

May 1992 LIDS - P - 2108

Auction Algorithms for Network Flow Problems:

A Tutorial Introduction 1

by

Dimitri P. Bertsekas2

Abstract

This paper surveys a new and comprehensive class of algorithms for solving the classical linear network
flow problem and its various special cases such as shortest path, max-flow, assignment, transportation,
and transhipment problems. The prototype method, from which the other algorithms can be derived, is
the auction algorithm for the assignment problem. This is an intuitive method that operates like a real
auction where persons compete for objects by raising their prices through competitive bidding; the prices
can be viewed as dual variables. Conceptually, auction algorithms represent a significant departure from
the cost improvement idea that underlies primal simplex and dual ascent methods; at any one iteration,
they may deteriorate both the primal and the dual cost. Auction algorithms perform very well for several
important types of problems, both in theory and in practice, and they are also well suited for parallel
computation.

1 Research supported by NSF under Grant No. DDM-8903385 and Grant CCR-9103804, and by the
ARO under Grant DAAL03-86-K-0171. To be published in the Journal of Computational Optimization
and its Applications.

2 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.

1

Contents

1. Introduction . p. 4

2. Assignment by Naive Auction . p. 5

The Naive Auction Algorithm . p. 6

3. ε-Complementary Slackness and the Auction Algorithm p. 7

The Auction Algorithm . p. 8
ε-Scaling . p. 10
Dealing with Infeasibility . p. 12
Profits and Reverse Auction . p. 14
Combined Forward and Reverse Auction . p. 15

4. Auction Algorithms for Shortest Path Problems p. 17

The Auction/Shortest Path Algorithm . p. 19
The Reverse Algorithm . p. 21
The Auction Algorithm with Graph Reduction p. 23
k Shortest Path Problems . p. 24
k Node-Disjoint Shortest Path Problems . p. 24

5. Extension to Transportation Problems p. 25

The Auction Algorithm with Similar Objects p. 27
The Auction Algorithm with Similar Persons p. 28

6. A Generic Auction Algorithm for Minimum Cost Flow Problems p. 30

The Generic Algorithm . p. 34

7. The ε-Relaxation Method . p. 34

8. Application of the ε-Relaxation Method to Max-Flow Problems p. 35

9. Extension to Asymmetric Assignment Problems p. 36

Reverse Auction for Asymmetric Assignment Problems p. 37
Forward/Reverse Auction for Other Types of Inequality Constrained Problems p. 39

10. Practical Computational Aspects of Auction Algorithms p. 39

10.1. Assignment Problems . p. 39
Adaptive ε-Scaling . p. 39
The Problem of Integer Overflow . p. 40
The “Third Best” Implementation . p. 40
Parallel and Asynchronous Implementation . p. 41

10.2. Shortest Path Problems . p. 43
Parallel Implementation . p. 44

10.3. Transportation Problems . p. 45
10.4. Minimum Cost Flow Problems . p. 45
10.5. Max-Flow Problems . p. 46

11. Conclusions . p. 46

2

References . p. 47

Appendix 1: ε-CS, Primal Optimality, and Dual Optimality p. 50

Assignment Problems . p. 50
Minimum Cost Flow Problems . p. 51

Appendix 2: Finite Termination of the Auction Algorithm p. 52

3

1. Introduction

1. INTRODUCTION

The classical algorithms for solving linear network flow problems are primal cost improvement methods,

including simplex methods, which iteratively improve the primal cost by moving flow around simple cycles,

and dual ascent methods, which iteratively improve the dual cost by changing the prices of a subset of

nodes by equal amounts.

Auction algorithms, the subject of this tutorial paper, are fundamentally different; they depart from

the cost improvement idea and at any one iteration, they may deteriorate both the primal and the dual

cost, although in the end they find an optimal primal solution. Their origin lies in nondifferentiable

optimization (where nonmonotonic subgradient-based algorithms are common), and in the ε-subgradient

method of Bertsekas and Mitter [BeM73] in particular (where the progress of the method depends on

gradually reducing an ε parameter to an acceptable tolerance level). Auction algorithms are also highly

intuitive and easy to understand; they can be explained in terms of economic competition concepts, which

are couched on everyday experience.

Auction algorithms originated in 1979 with an algorithm proposed by the author for the classical

assignment problem [Ber79]. This algorithm was further developed in [Ber85], [Ber88], and [BeE88]. The

motivation was to solve the problem by using parallelism in a natural way. It turned out, however, that

the resulting method was very fast in a serial environment as well. Subsequent work extended the auction

algorithm to other linear network flow problems. In particular, an extension to the minimum cost problem,

the ε-relaxation method, was given by the author in [Ber86a] and [Ber86b]. An auction algorithm for

transportation problems was given by the author in collaboration with D. Castañon in [BeC89a]. An

auction algorithm for shortest paths was given by the author in [Ber91b]. Finally, a max-flow algorithm,

developed by Goldberg [Gol85] from an entirely different point of view, fundamentally involves auction

ideas and can be viewed as the natural extension of the auction algorithm to the max-flow problem.

All of the algorithms just mentioned can be derived from the original 1979 auction algorithm for

the assignment problem. The derivation is based on well-known transformations of the general linear

minimum cost flow problem and its various special cases (e.g., shortest path, max-flow, etc.) to equivalent

assignment problems. Once the auction algorithm is applied to the corresponding equivalent assignment

problem and the computations are streamlined, one obtains an auction algorithm for the original problem.

The purpose of this paper is to provide a tutorial introduction to auction algorithms. For textbook

presentations, we refer the reader to [BeT89] and [Ber91a]. We will initially focus on the basic algorithm

for the assignment problem, and then discuss various extensions to other problems. In Sections 2 and

3, we develop the auction algorithm for the symmetric assignment problem. In particular, we discuss

a number of issues that are common to all types of auction algorithms, including ε-scaling, and dealing

with infeasibility. We also discuss an alternative form of the auction algorithm, called reverse auction;

while in regular auction persons bid for objects by raising their prices, in reverse auction objects compete

for persons by essentially offering discounts. In Section 4 we develop auction algorithms for shortest path

problems. In Section 5, we discuss the extension of the auction algorithm to transportation problems,

and in Section 6 we give a generic auction algorithm for the minimum cost network flow problem. In

4

2. Assignment by Naive Auction

Section 7, we develop the ε-relaxation method for the minimum cost flow problem as a special case of

the generic algorithm. The ε-relaxation method is specialized to the max-flow problem in Section 8,

yielding algorithms similar to those of Goldberg and Tarjan [Gol85], [GoT86]. In Section 9 we discuss

specialized auction algorithms for inequality constrained problems such as the asymmetric assignment

problem. Finally, in Section 10 we discuss the computational aspects of auction algorithms, including

issues of parallel and asynchronous implementation.

2. ASSIGNMENT BY NAIVE AUCTION

In the classical symmetric assignment problem there are n persons and n objects that we have to match

on a one-to-one basis. There is a benefit aij for matching person i with object j and we want to assign

persons to objects so as to maximize the total benefit. We are given a set A of pairs (i, j) that can be

matched. For each person i, we denote by A(i) the set of objects that can be matched with i

A(i) = {j | (i, j) ∈ A},

and for each object j, we denote by B(j) the set of persons that can be matched with j

B(j) = {i | (i, j) ∈ A}.

By an assignment we mean a set S of person-object pairs (i, j) such that each person i and each object j

is involved in at most one pair from S. If the number of pairs in S is n, so that every person is assigned

to a distinct object, we say that S is feasible; otherwise S is said to be infeasible. If a feasible assignment

exists the problem is said to be feasible, and otherwise it is said to be infeasible. We seek a feasible

assignment [a set of person-object pairs (1, j1), . . . , (n, jn) from A, such that the objects j1, . . . , jn are all

distinct], which is optimal in the sense that it maximizes the total benefit
∑n

i=1 aiji .

The symmetric assignment problem should be distinguished from its asymmetric version where the

number of objects is larger than the number of persons, and while there is a requirement to assign every

person, there is no such requirement for the objects. Auction algorithms for asymmetric and other related

assignmment problems will be discussed in Section 9.

The assignment problem is important in many practical contexts, but it is also of great theoretical

importance. Despite its simplicity, it embodies a fundamental linear programming structure. One of the

most important type of linear programming problem, the minimum cost network flow problem, can be

reduced to the assignment problem by means of a simple reformulation (see e.g. [BeT89], p. 335, [Ber91a],

p. 17, [PaS82], p. 149, and Section 6). Thus, any method for solving the assignment problem can be

generalized to solve the minimum cost flow problem. For this reason, the assignment problem has served

as a convenient starting point for important algorithmic ideas in linear programming. For example, the

primal-dual method ([FoF62], [Min60]), was motivated and developed through Kuhn’s Hungarian method

[Kuh55], the first specialized method for the assignment problem.

5

2. Assignment by Naive Auction

To develop an intuitive understanding of the auction algorithm, it is helpful to introduce an economic

equilibrium problem that turns out to be equivalent to the assignment problem.

Consider the possibility of matching the n objects with the n persons through a market mechanism,

viewing each person as an economic agent acting in his/her own best interest. Suppose that object j has

a price pj and that the person who receives the object must pay the price pj . Then, the (net) value of

object j for person i is aij − pj and each person i would logically want to be assigned to an object ji with

maximal value, that is, with

aiji − pji = max
j∈A(i)

{aij − pj}. (1)

The economic system would then be at equilibrium, in the sense that no person would have an incentive

to act unilaterally, seeking another object.

Equilibrium assignments and prices are naturally of great interest to economists, but there is also a

fundamental relation with the assignment problem; it turns out that an equilibrium assignment offers

maximum total benefit (and thus solves the assignment problem), while the corresponding set of prices

solves an associated dual problem. This is a consequence of the duality theorem of linear programming

(see e.g. [Dan63], [PaS82], [Lue84]). In the terminology of linear programming, relation (1) is known as

complementary slackness (CS for short). A simple, first principles proof of the relation of equilibria to

optimal assignments and dual optimization is also developed in Appendix 1.

The Naive Auction Algorithm

Let us consider a natural process for finding an equilibrium assignment and price vector. We will call

this process the naive auction algorithm, because it has a serious flaw, as will be seen shortly. Nonetheless,

this flaw will help motivate a more sophisticated and correct algorithm.

The naive auction algorithm proceeds in iterations and generates a sequence of price vectors and

assignments. At the beginning of each iteration, the CS condition

aiji − pji = max
j∈A(i)

{aij − pj} (2)

is satisfied for all pairs (i, ji) of the assignment. If all persons are assigned, the algorithm terminates.

Otherwise a nonempty subset I of persons i that are unassigned is selected and the following computations

are performed.

Typical Iteration of Naive Auction Algorithm

Let I be a nonempty subset of persons that are unassigned.

Bidding Phase: Each person i ∈ I finds an object ji which offers maximal value, that is,

ji ∈ arg max
j∈A(i)

{aij − pj}, (3)

and computes a bidding increment

γi = vi − wi, (4)

6

3. ε-Complementary Slackness and the Auction Algorithm

where vi is the best object value,

vi = max
j∈A(i)

{aij − pj}, (5)

and wi is the second best object value

wi = max
j∈A(i), j �=ji

{aij − pj}. (6)

[If ji is the only object in A(i), we define wi to be −∞ or, for computational purposes, a number that is much

smaller than vi.]

Assignment Phase: Each object j that is selected as best object by a nonempty subset P (j) of persons in

I, determines the highest bidder

ij = arg max
i∈P (j)

γi, (7)

raises its prices by the highest bidding increment maxi∈P (j) γi, and gets assigned to the highest bidder ij ; the

person that was assigned to j at the beginning of the iteration (if any) becomes unassigned.

The algorithm continues with a sequence of iterations until all persons have an assigned object.

Note that γi cannot be negative since vi ≥ wi [compare Eqs. (5) and (6)], so the object prices tend to

increase. In fact, when i is the only bidder, γi is the largest bidding increment for which CS is maintained

following the assignment of i to his/her preferred object. Just as in a real auction, bidding increments

and price increases spur competition by making the bidder’s own preferred object less attractive to other

potential bidders.

Note also that there is some freedom in choosing the subset of persons I that bid during an iteration.

One possibility is to let I consist of a single unassigned person. This version, known as the Gauss-Seidel

version because of its similarity with Gauss-Seidel methods for solving systems of nonlinear equations,

usually works best in a serial computing environment. The version where I consists of all unassigned

persons, is the one best suited for parallel computation; it is known as the Jacobi version because of its

similarity with Jacobi methods for solving systems of nonlinear equations.

3. ε-COMPLEMENTARY SLACKNESS AND THE AUCTION ALGORITHM

Unfortunately, the naive auction algorithm does not always work (although it is an excellent initial-

ization procedure for other methods that are based on price adjustment, e.g. primal-dual or relaxation).

The difficulty is that the bidding increment γi is zero when more than one object offers maximum value

for the bidder i. As a result, a situation may be created where several persons contest a smaller number

of equally desirable objects without raising their prices, thereby creating a never ending cycle; see Fig. 1.

To break such cycles, we introduce a perturbation mechanism, motivated by real auctions where each

bid for an object must raise the object’s price by a minimum positive increment, and bidders must on

occasion take risks to win their preferred objects. In particular, let us fix a positive scalar ε and say that

an assignment and a price vector p satisfy ε-complementary slackness (or ε-CS for short) if

aiji − pji ≥ max
j∈A(i)

{aij − pj} − ε, (8)

7

Initial price = 0

Here a = C > 0 for all (i,j) with i = 1,2,3 and j = 1,2
and a = 0 for all (i,j) with i = 1,2,3 and j = 3

ij
ij

PERSONS OBJECTS

1

2

3 Initial price = 0

Initial price = 0Initially assigned
to object 1

Initially
unassigned

Initially assigned
to object 2

1

2

3

3. ε-Complementary Slackness and the Auction Algorithm

At Start of Object Assigned Bidder Preferred Bidding

Iteration # Prices Pairs Object Increment

1 0,0,0 (1,1), (2,2) 3 2 0

2 0,0,0 (1,1), (3,2) 2 2 0

3 0,0,0 (1,1), (2,2) 3 2 0

Figure 1: Illustration of how the naive auction algorithm may never terminate for a three person and three

object problem. Here objects 1 and 2 offer benefit C > 0 to all persons, and object 3 offers benefit 0 to all persons.

The algorithm cycles as persons 2 and 3 alternately bid for object 2 without changing its price because they prefer

equally object 1 and object 2 (γi = 0).

for all assigned pairs (i, ji). In words, to satisfy ε-CS, all assigned persons must be assigned to objects

that are within ε of being best.

The Auction Algorithm

We now reformulate the previous auction process so that the bidding increment is always at least equal

to ε. The resulting method, the auction algorithm, is the same as the naive auction algorithm, except

that the bidding increment γi is

γi = vi − wi + ε, (9)

[rather than γi = vi − wi as in Eq. (4)]. With this choice, the ε-CS condition is satisfied. The particular

increment γi = vi − wi + ε used in the auction algorithm is the maximum amount with this property.

Smaller increments γi would also work as long as γi ≥ ε, but using the largest possible increment acceler-

ates the algorithm. This is consistent with experience from real auctions, which tend to terminate faster

when the bidding is aggressive.

It can be shown that this reformulated auction process terminates in a finite number of iterations,

necessarily with a feasible assignment and a set of prices that satisfy ε-CS. To see this for the case of

a fully dense problem (A consists of all person-object pairs), note that if an object receives a bid in k

8

3. ε-Complementary Slackness and the Auction Algorithm

iterations, its price must exceed its initial price by at least kε. Thus, for sufficiently large k, the object

will become “expensive” enough to be judged “inferior” to some object that has not received a bid so

far. It follows an object can receive a bid in a limited number of iterations while some other object still

has not yet received any bid. On the other hand, once all objects receive at least one bid, the auction

terminates. Thus, the auction algorithm must terminate, and in fact the preceding argument shows that,

for the case of zero initial prices, the total number of iterations in which an object receives a bid is no

more than
max(i,j) |aij |

ε
.

