
April 1996

Appeared in Network Optimization, Pardalos, P. M., Hearn, D. W., and Hager, W.

W. (eds.), Lecture Notes in Economics and Mathematical Systems, Springer-Verlag,

N.Y., 1998, pp. 103-126.

ε-RELAXATION AND AUCTION METHODS FOR SEPARABLE

CONVEX COST NETWORK FLOW PROBLEMS1

by

Dimitri P. Bertsekas,2 Lazaros C. Polymenakos,3 and Paul Tseng4

Abstract

We propose two new methods for the solution of the single commodity, separable convex

cost network flow problem: the ε-relaxation method and the auction/sequential shortest path

method. Both methods were originally developed for linear cost problems and reduce to their

linear conterparts when applied to such problems. We show that both methods stem from

a common algorithmic framework, that they terminate with a near optimal solution, and we

provide an associated complexity analysis. We also present computational results showing that

these methods are much faster than earlier relaxation methods, particularly for ill-conditioned

problems.

1 Research supported by NSF under Grant CCR-9103804 and Grant 9300494-DMI.
2 Department of Electrical Engineering and Computer Science, M.I.T., Rm. 35-210, Cam-

bridge, Mass., 02139. Email: dimitrib@mit.edu
3 IBM T. J. Watson Research Center, Rm. 23-116C, Yorktown Heights, NY 10598. Email:

lcp@watson.ibm.com
4 Department of Mathematics, Univ. of Washington, Seattle, Wash., 98195. Email address:

tseng@math.washington.edu

1

1. Introduction

1. INTRODUCTION

We consider a directed graph with node set N = {1, . . . , N} and arc set A ⊂ N ×N . The

number of nodes is N and the number of arcs is denoted by A. We denote by xij the flow of

the arc (i, j). We refer to the vector x = {xij | (i, j) ∈ A} as the flow vector. The convex cost

network flow problem with separable cost function is defined as

minimize
∑

(i,j)∈A
fij(xij) (P)

subject to
∑

{j|(i,j)∈A}
xij −

∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (1)

where si are given scalars, fij : < → (−∞,∞] are given convex, closed, proper functions. We

further assume that the functions fij are extended real-valued, lower semicontinuous, and proper

(not identically taking the value ∞). We refer to problem (P) as the primal problem. For

notational convenience, we have implicitly assumed that there exists at most one arc in each

direction between any pair of nodes. A flow vector x with fij(xij) < ∞ for all (i, j) ∈ A, which

satisfies the conservation of flow constraint (1) is called feasible . For a given flow vector x, the

surplus of node i is defined as the difference between the supply si and the net outflow from i:

gi = si +
∑

{j|(j,i)∈A}
xji −

∑

{j|(i,j)∈A}
xij . (2)

We will assume that there exists at least one feasible flow vector x such that

f−ij (xij) < ∞ and f+
ij (xij) > −∞, ∀ (i, j) ∈ A, (3)

where f−ij (xij) and f+
ij (xij) denote the left and right directional derivative of fij at xij [Roc84,

p. 329].

There is a well-known duality framework for this problem, primarily developed by Rockafel-

lar [Roc70], and discussed in several texts; see e.g. [Roc84], [BeT89]. This framework involves a

Lagrange multiplier pi for the ith conservation of flow constraint (1). We refer to pi as the price

of node i, and to the vector p = {pi | i ∈ N} as the price vector . The dual problem is

minimize q(p) (D)

subject to no constraint on p,

where the dual functional q is given by

q(p) =
∑

(i,j)∈A
qij(pi − pj)−

∑

i∈N
sipi,

2

1. Introduction

and qij is related to fij by the conjugacy relation

qij(tij) = sup
xij∈<

{xijtij − fij(xij)}.

We will assume throughout that fij is such that qij is real-valued for all (i, j) ∈ A. This is true

for example if each function fij takes the value ∞ outside some compact interval.

It is known (see [Roc84, p. 360]) that, under our assumptions, both the primal problem (P)

and the dual problem (D) have optimal solutions and their optimal costs are the negatives of

each other. The standard optimality conditions for a feasible flow-price vector pair (x, p) to be

primal and dual optimal are

f−ij (xij) ≤ pi − pj ≤ f+
ij (xij), ∀ (i, j) ∈ A.

