
Auction Algorithms

Dimitri P. Bertsekas
bertsekas@lids.mit.edu

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

The auction algorithm is an intuitive method for solving the classical assignment
problem. It outperforms substantially its main competitors for important types
of problems, both in theory and in practice, and is also naturally well suited
for parallel computation. In this article, we will skecth the basic principles of
the algorithm, we will explain its computational properties, and we will discuss
its extensions to more general network flow problems. For a detailed presenta-
tion, we refer to the survey paper [Ber92] and the author’s textbooks [Ber91],
[Ber98]. For an extensive computational study, we refer to Castañon [Cas93].
The algorithm was first proposed in a 1979 report by the author [Ber79].

In the classical assignment problem there are n persons and n objects that we
have to match on a one-to-one basis. There is a benefit aij for matching person
i with object j and we want to assign persons to objects so as to maximize the
total benefit. Mathematically, we want to find a one-to-one assignment [a set
of person-object pairs (1, j1), . . . , (n, jn), such that the objects j1, . . . , jn are all
distinct] that maximizes the total benefit

∑n
i=1 aiji .

The assignment problem is important in many practical contexts. The most
obvious ones are resource allocation problems, such as assigning personnel to
jobs, machines to tasks, and the like. There are also situations where the as-
signment problem appears as a subproblem in various methods for solving more
complex problems.

The assignment problem is also of great theoretical importance because, de-
spite its simplicity, it embodies a fundamental linear programming structure.
The most important type of linear programming problems, the linear network
flow problem, can be reduced to the assignment problem by means of a simple
reformulation. Thus, any method for solving the assignment problem can be

1

generalized to solve the linear network flow problem, and in fact this approach
is particularly helpful in understanding the extension of auction algorithms to
network flow problems that are more general than assignment.

The classical methods for assignment are based on iterative improvement of
some cost function; for example a primal cost (as in primal simplex methods),
or a dual cost (as in Hungarian-like methods, dual simplex methods, and re-
laxation methods). The auction algorithm departs significantly from the cost
improvement idea; at any one iteration, it may deteriorate both the primal and
the dual cost, although in the end it finds an optimal assignment. It is based on
a notion of approximate optimality, called ε-complementary slackness , and while
it implicitly tries to solve a dual problem, it actually attains a dual solution that
is not quite optimal.

The Auction Process

To develop an intuitive understanding of the auction algorithm, it is helpful
to introduce an economic equilibrium problem that turns out to be equivalent
to the assignment problem. Let us consider the possibility of matching the n
objects with the n persons through a market mechanism, viewing each person
as an economic agent acting in his own best interest. Suppose that object j has
a price pj and that the person who receives the object must pay the price pj .
Then, the (net) value of object j for person i is aij−pj and each person i would
logically want to be assigned to an object ji with maximal value, that is, with

aiji − pji = max
j=1,...,n

{aij − pj}. (1)

We will say that a person i is happy if this condition holds and we will say that
an assignment and a set of prices are at equilibrium when all persons are happy.

Equilibrium assignments and prices are naturally of great interest to econo-
mists, but there is also a fundamental relation with the assignment problem; it
turns out that an equilibrium assignment offers maximum total benefit (and thus
solves the assignment problem), while the corresponding set of prices solves an
associated dual optimization problem. This is a consequence of the celebrated
duality theorem of linear programming.

Let us consider now a natural process for finding an equilibrium assignment.
I will call this process the naive auction algorithm, because it has a serious
flaw, as will be seen shortly. Nonetheless, this flaw will help motivate a more
sophisticated and correct algorithm.

The naive auction algorithm proceeds in “rounds” (or “iterations”) starting
with any assignment and any set of prices. There is an assignment and a set of
prices at the beginning of each round, and if all persons are happy with these,
the process terminates. Otherwise some person who is not happy is selected.