If each iteration involves a bid by a single person, the total number of iterations is no more than n times

the preceding quantity, and since each bid requires O(n) operations, the running time of the algorithm is

O
(
n2 max(i,j) |aij |/ε

)
.

This proof can be generalized for the case of a sparse problem (one where the set of person-object

pairs that can be assigned is limited), as long as the problem is feasible; see Appendix 2. Figure 2 shows

how the auction algorithm, based on the bidding increment γi = vi − wi + ε [cf. Eq. (9)], overcomes the

cycling problem of the example of Fig. 1.

When the auction algorithm terminates, we have an assignment satisfying ε-CS, but is this assignment

optimal? The answer here depends strongly on the size of ε. In a real auction, a prudent bidder would

not place an excessively high bid for fear that he/she might win the object at an unnecessarily high price.

Consistent with this intuition, we can show that if ε is small, then the final assignment will be “almost

optimal.” In particular, the following proposition (proved in Appendix 1) shows that the total cost of the

final assignment is within nε of being optimal . The idea is that when a feasible assignment and a set of

prices satisfy ε-CS, they also satisfy CS (and are therefore primal and dual optimal, respectively) for a

slightly perturbed problem where all costs aij are the same as before, except for the costs of the n assigned

pairs, which are modified by an amount no more than ε.

Proposition 1: A feasible assignment satisfying ε-complementary slackness together with some price

vector is within nε of being optimal.

Suppose now that the costs aij are all integer, which is the typical practical case (if aij are rational

numbers, they can be scaled up to integer by multiplication with a suitable common number). Then,

the total benefit of any assignment is integer, so if nε < 1, any complete assignment that is within nε

of being optimal must be optimal. It follows, that if ε < 1/n, and the benefits aij are all integer, then

the assignment obtained upon termination of the auction algorithm is optimal. We state this result as a

proposition; the proof is given in Appendix 2.

Proposition 2: Consider a feasible assignment problem with integer benefits aij . If

ε <
1
n

,

the auction algorithm terminates in a finite number of iterations with an optimal assignment.

Figure 3 shows the sequence of generated object prices for the example of Figs. 1 and 2 in relation to

the contours of the dual cost function of the assignment problem, which is given in Appendix 1. It can

9

Initial price = 0

Here a = C > 0 for all (i,j) with i = 1,2,3 and j = 1,2
and a = 0 for all (i,j) with i = 1,2,3 and j = 3

ij
ij

PERSONS OBJECTS

1

2

3 Initial price = 0

Initial price = 0Initially assigned
to object 1

Initially
unassigned

Initially assigned
to object 2

1

2

3

3. ε-Complementary Slackness and the Auction Algorithm

At Start of Object Assigned Bidder Preferred Bidding

Iteration # Prices Pairs Object Increment

1 0,0,0 (1,1), (2,2) 3 2 ε

2 0,ε,0 (1,1), (3,2) 2 1 2ε

3 2ε,ε,0 (2,3), (3,1) 1 2 2ε

4 2ε,3ε,0 (1,2), (2,1) 3 1 2ε

5 4ε,3ε,0 (1,3), (3,2) 2 2 2ε

6 · · · · · · · · · · · · · · ·

Figure 2: Illustration of how the auction algorithm overcomes the cycling problem for the example of

Fig. 1, by making the bidding increment at least equal to ε. The table shows one possible sequence of bids and

assignments generated by the auction algorithm, starting with all prices equal to 0. At each iteration except the last,

the person assigned to object 3 bids for either object 1 or 2, increasing its price by ε in the first iteration and by 2ε

in each subsequent iteration. In the last iteration, after the prices of 1 and 2 rise at or above C, object 3 receives a

bid and the auction terminates.

be seen from this figure that with each bid, the dual cost is approximately minimized (within ε) with

respect to the price of the object receiving the bid. This observation can be established in generality;

see [Ber88] or [Ber91a]. Successive minimization of a cost function along single coordinates is a central

feature of coordinate descent and relaxation methods, which are popular for unconstrained minimization

of smooth functions and for solving systems of smooth equations. Thus, the auction algorithm can be

interpreted as an approximate coordinate descent method.

ε-Scaling

The amount of work needed for the auction algorithm to terminate can depend strongly on the value

of ε and on the maximum absolute object benefit C given by

C = max
(i,j)∈A

|aij |. (10)

10

C

ε

ε

εε

ε

ε
ε

ε

Contours of the
dual function

p
1

εεε
C

ε

p
2

3. ε-Complementary Slackness and the Auction Algorithm

Figure 3: A sequence of prices p1 and p2 generated by the auction algorithm for the example of Figs. 1

and 2. The figure shows the equal dual cost surfaces in the space of p1 and p2, with p3 fixed at 0.

Basically, for many types of problems, the number of iterations up to termination tends to be proportional

to C/ε as argued earlier for fully dense problems. This can also be seen from the example of Fig. 3, where

the number of iterations up to termination is roughly C/ε, starting from zero initial prices. For small ε,

the method is susceptible to “price wars”, that is, protracted sequences of small price rises resulting from

groups of persons competing for a smaller number of roughly equally desirable objects.

Note also that there is a dependence on the initial prices; if these prices are “near optimal,” we expect

that the number of iterations to solve the problem will be relatively small. This can be seen from the

example of Fig. 3; if the initial prices satisfy p1 ≈ p3 + C and p2 ≈ p3 + C, the number of iterations up

to termination is quite small.

The preceding observations suggest the idea of ε-scaling, which consists of applying the algorithm

several times, starting with a large value of ε and successively reducing ε up to an ultimate value that is

less than some critical value (for example, 1/n, when the benefits aij are integer). Typical ε-reduction

factors after each scaling phase are of the order of 4 to 10. Each application of the algorithm provides

good initial prices for the next application. ε-scaling was suggested in the original proposal of the auction

algorithm [Ber79], based on extensive experimentation, which established its effectiveness for many types

of assignment problems. In particular, ε-scaling is typically beneficial for sparse problems. The cost

structure of the problem is also important in determining whether ε-scaling is needed.

For integer data, it can be shown that the worst-case running time of the auction algorithm using

scaling and appropriate data structures is O
(
nA log(nC)

)
; see [BeE88], [BeT89]. Based on experiments,

11

3. ε-Complementary Slackness and the Auction Algorithm

the running time of the algorithm for randomly generated problems seems to grow proportionally to

something like A log n or A log n log(nC). This is also supported by an approximate analysis in [Sch90].

The practical computational aspects of the auction algorithm will be discussed in Section 10.

Dealing with Infeasibility

Since termination can only occur with a feasible assignment, when the problem is infeasible, the

auction algorithm will keep on iterating, as the user is wondering whether the problem is infeasible or

just hard to solve. Thus for problems where existence of a feasible assignment is not known a priori, one

must supplement the auction algorithm with a mechanism to detect infeasibility. There are several such

mechanisms, which we will now discuss.

A basic result about (symmetric and asymmetric) assignment problems is that given an infeasible

assignment S, there are two mutually exclusive possibilities:

(a) S has maximal cardinality, that is, there is no assignment having more assigned persons than S.

(b) There exists some unassigned person i and some unassigned object j and an augmenting path

with respect to S that starts at i and ends at j, that is, a sequence of the form

(i, j1, i1, . . . , jm, im, j)

such that j1 ∈ A(i), j ∈ A(im), and jk is assigned to ik under S for k = 1, . . . , m.

This result can be proved in a number of ways. For example, by introducing in the assignment problem

graph a supersource node s connected to all the person nodes and a supersink node t connected to all the

object nodes, we can view the problem of finding an assignment of maximal cardinality as the problem

of finding a maximum flow from s to t. The result then follows by using the max-flow/min-cut theorem

and the related analysis (eg., [Ber91a], Chapter 1, Props. 2.3 and 2.4).

A corollary of the preceding result is that given a feasible assignment problem and an infeasible

assignment S, for every person i that is unassigned under S, there exists an augmenting path with

respect to S that starts at i. (To prove this, modify S by assigning every person that is unassigned under

S, except i, to a fictitious object, and then apply the preceding result.)

One criterion that can be used to detect infeasibility is based on the maximum values

vi = max
j∈A(i)

{aij − pj}.

It turns out that in the course of the auction algorithm, all of these values will be bounded from below by

a precomputable bound when the problem is feasible, but some of these values will be eventually reduced

below this bound if the problem is infeasible. In particular, suppose that the auction algorithm is applied

with initial object prices {p0
j}. Then it can be shown that for any i, if person i is unassigned with respect

to the current assignment S, and there is an augmenting path with respect to S that starts at i, we have

vi ≥ −(2n − 1)C − (n − 1)ε − max
j

{p0
j}, (11)

12

3. ε-Complementary Slackness and the Auction Algorithm

where C = max(i,j)∈A |aij |. The proof is obtained by adding the ε-CS condition along the augmenting

path. If the problem is feasible, then as discussed earlier, there exists an augmenting path starting at

each unassigned person at all times, so the lower bound (11) on vi will hold for all unassigned persons i

throughout the auction algorithm. On the other hand, if the problem is infeasible, some persons i will be

submitting bids infinitely often, and the corresponding values vi will be decreasing towards −∞. Thus,

we can apply the auction algorithm and keep track of the values vi as they decrease. Once some vi gets

below its lower bound, we know that the problem is infeasible.

Unfortunately, it may take many iterations for some vi to reach its lower bound. An alternative method

to detect infeasibility is to convert the problem to a feasible problem by adding a set of artificial pairs A
to the original set A. The benefits of these pairs should be very small, so that none of them participates in

an optimal assignment unless the problem is infeasible. In particular, it can be shown that if the original

problem was feasible, no pair (i, j) ∈ A will participate in the optimal assignment, provided that

aij < −(2n − 1)C, ∀ (i, j) ∈ A, (12)

where C = max(i,j)∈A |aij |. To prove this by contradiction, assume that by adding to the set A the set

of artificial pairs A we create an optimal assignment S∗ that contains a nonempty subset S of artificial

pairs. Then, for every assignment S consisting exclusively of pairs from the original set A we must have

∑
(i,j)∈S

aij +
∑

(i,j)∈S∗−S

aij ≥
∑

(i,j)∈S

aij,

from which ∑
(i,j)∈S

aij ≥
∑

(i,j)∈S

aij −
∑

(i,j)∈S∗−S

aij ≥ −(2n − 1)C.

This contradicts Eq. (12). Note that if aij ≥ 0 for all (i, j) ∈ A, the preceding argument can be modified

to show that it is sufficient to have aij < −(n − 1)C for all artificial pairs (i, j).

On the other hand, the addition of artificial pairs with benefit −(2n − 1)C as per Eq. (12) expands

the cost range of the problem by a factor of (2n − 1). In the context of ε-scaling, this necessitates a

much larger starting value for ε and correspondingly large number of ε-scaling phases. If the problem

is feasible these extra scaling phases are wasted. Thus for problems which are normally expected to be

feasible, it may be better to introduce artificial pairs with benefits that are of the order of −C, and then

gradually scale downward these benefits towards the −(2n−1)C threshold if artificial pairs persist in the

assignments obtained by the auction algorithm. This procedure of scaling downward the benefits of the

artificial pairs can be embedded in a number of ways within the ε-scaling procedure.

Still another method to detect infeasibility is based on the following property: even when the problem

is infeasible, the auction algorithm will find an assignment of maximal cardinality in a finite number of

iterations, provided that unassigned persons are selected for bidding in an order that is either cyclic, or

else ensures that each person will get a chance to submit a bid at least once within some fixed number of

iterations. The proof of this is based on the lower bound (11) and the property of assignments of maximal

cardinality stated earlier. In particular, if the current assignment never reached maximal cardinality, there

would always exist an unassigned person i and a path that starts at i and is augmenting with respect to

13

3. ε-Complementary Slackness and the Auction Algorithm

the current assignment. By adding the ε-CS condition along this path, we see that vi will always satisfy

the lower bound (11), which is a contradiction because vi will tend to −∞ for all i that submit a bid

infinitely often.

Suppose now that we periodically interrupt the auction algorithm and check whether there exists

an augmenting path from some unassigned person to some unassigned object (a simple search of the

breadth-first type can be used for this; see, e.g., [Ber91a], p. 26). Then once the cardinality of the

current assignment becomes maximal but is less than n, this check will establish that the problem is

infeasible. Thus this modified auction algorithm is guaranteed to either find a feasible assignment and

a set of prices satisfying ε-CS, or to establish that the problem is infeasible and simultaneously obtain

an assignment of maximal cardinality. In the latter case, it can be shown that the original (symmetric)

problem will separate (through a saturated cut) into two components corresponding to (asymmetric)

assignment problems. One may then use auction algorithms for asymmetric problems (see Section 9) to

optimize the assignment within each component and obtain an optimal assignment within the class of all

assignments with maximal cardinality.

Profits and Reverse Auction

Since the assignment problem is symmetric, it is possible to exchange the roles of persons and objects.

This leads to the idea of reverse auction where the objects compete for persons by essentially offering

discounts (lowering their prices). Roughly, given a price vector p, we can view the net value of the best

object for person i

max
(i,j)∈A(i)

{aij − pj} (13)

as a profit for person i. When objects lower their prices they tend to increase the profits of the persons.

Thus, profits play for persons a role analogous to the role prices play for objects. We can thus describe

reverse auction in two different ways; one where unassigned objects lower their prices as much as possible

to attract a person without violating ε-CS, and another where unassigned objects select a best person and

raise his/her profit as much as possible without violating ε-CS. The second description is analytically more

convenient, since with this description, forward and reverse auctions will be seen to be mathematically

equivalent.

Let us introduce a profit variable πi for each person i, and consider the following ε-CS condition for

an assignment S and a profit vector π:

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S, (14)

where B(j) = {i | (i, j) ∈ A} is the set of persons that can be assigned to object j (assumed nonempty).

The relation between the profit variable πi and the expression max(i,j)∈A(i){aij − pj} [cf. Eq. (13)] will

become apparent later when we discuss a somewhat different ε-CS condition, which involves both prices

and profits; see the following Eqs. (17a), (17b), and (20). Note the symmetry of the ε-CS condition (14)

for profits with the corresponding one for prices; cf. Eq. (8).

The reverse auction algorithm maintains at the beginning of each iteration an assignment S and a

profit vector π satisfying the ε-CS condition (14). It terminates when the assignment is feasible.

14

3. ε-Complementary Slackness and the Auction Algorithm

Typical Iteration of Reverse Auction

Let J be a nonempty subset of objects j that are unassigned.

Bidding Phase: For each object j ∈ J , find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi},

and find

ωj = max
i∈B(j),i�=ij

{aij − πi}. (15)

[If ij is the only person in B(j), we define ωj to be −∞ or, for computational purposes, a number that is much

smaller than βj .]

Assignment Phase: Each person i that is selected as best person by a nonempty subset P (i) of objects in

J , determines the highest bidder

ji = arg max
j∈P (i)

{βj − ωj + ε}, (16)

increases πi by the highest bidding increment maxj∈P (i){βj −ωj + ε} and gets assigned to the highest bidder ji;

the object that was assigned to i at the beginning of the iteration (if any) becomes unassigned.

Note that reverse auction is identical to (forward) auction with the roles of persons and objects as well

as profits and prices interchanged. Thus, by using the corresponding (forward) auction results (cf. Props.

1 and 2), we have:

Proposition 3: If at least one feasible assignment exists, the reverse auction algorithm terminates in

a finite number of iterations. The feasible assignment obtained upon termination is within nε of being

optimal (and is optimal if the problem data are integer and ε < 1/n).

Combined Forward and Reverse Auction

One of the reasons we are interested in reverse auction is to construct algorithms that switch from

forward to reverse auction and back. Such algorithms must simultaneously maintain a price vector p

satisfying the ε-CS condition (8) and a profit vector π satisfying the ε-CS condition (14). To this end we

introduce an ε-CS condition for the pair (π, p), which as we will see, implies the other two. Maintaining

this condition is essential for switching gracefully between forward and reverse auction.

