of T . The next node chosen for iteration, if Ni is nonempty, is the node i′ ∈ Ni

with positive surplus which ranks highest in T . Otherwise, the positive surplus node ranking

highest in T is picked. It can be shown (see the references cited earlier) that with this rule of

repositioning nodes following a price change, the list order is consistent with the successor order

implied by the admissible graph throughout the method.

A sweep cycle is a set of iterations whereby all nodes are chosen once from the list T and

an ε-relaxation iteration is performed on those nodes that have positive surplus. The idea of the

sweep implementation is that an ε-relaxation iteration at a node i that has predecessors with

positive surplus may be wasteful, since the surplus of i will be set to zero and become positive

again through a flow push at a predecessor node.

Our complexity analysis follows the line of the corresponding analysis for the linear cost

problem. First we have a proposition that estimates the number of sweep cycles required for

termination.

Proposition 7: Assume that for some integer K ≥ 1, the initial price vector p0 for the sweep

implementation of the ε-relaxation method satisfies Kε-CS together with some feasible flow vector

x0. Then, the number of sweep cycles up to termination is O(KN2).

Proof: Consider the start of any sweep cycle. Let N+ be the set of nodes with positive surplus

that have no predecessor with positive surplus; let N0 be the set of nodes with nonpositive

surplus that have no predecessor with positive surplus. Then, as long as no price change takes

place during the cycle, all nodes in N0 remain in N0, and an iteration on a node i ∈ N+ moves

i from N+ to N0. So if no node changed price during the cycle, then all nodes in N+ will be

moved to N0 and the method terminates. Therefore, there is a price change in every cycle except
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possibly the last one. Since by Prop. 3 there are O(KN2) price changes, the result follows.

Q.E.D.

By using Prop. 7, we now bound the running time for the sweep implementation of the

ε-relaxation method. The dominant computational requirements are:

(1) The computation required for price increases.

(2) The computation required for saturating δ-flow pushes.

(3) The computation required for nonsaturating δ-flow pushes.

Proposition 8: Assume that for some K ≥ 1 the initial price vector p0 for the sweep imple-

mentation of the ε-relaxation method satisfies Kε-CS together with some feasible flow vector x0.

Then, the method requires O(KN3) operations up to termination.

Proof: According to Prop. 3, there are O(KN) price increases per node, so the requirements

for (1) above are O(KNA) operations. Furthermore, whenever a flow push is saturating, it takes

at least one price increase at one of the end nodes before the flow on that arc can be changed

again. Thus the total requirement for (2) above is O(KNA) operations also. Finally, for (3)

above we note that for each sweep cycle there can be only one nonsaturating δ-flow push per

node. Thus a time bound for (3) is O(N · total number of sweep cycles) which, by Prop. 7, is

O(KN3) operations. Adding the computational requirements for (1), (2), and (3), and using the

fact A ≤ N2, the result follows. Q.E.D.

It is well known that the theoretical and the practical performance of the ε-relaxation

method can be improved by scaling. One possibility is cost scaling (see [BlJ92], [EdK72], [Roc80]).

An analysis of cost scaling applied to ε-relaxation for the linear network flow problem is given

in [BeE87] and also in [BeE88]. In the convex cost case, however, cost scaling may be difficult

to implement since the arc cost functions may be unbounded. A second scaling approach in

connection with the ε-relaxation method for linear cost problems, is ε-scaling. This approach

was originally introduced in [Ber79] as a means of improving the performance of the auction

algorithm for the assignment problem. Its complexity analysis was given in [Gol87] and [GoT90].

The key idea of ε-scaling is to apply the ε-relaxation method several times, starting with a

large value of ε and to successively reduce ε up to a final value that will give the desirable degree

of accuracy to our solution. Furthermore, the price and flow information from one application of

the method is transferred to the next.
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The procedure is as follows: First we choose a scalar θ ∈ (0, 1), a price vector p0, and a

desirable value ε for ε on termination. Next we choose a sufficiently large ε0 so that p0 satisfies

ε0-CS with some feasible flow vector x0. Then, for k = 1, 2, . . ., we set εk = θεk−1 and, for

k = 1, 2, . . . k̄, we apply the ε-relaxation method with ε = εk−1, where k̄ is the first positive

integer k for which εk−1 is below ε. Let (xk, pk) be the flow-price vector pair obtained at the kth

application of the method, for k = 1, 2, ..., k̄. Then xk is feasible and satisfies εk−1-CS with pk.