These, known as the complementary slackness conditions (CS conditions for short), may be

represented explicitly as

(xij , pi − pj) ∈ Γij , ∀ (i, j) ∈ A,

where

Γij =
{
(xij , tij) ∈ <2 | f−ij (xij) ≤ tij ≤ f+

ij (xij)
}

is the characteristic curve associated with arc (i, j), as shown in Fig. 1.

There are three classes of methods for solving the problem of this paper for the case of

linear arc cost functions: primal, dual and auction methods. The primal and dual methods it-

eratively improve the primal or the dual cost function. The auction approach was introduced

in the original proposal of the auction algorithm for the assignment problem [Ber79], and the

subsequent ε-relaxation method [Ber86a], [Ber86b]. These methods may not improve the primal

or the dual cost at any iteration, and they are based on a relaxed version of the CS conditions,

called ε-complementary slackness (ε-CS for short). They have an excellent worst-case computa-

tional complexity, when properly implemented, as shown in [Gol87] (see also [BeE88], [BeT89],

[GoT90]). Their practical performance is also very good and they are well-suited for parallel im-

plementation (see [BCE95], [LiZ91], [NiZ93]). We will extend two such methods, the ε-relaxation

method and the auction/sequential shortest path method, to the general convex cost case.

One possibility for dealing with the convex cost case is to use efficient ways to reduce the

problem to an essentially linear cost problem by piecewise linearization of the arc cost functions;

see [Mey79], [KaM84], [Roc84]. Another possibility is to use differentiable unconstrained opti-

mization methods on the dual problem which apply primarily to problems with strictly convex

primal cost functions. Such methods are the coordinate descent method [BHT87], the conjugate

3

1. Introduction

gradient method [Ven91], and adaptations of other nonlinear programming methods [HaH93],

[Hag92], or fixed point methods [BeE87], [TBT90]. A more general alternative, which applies to

nondifferentiable dual cost functions as well, is to use an extension of the primal or dual cost

improvement methods developed for the linear cost case. In particular, there have been proposals

of primal cost improvement methods in [Wei74] and more recently in [KaM93]. There have also

been proposals of dual cost improvement methods: the fortified descent method [Roc84] that

extends the primal-dual method of Ford and Fulkerson [FoF62], and the relaxation method of

[BHT87] that extends the corresponding linear cost relaxation method of [Ber85] and [BeT88].

These methods maintain, together with the price vector, a flow vector that satisfies the ε-CS

conditions, and progressively work towards primal feasibility. The flow vector becomes feasible

at termination.

Figure 1: A cost function fij and its corresponding characteristic curve.

In this paper we analyze an algorithmic framework for the development of auction algorithms

based on the ε-CS conditions first introduced in [BHT87] for the case of convex cost arc costs. The

ε-CS conditions are a relaxed version of the CS coditions and allow more freedom is adjusting the

flow-price pair towards feasibility. We then derive and analyze the first extension of an auction

method, the ε-relaxation method, to the convex arc cost case. It iteratively modifies the price

vector, while effecting attendant flow changes that maintain the ε-CS conditions. An analogous

extension of the auction/sequential shortest path method given in [Ber92] is also derived. It

modifies iteratively the price vector finding paths along which it effects flow changes that maintain

the ε-CS condition. Both methods terminate with a feasible flow-price vector pair which, however,

satisfies ε-CS rather than CS. They were proposed in the Ph.D. thesis of the second author [Pol95]

and they are fundamentally different from the other dual descent methods for nondifferentiable

dual cost problems since the price changes are made exclusively along coordinate directions (i.e.,

one price at a time,) and a price change need not improve the dual cost. Further, upon termination

the flow-price pair is optimal only within a factor proportional to ε.

The paper is organized as follows. In Section 2 we present the theoretical framework for the

development of auction methods. In Section 3, we derive the ε-relaxation method extended to

4

2. The Algorithmic Framework

solve convex cost problems, we show that this method terminates with a near optimal flow-price

vector pair and we review its complexity analysis. In Section 4 we derive the auction/sequential

shortest path method extended to the convex cost problems, we prove that the method terminates

with a near optimal flow-price vector pair and provide its complexity analysis. The complexity

analysis of Section 4 is based on the results of the earlier sections for the ε-relaxation method.

Finally, in Section 5, we report our computational experience with the methods of Sections 3

and 4 on some convex linear/quadratic cost problems. Our test results show that, on problems

where some (possibly all) arcs have strictly convex cost, the new methods outperform, often by an

impressive margin, earlier relaxation methods. Furthermore, our methods seem to be minimally

affected by ill-conditioning in the dual problem. We do not know of any other method for which

this is true.