We say that an assignment S and a pair (π, p) satisfy ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (17a)

πi + pj = aij, ∀ (i, j) ∈ S. (17b)

We have the following proposition.

Proposition 4: Suppose that an assignment S together with a profit-price pair (π, p) satisfy ε-CS.

Then:

15

3. ε-Complementary Slackness and the Auction Algorithm

(a) S and π satisfy the ε-CS condition

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S. (18)

(b) S and p satisfy the ε-CS condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S. (19)

(c) If S is feasible, then S is within nε of being an optimal assignment.

Proof: (a) In view of Eq. (17b), for all (i, j) ∈ S, we have pj = aij − πi, so Eq. (17a) implies that

aij − πi ≥ akj − πk − ε for all k ∈ B(j). This shows Eq. (18).

(b) The proof is the same as the one of part (a) with the roles of π and p interchanged.

(c) Since by part (b), the ε-CS condition (19) is satisfied, by Prop. 1, S is within nε of being optimal.

Q.E.D.

We now introduce a combined forward/reverse algorithm. The algorithm maintains an assignment S

and a profit-price pair (π, p) satisfying the ε-CS conditions (17). It terminates when the assignment is

feasible. A common way to initialize the algorithm so that the ε-CS conditions are satisfied is to take S to

be empty, to choose p arbitrarily, and to select π as a function of p via the relation πi = maxk∈A(i){aik−pk}
for each person i.

Combined Forward/Reverse Auction Algorithm

Step 1: (Run forward auction) Execute several iterations of the forward auction algorithm (subject to the

termination condition), and at the end of each iteration (after increasing the prices of the objects that received

a bid), set

πi = aiji − pji , (20)

for every person-object pair (i, ji) that entered the assignment during the iteration. Go to Step 2.

Step 2: (Run reverse auction) Execute several iterations of the reverse auction algorithm (subject to the

termination condition), and at the end of each iteration (after increasing the profits of the persons that received

a bid), set

pj = aij j − πij , (21)

for every person-object pair (ij , j) that entered the assignment during the iteration. Go to Step 1.

Note that the additional overhead of the combined algorithm over the forward or the reverse algorithm

is minimal; just one update of the form (20) or (21) is required per iteration for each object or person

that received a bid during the iteration. An important property is that the updates of Eqs. (20) and (21)

maintain the ε-CS conditions (17) for the pair (π, p), and therefore, by Prop. 4, maintain the required

ε-CS conditions (18) and (19) for π and p, respectively. This is stated in the following proposition, which

was proved in [BCT91]; see also [Ber91a].

16

4. Auction Algorithms for Shortest Path Problems

Proposition 5: If the assignment and profit-price pair available at the start of an iteration of either

the forward or the reverse auction algorithm satisfy the ε-CS conditions (17), the same is true for the

assignment and profit-price pair obtained at the end of the iteration, provided Eq. (20) is used to update

π (in the case of forward auction), and Eq. (21) is used to update p (in the case of forward auction).

Note that during forward auction, the object prices pj increase, while the profits πi decrease, but

exactly the opposite happens in reverse auction. For this reason, the termination proof used for forward

auction (see Appendix 2) does not apply to the combined method. Indeed, it is possible to construct

examples of feasible problems where the combined method never terminates if the switch between forward

and reverse auctions is done arbitrarily. However, it is easy to guarantee that the combined algorithm

terminates finitely for a feasible problem; it is sufficient to ensure that some “irreversible progress” is

made before switching between forward and reverse auction. One easily implementable possibility is to

refrain from switching until at least one more person-object pair has been added to the assignment. In this

way there can be a switch at most (n− 1) times between the forward and reverse steps of the algorithm.

For a feasible problem, forward and reverse auction by themselves have guaranteed finite termination, so

the final step will terminate with a feasible assignment satisfying ε-CS.

The combined forward/reverse auction algorithm typically works substantially (and often dramatically)

faster than the forward version, as shown experimentally in the original paper [BCT91], and in the

extensive computational study by D. Castañon [Cas92]. It seems to be affected less by the “price war”

phenomenon that motivated ε-scaling. Price wars can still occur in the combined algorithm, but they

arise through more complex and unlikely problem structures than in the forward algorithm. For this

reason the combined forward/reverse auction algorithm depends less on ε-scaling for good performance

than its forward counterpart. One consequence of this is that starting with ε = 1/(n + 1) and bypassing

ε-scaling is often the best choice. Another consequence is that a larger ε-reduction factor can typically

be used with no price war effects in ε-scaled forward/reverse auction than in ε-scaled forward auction.

As a result, fewer ε-scaling phases are typically needed in forward/reverse auction to deal effectively with

price wars.

4. AUCTION ALGORITHMS FOR SHORTEST PATH PROBLEMS

We now turn our attention to other types of network flow problems. Our approach for constructing

auction algorithms for such problems is to convert them to assignment problems, and then to suitably

apply the auction algorithm and streamline the computations. We start with the classical shortest path

problem.

Suppose that we are given a graph with node set N , arc set A, and a length aij for each arc (i, j). In

this section, by a path we mean a sequence of nodes (i1, i2, . . . , ik) such that (im, im+1) is an arc for all

m = 1, . . . , k − 1. If in addition the nodes i1, i2, . . . , ik are distinct, the sequence (i1, i2, . . . , ik) is called a

simple path. The length of a path is defined to be the sum of its arc lengths. Assuming that all cycles

have positive length, we want to find a path of minimum length over all paths that start at a given origin

(node 1) and end at a given destination (node t).

17

t = 4

3'

5

2'

4

2

3

1'

0

0

3

1

4
24

2

5

t = 4
3

1

1 4

3

2

4. Auction Algorithms for Shortest Path Problems

Figure 4: A shortest path problem (the origin is 1, the destination is t = 4) and its corresponding

assignment problem. The arc lengths and the assignment costs are shown next to the arcs. A shortest path can be

associated with an optimal augmenting path that starts at 1′ and ends at t = 4. Generally, for each node i �= 1 we

introduce an “object” node i, and for each node i �= t we introduce a “person” node i′. For every arc (i, j) of the

shortest path problem with i �= t and j �= 1, we introduce the arc (i′, j) with cost aij in the assignment problem. We

also introduce the zero cost arc (i′, i) for each i �= 1, t. Given the assignment that assigns object i to person i′ for

i �= 1, t, but leaves person 1’ and object t unassigned, paths from 1 to t can be associated with augmenting paths that

start at 1′ and end at t. A shortest path from 1 to t corresponds to a shortest augmenting path from the unassigned

person 1′ to the unassigned object t. It can be shown that an augmentation along such a shortest augmenting path

gives an optimal assignment.

There is a well-known transformation that converts this problem to a particular type of assignment

problem as shown in Fig. 4. We can apply the auction algorithm to solve the equivalent problem, but

it turns out that the structure of this problem is such that the naive auction algorithm (ε = 0) works.

Assuming that all arc lengths are nonnegative, we can start the naive auction algorithm with the zero

price vector and with the assignment that assigns, for i �= 1, t, each person i′ to object i; this assignment-

price pair satisfies CS [since all arc lengths are nonnegative and the assigned arcs (i′, i) have zero cost],

but is not feasible because it leaves person 1′ and object t unassigned. It can be seen by using induction or

by tracing the steps of the naive auction algorithm that each assignment generated consists of a (possibly

empty) sequence of the form

(1′, i1), (i′1, i2), . . . , (i
′
k−1, ik),

together with the additional arcs

(i′, i), for i �= i1, . . . , ik, t;

this sequence corresponds to a path P = (1, i1, . . . , ik). As long as ik �= t, the (unique) unassigned

person in the naive auction algorithm is person i′k, corresponding to the terminal node of the path. If

ik = t, a feasible assignment results, in which case the naive auction algorithm terminates. Otherwise the

unassigned person i′k submits a bid and there are two possibilities:

(a) The best object is ik, in which case i′k−1 becomes unassigned and the path (1, i1, . . . , ik−1) corre-

sponding to the new assignment is obtained from the previous path (i, i1, i2, . . . , ik) via “contrac-

tion” by one node.

18

4. Auction Algorithms for Shortest Path Problems

(b) The best object is ik+1 �= ik, in which case the path (1, i1, . . . , ik, ik+1) corresponding to the new

assignment obtained from the previous path (1, i1, . . . , ik) via “extension” by one node.

We will now describe the naive auction algorithm directly in terms of the original shortest path problem,

properly translating (a) the preceding operations of one-node contraction or extension of a path, and (b)

the use of prices and the associated price changes of the terminal node of the path, while maintaining a

CS condition.

The Auction/Shortest Path Algorithm

The auction algorithm for shortest paths maintains at all times a simple path P = (1, i1, i2, . . . , ik). If

ik+1 is a node that does not belong to a path P = (1, i1, i2, . . . , ik) and (ik, ik+1) is an arc, extending P

by ik+1 means replacing P by the path (1, i1, i2, . . . , ik, ik+1), called the extension of P by ik+1. If P does

not consist of just the origin node 1, contracting P means replacing P by the path (1, i1, i2, . . . , ik−1).

The algorithm maintains also a price vector p satisfying together with P the following property

pi ≤ aij + pj, ∀ (i, j) ∈ A, (22a)

pi = aij + pj, for all pairs of successive nodes i and j of P , (22b)

which is referred to as complementary slackness (CS for short). This condition can be related to the

CS condition for the equivalent assignment problem as well as to CS conditions for a formulation of the

shortest path problem as a minimum cost flow problem (see [Ber91a], Section 1.3).

It can be shown that if a pair (P, p) satisfies the CS conditions, then the portion of P between node 1

and any node i ∈ P is a shortest path from 1 to i, while p1 −pi is the corresponding shortest distance. To

see this, note that by Eq. (22b), pi − pk is the length of the portion of P between i and k, and every path

connecting i to k must have length at least equal to pi − pk [add Eq. (22a) along the arcs of the path].

We assume that an initial pair (P, p) satisfying CS is available. This is not a restrictive assumption when

all arc lengths are nonnegative, since then one can use the default pair

P = (1), pi = 0, ∀ i.

The algorithm proceeds in iterations, transforming a pair (P, p) satisfying CS into another pair satis-

fying CS. At each iteration, the path P is either extended by a new node or else contracted by deleting

its terminal node. In the latter case the price of the terminal node is increased strictly. A degenerate

case occurs when the path consists by just the origin node 1; in this case the path is either extended or

is left unchanged with the price ps being strictly increased. The iteration is as follows.

Typical Iteration of the Auction/Shortest Path Algorithm

Let i be the terminal node of P . If

pi < min
(i,j)∈A

{
aij + pj

}
,

go to Step 1; else go to Step 2.

19

4. Auction Algorithms for Shortest Path Problems

Step 1 (Contract path): Set

pi := min
(i,j)∈A

{
aij + pj

}
,

and if i �= 1, contract P . Go to the next iteration.

Step 2 (Extend path): Extend P by node ji where

ji = arg min
(i,j)∈A

{
aij + pj

}
.

If ji is the destination t, stop; P is the desired shortest path. Otherwise, go to the next iteration.

Note that following an extension (Step 2), P is a simple path from 1 to ji; if this were not so, then

adding ji to P would create a cycle, and for every arc (i, j) of this cycle we would have pi = aij + pj . By

adding this condition along the cycle, we see that the cycle should have zero length, which is not possible

by our assumptions.

There is an interesting interpretation of the CS conditions in terms of a mechanical model [Min57].

Think of each node as a ball, and for every arc (i, j) ∈ A, connect i and j with a string of length aij .

(This requires that aij = aji > 0, which we assume for the sake of the interpretation.) Let the resulting

balls-and-strings model be at an arbitrary position in three-dimensional space, and let pi be the vertical

coordinate of node i. Then the CS condition pi − pj ≤ aij clearly holds for all arcs (i, j), as illustrated in

Fig. 5(b). If the model is picked up and left to hang from the origin node (by gravity – strings that are

tight are perfectly vertical), then for all the tight strings (i, j) we have pi − pj = aij , so any tight chain of

strings corresponds to a shortest path between the endnodes of the chain, as illustrated in Fig. 5(c). In

particular, the length of the tight chain connecting the origin node 1 to any other node i is p1 − pi and is

also equal to the shortest distance from 1 to i. (This result is essentially the well-known min path/max

tension theorem; see e.g. [Roc84], [Ber91a].)

The auction/shortest path algorithm can also be interpreted in terms of the balls-and-strings model; it

can be viewed as a process whereby nodes are raised in stages as illustrated in Fig. 6. Initially all nodes

are resting on a flat surface. At each stage, we raise the last node in a tight chain that starts at the origin

to the level at which at least one more string becomes tight.

When there is a single origin and multiple destinations, the algorithm can be applied with virtually no

change. We simply stop the algorithm when all destinations have become the terminal node of the path

P at least once. We also note that the algorithm can be similarly applied to a problem with multiple

origins and a single destination, by first reversing the roles of origins and destinations, and the direction

of each arc.

The Reverse Algorithm

There are a number of ways to speed up the basic algorithm, which are described in detail in [Ber91a],

[Ber91b], and [BPS92]; see also Section 10. The most significant of these relates to a two-sided version

of the algorithm that maintains, in addition to the path P , another path R that ends at the destination.

To understand this version, we first note that in shortest path problems, one can exchange the role of

origins and destinations by reversing the direction of all arcs. It is therefore possible to use a destination-

oriented version of our algorithm that maintains a path R that ends at the destination and changes at

20

4

4

2

1

1

33

(b) (c)

1

2

3

4

1 1.5

2 3

(a)

p
1

p2

p
3

p
4

p2 = 1.5

p
4 = 0

2
1

1.5

3

2

1

1.5

2

3

Shortest path problem with
arc lengths shown next to the arcs.
Node 1 is the origin.
Node 4 is the destination.

p
1

= 2.5

p
3

= 0.5

4. Auction Algorithms for Shortest Path Problems

Figure 5: Illustration of the CS conditions for the shortest path problem. If each node is a ball, and for

every arc (i, j) ∈ A, nodes i and j are connected with a string of length aij , the vertical coordinates pi of the nodes

satisfy pi − pj ≤ aij , as shown in (b) for the problem given in (a). If the model is picked up and left to hang from the

origin node 1, then p1 − pi gives the shortest distance to each node i, as shown in (c).

each iteration by means of a contraction or an extension. This algorithm, called the reverse algorithm, is

mathematically equivalent to the earlier forward algorithm, and parallels the reverse auction algorithm

for the assignment problem discussed in the previous section.

Initially, in the reverse algorithm, R is any path ending at the destination, and p is any price vector

satisfying the CS conditions (22) together with R; for example,

R = (t), pi = 0, ∀ i,

if all arc lengths are nonnegative.

Typical Iteration of the Reverse Algorithm

Let j be the starting node of R. If

pj > max
(i,j)∈A

{
pi − aij

}
,

go to Step 1; else go to Step 2.

Step 1: (Contract path) Set

pj := max
(i,j)∈A

{
pi − aij

}
,

and if i �= t, contract R, (that is, delete the starting node j of R). Go to the next iteration.

Step 2: (Extend path) Extend R by node jx, (that is, make jx the starting node of R, preceding j), where

jx = arg max
(i,j)∈A

{
pi − aij

}
.

If jx is the origin 1, stop; R is the desired shortest path. Otherwise, go to the next iteration.

21

(b)

1

2

3

4

1

2 3

(a)

Shortest path problem with
arc lengths shown next to the arcs.
Node 1 is the origin.
Node 4 is the destination.

2 31 4

Initial position

2 3

1

4

After 1st stage

1.5

3

1

4

After 2nd stage

4

2

3

1

After 3rd stage After 4th stage

4

2

3

1

After 5th stage

2

4

2

3

1

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

2.5

3.0

4. Auction Algorithms for Shortest Path Problems

Figure 6: Illustration of the auction/shortest path algorithm in terms of the balls-and-strings model for

the problem shown in (a). The model initially rests on a flat surface, and various balls are then raised in stages. At

each stage we raise a single ball i �= t (marked by gray), which is at a lower level than the origin 1 and can be reached

from 1 through a sequence of tight strings; i should not have any tight string connecting it to another ball, which is

at a lower level, that is, i should be the last ball in a tight chain hanging from 1. (If 1 does not have any tight string

connecting it to another ball, which is at a lower level, we use i = 1.) We then raise i to the first level at which one

of the strings connecting it to a ball at a lower level becomes tight. Each stage corresponds to a contraction. The

ball i, which is being raised, corresponds to the terminal node of the path.