Furthermore, the admissible graph after the kth application of the method is acyclic. The initial

price vector for the (k + 1)st application is pk and the initial flow is xk
ij for the arcs (i, j) that

satisfy εk-CS with pk, and

sup
{
ξ | f+

ij (ξ) ≤ pki − pkj − εk/2
}

otherwise. This choice of initial flows does not introduce any new arcs to the admissible graph,

so the initial admissible graph for the (k + 1)st application of the method is acyclic. For the 1st

application of the method, the initial price vector is p0 and the initial flow vector is chosen so

that the initial admissible graph is acyclic.

We observe that, for the (k + 1)st application of the method (k = 0, 1, . . . k̄− 1), the initial

price vector pk satisfies εk/θ-CS with the feasible flow vector xk. Thus, based on Prop. 8, we

conclude that the (k + 1)st application of the method has a running time of O
(

1/θ�N3

)
, which

is O(N3) since θ is a fixed scalar. The method will be applied at most k̄ = 
logθ(ε0/ε)� times.

We have thus obtained the following:

Proposition 9: The running time of the ε-relaxation method using the sweep implementation

and ε-scaling as described above is O
(
N3 ln(ε0/ε)

)
operations.

We note that a complexity bound of O
(
NA ln(N) ln(ε0/ε̄)

)
operations was derived in

[KaM93] for the tighten and cancel method. For relatively dense problems where A = Θ(N2/lnN),

our complexity bound for the ε-relaxation method is more favorable, while for sparse problems,

where A = Θ(N), the reverse is true.

5. THE REVERSE AND FORWARD-REVERSE ε-RELAXATION METHODS

The ε-relaxation method we presented in the previous sections performed iterations only

on nodes with positive surplus. We will refer to it as the forward method. We can also define

a method, namely the reverse method, which performs iterations on nodes of negative surplus.

This involves a simple reformulation of the flow and price changing operations we introduced in

previous sections for the forward method. The reverse ε-relaxation method is the “mirror image”
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of the forward method that we developed in the previous sections. Naturally, it has similar

properties to the forward method and its validity follows from a similar analysis.

It is possible to combine the forward and the reverse method so that the resulting method

will operate on both positive and negative surplus nodes. Our intuition is that if we perform ε-

relaxation iterations on both sources and sinks, we will be able to find the optimal solution faster

for certain classes of problems. We refer to the resulting method as the forward-reverse method .

We initialize the arc flows and node prices in the same way we initialized them for the forward and

the reverse methods so that the initial admissible graph is acyclic. The forward-reverse method

operates as follows:

Typical Iteration of the Forward-Reverse ε-Relaxation Method

Pick a node i with nonzero surplus; if no such node exists then terminate. If i has positive

surplus then perform an iteration of the forward ε-relaxation method. If i has negative

surplus then perform an iteration of the reverse ε-relaxation method.

The idea of the forward-reverse method is recurrent in many relaxation-like methods. Ter-

mination of the method can be proved with an analysis similar to the one in Section 3, provided

that we also make the following assumption:

Assumption: The number of times the surplus of a node changes sign is finite.

The above assumption can be enforced to hold by various mechanisms, some of which

are discussed in [Tse86] for the relaxation method and in [Pol94] for the auction shortest path

algorithm.

6. COMPUTATIONAL RESULTS

We have developed and tested two experimental Fortran codes implementing the methods

of this paper for convex cost problems. The first code, named NE-RELAX-F, implements the

forward ε-relaxation method with the sweep implementation and ε-scaling as described in Section

4. The second code, named NE-RELAX-FV, implements the forward-reverse version of NE-

RELAX-F as described in Section 5. These codes are based on the ε-relaxation code for linear

cost problems described in Appendix 7 of [Ber91], which has been shown to be quite efficient.

Several changes and enhancements were introduced in the codes for convex cost problems: All

computations are done in real rather than integer arithmetic, and ε-scaling, rather than arc cost
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scaling, is used. Also, the updating of the push lists and prices are changed to improve efficiency.