2. THE ALGORITHMIC FRAMEWORK

In this section we present a step-by-step construction of a theoretical framework that will

lead to auction algorithms, based on the ε-CS conditions first introduced in [BHT87] for the case

of convex arc costs. A variant of the analysis and the proofs in this section were presented by

the authors in [BPT96] in connection with the ε-relaxation method for the convex cost network

flow problem. The presentation here identifies the general algorithmic framework that leads to

the methods we derive in later sections.

The foundation for the new algorithmic framework lies in the ε-CS conditions which are

defined as a relaxed version the CS conditions. In particular, we say that the flow vector x and

the price vector p satisfy ε-CS if and only if

fij(xij) < ∞, and f−ij (xij)− ε ≤ pi − pj ≤ f+
ij (xij) + ε, ∀ (i, j) ∈ A. (4)

(see Fig. 2).

5

2. The Algorithmic Framework

Figure 2: A visualization of the ε-CS conditions as a cylinder around the

characteristic curve (bold line) The shaded area represents flow-price differential

pairs that satisfy the ε-CS conditions.

As we discussed in Section 1, a feasible flow-price pair is primal and dual optimal if the CS

conditions are satisfied. The intuition behind the ε-CS conditions is that a feasible flow-price pair

is “approximately” primal and dual optimal if the ε-CS condtions are satisfied. This intuition

was verified in [BHT87], where it was shown that if a feasible flow-price vector pair (x, p) satisfies

ε-CS, then x and p are primal and dual optimal, respectively, within a factor that is proportional

to ε (see the following Prop. 6). Thus we may develop methods that operate by satisfying the

ε-CS conditions and get as close to optimality as desired by making ε small enough.

In order to derive such methods, we first need to define a simple mechanism to move

around the ε-CS diagram of Fig. 2 while changing one price at a time, and working towards

primal feasibility. Various mechanisms can effect such price changes and Fig. 3 illustrates some

of the possibilities. In particular, starting from a point on the characteristic curve of arc (i, j),

we can follow any direction around that point and change the price pi or the price pj , and/or

the flow xij simultaneously until (xij , pi − pj) is either on the characteristic curve or is within

a distance of ε above or below the characteristic curve of arc (i, j). For example, if node i has

positive surplus, by increasing the flow of an outgoing arc (i, j) or by decreasing the flow of an

incoming arc (j, i), the surplus of i will be decreased, while the surplus of j will be increased by

an equal amount. This is the basic mechanism for moving flow from nodes of positive surplus to

nodes of negative surplus, thus working towards primal feasibility. It is possible, however, that

node i has positive surplus, while the flow of none of the outgoing arcs (i, j) can be increased

and the flow of none of the incoming arcs (j, i) can be decreased without violating the ε-CS

conditions. In this case the method increases the price of node i in order to “make room” in the

ε-CS diagram for a subsequent flow change.

Our goal in this paper is to develop auction methods solving the convex cost network flow

problem, which are characterized by price changes that are decoupled from the flow changes. The

development of the algorithmic framework for auction methods will proceed in four steps:

Step 1: We will define a naive algorithm performing two basic operations: price rises on the nodes

6

2. The Algorithmic Framework

Figure 3: Starting from any point on the characteristic curve (dark points) of

arc (i, j), a new point on the characteristic curve can be obtained in a variety of

ways. The figure depicts a few such examples where the flow and price differential

for arc (i, j) are changed simultaneously according to some linear relation.

and flow pushes on the arcs while maintaining the ε−CS conditions. The algorithm is naive

because to guarantee convergence, we will need to further specify how the price rises and

flow pushes should be effected.

Step 2: We will prove that if each price rise is bounded below, the naive algorithm can perform a

finite number of price rises.

Step 3: We will define how flow pushes can be effected on arcs so as to ensure a lower bound on

each price rise.

Step 4: We will discuss a key property needed in order to bound the number of flow pushes that

can be performed by the naive algorithm.

In the sections that will follow, we will develop algorithms that will satisfy the properties required

by the algorithmic framework and we will be able to prove their validity and estimate complexity

bounds.