The reverse algorithm is most helpful when it is combined with the forward algorithm. In a combined

algorithm, initially we have a price vector p, and two paths P and R, satisfying CS together with p, where

P starts at the origin and R ends at the destination. The paths P and R are extended and contracted

according to the rules of the forward and the reverse algorithms, respectively, and the combined algorithm

terminates when P and R have a common node. Both P and R satisfy CS together with p throughout

the algorithm, so when P and R meet, say at node i, the composite path consisting of the portion of P

from 1 to i followed by the portion of R from i to t will be shortest.

Combined Forward/Reverse Auction/Shortest Path Algorithm

22

4. Auction Algorithms for Shortest Path Problems

Step 1: (Run forward algorithm) Execute several iterations of the forward algorithm (subject to the

termination condition), at least one of which leads to an increase of the origin price p1. Go to Step 2.

Step 2: (Run reverse algorithm) Execute several iterations of the reverse algorithm (subject to the

termination condition), at least one of which leads to a decrease of the destination price pt. Go to Step 1.

The combined forward/reverse algorithm can also be interpreted in terms of the balls-and-strings model

of Fig. 5. Again, all nodes are resting initially on a flat surface. When the forward part of the algorithm

is used, we raise nodes in stages as illustrated in Fig. 6. When the reverse part of the algorithm is used,

we lower nodes in stages; at each stage, we lower the top node in a tight chain that ends at the destination

to the level at which at least one more string becomes tight.

Note that the case of multiple destinations can be handled by using a separate reverse path for each

destination. One then alternates between a forward step and a reverse step as in the preceding algorithm,

while taking up cyclically different destinations in different reverse steps.

Based on experiments with randomly generated problems on a serial machine [Ber91b], the combined

forward/reverse auction/shortest path algorithm outperforms substantially its closest competitors for

problems with few destinations and a single origin (the computation time is reduced often by an order of

magnitude or more). For the case of many (or all) destinations, the algorithm apparently runs slower than

state-of-the-art label setting and label correcting methods (typical slowdown factors are of the order of

two or three). On the other hand, for the case of multiple destinations, the algorithm is better suited for

parallel computation than other shortest path algorithms. Also there is a variation of the algorithm and

has substantially improved performance for problems with many destinations. This variation is described

next.

The Auction Algorithm with Graph Reduction

Despite its excellent practical performance for problems with few destinations, the auction algorithm

has pseudopolynomial complexity; for an example see [Ber91a] and [Ber91b]. Weakly polynomial versions

of the algorithm were developed in [Ber91b] using the idea of scaling the arc lengths, but these versions did

not prove effective in practice. Strongly polynomial versions of the algorithm were obtained by Pallottino

and Scutella’ [PaS91] by adding to the extension and contraction operations a reduction operation. Here,

each time a node becomes the terminal node of the path for the first time, all its incoming arcs except the

one of the path are deleted, since they cannot be used to improve the distance to the node. The auction

algorithm thus obtained can be shown to have an O(m2) running time, where m is the number of arcs.

By using the idea of presorting the outgoing arcs of each node in order of increasing length, the running

time is reduced further to O(mn), where n is the number of nodes.

An additional advantage of graph reduction is that it allows the relaxation of the positivity assumption

on all cycle lengths to nonnegativity. The reason for requiring positive cycle lengths was to ensure that no

cycle could be formed through the process of path extension. On the other hand, with graph reduction,

every node already visited by the path has a unique (undeleted) incoming arc except for node 1, which

has no incoming arc at all. With a little thought, it can be seen that this precludes the extension of the

path to a node that is already on the path.

23

4. Auction Algorithms for Shortest Path Problems

In subsequent work by Bertsekas, Pallottino, and Scutella’ [BPS92] the graph reduction idea was

strengthened by using certain upper bounds to the node shortest distances to delete arcs more effectively.

Two algorithms were developed. The first maintains the basic simplicity of the auction algorithm given

earlier, and has O
(
n min{m, n log n}

)
running time. The second algorithm is somewhat more complex but

has an O(n2) running time. These theoretical improvements, in conjunction with efficient implementation

techniques, have resulted in substantially faster practical performance for single origin/all destination

problems. In particular, for fully dense randomly generated problems, the auction algorithm with graph

reduction has outpeformed its closest competitors [BPS92].

k Shortest Path Problems

Consider the generalization of the single origin/single destination shortest path problem, where instead

of a single path, we seek the k best paths. In other words, we want to find the shortest path, say P1,

between an origin s and a destination t, then find the shortest path P2 between s and t subject to the

condition that it be different by at least one arc from P1, then find the shortest path P3 subject to the

condition that it be different than P1 and P2, and so on up to the kth shortest path Pk. There are two

versions of this problem depending on whether the paths Pi are allowed to contain cycles or not [Law76].

Important algorithmic ideas for solving k shortest path problems are based on solving a sequence of

shortest path problems involving graphs that differ slightly from each other by a few arcs and/or nodes

[Dre69], [Law76], [Mar84], [ACM91], [AMM91]. The auction/shortest path algorithm is particularly

well suited for solving these shortest path problems for two reasons: First, it can conveniently transfer

favorable initial price information from one shortest path problem to the next, so that the solution of

each subproblem after the first is greatly expedited. Second, it requires the solution of single origin/single

destination problems, which it can solve (in forward/reverse mode) much faster than the single origin/all

destination problem that some of the existing methods must solve [ACM91], [AMM91]. At present, there

are no computational studies exploring the use of auction algorithms for k shortest path problems; this

is an interesting subject for further investigation.

k Node-Disjoint Shortest Path Problems

Let us consider another generalization of the single origin/single destination shortest path problem,

where instead of a single path, we seek k node-disjoint paths with minimum sum of lengths. Once a

supersourse node s and a supersink node t are added, the n × n assignment problem can be viewed as

a special case of this problem, where k = n. Another special case is the separable version of the three-

dimensional assignment problem, involving the optimal choice of k disjoint ordered triplets, where the

cost of a triplet (i, j, m) is of the separable form aij + ajm.

An auction algorithm for the k node-disjoint shortest path problem that bears similarity to the pre-

ceding shortest path algorithm has been developed in [BeC91]. In particular, the algorithm maintains a

price vector p together with k node-disjoint paths starting at the origin, that satisfy an ε-CS condition.

If all the paths end at the destination, the algorithm stops. Otherwise one of the paths, say P , that

does not end at the destination is either extended or contracted at its terminal node. If as a result of an

24

5. Extension to Transportation Problems

extension, P joins another path P ′ at a node j, P ′ is truncated to the portion up to the node preceding

j; the portion following j is added to P . Favorable computational results for this auction algorithm are

given in [BeC91]. Interestingly, when this algorithm is specialized to the n × n assignment problem, it

becomes identical to the original auction algorithm of Section 4, thereby illustrating vividly the relation

of the bidding mechanism of the assignment auction algorithm and the extension/contraction mechanism

of the shortest path auction algorithm.

5. EXTENSION TO TRANSPORTATION PROBLEMS

We now consider the extension of the auction algorithm to the uncapacitated transportation problem.

Here we have a bipartite graph with m sources and n sinks. The problem is the same as the assignment

problem except that the node supplies need not be 1 or −1. It has the form

maximize
∑

(i,j)∈A
aijxij

subject to∑
j∈A(i)

xij = αi, ∀ i = 1, . . . , m,

∑
i∈B(j)

xij = βj, ∀ j = 1, . . . , n,

0 ≤ xij, ∀ (i, j) ∈ A.

(23)

Here αi and βj are positive integers, which for feasibility must satisfy

m∑
i=1

αi =
n∑

j=1

βj.

We can easily convert this problem to an assignment problem by replacing each source (or sink) node

into a collection of “duplicate” persons (or objects, respectively) nodes. In particular, a source node i

with supply αi is replaced by αi persons, and a sink node j with demand βj is replaced by βj objects.

Furthermore, for each arc (i, j) we must create an arc of benefit aij connecting each person corresponding

to i with each object corresponding to j. An example is given in Fig. 7.

It is possible to solve the equivalent assignment problem by straightforward application of the auction

algorithm but there are two difficulties:

(a) The dimension of the problem is greatly increased (both the number of persons and the number

of objects become
∑m

i=1 αi).

(b) The structure of the equivalent assignment problem is such that protracted price wars are in-

evitable due to the duplicate objects and persons created by the transformation. Figure 8 provides

an example.

25

1

2

3

1

2

3

SOURCES SINKS

2

2

1

1

3

PERSONS OBJECTS

1

1'

1"

2
2'

3

1

1'

2

3

Similar Persons

Similar Objects

Similar Persons

Transportation Problem Equivalent Assignment Problem

1

1

2

3

1

2

SOURCES SINKS

1

1

1

2

3

1

1'

2

PERSONS OBJECTS
2

1

1

0

a11

a21

a31

0

0

0

0

0

a11

a11

a21
a21

a31

a31

Transportation Problem Equivalent Assignment Problem

5. Extension to Transportation Problems

Figure 7: Illustration of the conversion of a transportation problem into an assignment problem. Each

source i is transformed into αi persons (for example source 1 is transformed into persons 1 and 1′), and each sink

j is transformed into βj objects (for example sink 1 is transformed into objects 1, 1′, and 1′′). If (i, j) is an arc of

benefit aij in the transportation problem, there is an assignment arc of benefit aij connecting each of the αi persons

corresponding to i with each of the βj objects corresponding to j.

Figure 8: Typical example where a transportation problem is converted into an equivalent assignment

problem and the duplicate objects induce price wars in the auction algorithm. Here a11, a21, and a31 are much larger

than zero. The persons 1, 2, and 3 will keep on bidding up the prices of objects 1 and 1′ by 2ε increments until one

of the prices p1 or p1′ reaches or exceeds the minimum of a11, a21, and a31. (For a11 = a21 = a31 = C, this example is

the same as the one of Figs. 1-3.)

It is possible to address both of these difficulties by modifying the auction algorithm so that it takes

advantage of the special structure of assignment problems created by duplicate objects and persons

[BeC89a]. In particular, given the assignment problem, we say that two objects j and j′ are similar, and

write j ∼ j′, if they can be matched with the same persons and at equal values, that is,

B(j) = B(j′), and aij = aij′ ∀ i ∈ B(j).

26

5. Extension to Transportation Problems

We say that two persons i and i′ are similar, and write i ∼ i′, if

A(i) = A(i′), and aij = ai′j ∀ j ∈ A(i).

For each object j, the set of all objects similar to j is called the similarity class of j and is denoted M(j).

For each person i, the set of all persons similar to i is called the similarity class of i and is denoted M(i).

To get a sense of how one can deal with similarity classes, consider the auction algorithm of Section

3 applied to the assignment problem of Fig. 8. Here, person i (i = 1, 2, 3) will continue bidding for the

similar objects 1 and 1′ until both prices p1 and p1′ become at least equal to ai1, and object 2 becomes

no less attractive for person i than objects 1 and 1′. Thus ai1 may be viewed as a contention threshold to

be reached by the prices of all the similar objects before person i becomes interested in an object outside

their similarity class. The contention thresholds of an object in some similarity class can of course be

much higher than the price of the object (which by the rules of the auction algorithm, is constrained to

be within ε of the price of any other object of the same class). Suppose now that when a person bids

for an object of a similarity class he/she not only updates its price, but also updates the corresponding

contention threshold. Suppose further that the contention thresholds of all the objects of a similarity class

rise above the (essentially common) price of these objects. Then it can be seen that, without violating

ε-CS, we can raise simultaneously the prices of all the objects of the class to the minimum contention

threshold, thereby resolving the corresponding price war.

The Auction Algorithm with Similar Objects

The preceding idea can be implemented very simply in an algorithm that we call auction algorithm

with similar objects. For each object j, we maintain a contention threshold p̂j . If j is unassigned, the

contention threshold p̂j is equal to the initial price pj ; each time j is assigned to a new person i, the

contention threshold p̂j is set to ε plus the minimum level to which pj should rise before i finds an object

from a different similarity class equally attractive to j. The prices are determined by the contention

thresholds. In particular, the price of an object j is the minimum contention threshold over the objects

of the similarity class M(j) of j

pj = min
k∈M(j)

p̂k. (24)

Thus, all objects in a similarity class have the same price but possibly different contention thresholds.

More formally, the auction algorithm with similar objects is the same as the auction algorithm of

Section 4 except for one difference: in the bidding phase, an unassigned person i finds his/her best object

ji and corresponding best value on the basis of the contention thresholds,

ji = arg max
j∈A(i)

{aij − p̂j}, vi = max
j∈A(i)

{aij − p̂j}. (25)

Then i sets the contention threshold p̂ji to pji plus a bidding increment vi −wi + ε, which is based on the

second best object from a different similarity class, that is, wi is defined now

wi = max
j∈A(i), j /∈M(ji)

{aij − p̂j} (26)

27

- - - - - - - - - - - - -

- - - - - - -- - - -

- - - - - - - -

v : The value of j*, the best object
 for person ii

w : The value of the second best
 similarity class for person i

i

ε

Price increment implicit in the bid of person i
for its best object j* in the case of the regular
auction algorithm

j 1

j 2

j
3

j
4

ε

- - - - - - - - - - - - - -

- - - - - - - - - - -

The value of the second best
 object for person i

j
5 Price increment implicit in the bid of person i

for its best object j* in the case of the auction
algorithm with similar objects

Similarity class of j*
(best for person i)

Similarity class of j
(second best for
person i)

3

j*

Values aij - pj of
objects j for person i
based on contention
thresholds p

^

^ j

5. Extension to Transportation Problems

(instead of wi = maxj∈A(i), j �=ji{aij − pj}). When the contention thresholds of all objects of a similarity

class have been raised, the price of the class is also raised to the minimum contention threshold according

to Eq. (24). Note that because of the relation pj = mink∈M(j) p̂k between prices and contention thresholds,

p̂j can be replaced by pj in Eqs. (25) and (26). Thus, an unassigned person bids for the “best” object of

the “best” similarity class, but the bidding increment is now based on the contention thresholds and can

be significantly higher than the bidding increment based on prices; see Fig. 9.

Example:

For the problem of Fig. 8, if initially the object prices and the contention thresholds are zero, in the first

iteration the bidding person 1 will bid the contention threshold of object 1 to p̂1 = a11 + ε rather than ε; in the

second iteration the bidding person 2 will bid the contention threshold of object 1′ to p̂1′ = a21 + ε, so the price

of the similarity class M(1) will increase to min{a11, a21} + ε; in the third iteration, if a31 ≤ min{a11, a21} + ε,

the bidding person 3 will bid for object 2 and the auction will terminate; otherwise person 3 will bid for

either object 1 or 1′ depending on which one has the smallest contention threshold, and the person that is left

unassigned will bid for object 2 at the next iteration, thereby terminating the auction. It can thus be seen that

the auction algorithm with similar objects resolves very quickly the price wars due to the duplicate objects

corresponding to the sinks of the transportation problem (23).

Figure 9: Illustration of the bid of person i in the auction algorithm with similar objects. The object

j∗ offers the best value aij − p̂j for person i, based on the contention thresholds p̂j . However, here wi is the value

offered by the second best similarity class, rather than the value of the second best object as in the regular auction

algorithm. When the second best object belongs to the similarity class of j∗ (as in this figure), the bid of person i

will be higher in the auction algorithm with similar objects that in the regular auction algorithm.