Otherwise, the sweep implementation and the general structure of the codes for linear and convex

cost problems are identical. Initial testing on linear cost problems showed that the codes for

convex cost problems perform as well as, and often better than, their counterparts for linear cost

problems, which indicates that these codes are written efficiently. (The superior performance of

the codes for convex cost problems may be due to the latter’s efficient management of the push

lists and the speed of floating point computations of the machine on which the codes were run.)

The codes NE-RELAX-F and NE-RELAX-FV were compared to two existing Fortran codes

NRELAX and MNRELAX from [BHT87]. The latter implement the relaxation method for,

respectively, strictly convex cost and convex cost problems, and are believed to be quite efficient.

All codes were compiled and run on a Sun Sparc-5 workstation with 24 megabytes of RAM under

the Solaris operating system. We used the -O compiler option in order to take advantage of

the floating point unit and the design characteristics of the Sparc-5 processor. Unless otherwise

indicated, all codes terminated according to the same criterion, namely, the cost of the feasible

flow vector and the cost of the price vector agree in their first 12 digits.

For our testing, we used convex linear/quadratic problems corresponding to the case of (P)

where

fij(xij) =

{
aijxij + bijx2

ij if 0 ≤ xij ≤ cij ,

∞ otherwise,

for some aij , bij , and cij with −∞ < aij < ∞, bij ≥ 0, and cij ≥ 0. We call aij , bij , and cij the

linear cost coefficient, the quadratic cost coefficient, and the capacity, respectively, of arc (i, j).

We created the test problems using two Fortran problem generators. The first is the public-

domain generator NETGEN, written by Klingman, Napier and Stutz [KNS74], which generates

linear-cost assignment/transportation/transshipment problems having a certain random struc-

ture. The second is the generator CHAINGEN, written by the second author, which generates

transshipment problems having a chain structure as follows: starting with a chain through all

the nodes, a user-specified number of forward arcs are added to each node (for example, if the

user specifies 3 additional arcs per node then the arcs (i, i + 2), (i, i + 3), (i, i + 4) are added

for each node i) and, for a user-specified percentage of nodes i, a reverse arc (i, i − 1) is also

added. The graphs thus created have long diameters and earlier tests on linear cost problems

showed that the created problems are particularly difficult for all methods. As the above two

generators create only linear cost problems, we modified the created problems as in [BHT87] so

that, for a user-specified percent of the arcs, a nonzero quadratic cost coefficient is generated in

a user-specified range.

Our tests were designed to study two key issues:
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( a) The performance of the ε-relaxation methods relative to the relaxation methods, and the

dependence of this performance on network topology and problem ill-conditioning.

( b) The sensitivity of the ε-relaxation methods to problem ill-conditioning.

Ill-conditioned problems were created by assigning to some of the arcs have much smaller

(but nonzero) quadratic cost coefficients compared to other arcs. When the arc cost functions have

this structure, ill-conditioning in the traditional sense of unconstrained nonlinear programming

tends to occur.

We experimented with three sets of test problems: the first set comprises well-conditioned

strictly convex quadratic cost problems generated using NETGEN (Table 1); the second set

comprises well-conditioned strictly convex quadratic cost problems generated using CHAINGEN

(Table 2); the third set comprises ill-conditioned strictly convex quadratic cost problems and

mixed linear/quadratic cost problems generated using NETGEN (Table 3). The running time of

the codes on these problems are shown in the last three to four columns of Tables 1–3. In all

problems, the ε-relaxation codes were run to the point where they yielded higher or comparable

solution accuracy than the relaxation codes. From the running times we can draw the follow-

ing conclusions: First, the ε-relaxation codes NE-RELAX-F and NE-RELAX-FV have similar

performance and both consistently outperform, by a factor of at least 3 and often much more,

the relaxation codes NRELAX and MNRELAX on all test problems, independent of network

topology and problem ill-conditioning. In fact, on the CHAINGEN problems, the ε-relaxation

codes outperform the relaxation codes by an order of magnitude or more. Other than the fa-

vorable complexity results that we obtained in this paper, we have no clear explanation of this

phenomenon.
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