We proceed with the first step of our analysis and define the following two operations that

can be performed on a node i with positive surplus :

(a) A price rise on node i, which increases the price pi by the maximum amount that maintains

ε-CS, while leaving all arc flows unchanged.

(b) A flow push (also called a δ-flow push) along an arc (i, j) [or along an arc (j, i)], which

increases (i, j) [or decreases (j, i)] by an amount δ ∈ (0, gi] that maintains ε-CS, while

leaving all node prices unchanged.

Let us assume now that we have a naive method that at each iteration picks a node of

positive surplus and performs one or more of the above operations. Let us further assume that

each price rise is at least some fraction of ε, say βε, where 0 < β < 1. Therefore, such a method

has the following properties:

7

2. The Algorithmic Framework

1. If the initial flow-price pair satisfies ε-CS, the method preserves ε-CS and the prices are

monotonically nondecreasing.

2. Once the surplus of a node becomes nonnegative, it remains nonnegative for all subsequent

iterations. The reason is that a flow push at a node i cannot make the surplus of i negative

(cf. operation (b)) and cannot decrease the surplus of neighboring nodes.

3. If at some iteration a node has negative surplus, then its price must be equal to its initial

price. This is a consequence of observation 2 above and the fact that price changes occur

only at nodes with positive surplus.

4. Each price rise is at least βε, where 0 < β < 1.

Based on these porperties, we can proceed to the second step of our analysis and prove a

bound for the total number of price increases that the naive method can perform on any node.

The proof is patterned after that for the ε-relaxation method for linear cost case [Ber86a], [BeE88].

A variant of the proof specialized to the convex cost ε-relaxation methods (and with β = 0.5)

was presented in [BPT96]. We present here the proof for the naive method for completeness.

Proposition 3: Assume that for some integer K ≥ 1, the initial price vector p0 for the

naive method satisfies Kε-CS together with some feasible flow vector x0. Then, the naive method

performs at most (K + 1)(N − 1)/β price rises per node.

Proof: Consider the pair (x, p) at the beginning of an iteration of the naive algorithm. Since

the surplus vector g = (g1, . . . , gN) is not zero, and the flow vector x0 is feasible, we conclude

that for each node s with gs > 0 there exists a node t with gt < 0 and a path H from t to s that

contains no cycles and is such that:

xij > x0
ij , ∀ (i, j) ∈ H+, (5)

xij < x0
ij , ∀ (i, j) ∈ H−, (6)

where H+ is the set of forward arcs of H and H− is the set of backward arcs of H. [This can

be seen from the Conformal Realization theorem ([Roc84] or [Ber91]) as follows. For the flow

vector x−x0, the net outflow from node t is −gt > 0 and the net outflow from node s is −gs < 0

(here we ignore the flow supplies), so, by the Conformal Realization Theorem, there is a path H

from t to s that contains no cycle and conforms to the flow x− x0, that is, xij − x0
ij > 0 for all

(i, j) ∈ H+ and xij − x0
ij < 0 for all (i, j) ∈ H−. Eqs. (5) and (6) then follow.]

From Eqs. (5) and (6), and the convexity of the functions fij for all (i, j) ∈ A, we have

f−ij (xij) ≥ f+
ij (x0

ij), ∀ (i, j) ∈ H+, (7)

8

2. The Algorithmic Framework

f+
ij (xij) ≤ f−ij (x0

ij), ∀ (i, j) ∈ H−. (8)

Since the pair (x, p) satisfies ε-CS, we also have that

pi − pj ∈ [f−ij (xij) − ε, f+
ij (xij) + ε], ∀ (i, j) ∈ A. (9)

Similarly, since the pair (x0, p0) satisfies Kε-CS, we have

p0
i − p0

j ∈ [f−ij (x0
ij) −Kε, f+

ij (x
0
ij) + Kε], ∀ (i, j) ∈ A. (10)

Combining Eqs. (7)-(10), we obtain

pi − pj ≥ p0
i − p0

j − (K + 1)ε, ∀ (i, j) ∈ H+,

pi − pj ≤ p0
i − p0

j + (K + 1)ε, ∀ (i, j) ∈ H−.

Applying the above inequalities for all arcs of the path H, we get

pt − ps ≥ p0
t − p0

s − (K + 1)|H|ε, (11)

where |H| denotes the number of arcs of the path H. We observed earlier that if a node has

negative surplus at some time, then its price is unchanged from the beginning of the method

until that time. Thus pt = p0
t . Since the path contains no cycles, we also have that |H| ≤ N − 1.