28

6. A Generic Auction Algorithm for Minimum Cost Flow Problems

Regarding the validity of the algorithm, it can be shown that the object prices still satisfy ε-CS, and

by essentially repeating the proof of Prop. 2, it follows that the algorithm will terminate for a feasible

problem. However, it can be shown that for integer aij , the final assignment will be optimal if ε < 1/m,

where m is the number of object similarity classes rather than ε < 1/n as is the case for the auction

algorithm of Section 3; see [BeC89a], or [Ber91a], pp. 230-232, or use Prop. 10, which is proved in

Appendix 1. Thus the increased dimensionality due to the duplicate objects created by transforming the

transportation problem (23) to an assignment problem is not reflected in a corresponding reduction of

the threshold value of ε to obtain an optimal solution.

The Auction Algorithm with Similar Persons

One can further enhance the performance of the auction algorithm by taking into account the presence

of similar persons. The idea is to submit a common bid for all persons in a similarity class if at least one

person in the class is unassigned. As a result, persons in the same class do not “compete” against each

other for the same objects, and the bids submitted are higher than they would otherwise be. In effect,

the persons of the same similarity class cooperate to “compress” a price war and resolve it within one

iteration. We illustrate this idea and the corresponding auction algorithm in Fig. 10.

The idea of a common bid for a person similarity class can be combined with the previously discussed

idea of contention thresholds and the corresponding auction algorithm for similar objects. In particular,

the cooperative bid of a person similarity class is based on the contention thresholds of the objects.

With proper streamlining of the computations, one obtains an algorithm for the transportation problem

(23), which is in effect the auction algorithm for the corresponding equivalent assignment problem (cf.

Fig. 7) but with similar persons and objects properly taken into account. In this auction/transportation

algorithm, each sink j has a price pj , and each arc (i, j) that carries positive flow xij has a contention

threshold yij associated with it. The price pj is equal to the original price of the sink j if the demand of

the sink has not yet been exhausted (
∑

i∈B(j) xij < βj), and is equal to the minimum contention threshold

of the incoming arcs that carry positive flow (mini∈B(j), xij>0 yij) otherwise. The sources bid for sinks by

increasing the contention thresholds of the corresponding arcs, and a sink price increases once all of its

demand is exhausted and the associated contention thresholds have increased. As the sink prices increase,

the corresponding profits of the sources defined by

πi = max
j∈A(i)

{aij − pj} (27a)

decrease, while the ε-CS condition

πi + pj ≤ aij + ε, ∀ (i, j) ∈ A with xij > 0 (27b)

is maintained. The ε-CS conditions (27a) and (27b) extend the corresponding condition (8) for the

assignment problem. It is shown in [BeC89a] that for an integer problem, a feasible flow vector is

optimal provided that there exists a price vector p and corresponding profit vector π satisfying ε-CS with

ε < 1/ min{m, n}.

29

1

2

3

1

2

SOURCES SINKS

1

1

1

2

3

1

1'

2

PERSONS OBJECTS
2

1

1

0

a11

a12

a
22

0

0

0

0

a11

a11
a12

a21

Transportation Problem Equivalent Assignment Problem
with Similar Persons

a22

a21

a12

6. A Generic Auction Algorithm for Minimum Cost Flow Problems

Figure 10: Illustration of the auction algorithm with similar persons. In this algorithm, all the persons in

a similarity class with k persons submit bids for the k best objects for the class. The levels of the bids are such that

once the bids are accepted, the profit of each person in the class is set at ε below the profit offered by the (k+1)st best

object. In the example of the figure the similar persons result from the conversion of the transportation source 1 into

the two similar persons 1 and 1′. Consider first the case where the initial assignment is empty, all initial prices are

0, and a11 = a12 = a21 = a12 = C > 0. Then the regular auction algorithm will operate as in Fig. 2, involving a long

price war if ε is small relative to C. In the first iteration of the auction algorithm with similar persons, persons 1 and

1′ will submit a common bid of C + ε for the two best objects 1 and 2. Then person 2 will submit a bid for object 3 at

the next iteration and the algorithm will terminate, thus avoiding the price war. If instead we have a11 > a12 > 0, at

the initial iteration persons 1 and 1′ will submit a bid of a11 + ε for object 1 and a bid of a12 + ε for object 2, bringing

the net value of these objects to the value of the third object minus ε. If a12 − ε > a22 > a21 > 0, person 2 will then

submit a bid for object 3 at the next iteration and the algorithm will terminate. If a22 > a12 − ε and a22 > a21 > 0,

person 3 will submit a bid for object 2 at the second iteration, raising its price to a22 + ε; persons 1 and 1′ will then

submit another common bid for objects 1 and 3 at the third iteration, and the algorithm will terminate.

6. A GENERIC AUCTION ALGORITHM FOR MINIMUM COST FLOW PROBLEMS

We now discuss a general algorithm of the auction type for linear minimum cost flow problems, given

by D. Castañon and the author in [BeC89b] and [BeC91]; it includes as special cases the auction algorithm

for assignment and transportation problems, as well as the ε-relaxation method to be discussed in Section

7. By specializing this general algorithm to network flow problems with special structure, one may obtain

efficient methods that exploit the structure; for example, the general algorithm is the basis for the k

node-disjoint shortest path algorithm briefly described in Section 4.

We are given a directed graph with set of nodes N and set of arcs A. The number of nodes is denoted

by N and the number of arcs is denoted by A. For each arc (i, j) there an optimization variable xij ,

called the flow of arc (i, j). We denote by x the flow vector {xij | (i, j) ∈ A}. The minimum cost flow

problem that we consider is

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to

30

6. A Generic Auction Algorithm for Minimum Cost Flow Problems
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji = si, ∀ i ∈ N , (28)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A, (29)

where aij, bij , cij , and si are given integers. The problem is said to be feasible if there exists a flow vector

x satisfying the constraints (28) and (29); otherwise it is said to be infeasible.

The problem can be converted into an equivalent transportation problem as shown in Fig. 11. It is

thus possible to use this equivalence to transcribe the auction/transportation ideas of the previous section

into the minimum cost flow context. In particular, let us first derive the appropriate form of ε-CS.

In reference to the equivalent transportation problem of Fig. 11, let us denote by λij the price of the

sink corresponding to arc (i, j), and let us denote by pi the profit of the source corresponding to node i.

By Eq. (27a) (with aij replaced by −aij to account for the change from maximization to minimization),

we have

pi + λij ≥ 0, pj + λij ≥ −aij, for all (i, j) ∈ A. (30)

Let us assume that throughout the auction the total incoming flow to the sink corresponding to arc (i, j)

along the two transportation arcs
(
j, (i, j)

)
and

(
i, (i, j)

)
is equal to the demand cij − bij ; for any initial

set of pi, it is possible to enforce this condition while preserving ε-CS by selecting the initial λij to be

λij = min{−pi,−pj − aij}. Then, by Eq. (27b) we also have

pi + λij ≤ ε for all (i, j) ∈ A with xij < cij, (31a)

pj + λij ≤ −aij + ε for all (i, j) ∈ A with bij < xij. (31b)

From Eqs. (30) and (31a), we obtain pj + aij ≥ −λij ≥ pi − ε if xij < cij , so that

pi − pj ≤ aij + ε for all (i, j) ∈ A with xij < cij. (32a)

Also from Eqs. (30) and (31b), we obtain pi ≥ −λij ≥ aij + pj − ε if bij < xij , so that

pi − pj ≥ aij − ε for all (i, j) ∈ A with bij < xij. (32b)

We say that a flow-price pair (x, p) satisfies ε-complementary slackness (ε-CS for short) if x satisfies

the arc flow bounds (29), and Eqs. (32a) and (32b) hold; see Fig. 12. The following proposition parallels

Prop. 1 for the assignment problem and is proved in more general form in Appendix 1 (cf. Prop. 10).

Proposition 6: If x is feasible, and for some price vector p, the pair (x, p) satisfies ε-CS with ε < 1/N

(N is the number of nodes), then x is optimal for the minimum cost flow problem (MCF).

To develop auction algorithms for the minimum cost flow problem, we draw motivation from auction

algorithms for the equivalent transportation problem, and the associated assignment problem with similar

objects and persons. The notion of a bid by a single source and the associated increase of flow along the

best outgoing arc can be transcribed in the context of the minimum cost problem as a flow increase by

a single node along the “best” outgoing arcs or a flow reduction by a node along the “best” incoming

31

. . .
. . .

(i,j)

j

c - bijij

SINKS
(Arcs of original
network)

SOURCES
(Nodes of original
network)

. .
 .

. .
 .

Cost Coeff. = 0i

j Cost Coeff. = -a ij

cim∑
m

- b∑
m

 - si

cjm∑
m

 - b∑
m

 - sj

im

jm

0

aij

b ij cij x ij

p jpi -

ε

ε

6. A Generic Auction Algorithm for Minimum Cost Flow Problems

Figure 11: Transformation of a minimum cost flow problem into a transportation problem of the

form (23). We take as sinks of the transportation problem the arcs of the original network, and as sources of the

transportation problem the nodes of the original network. Each transportation problem sink has two incoming arcs

with cost coefficients as shown. The demand of each transportation problem sink is the feasible flow range length of

the corresponding original network arc. The demand of each transportation problem source is the sum of the feasible

flow range lengths of the outgoing arcs from the corresponding original network node minus the supply of that node,

as shown. An arc flow xij in (MCF) corresponds to flows equal to xij −bij and cij −xij on the transportation problem

arcs
(
j, (i, j)

)
and

(
i, (i, j)

)
, respectively.

Figure 12: Illustration of ε-CS. All pairs of arc flows xij and price differences pi − pj should either lie on

the thick lines or in the shaded area between the thick lines.

32

6. A Generic Auction Algorithm for Minimum Cost Flow Problems

arcs (cf. Fig. 11). These flow modifications could also be followed by an increase of the node price, while

maintaining the ε-CS condition. Since in the context of the transportation algorithm we used notions of

cooperative bids by several nodes, it also makes sense in the corresponding minimum cost flow context

to consider simultaneous price increases by several nodes.

Motivated by these associations, we now introduce some computational operations that will constitute

the building blocks for a general auction algorithm for the minimum cost flow problem. Each of the

following definitions assumes that (x, p) is a flow-price vector pair satisfying ε-CS.

Definition 1: An arc (i, j) is said to be ε+-unblocked if

pi = pj + aij + ε, xij < cij.

An arc (j, i) is said to be ε−-unblocked if

pi = pj − aji + ε, bji < xji.

The push list of a node i, denoted Pi, is the (possibly empty) set of the arcs (i, j) that are ε+- unblocked,

and the arcs (j, i) that are ε−-unblocked.

In the subsequent algorithms, flow is allowed to increase only along ε+-unblocked arcs and is allowed to

decrease only along ε−-unblocked arcs. The next definition specifies the type of flow changes considered.

Definition 2: For an arc (i, j) [or arc (j, i)] of the push list Pi of node i, let δ be a scalar such that

0 < δ ≤ cij − xij (0 < δ ≤ xji − bji, respectively). A δ-push at node i on arc (i, j) [(j, i), respectively]

consists of increasing the flow xij by δ (decreasing the flow xji by δ, respectively), while leaving all other

flows, as well as the price vector unchanged.

It is evident from the definitions that a δ-push preserves ε-CS. The next operation consists of raising

the prices of a subset of nodes by the maximum common increment γ for which ε-CS will not be violated.

Definition 3: A price rise of a nonempty, strict subset of nodes I (i.e., I �= ∅, I �= N), consists of

leaving unchanged the flow vector x and the prices of nodes not belonging to I, and of increasing the

prices of the nodes in I by the amount γ given by

γ =
{

min{S+ ∪ S−}, if S+ ∪ S− �= ∅,
0, if S+ ∪ S− = ∅,

(33)

where S+ and S− are the sets of scalars given by

S+ = {pj + aij + ε − pi | (i, j) ∈ A such that i ∈ I, j /∈ I, xij < cij}, (34)

S− = {pj − aji + ε − pi | (j, i) ∈ A such that i ∈ I, j /∈ I, xji > bji}. (35)

It can be verified using the definitions that a price rise maintains ε-CS. Note that every scalar in the

sets S+ and S− of Eqs. (34) and (35) is nonnegative by the ε-CS conditions (32a) and (32b), respectively,

so the scalar γ is nonnegative. If γ > 0, the price rise is said to be substantive and if γ = 0, the price

33

6. A Generic Auction Algorithm for Minimum Cost Flow Problems

rise is said to be trivial . (A trivial price rise changes neither the flow vector nor the price vector; it is

introduced to facilitate the presentation.)

In the case where the subset I consists of a single node i, a price rise of the singleton set {i} is also

referred to as a price rise of node i. A price rise of a single node i is substantive if and only if the set

S+ ∪ S− is nonempty but the push list of i is empty. It can be shown that, for a feasible problem, if the

push list of a node i is empty, then the set S+ ∪ S− must be nonempty.

The Generic Algorithm

The generic algorithm to be described shortly consists of a sequence of δ-push and price rise operations.

The order of execution of these operations is subject to very mild restrictions, thus allowing a great deal

of flexibility to exploit the structure of the problem at hand.

Suppose that the minimum cost flow problem (MCF) is feasible, and consider a pair (x, p) satisfying

ε-CS. For a given flow vector x, let us define the surplus gi of node i as the difference of the total flow

coming into i and the total flow coming out of i, that is,

gi =
∑

{j|(j,i)∈A}
xji −

∑
{j|(i,j)∈A}

xij + si.

Consider a node i with gi > 0. There are two possibilities:

(a) The push list of i is nonempty, in which case a δ-push at node i is possible.

(b) The push list of i is empty, in which case, as mentioned earlier, the price rise of node i will be

substantive.

Thus, if gi > 0 for some i and the problem is feasible, then either a δ-push or a substantive price rise

is possible at node i. Furthermore, since following a price rise at a node i, the push list of i will be

nonempty [see Eqs. (33)-(35)], for a feasible problem a δ-push is always possible at a node i with gi > 0,

possibly following a price rise at i.

The preceding observations form the basis for a method, called generic algorithm, which uses a fixed

positive value of ε, and starts with a pair (x, p) satisfying ε-CS. The algorithm terminates when gi ≤ 0 for

all nodes i; otherwise it continues to perform iterations. Each iteration consists of a sequence of δ-pushes

and price rises, including at least one δ-push, as described below.

Typical Iteration of the Generic Algorithm

Perform in sequence and in any order a finite number of δ-pushes and price rises; there should be at least one

δ-push but not necessarily at least one price rise. Furthermore:

(1) Each δ-push should be performed at some node i with gi > 0, and the flow increment δ must satisfy

δ ≤ gi.

(2) Each price rise should be performed on a set I with gi ≥ 0 for all i ∈ I.

The following proposition, proved in [BeC89b], [BeC91], and [Ber91a], establishes the validity of the

generic algorithm.

34

7. The ε-Relaxation Method

Proposition 7: Assume that the minimum cost flow problem (MCF) is feasible. If the increment δ of

each δ-push is integer, then the generic algorithm terminates with a pair (x, p) satisfying ε-CS. The flow

vector x is feasible, and is optimal if ε < 1/N .

The idea of the proof is that δ-pushes cannot be indefinitely performed without some intermediate

substantive price rises. Thus if the algorithm does not terminate, the prices of some nodes with positive

surplus must increase to infinity, while the prices of some other nodes with negative surplus remain at

their initial level. With some thought, it can be seen that this implies that for a feasible problem, ε-CS

must be violated, leading to a contradiction.

If the problem is infeasible, the algorithm may not terminate. One way to deal with infeasibility is to

convert the problem to one that is guaranteed to be feasible by introducing artificial high-cost arcs. The

appropriate level of cost can be quantified similar to the case of assignment problems; see Eqs. (11) and

(12), and [Ber91a].

7. THE ε-RELAXATION METHOD

The price rise operations of the generic algorithm may involve several nodes. When we require that

only one node is involved in each price rise, we obtain the ε-relaxation method first proposed by the

author in [Ber86a] and [Ber86b], and described in this section.