This person, call him i, finds an object ji which offers maximal value, that is,

ji ∈ arg max
j=1,...,n

{aij − pj}, (2)

and then:

(a) Exchanges objects with the person assigned to ji at the beginning of
the round,

(b) Sets the price of the best object ji to the level at which he is indifferent
between ji and the second best object, that is, he sets pji to

pji + γi, (3)

where
γi = vi − wi, (4)

vi is the best object value,

vi = max
j
{aij − pj}, (5)

and wi is the second best object value

wi = max
j 6=ji

{aij − pj}, (6)

that is, the best value over objects other than ji. (Note that γi is the
largest increment by which the best object price pji can be increased,
with ji still being the best object for person i.)

This process is repeated in a sequence of rounds until all persons are happy.
We may view this process as an auction, where at each round the bidder i

raises the price of his or her preferred object by the bidding increment γi. Note
that γi cannot be negative since vi ≥ wi [compare Eqs. (5) and (6)], so the
object prices tend to increase. Just as in a real auction, bidding increments and
price increases spur competition by making the bidder’s own preferred object
less attractive to other potential bidders.

Does this auction process work? Unfortunately, not always. The difficulty is
that the bidding increment γi is zero when more than one object offers maximum
value for the bidder i [cf. Eqs. (4), (6)]. As a result, a situation may be created
where several persons contest a smaller number of equally desirable objects
without raising their prices, thereby creating a never ending cycle.

To break such cycles, we introduce a perturbation mechanism, motivated by
real auctions where each bid for an object must raise its price by a minimum
positive increment, and bidders must on occasion take risks to win their pre-
ferred objects. In particular, let us fix a positive scalar ε and say that a person i

is almost happy with an assignment and a set of prices if the value of its assigned
object ji is within ε of being maximal, that is,

aiji − pji ≥ max
j=1,...,n

{aij − pj} − ε. (7)

We will say that an assignment and a set of prices are almost at equilibrium
when all persons are almost happy. The condition (7), introduced first in 1979 in
conjunction with the auction algorithm, is known as ε-complementary slackness
and plays a central role in several optimization contexts. For ε = 0 it reduces
to ordinary complementary slackness [compare Eq. (1)].

We now reformulate the previous auction process so that the bidding incre-
ment is always at least equal to ε. The resulting method, the auction algorithm ,
is the same as the naive auction algorithm, except that the bidding increment
γi is

γi = vi − wi + ε, (8)

[rather than γi = vi −wi as in Eq. (4)]. With this choice, the bidder of a round
is almost happy at the end of the round (rather than happy). The particular
increment γi = vi − wi + ε used in the auction algorithm is the maximum
amount with this property. Smaller increments γi would also work as long as
γi ≥ ε, but using the largest possible increment accelerates the algorithm. This
is consistent with experience from real auctions, which tend to terminate faster
when the bidding is aggressive.

We can now show that this reformulated auction process terminates in a
finite number of rounds, necessarily with an assignment and a set of prices that
are almost at equilibrium. To see this, note that once an object receives a bid
for the first time, then the person assigned to the object at every subsequent
round is almost happy; the reason is that a person is almost happy just after
acquiring an object through a bid, and continues to be almost happy as long as
he holds the object (since the other object prices cannot decrease in the course
of the algorithm). Therefore, the persons that are not almost happy must be
assigned to objects that have never received a bid. In particular, once each
object receives at least one bid, the algorithm must terminate . Next note that if
an object receives a bid in m rounds, its price must exceed its initial price by
at least mε. Thus, for sufficiently large m, the object will become “expensive”
enough to be judged “inferior” to some object that has not received a bid so
far. It follows that only for a limited number of rounds can an object receive a
bid while some other object still has not yet received any bid. Therefore, there
are two possibilities: either (a) the auction terminates in a finite number of
rounds, with all persons almost happy, before every object receives a bid or (b)
the auction continues until, after a finite number of rounds, all objects receive
at least one bid, at which time the auction terminates. (This argument assumes
that any person can bid for any object, but it can be generalized for the case
where the set of feasible person-object pairs is limited, as long as at least one
feasible assignment exists.)