Therefore, Eq. (11) yields

ps − p0
s ≤ (K + 1)|H|ε ≤ (K + 1)(N − 1)ε. (12)

Since only nodes with positive surplus can increase their prices and, by Prop. 2, each price rise

increment is at least βε, we conclude from Eq. (12) that the total number of price rises that can

be performed for node s is at most (K + 1)(N − 1)/β. Q.E.D.

The result of the preceding proposition is remarkable in that the bound on the number of

price changes is independent of the cost functions, but depends only on

K0 = min{K ∈ {0, 1,2, . . .} | (x0, p0) satisfies Kε-CS for some feasible flow vector x0 },

which is the minimum multiplicity of ε by which CS is violated by the starting price together

with some feasible flow vector. This result will be used later to prove a particularly favorable

complexity bound for the ε-relaxation and auction/sequential shortest path methods of later

sections. Note that K0 is well defined for any p0 because, for all K sufficiently large, Kε-CS is

satisfied by p0 and the feasible flow vector x satisfying Eq. (3).

9

2. The Algorithmic Framework

The third step of our analysis defines the way a flow-push is performed. This involves

defining which arcs are eligible for a flow push and the amount of flow that we will push along

such arcs. The definitions that follow will also allow us to satisfy the lower bound on the amount

of each price rise that we assumed for proposition 1.

For a flow-price vector pair (x, p) satisfying ε-CS, we define for each node i ∈ N its push

list as the union of the sets of arcs

L+(i) =
{
(i, j) | (1− β)ε < pi − pj − f+

ij (xij) ≤ ε
}

, (13a)

and

L−(i) =
{
(j, i) | −ε ≤ pj − pi − f−ji (xji) < −(1 − β)ε

}
, (13b)

where where β is a scalar with 0 < β < 1. Figure 4 illustrates when an arc (i, j) is in the push

list of i and when it is in the push list of j. We note that a definition of the push list that is

used in practice is given by replacing the term (1− β)ε with ε/2 (see [BPT96]). The subsequent

analysis applies, with minor modifications, to that case.

Figure 4: A visualization of the conditions satisfied by a push list arc. The

shaded area represents flow-price differential pairs corresponding to a push list

arc.

An arc (i, j) [or (j, i)] in the push list of i is said to be unblocked if there exists a δ > 0 such

that

pi − pj ≥ f+
ij (xij + δ),

[or pj − pi ≤ f−ji (xji − δ), respectively]. For an unblocked push list arc, the supremum of δ for

which the above relation holds is called the flow margin of the arc. The flow margin of an arc

(i, j) is illustrated in Fig. 5. An important property is the following:

Proposition 2: The arcs in the push list of a node are unblocked.

Proof: Assume that for an arc (i, j) ∈ A we have

pi − pj < f+
ij (xij + δ), ∀ δ > 0.

10

2. The Algorithmic Framework

Since the function f+
ij is right continuous, this yields

pi − pj ≤ lim
δ↓0

f+
ij (xij + δ) = f+

ij (xij),

and thus, based on the definition of Eq. (13a), (i, j) cannot be in the push list of node i. A similar

argument proves that an arc (j, i) ∈ A such that

pj − pi > f−ji (xji − δ), ∀ δ > 0,

cannot be in the push list of node i. Q.E.D.

Figure 5: The flow margin of an unblocked push list arc.

The above definitions also allow us to prove a lower bound on each price rise increment.

Proposition 3: Assume that a price rise is performed on a positive surplus node if and only

if its push list is empty. Then each price rise increment is at least βε.

Proof: If the push list of a node i is empty then for every arc (i, j) ∈ A we have pi − pj −
f+

ij (xij) ≤ (1 − β)ε, and for every arc (j, i) ∈ A we have pj − pi − f−ji (xji) ≥ −(1 − β)ε. This

implies that all elements of the following sets of positive numbers:

S+ =
{
pj − pi + f+

ij (xij) + ε | (i, j) ∈ A
}

,

S− =
{
pj − pi − f−ji (xji) + ε | (j, i) ∈ A

}

are greater than or equal to βε. Since a price rise at i increases pi by the increment γ = min{S+∪
S−}, the result follows. Q.E.D.