We use a fixed positive value of ε and we start with a pair (x, p) satisfying ε-CS. Furthermore, the

starting arc flows are integer; the algorithm preserves the integrality of the arc flows. At the start of a

typical iteration we have a flow-price vector pair (x, p) satisfying ε-CS and we select a node i with gi > 0;

if no such node can be found, the algorithm terminates. During the iteration we perform several δ-pushes

and prise rises involving node i.

Typical Iteration of the ε-Relaxation Method

Select a node i with gi > 0. If no such node exists, terminate the algorithm; else go to Step 1.

Step 1: If the push list of node i is empty go to Step 3; else select an arc a from the push list of i and go to

Step 2.

Step 2: Let j be the end-node of arc a, which is opposite to i. Let

δ =

{
min{gi, cij − xij} if a = (i, j),

min{gi, xji − bji} if a = (j, i).
(36)

Perform a δ-push of i on arc a. If as a result of this operation we obtain gi = 0, go to Step 3; else go to Step 1.

Step 3: Perform a price rise of node i. If gi = 0 stop; else go to Step 1.

It is straightforward to verify that the ε-relaxation method is a special case of the generic algorithm

of Section 6 to which Prop. 7 applies. As a result, for a feasible problem, the algorithm terminates

with a pair (x, p) satisfying ε-CS; the flow x is optimal if ε < 1/N . Similar to assignment problems, it is

possible to use ε-scaling in conjunction with the method, and this is frequently essential for good practical

performance.

35

9. Extension to Asymmetric Assignment Problems

The computational complexity of the unscaled version of the ε-relaxation method was first studied in

[Ber86a]. The complexity of the scaled version was first studied in [Gol87], where particularly favorable

polynomial running time estimates were derived; see [BeE87], [BeE88], [GoT90] for additional results

along these lines.

8. APPLICATION OF THE ε-RELAXATION METHOD TO MAX-FLOW PROBLEMS

The ε-relaxation method can be applied to the max-flow problem, once this problem is converted to

the minimum cost flow format, involving a feedback arc connecting the sink with the source, and having

cost −1 as shown in Fig. 13. Because of the small cost range one can often forego ε-scaling here, while still

maintaining polynomial complexity [O(N 3) or even better with appropriate implementation]. In practice

one can also typically forego ε-scaling, but some additional computational tricks are needed to nullify the

effects of price wars; see Section 10.5.

If ε–scaling is not used, one can change the cost of the feedback arc (t, s) to ats = −(N + 1) and use

ε = 1 throughout. When this is done, the ε-relaxation method bears a close resemblance with a max-flow

algorithm first proposed in [Gol85] and [GoT86], and often called “push-relabel” algorithm. This latter

max-flow algorithm was derived from a different point of view that is unrelated to duality or ε-CS. It

uses node “labels,” which in the context of the ε-relaxation approach can be viewed as prices. The max-

flow version of the ε-relaxation method, first given in [Ber86a], [Ber86b], is simpler than the algorithm

of [Gol85] and [GoT86] in that it obtains a maximum flow in one phase rather than two (single phase

versions were also given later by several other authors; see [AMO89]). It can also be initialized with

arbitrary prices, whereas in the max-flow algorithm of [Gol85], [GoT86] the initial prices must satisfy

pi ≤ pj + 1 for all arcs (i, j). This can be significant, for example if one wants to use scaling or more

generally, in a reoptimization setting where one wants to capitalize on the results of the solution of a

slightly different max-flow problem. Related max-flow algorithms and their computational complexity

are discussed in [AhO86], [AMO89], [ChM89], and [MPS91].

9. EXTENSION TO ASYMMETRIC ASSIGNMENT PROBLEMS

A slight variation of the auction algorithm can be used for asymmetric assignment problems where

the number of persons is m and the number of objects is n with m < n, while there is a requirement

that each person be assigned to some object. To solve this problem, the auction algorithm need only be

modified in the choice of initial conditions; it is sufficient to require that all initial prices be zero, as was

noted in the original paper [Ber79].

Unfortunately, this approach to the asymmetric assignment problems has a deficiency: since the initial

object prices must be zero, the use of ε-scaling is impossible. As a result the method is susceptible

to “price wars” and the associated long running times. To address this difficulty, one may convert the

asymmetric problem to a symmetric one by adding n − m artificial persons that can be assigned to any

36

9. Extension to Asymmetric Assignment Problems

Figure 13: The max-flow problem and its minimum cost flow representation. Here there are two special

nodes: the source (s) and the sink (t). The objective is to push as much flow as possible from s into t while observing

the arc capacity constraints. We introduce an artificial arc (t, s) with cost −1 and very large upper flow bound and

we assign cost zero to all other arcs. At the optimum, the flow xts equals the maximum flow that can be sent from s

to t through the original graph.

object at zero cost. This introduces an undesirable increase in the problem’s dimension. One could

use the auction algorithm with similar persons of Section 5 to allow ε-scaling while taking advantage

of the structure induced by the artificial persons. Nonetheless, the indirect approach of converting an

asymmetric assignment problem into a symmetric one has not seen much use. We now discuss a direct

and probably more effective auction approach for asymmetric assignment problems.

Reverse Auction for Asymmetric Assignment Problems

It is possible to use reverse auction in conjunction with forward auction to provide asymmetric as-

signment algorithms that use ε-scaling. We first introduce the proper form of the ε-CS condition for an

assignment S and a pair (π, p). The following proposition, proved in [BCT91], parallels Prop. 1 for the

symmetric assignment problem.

Proposition 8: If a feasible assignment S and a pair (π, p) satisfy the conditions

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (37a)

πi + pj = aij, ∀ (i, j) ∈ S, (37b)

pj ≤ min
k: assigned under S

pk, ∀ j : unassigned under S, (37c)

then S is within mε of being optimal for the asymmetric assignment problem.

Consider now trying to solve the asymmetric assignment problem by means of auction. We can start

with any assignment S and pair (π, p) satisfying the first two ε-CS conditions (37a) and (37b), and

perform a forward auction (as defined earlier for the symmetric assignment problem) up to the point

37

9. Extension to Asymmetric Assignment Problems

where each person is assigned to a distinct object. For a feasible problem, it can be seen that this will

yield, in a finite number of iterations, a feasible assignment S satisfying the first two conditions (37a)

and (37b). This assignment may not be optimal because the prices of the unassigned objects may not be

minimal, that is, they may not satisfy the third ε-CS condition (37c). Roughly, what is happening here is

that forward auction cannot resolve whether the objects that were left unassigned upon termination are

intrinsically “undesirable” because they offer relatively low benefit to the persons, or whether they were

left unassigned because their initial prices were high relative to the initial prices of the assigned objects.

To resolve this dilemma, we use a modified form of reverse auction to lower the prices of the objects that

were left unassigned upon termination of the forward auction. After several reverse auction iterations in

which persons may be reassigned to other objects, the third condition (37c) is satisfied. The assignment

thus obtained can be shown to satisfy all the ε-CS conditions (37a)-(37c) and by Prop. 8, is optimal

within mε (and strictly optimal if the problem data are integer and ε < 1/m).

The modified reverse auction starts with a feasible assignment S and with a pair (π, p) satisfying the

first two ε-CS conditions (37a) and (37b). (For a feasible problem, such an S and (π, p) can be obtained

by regular forward or reverse auction, as discussed earlier.) Let us denote by λ the minimal assigned

object price under the initial assignment,

λ = min
j: assigned under the initial assignment S

pj.

The typical iteration of modified reverse auction is the same as the one of reverse auction, except that

only unassigned objects j with pj > λ participate in the auction. In particular, the algorithm maintains a

feasible assignment S and a pair (π, p) satisfying Eqs. (37a) and (37b), and terminates when all unassigned

objects j satisfy pj ≤ λ, in which case it will be seen that the third ε-CS condition (37c) will be satisfied

as well. The scalar λ will be kept fixed throughout the algorithm.

Typical Iteration of Modified Reverse Auction for Asymmetric Assignment

Select an object j that is unassigned under the assignment S, and satisfies pj > λ (if no such object can be

found, the algorithm terminates). Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (38)

and find

ωj = max
i∈B(j),i�=ij

{aij − πi}. (39)

[If ij is the only person in B(j), we define ωj to be −∞.] If λ ≥ βj − ε, set pj := λ and go to the next iteration.

Otherwise, let

δ = min{βj − λ, βj − ωj + ε}. (40)

Set

pj := βj − δ, (41)

38

10. Practical Computational Aspects of Auction Algorithms

πij := πij + δ, (42)

add to the assignment S the pair (ij , j), and remove from S the pair (ij , j
′), where j ′ is the object that was

assigned to ij under S at the start of the iteration.

Note that the formula (42) for the bidding increment δ is such that the object j enters the assignment

at a price which is no less than λ [and is equal to λ if and only if the minimum in Eq. (42) is attained

by the first term]. Furthermore, we have δ ≥ ε (when δ is calculated, that is, when λ < βj − ε), so it

can be seen from Eqs. (41) and (42) that throughout the algorithm, prices are monotonically decreasing

and profits are monotonically increasing. The following proposition, first proved in [BCT91] (see also

[Ber91a]) asserts the validity of the method.

Proposition 9: The modified reverse auction algorithm for the asymmetric assignment problem ter-

minates in a finite number of iterations and the assignment obtained is within mε of being optimal.

As mentioned earlier, forward auction followed by modified reverse auction can start with arbitrary

initial prices. As a result, one can use ε-scaling, performing a sequence of auctions with decreasing values

of ε. Out of several possible variations of the method, the one found most effective in [BCT91] is to use

the modified reverse auction only in the last ε-scaling phase. In all other ε-scaling phases, forward auction

is used exclusively. There are also alternative algorithms for the asymmetric assignment problems that

switch between the forward and the reverse methods within each ε-scaling phase; see [BeC92].

Forward/Reverse Auction for Other Types of Inequality Constrained Problems

Reverse auction can also be used to solve the variation of the two-sided inequality constrained assign-

ment problem, where persons (as well as objects) need not be assigned if this degrades the assignment’s

total benefit. This problem can be converted to an asymmetric assignment problem where all persons

must be assigned by introducing for each person i an artificial object i′ and a zero benefit pair (i, i′). One

can then use the algorithm given earlier to solve this problem. The algorithm can be streamlined so that

the calculations involving the artificial objects and pairs are handled efficiently.

Finally, a class of interesting assignment-like problems, called multiassignment problems, can be solved

efficiently by using combined forward/reverse auction ideas; see [BCT91]. In these problems, persons can

be assigned to more than one object and objects can be assigned to more than one person simultaneously

(the number of assignments for each person and object may or may not be subject to an upper bound).

10. PRACTICAL COMPUTATIONAL ASPECTS OF AUCTION ALGORITHMS

In this section we provide an overview of the computational aspects of auction algorithms concentrating

primarily on the case of the assignment problem. Generally, at present, it appears that for simple problems

such as assignment, shortest path, and max-flow, auction algorithms are at least competitive and often

far superior to the classical methods. For problems with more complex structure, auction algorithms

39

10. Practical Computational Aspects of Auction Algorithms

have yet to match the performance of their closest competitors such as primal simplex, primal-dual, and

relaxation methods. Generally, however, auction algorithms are better suited for parallel computation.

10.1. Assignment Problems

In practice, the auction algorithm has proved very effective for assignment problems. Computational

studies [BCT91], [BeE88] have shown that it is often substantially faster than its closest competitors,

particularly for sparse problems. The speedup factor typically increases with the problem size. As the

problem density increases the speedup factor tends to decrease and for fully dense problems the auction

algorithm is roughly competitive to methods that combine the primal-dual (or sequential shortest path

method) with an extensive initialization procedure based on the naive auction algorithm of Section 2

[Ber81], [JoV87]. A recent extensive computational study [Cas92] explores the behavior of various auction

algorithms for randomly generated problems with a broad variety of different structures.

Adaptive ε-Scaling

There are a number of variations of the ε-scaling technique, which are aimed at improving compu-

tational efficiency. There are many types of problems, where ε-scaling is essential because of the high

likelihood of price wars. There are also other types of problems for which price wars are highly unlikely

and it is better to either forego ε-scaling altogether or implement it “aggressively,” that is, reduce ε very

quickly to its ultimate value. This motivates scaling techniques, known collectively as adaptive scaling ,

where ε is reduced “aggressively” or “conservatively” based on the method’s progress.

One type of adaptive scaling uses two values of ε within each scaling phase, the ceiling value denoted by

ε, and the current value denoted by ε. The ceiling value ε is kept constant within each scaling phase and is

reduced at the end of the phase [up to an ultimate value of 1/(n+1)]. The current value ε is the one used

in the bidding increment γi = wi − vi + ε [cf. Eq. (9)], and may change within the range [1/(n + 1), ε]. If

the current value coincides with the ceiling value, the standard form of (nonadaptive) scaling is obtained.

Scaling becomes truly adaptive if ε is started at a relatively small value [such as 1/(n+1)] and is gradually

increased according to various criteria towards the ceiling value ε. For example, ε may be kept constant as

long as a new pair is added to the assignment within a fixed number of iterations, and may be gradually

increased otherwise.

Adaptive scaling may also be useful when high-cost artificial pairs are introduced to guarantee that

the problem is feasible as described earlier. Because of these pairs, the cost range of the problem is

greatly expanded, thereby potentially increasing the number of scaling phases. On the other hand, the

high-cost pairs are superfluous when the problem is feasible, and one may use a form of adaptive scaling

to recognize this case and accordingly reduce ε to the appropriate levels.

Generally, the effective use of adaptive scaling requires some ingenuity and trial-and-error, as well as

a fair amount of intuition into the structure of the problem at hand.

The Problem of Integer Overflow

If the benefits aij are integer, the auction algorithm can in most cases be executed using integer

40

10. Practical Computational Aspects of Auction Algorithms

arithmetic. The most common way to do this is to use integer starting prices, to multiply aij with

(n + 1), and then to use integer values of ε and a final value of ε = 1. The generated prices and other

quantities will then be integer. There is a potential difficulty however: some prices may become large

enough to exceed the integer range of the computer. In particular, from Eq. (10) we see that an upper

bound for pj is of the order of n2 max(i,j)∈A |aij | [since aij has been multiplied by (n+1) to work with integer

arithmetic], which is large enough to lie outside the integer range of many computers even for moderate

values of n. To remedy this situation one may store the prices in floating point format (preferably double

precision) and use floating point arithmetic to execute the price update calculations, while using integer

arithmetic for all other computations. In some experiments reported in [Cas92] it was observed that this

involves a slowdown of the practical running time of the algorithm by a factor of no more than two. Thus

it appears that the difficulty of integer overflow can be effectively addressed at a relatively small cost.

The “Third Best” Implementation

Frequently in the auction algorithm the two best objects for a given person do not change between

two successive bids of that person. This motivates an implementation idea (developed by the author

in collaboration with H. Tsaknakis – unpublished) that attempts to exploit this fact by using a test to

check whether the two best objects from the previous bid continue to be best. If the test is passed, the

computation of the values aij − pj of the remaining objects j is unnecessary.

Consider an auction algorithm iteration when we calculate the bid of the person i on the basis of

a price vector p. Suppose that in addition to the best value vi = maxj∈A(i){aij − pj}, the best object

j1 = arg maxj∈A(i){aij − pj}, and the second best value wi = maxj∈A(i), j �=j1{aij − pj}, we compute:

(a) The second best object

j2 = arg max
j∈A(i), j �=j1

{aij − pj}.

(b) The third best value

yi = max
j∈A(i), j �=j1, j �=j2

{aij − pj}.

Consider now a subsequent iteration where person i bids based on an updated price vector p ≥ p. If we

have

aij1 − pj1
≥ yi (43)

and

aij2 − pj2
≥ yi, (44)

it can be seen that j1 and j2 continue to be the two best objects for i. The reason is that the object prices

cannot decrease in the course of the algorithm, implying that yi ≥ aij − pj of all j other than j1 and j2.