Optimality Properties at Termination

When the auction algorithm terminates, we have an assignment that is almost
at equilibrium, but does this assignment maximize the total benefit? The answer
here depends strongly on the size of ε. In a real auction, a prudent bidder would
not place an excessively high bid for fear that he might win the object at an
unnecessarily high price. Consistent with this intuition, we can show that if
ε is small, then the final assignment will be “almost optimal.” In particular,
we can show that the total benefit of the final assignment is within nε of being
optimal . To see this, note that an assignment and a set of prices that are almost
at equilibrium may be viewed as being at equilibrium for a slightly different
problem where all benefits aij are the same as before, except for the n benefits
of the assigned pairs which are modified by an amount no more than ε.

Suppose now that the benefits aij are all integer, which is the typical prac-
tical case (if aij are rational numbers, they can be scaled up to integer by
multiplication with a suitable common number). Then, the total benefit of any
assignment is integer, so if nε < 1, a complete assignment that is within nε of
being optimal must be optimal. It follows, that if

ε <
1

n
,

and the benefits aij are all integer, then the assignment obtained upon termina-
tion of the auction algorithm is optimal . Let us also note that the final set of
prices is within nε of being an optimal solution of the dual problem

min
pj

j=1,...,n





n∑

j=1

pj +

n∑

i=1

max
j
{aij − pj}



 . (9)

This leads to the interpretation of the auction algorithm as a dual algorithm (in
fact an approximate coordinate ascent algorithm; see the cited literature).

Computational Aspects – ε-Scaling

The auction algorithm exhibits interesting computational behavior, and it
is essential to understand this behavior to implement the algorithm efficiently.
First note that the amount of work to solve the problem can depend strongly
on the value of ε and on the maximum absolute object value

C = max
i,j

|aij |.

Basically, for many types of problems, the number of bidding rounds up to
termination tends to be proportional to C/ε. Note also that there is a depen-
dence on the initial prices; if these prices are “near optimal,” we expect that
the number of rounds to solve the problem will be relatively small.

The preceding observations suggest the idea of ε-scaling, which consists of
applying the algorithm several times, starting with a large value of ε and suc-
cessively reducing ε up to an ultimate value that is less than some critical value
(for example, 1/n, when the benefits aij are integer). Each application of the
algorithm provides good initial prices for the next application. This is a very
common idea in nonlinear programming, encountered for example, in barrier
and penalty function methods. An alternative form of scaling, called cost scal-
ing, is based on successively representing the benefits aij with an increasing
number of bits, while keeping ε at a constant value.

In practice, it is a good idea to at least consider scaling. For sparse assignment
problems, that is, problems where the set of feasible assignment pairs is severely
restricted, scaling seems almost universally helpful. In theory, scaling leads to
auction algorithms with a particularly favorable polynomial complexity (without
scaling, the algorithm is pseudopolynomial; see the cited literature).

Parallel and Asynchronous Implementation

Both the bidding and the assignment phases of the auction algorithm are
highly parallelizable. In particular, the bidding and the assignment can be car-
ried out for all persons and objects simultaneously. Such an implementation can
be termed synchronous. There are also totally asynchronous implementations
of the auction algorithm, which are interesting because they are quite flexible
and also tend to result in faster solution in some types of parallel machines. To
understand these implementations, it is useful to think of a person as an au-
tonomous decision maker who at unpredictable times obtains information about
the prices of the objects. Each person who is not almost happy makes a bid at
arbitrary times on the basis of its current object price information (that may
be outdated because of communication delays).

Bertsekas and Castañon [BeC91] give a careful formulation of the totally
asynchronous model, and a proof of its validity. They include also extensive
computational results on a shared memory machine, confirming the advantage
of asynchronous over synchronous implementations.