As a result, if the tests (43) and (44) are passed, we can forego the calculation of the values aij −pj for the

objects j other than j1 and j2. If on the other hand one of the tests (43) and (44) is violated, we cannot

make any inference regarding the best and second best objects; we must then exhaustively compare the

values of all objects j ∈ A(i), and compute the best, second best, and third best values. Computational

41

10. Practical Computational Aspects of Auction Algorithms

experience has shown that the savings in the calculation of object values whenever the tests (43) and

(44) are passed far outweigh the overhead for maintaining the third best values yi, and for performing

the tests (43) and (44). This is particularly so when the problem is fairly dense, so that the set A(i) has

many objects.

Parallel and Asynchronous Implementation

Both the bidding and the assignment phases of the auction algorithm are highly parallelizable. In

particular, the bids can be computed simultaneously and in parallel for all persons participating in the

auction. Similarly, the subsequent awards to the highest bidders can be computed in parallel by all

objects that received a bid. Furthermore, the bid of a single person can be computed cooperatively

by several processors in parallel. There have been several implementations of the auction algorithm in

parallel shared memory machines [BeC89c], [KKZ89], [Zak90], and in SIMD machines [PhZ88], [CSW89],

[WeZ90], [WeZ91]. If there is strict temporal separation between the bid calculation phase and the highest

bidder award phase, the implementation is said to be synchronous. In such an implementation, there are

two basic methods to parallelize the bidding phase for the set I of unassigned persons that submit a bid,

and a third method which is a combination of the other two. Let p be the number of processors:

(a) Parallelization across bids (or Jacobi parallelization): Here the calculations involved in the bid of

each person i ∈ I are carried out by a single processor. If the number of persons in I, call it |I|,
exceeds the number of processors p, some processors will execute the calculations involved in more

than one bid. If |I| < p, then p − |I| processors will be idle during the bidding phase, thereby

reducing efficiency. (This will typically happen in the late stages of the algorithm.)

(b) Parallelization within a bid (or Gauss-Seidel parallelization): Here the set I consists of a single

person i. The calculations involved in the bid of person i are shared by the p processors of the system.

Thus the set of admissible objects A(i) is divided in p groups of objects A1(i), A2(i), . . . , Ap(i)

[assuming the number of processors is less than the number of objects in A(i); otherwise some of

the processors will be left idle]. The best object, best value, and second best value are calculated

within each group in parallel by a separate processor. After these calculations are completed (a

synchronization of the processors is required to check this) the results are “merged” by one of the

processors who finds the best value over all best group values, while simultaneously computing

the corresponding best object and bid increment. (It is possible to do the merging in parallel

using several processors, but in the absence of special SIMD-type hardware, this may be inefficient,

particularly when the number of processors is small, because of the extra synchronization and other

overhead involved.) The drawback of this method over the preceding one is that it typically requires

a larger number of iterations, since each iteration involves a single person. This is significant

because even though each Gauss-Seidel iteration may take less time because it is executed by

multiple processors in parallel, the synchronization overhead is roughly proportional to the number

of iterations.

(c) Hybrid approach (or block Gauss-Seidel parallelization): In this approach, the bid calculations of

each person are parallelized as in the preceding method, but the number of processors used per bid

42

10. Practical Computational Aspects of Auction Algorithms

is s, where 1 < s < p. Thus we can compute the bids of roughly p/s persons in parallel, assuming

enough unassigned persons are available for the iteration. With proper choice of s, this method

combines the best features and alleviates the drawbacks of the preceding two.

Once the bidding phase of an iteration is completed (a synchronization point), the assignment phase is

executed. This phase may be carried out by a single processor. It is also possible to consider using multiple

processors to execute the assignment phase in parallel, but the potential gain from parallelization may be

modest while the associated overhead may more than offset this gain, as suggested by one computational

study [BeC89c] that used a shared memory machine.

There are also totally asynchronous implementations of the auction algorithm, which are interesting

because they are quite flexible and may also result in faster solution. To our knowledge, all parallel

asynchronous implementations of the auction algorithm todate have used a shared memory machine. In

one such implementation [BeC89c], the bidding and merging calculations of the Gauss-Seidel method are

divided in tasks, which are organized in a first in – first out queue. When a processor becomes free it

starts executing the top task of the queue, if the queue is nonempty, and otherwise it checks whether

a termination condition is satisfied. The algorithm stops when all processors encounter the termination

condition.

Similar to the synchronous block Gauss-Seidel implementation, each set of admissible objects A(i) is

divided in s groups of objects A1(i), . . . , As(i). The calculation of the bid of a person i is divided in s

tasks. The first s−1 tasks are search tasks involving the groups of objects A1(i), . . . , As−1(i). To perform

one of these tasks, a processor must calculate and store in memory the best value, second best value,

and best object within the corresponding object group. The sth task starts with a search and memory

storage of the best value, second best value, and best object within the group As(i), and following this,

it completes the bid of person i by merging the individual group search results, that is, by finding the

best object and bid for person i based on the currently stored group results. The sth task also includes

raising the price of the best object and changing the assignment of the object (assuming the calculated

bid is larger than the best object’s price by at least ε).

There are two sources of asynchronism here. First, it is possible for some prices to be changed between

the time a search task is completed and the time the results of that task are used to calculate a person

bid. Second, it is possible that the merging task of a person’s bid is carried out before some of the

search tasks associated with that bid are completed. In both cases the bid may reflect out-of-date price

information and may prove ineffective in that it yields a bid that does not exceed the corresponding best

object’s price by at least ε (if this occurs, one should simply cancel the bid and forego the corresponding

update of the object’s price and assignment).

The advantage of the asynchronous implementation is that processors do not remain idle waiting to get

synchronized with other processors or waiting for merging tasks to be completed. A careful formulation

of the totally asynchronous model, and a proof of its validity is given in [BeC89c], which includes also

extensive computational results on a shared memory machine, confirming the advantage of asynchronous

over synchronous implementations.

Computational experience so far suggests that generally, because of the typically prolonged “endgame”

of the auction algorithm, where only a small percentage of the persons remains unassigned, the speedup

43

10. Practical Computational Aspects of Auction Algorithms

that can be obtained by Jacobi parallelization is relatively modest (in the order of three to six). The

attainable speedup for Gauss-Seidel parallelization or hybrid schemes is potentially higher, particularly

when the problem is dense, and also when special hardware with vector processing capabilities are used.

10.2. Shortest Path Problems

Aside from combining the forward auction/shortest path algorithm with its reverse counterpart, there

are a number of useful implementation ideas.

The main computational bottleneck of the algorithm is the calculation of

min
(i,j)∈A

{
aij + pj

}
,

which is done every time node i becomes the terminal node of the path. We can reduce the number of

these calculations using the following observation. Since the CS condition pi ≤ aij + pj is maintained at

all times for all arcs (i, j), if some (i, ji) satisfies

pi = aiji + pji

it follows that

aiji + pji = min
(i,j)∈A

{
aij + pj

}
,

so the path can be extended by ji if i is the terminal node of the path. This suggests the following

implementation strategy: each time a path contraction occurs with i being the terminal node, we calculate

min
(i,j)∈A

{
aij + pj

}

together with an arc (i, ji) such that

ji = arg min
(i,j)∈A

{
aij + pj

}
.

At the next time node i becomes the terminal node of the path, we check whether the condition pi =

aiji + pji is satisfied, and if it is we extend the path by node ji without going through the calculation of

min(i,j)∈A
{
aij + pj

}
. In practice this device is very effective, typically saving from a third to a half of the

calculations of the preceding expression. The reason is that the test pi = aiji + pji rarely fails; the only

way it can fail is if the price pji is increased between the two successive times i became the terminal node

of the path. For some theoretical substantiation of this point, see [BPS92].

The preceding idea can be strengthened further. Suppose that whenever we compute the “best neigh-

bor”

ji = arg min
(i,j)∈A

{
aij + pj

}
we also compute the “second best neighbor” ki, given by

ki = arg min
(i,j)∈A, j �=ji

{
aij + pj

}
,

44

10. Practical Computational Aspects of Auction Algorithms

and the corresponding “second best level”

wi = aiki + pki .

Then, at the next time node i becomes the terminal node of the path, we can check whether the condition

aiji + pji ≤ wi is satisfied, and if it is we know that ji still attains the minimum in the expression

min
(i,j)∈A

{
aij + pj

}
,

thereby obviating the calculation of this minimum. If on the other hand we have aiji + pji > wi (due

to an increase of pji subsequent to the calculation of wi), we can check to see whether we still have

wi = aiki + pki ; if this is so, then ki becomes the “best neighbor,”

ki = arg min
(i,j)∈A

{
aij + pj

}
,

thus again obviating the calculation of the minimum.

With proper implementation the devices outlined above can typically reduce the number of calculations

of the expression min(i,j)∈A
{
aij + pj

}
by a factor that is typically in the range from 3 to 5, thereby

dramatically reducing the total computation time. Both of the above devices, together with graph

reduction, are used in the auction/shortest path codes that are presently the fastest for single origin/all

destination randomly generated problems; see [BPS92].

Parallel Implementation

When there is a single destination and multiple origins, several interesting parallel computation pos-

sibilities arise. The idea is to maintain a different path P i for each origin i, and possibly, a reverse path

R for the destination. Different paths may be handled by different processors, and price information can

be shared by the processors in some way. There are several possible implementations of this idea. We

will describe a shared memory implementation, and we refer to [Ber91b], and the MS thesis [Pol91] for

discussions of message passing implementations. For simplicity, we will not consider the possibility of

using the reverse path R; the thesis [Pol91] and the paper [PoB92] discuss parallel two-sided algorithms.

Here, there is a common price vector p stored in the shared memory that is accessible by all processors.

For each origin i, there is a path P i satisfying CS together with p. In a synchronous implementation of

the algorithm, an iteration is executed simultaneously for some origins (possibly all origins, depending on

the availability of processors). At the end of an iteration, the results corresponding to the different origins

are coordinated. To this end, we note that if a node is the terminal node of the path of several origins,

the result of the iteration will be the same for all these origins, i.e., a path extension or a path contraction

and corresponding price change will occur simultaneously for all these origins. The only potential conflict

arises when a node i is the terminal path node for some origin and the path of a different origin is extended

by i as a result of the iteration. Then, if pi is increased due to a path contraction for the former origin,

the path extension of the latter origin is cancelled. An additional important detail is that an origin i can

stop its computation once the terminal node of its path P i is an origin that has already found its shortest

45

10. Practical Computational Aspects of Auction Algorithms

path to the destination. Thus, the processor handling this origin may be diverted to handle the path of

another origin.

It is reasonable to speculate that the parallel time to solve the multiple origins problem is closer to

the smallest time over all origins to find a single-origin shortest path, rather than to the longest time.

However, this conjecture needs to be tested experimentally on a shared memory machine.

The parallel implementation outlined above is synchronous, that is, all origins iterate simultaneously,

and the results are communicated and coordinated at the end of the iteration to the extent necessary

for the next iteration. An asynchronous implementation is also possible principally because of the mono-

tonicity of the mapping

pi := min
(i,j)∈A

{
aij + pj

}
;

see [BeT89]. We refer to [Pol91] and [PoB92] for a discussion of such an asynchronous implementation.

10.3. Transportation Problems

A serial version of the auction/transportation algorithm of Section 6 has been implemented and tested

in [BeC89a]. The algorithm uses adaptive ε-scaling and integer arithmetic; a version using floating point

arithmetic, which would be useful for a large cost range, has not been tested. Computational results

show that this auction algorithm is considerably faster than its chief competitors for important classes of

transportation problems. Generally these problems are characterized by two properties, homogeneity and

asymmetry . A homogeneous problem is one for which there are only few levels of supply and demand.

An asymmetric problem is one for which the number of sources is much larger than the number of sinks.

For other types of transportation problems, computational experimentation suggests that the auction

algorithm is outperformed by state-of-the-art codes based on relaxation methods; see [BeC89a], [Ber91a].

We know also of unpublished studies of parallel and asynchronous implementations of the transporta-

tion/auction algorithm by D. A. Castañon (unpublished). These studies indicate that with Jacobi paral-

lelization, a modest speedup (of the order of about five) is possible on shared memory machines.

10.4. Minimum Cost Flow Problems

Serial implementations of the ε-relaxation method for general minimum cost flow problems are not yet

competitive in practice with implementations of other methods, although they are not overwhelmingly

worse; see [Ber91a]. However, the ε-relaxation method is well suited for parallel computation, so in some

parallel computing environments it may be faster than its closest competitors. The method admits a

totally asynchronous implementation, as shown in the original paper [Ber86a]; see also [BeE88], [BeT89].

A synchronous massively parallel implementation of the ε-relaxation method is presented in [LiZ91].

The ε-relaxation method can also be implemented in a reverse version where a node price is decreased ,

while flow is “pulled” along incident arcs towards the node rather than “pushed” away from the node.

The idea here is fairly similar to the one of reverse auction. In computational tests ([Ber91a], [LiZ91]),

a combined forward/reverse version of ε-relaxation seems to perform better than the forward version,

but the evidence is not conclusive. The forward/reverse version also has greater parallelism potential

46

References

since nodes with positive as well as negative surplus can iterate simultaneously (with some safeguards

to preserve desirable termination properties). Parallel implementations of this type have not yet been

tested.

10.5. Max-Flow Problems

As mentioned in Section 8, the max-flow version of the ε-relaxation method can be implemented

efficiently without using ε-scaling. It is important to understand, however, that intense price wars can still

occur, particularly for very sparse problems, despite the small cost range and the polynomial complexity

of the method. To alleviate the detrimental effects of price wars some computational tricks are essential.

In particular, it has been observed that for problems where price wars occur, the ε-relaxation method finds

a minimum cut very quickly and may then spend a great deal of additional time to resolve subsequent

price wars. Thus if one is interested in just a minimum cut or just the value of the maximum flow, it

is worth testing periodically to see whether a minimum cut has already been obtained. One method

for doing this is based on breadth-first search and is described in [Ber91a] (Exercise 5.4); it is used in a

max-flow code given in Appendix A.6 of [Ber91a]. A maximum flow can still be obtained after a minimum

cut is found by using a variant of the Ford-Fulkerson method, and this can typically be done very quickly.

Related procedures that aim at ameliorating the effects of price wars have been discussed in [Gol87] and

[MPS91].

It should be noted, however, that despite the practical success of schemes such as the one described

above, worst-case max-flow examples have been constructed where the unscaled version of the ε-relaxation

method can take a very large number of iterations (proportional to N 2); see [BeT89], p. 387. These

examples are quite artificial, and it is unknown whether the method can excibit such behavior for some

important types of practical problems.

11. CONCLUSIONS

Much progress has been made in the last few years to extend and apply auction algorithms to a variety

of linear network flow problems, and to place them on an equal footing with the classical primal cost and

dual cost improvement methods. Still, auction algorithms are new and not yet fully developed. With

further research, they should become more broadly applicable and more competitive with the classical

methods.

The auction algorithms discussed in this paper have been implemented in computer codes. Several of

these codes appear in the author’s textbook [Ber91a]; their latest versions are available from the author.

REFERENCES

[ACM91] Ajevedo, J. A., Costa, M. E. S., Madeira, J. J. S., and Martins, E. V., “An Algorithm for the

Ranking of Shortest Paths,” Working paper, Universidade de Coimbra, Coimbra, Portugal, 1991.

47

References

[AMM91] Ajevedo, J. A., Madeira, J. J. S., Martins, E. V., and Pires, F. M., “A Computational Im-

provement for a Shortest Paths Ranking Algorithm,” Working paper, Universidade de Coimbra, Coimbra,

Portugal, 1991.

[AMO89] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., “Network Flows,” Sloan W. P. No. 2059-88,

M.I.T., Cambridge, MA, 1989, (also in Handbooks in Operations Research and Management Science,

Vol. 1, Optimization, G. L. Nemhauser, A. H. G. Rinnooy-Kan, and M. J. Todd (eds.), North-Holland,

Amsterdam, 1989, pp. 211-369).

[AhO86] Ahuja, R. K., and Orlin, J. B., “A Fast and Simple Algorithm for the Maximum Flow Problem,”

Working paper, M.I.T., Cambridge, MA, 1986, (also in Operations Research, Vol. 37, 1989, pp. 748-759).

[BCT91] Bertsekas, D. P., Castañon, D. A., and Tsaknakis, H., 1991. “Reverse Auction and the Solution

of Inequality Constrained Assignment Problems,” Unpublished Report, 1991.

[BPS92] Bertsekas, D. P., Pallottino, S., and Scutella’, M. G., “Polynomial Auction Algorithms for

Shortest Paths,” submitted for publication.

[BeC89a] Bertsekas, D. P., and Castañon, D. A., “The Auction Algorithm for Transportation Problems,”

Annals of Operations Research, Vol. 20, pp. 67-96.

[BeC89b] Bertsekas, D. P., and Castañon, D. A., “The Auction Algorithm for the Minimum Cost Net-

work Flow Problem,” Laboratory for Information and Decision Systems Report LIDS-P-1925, M.I.T.,

Cambridge, MA, November 1989.

[BeC89c] Bertsekas, D. P., and Castañon, D. A., “Parallel Synchronous and Asynchronous Implementa-

tions of the Auction Algorithm,” Alphatech Report, Burlington, MA, Nov. 1989; also Parallel Computing,

Vol. 17, 1991, pp. 707-732.

[BeC91] Bertsekas, D. P., and Castañon, D. A., “A Generic Auction Algorithm for the Minimum Cost

Network Flow Problem,” Alphatech Report, Burlington, MA, Sept. 1991.

[BeC92] Bertsekas, D. P., and Castañon, D. A., “A Forward/Reverse Auction Algorithm for the Asym-

metric Assignment Problem,” Alphatech Report, Burlington, MA, April 1992.

[BeE87] Bertsekas, D. P., and Eckstein, J., “Distributed Asynchronous Relaxation Methods for Linear

Network Flow Problems,” Proc. of IFAC ’87, Munich, Germany, July 1987.

[BeE88] Bertsekas, D. P., and Eckstein, J., “Dual Coordinate Step Methods for Linear Network Flow

Problems,” Math. Progr., Series B, Vol. 42, 1988, pp. 203-243.

[BeM73] Bertsekas, D. P., and Mitter, S. K., “Descent Numerical Methods for Optimization Problems

with Nondifferentiable Cost Functions,” SIAM Journal on Control, Vol. 11, pp. 637-652.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Meth-

ods, Prentice-Hall, Englewood Cliffs, N. J., 1989.

[Ber79] Bertsekas, D. P., “A Distributed Algorithm for the Assignment Problem,” Lab. for Information

and Decision Systems Working Paper, M.I.T., March 1979.

48

References

[Ber81] Bertsekas, D. P., “A New Algorithm for the Assignment Problem,” Math. Programming, Vol. 21,

1981, pp. 152-171.

[Ber85] Bertsekas, D. P., “A Distributed Asynchronous Relaxation Algorithm for the Assignment Prob-

lem,” Proc. 24th IEEE Conf. Dec. & Contr., 1985, pp. 1703-1704.

[Ber86a] Bertsekas, D. P., “Distributed Asynchronous Relaxation Methods for Linear Network Flow

Problems,” Lab. for Information and Decision Systems Report P-1606, M.I.T., November 1986.

[Ber86b] Bertsekas, D. P., “Distributed Relaxation Methods for Linear Network Flow Problems,” Pro-

ceedings of 25th IEEE Conference on Decision and Control, 1986, pp. 2101-2106.

[Ber88] Bertsekas, D. P., “The Auction Algorithm: A Distributed Relaxation Method for the Assignment

Problem,” Annals of Operations Research, Vol. 14, 1988, pp. 105-123.

[Ber91a] Bertsekas, D. P., Linear Network Optimization: Algorithms and Codes, M.I.T. Press, Cambridge,

Mass., 1991

[Ber91b] Bertsekas, D. P., “The Auction Algorithm for Shortest Paths,” SIAM J. on Optimization, Vol.

1, 1991, pp. 425-447.

[CSW89] Castañon, D., Smith, B., and Wilson, A., “Performance of Parallel Assignment Algorithms on

Different Multiprocessor Architectures”, Alphatech inc. Report, Burlington, Mass., 1989.

[Cas92] Castañon, D. A., “Reverse Auction Algorithms for Assignment Problems,” DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 1992.

[ChM89] Cheriyan, J., and Maheshwari, S. N., “Analysis of Preflow Push Algorithms for Maximum

Network Flow,” SIAM J. Comput., Vol. 18, 1989, pp. 1057-1086.

[Dan63] Dantzig, G. B., Linear Programming and Extensions, Princeton Univ. Press, Princeton, N. J,

1963.

[Dre69] Dreyfus, S. E., “An Appraisal of Some Shortest-Path Algorithms,” Operations Research, Vol. 17,

1969, pp. 395-412.

[FoF62] Ford, L. R., Jr., and Fulkerson, D. R., Flows in Networks, Princeton Univ. Press, Princeton, N.

J, 1962.

[GoT86] Goldberg, A. V., and Tarjan, R. E., “A New Approach to the Maximum Flow Problem,” Proc.

18th ACM STOC, 1986, pp. 136-146.

[GoT90] Goldberg, A. V., and Tarjan, R. E., “Solving Minimum Cost Flow Problems by Successive

Approximation,” Math. of Operations Research, Vol. 15, 1990, pp. 430-466.

[Gol85] Goldberg, A. V., “A New Max-Flow Algorithm,” Tech. Mem. MIT/LCS/TM-291, Laboratory

for Computer Science, M.I.T., Cambridge, MA., 1985.

[Gol87] Goldberg, A. V., “Efficient Graph Algorithms for Sequential and Parallel Computers,” Tech.

Report TR-374, Laboratory for Computer Science, M.I.T., Cambridge, MA., 1987.

49

References

[JoV87] Jonker, R., and Volegnant, A., “A Shortest Augmenting Path Algorithm for Dense and Sparse

Linear Assignment Problems,” Computing, Vol. 38, 1987, pp. 325-340.

[KKZ89] Kempa, D., Kennington, J., and Zaki, H., “Performance Characteristics of the Jacobi and Gauss-

Seidel Versions of the Auction Algorithm on the Alliant FX/8,” Report OR-89-008, Dept. of Mech. and

Ind. Eng., Univ. of Illinois, Champaign-Urbana, 1989.

[Kuh55] Kuhn, H. W., “The Hungarian Method for the Assignment Problem,” Naval Research Logistics

Quarterly, Vol. 2, 1955, pp. 83-97.

[Law76] Lawler, E., Combinatorial Optimization: Networks and Matroids, Holt, Reinhart, and Winston,

N. Y., 1976.

[LiZ91] Li, X., and Zenios, S. A., “Data Parallel Solutions of Min-Cost Network Flow Problems Using ε-

Relaxations,” Report 1991-05-20, Dept. of Decision Sciences, The Wharton School, Univ. of Pennsylvania,

Phil., Penn., 1991.

[Lue84] Luenberger, D. G., Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.

[Mar84] Martins, E. V., “An Algorithm for Ranking Paths that May Contain Cycles,” European J. of

Operations Research, Vol. 18, 1984, pp. 123-130.

[MPS91] Mazzoni, G., Pallotino, S., and Scutella’, M. G., “The Maximum Flow Problem: A Max-Preflow

Approach,” European J. of Operational Research, Vol. 53, 1991.

[Min57] Minty, G. J., “A Comment on the Shortest Route Problem,” Operations Research, Vol. 5, 1957,

p. 724.

[PaS82] Papadimitriou, C. H., and Steiglitz, K., Combinatorial Optimization: Algorithms and Complex-

ity, Prentice-Hall, Englewood Cliffs, N. J., 1982.

[PaS91] Pallottino, S., and Scutella’, M. G., “Strongly Polynomial Algorithms for Shortest Paths,” Di-

partimento di Informatica Report TR-19/91, University of Pisa, Italy, 1991.

[PhZ88] Phillips, C., and Zenios, S. A., “Experiences with Large Scale Network Optimization on the

Connection Machine,” Report 88-11-05, Dept. of Decision Sciences, The Wharton School, Univ. of Penn-

sylvania, Phil., Penn., Nov. 1988.

[PoB92] Polymenakos, L., and Bertsekas, D. P., “Parallel Shortest Path Auction Algorithms,” Lab. for

Information and Decision Systems Report, M.I.T., April 1992.

[Pol91] Polymenakos, L., “Analysis of Parallel Asynchronous Schemes for the Auction Shortest Path

Algorithm,” MS Thesis, EECS Dept., M.I.T., Cambridge, MA., Jan. 1991.

[Roc84] Rockafellar, R. T., Network Flows and Monotropic Programming, Wiley-Interscience, N. Y.,

1984.

[Sch90] Schwartz, B. L., “A Computational Analysis of the Auction Algorithm,” Unpublished Manuscript.

[WeZ90] Wein, J., and Zenios, S. A., “Massively Parallel Auction Algorithms for the Assignment Prob-

lem,” Proc. of 3rd Symposium on the Frontiers of Massively Parallel Computation, Md., 1990.

50

APPENDIX 1

[WeZ91] Wein, J., and Zenios, S. A., “On the Massively Parallel Solution of the Assignment Problem,”

J. of Parallel and Distributed Computing, Vol. 13, 1991, pp. 228-236.

[Zak90] Zaki, H., “A Comparison of Two Algorithms for the Assignment Problem,” Report ORL 90-002,

Dept. of Mechanical and Industrial Engineering, Univ. of Illinois, Urbana, Ill., 1990.

APPENDIX 1: E-CS, PRIMAL OPTIMALITY, AND DUAL OPTIMALITY

Assignment Problems

Let us fix ε ≥ 0. We show that given a feasible assignment {(i, ji) | i = 1, . . . , n} and a set of prices

{p̄j | j = 1, . . . , n}, which satisfy ε-complementary slackness (if ε > 0) or complementary slackness (if

ε = 0), the assignment is within nε of maximizing the total benefit, and is optimal if ε = 0. Furthermore,

the set of prices is within nε of minimizing a certain dual cost function.

Let ε > 0. We first note that the total benefit of any feasible assignment {(i, ki) | i = 1, . . . , n} satisfies

n∑
i=1

aiki ≤
n∑

j=1

pj +
n∑

i=1

max
j

{aij − pj},

for any set of prices {pj | j = 1, . . . , n}, since the second term of the right-hand side is no less than

n∑
i=1

(aiki − pki) ,

while the first term is equal to
∑n

i=1 pki . Therefore,

A∗ ≤ D∗,

where A∗ is the optimal total assignment benefit

A∗ = max
ki∈A(i), i=1,...,n
ki �=km if i�=m

n∑
i=1

aiki

and

D∗ = min
pj

j=1,...,n

{
n∑

j=1

pj +
n∑

i=1

max
j∈A(i)

{
aij − pj

}}
.

On the other hand, since the given assignment {(i, ji) | i = 1, . . . , n} satisfies ε-CS together with the set

of prices {p̄j | j = 1, . . . , n}, we have

max
j∈A(i)

{
aij − p̄j

}
− ε ≤ aiji − p̄ji ,

51

APPENDIX 1

and by adding this relation over all i, we see that

D∗ ≤
n∑

i=1

(
p̄ji + max

j∈A(i)

{
aij − p̄j

})
≤

n∑
i=1

aiji + nε ≤ A∗ + nε.

Since we showed earlier that A∗ ≤ D∗, it follows that the total assignment benefit
∑n

i=1 aiji is within nε

of the optimal value A∗.

Note that the function
n∑

j=1

pj +
n∑

i=1

max
j∈A(i)

{
aij − pj

}
,

appearing in the definition of D∗, may be viewed as a dual function of the price variables pj , and its

minimization may be viewed as a dual problem in the standard linear programming duality context; see

[Ber91a], [BeT89], [Roc84], and [PaS82]. It is seen from the preceding analysis, that the prices p̄j attain

within nε the dual optimal value D∗.

If we let ε = 0 in the preceding argument, we see that A∗ = D∗, and that an assignment and a set of

prices that are at equilibrium, maximize the total benefit and minimize the dual function, respectively.

Minimum Cost Flow Problems

We now consider the minimum cost flow problem and we prove the following generalized version of

Prop. 6, which holds even if the problem data are not integer.

Proposition 10: Let the flow-price pair (x, p) satisfy ε-CS, and suppose that x is feasible. Then x is

optimal for the minimum cost flow problem (MCF), provided

ε < min
All simple cycles Y

{
− Cost of Y

Number of arcs of Y

∣∣∣ Cost of Y < 0
}

,

where

Cost of Y =
∑

(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij.

In particular, x is optimal if the problem data are integer and ε < 1/N .

Proof: If x is not optimal, then (see e.g., [Ber91a], p. 24) there exists a simple cycle Y that has negative

cost, i.e., ∑
(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij < 0, (45)

and is unblocked with respect to x, i.e.,

xij < cij, ∀ (i, j) ∈ Y +,

bij < xij, ∀ (i, j) ∈ Y −.

By ε-CS [cf. Eq. (32)], the preceding relations imply that

pi ≤ pj + aij + ε, ∀ (i, j) ∈ Y +,

52

APPENDIX 2

pj ≤ pi − aij + ε, ∀ (i, j) ∈ Y −.

By adding these relations over all arcs of Y (whose number is no more than N), and by using the

hypothesis ε < 1/N , we obtain

∑
(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij ≥ −Nε > −1.

Since the arc costs aij are integer, we obtain a contradiction of Eq. (45). Q.E.D.

APPENDIX 2: FINITE TERMINATION OF THE AUCTION ALGORITHM

In this appendix we show that for a feasible problem and for any positive value of ε, the auction

algorithm terminates with a feasible assignment that is within nε of being optimal (and is optimal if the

problem data are integer and ε < 1/n). This shows in particular Prop. 2.

The proof relies on the following facts:

(a) Once an object is assigned, it remains assigned throughout the remainder of the algorithm’s duration.

Furthermore, except at termination, there will always exist at least one object that has never been

assigned, and has a price equal to its initial price. The reason is that a bidding and assignment

phase can result in a reassignment of an already assigned object to a different person, but cannot

result in the object becoming unassigned.

(b) Each time an object receives a bid, its price increases by at least ε [see Eq. (9)]. Therefore, if the

object receives a bid an infinite number of times, its price increases to ∞.

(c) Every |A(i)| bids by person i, where |A(i)| is the number of objects in the set A(i), the best object

value vi defined by

vi = max
j∈A(i)

{aij − pj} (46)

decreases by at least ε. The reason is that a bid by person i either decreases vi by at least ε, or else

leaves vi unchanged because there is more than one object j attaining the maximum in Eq. (46).

However, in the latter case, the price of the object ji receiving the bid will increase by at least ε,

and object ji will not receive another bid by person i until vi decreases by at least ε. The conclusion

is that if a person i bids an infinite number of times, vi must decrease to −∞.

We now argue by contradiction. If termination did not occur, the subset J∞ of objects that received

an infinite number of bids is nonempty. Also, the subset of persons I∞ that bid an infinite number of

times is nonempty. As argued in (b) above, the prices of the objects in J∞ must tend to ∞, while as

argued in (c) above, the scalars vi = maxj∈A(i){aij − pj} must decrease to −∞ for all persons i ∈ I∞.

Therefore, aij − pj tends to −∞ for all j ∈ A(i), implying that

A(i) ⊂ J∞, ∀ i ∈ I∞. (47)

53

APPENDIX 2

The ε-CS condition (8) states that aij − pj ≥ vi − ε for every assigned pair (i, j), so after a finite number

of iterations, each object in J∞ can only be assigned to a person from I∞. Since after a finite number

of iterations at least one person from I∞ will be unassigned at the start of each iteration, it follows that

the number of persons in I∞ is strictly larger than the number of objects in J∞. This contradicts the

existence of a feasible assignment, since by Eq. (47), persons in I∞ can only be assigned to objects in J∞.

Therefore, the algorithm must terminate. The feasible assignment obtained upon termination satisfies

ε-CS (since the algorithm preserves ε-CS throughout), so by Prop. 1, this assignment is within nε of being

optimal.

54