Variations and Extensions

The auction algorithm can be extended to solve a number of variations of
the assignment problem, such as the asymmetric assignment problem where
the number of objects is larger than the number of persons and there is a
requirement that all persons be assigned to some object. Naturally, the notion
of an assignment must now be modified appropriately. To solve this problem,
the auction algorithm need only be modified in the choice of initial conditions.
It is sufficient to require that all initial prices be zero. A similar algorithm can
be used for the case where there is no requirement that all persons be assigned.
Other variations handle efficiently the cases where there are several groups of

“identical” persons or objects (Bertsekas and Castañon [BeC89]).
There have been extensions of the auction algorithm for other types of linear

network optimization problems. The general approach for constructing auction
algorithms for such problems is to convert them to assignment problems, and
then to suitably apply the auction algorithm and streamline the computations.
In particular, the classical shortest path problem can be solved correctly by
the naive auction algorithm described earlier, once the method is streamlined.
Similarly, auction algorithms can be cosntructed for the max-flow problems,
and are very efficient. These algorithms bear a close relation to preflow-push
algorithms for the max-flow problem, which were developed independently of
auction ideas.

The auction algorithm has been extended to solve linear transportation prob-
lems (Bertsekas and Castañon [Ber89]). The basic idea is to convert the trans-
portation problem into an assignment problem by creating multiple copies of
persons (or objects) for each source (or sink respectively), and then to modify
the auction algorithm to take advantage of the presence of the multiple copies.

There are extensions of the auction algorithm for linear minimum cost flow
(transshipment) problems, such as the so called ε-relaxation method, and the
auction/sequential shortest path algorithm algorithm (see the cited literature for
a detailed description). These methods have interesting theoretical properties
and like the auction algorithm, are well suited for parallelization (see the survey
by Bertsekas, Castañon, Eckstein, and Zenios [BCE95], and the textbook by
Bertsekas and Tsitsiklis [BeT89]).

Let us finally note that there have been proposals of auction algorithms for
convex separable network optimization problems with and without gains (but
with a single commodity and without side constraints); see Tseng and Bertsekas
[TsB96].

REFERENCES

[Ber79] Bertsekas, D. P., 1979. “A Distributed Algorithm for the Assignment
Problem,” Lab. for Information and Decision Systems Working Paper, M.I.T.,
Cambridge, MA.

[Ber91] Bertsekas, D. P., 1991. Linear Network Optimization: Algorithms
and Codes, MIT Press, Cambridge, MA.

[Ber92] Bertsekas, D. P., 1992. “Auction Algorithms for Network Flow Prob-
lems: A Tutorial Introduction,” Computational Optimization and Applications,
Vol. 1, pp. 7-66.

[Ber91] Bertsekas, D. P., 1991. Linear Network Optimization: Algorithms
and Codes, MIT Press, Cambridge, MA.

[Ber98] Bertsekas, D. P., 1998. Network Optimization: Continuous and Dis-
crete Problems, Athena Scientific, Belmont, MA.

[BeC89] Bertsekas, D. P., and Castañon, D. A., 1989. “The Auction Algo-
rithm for Transportation Problems,” Annals of Operations Research, Vol. 20,
pp. 67-96.

[BCE95] Bertsekas, D. P., Castañon, D. A., Eckstein, J., and Zenios, S.,
1995. “Parallel Computing in Network Optimization,” Handbooks in OR and
MS, Ball, M. O., Magnanti, T. L., Monma, C. L., and Nemhauser, G. L. (eds.),
Vol. 7, North-Holland, Amsterdam, pp. 331-399.

[BeC89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed
Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, N. J. (re-
published in 1997 by Athena Scientific, Belmont, MA).

[Cas93] Castañon, D. A., 1993. “Reverse Auction Algorithms for Assignment
Problems,” in Algorithms for Network Flows and Matching, Johnson, D. S., and
McGeoch, C. C. (eds.), American Math. Soc., Providence, RI, pp. 407-429.

[TsB96] Tseng, P., and Bertsekas, D. P., 1996. “An Epsilon-Relaxation Method
for Separable Convex Cost Generalized Network Flow Problems,” Lab. for In-
formation and Decision Systems Report P-2374, M.I.T., Cambridge, MA; to
appear in Math. Programming.