We proceed now with the forth and final step of our development of the algorithmic frame-

work, where we identify a key property required to bound the total number of flow pushes that

can be performed. For a given pair (x, p) satisfying ε-CS, consider an arc set A∗ that contains

all push list arcs oriented in the direction of flow change. In particular, for each arc (i, j) in the

forward portion L+(i) of the push list of a node i, we introduce an arc (i, j) in A∗ and for each

11

3. The ε-Relaxation Method

arc (j, i) in the backward portion L−(i) the push list of node i we introduce an arc (i, j) in A∗

(thus the direction of the latter arc is reversed). The set of nodes N and the set A∗ define the

admissible graph G∗ = (N ,A∗). Note that an arc can be in the push list of at most one node, so

the admissible graph is well defined.

We must now choose an initial flow-price vector pair (x, p) satisfying ε-CS, and such that

the corresponding admissible graph G∗ is acyclic. Acyclicity of the admissible graph is important

in order to bound the number of flow pushes that a method would perform, as we shall prove in

later sections. One possibility is to select an initial price vector p0 and to set the initial arc flow

x0
ij for every arc (i, j) ∈ A so that the flow-price pair (x0, p0) satisfies 0-CS; that is

f−ij (ξ0) ≤ p0
i − p0

j ≤ f+
ij (ξ

0), ∀ (i, j) ∈ A. (14)

It can be seen that with this choice, ε-CS is satisfied for every arc (i, j) ∈ A, and that the initial

admissible graph is empty and thus acyclic.

We now have all the necessary ingredients to develop auction methods that solve the convex

cost network flow problem. In particular, we have defined the operations performed and the

initialization of such methods and we have proved properties that will insure the validity and

termination of these methods. We only need to define the specific order that we will effect price

rises and flow pushes. In the next sections we will define and prove the validity of two such

methods the ε-relaxation and the auction/sequential shortest path method. We will also present

surprisingly favorable complexity results.

3. THE ε-RELAXATION METHOD

The first auction method that we extend to the convex cost network flow problem is the

ε-relaxation method. The method has also been presented in [BPT96] but we derive it here from

the general algorithmic framework.

The iteration is as follows.

Typical Iteration of the ε-Relaxation Method

Step 1: Select a node i with positive surplus gi; if no such node exists, terminate the method.

Step 2: If the push list of i is empty, go to Step 3. Otherwise, choose an arc from the push list of i

12

3. The ε-Relaxation Method

and perform a δ-flow push towards the opposite node j, where

δ = min{gi, flow margin of arc}.

If the surplus of i becomes zero, go to the next iteration; otherwise go to Step 2.

Step 3: Increase the price pi by the maximum amount that maintains ε-CS. Go to the next iteration.

We make the following observations about the ε-relaxation method, similar to the ones we

made for the naive method of Section 2:

1. The method preserves ε-CS and the prices are monotonically nondecreasing. This is because

the initial flow-price pair satisfies ε-CS, and Steps 2 and 3 of the method preserve ε-CS.

2. Once the surplus of a node becomes nonnegative, it remains nonnegative for all subsequent

iterations. The reason is that a flow push at a node i cannot make the surplus of i negative

(cf. Step 2), and cannot decrease the surplus of neighboring nodes.

3. If at some iteration a node has negative surplus, then its price must be equal to its initial

price. This is a consequence of observation 2 above and the fact that price changes occur

only at nodes with positive surplus.

4. Each price rise increment is at least βε. This is a consequence of Step 3 and Proposition 3.

To prove the termination of the ε-relaxation method, we first prove that the total number

of price rises that the method can perform is bounded. In particular, Proposition 1 applies and

we conclude that the ε-relaxation method can perform at most (K + 1)(N − 1)/β price rises per

node.

In order to show that the number of flow pushes that can be performed between successive

price increases is finite, we first prove that the method maintains the acyclicity of the admissible

graph (see also [BPT96]).

Proposition 4: The admissible graph remains acyclic throughout the ε-relaxation method.

Proof: We use induction. Initially, the admissible graph G∗ is empty, so it is trivially acyclic.

Assume that G∗ remains acyclic for all subsequent iterations up to the mth iteration for some

m. We will prove that after the mth iteration G∗ remains acyclic. Clearly, after a flow push

the admissible graph remains acyclic, since it either remains unchanged, or some arcs are deleted

from it. Thus we only have to prove that after a price rise at a node i, no cycle involving i is

created. We note that, after a price rise at node i, all incident arcs to i in the admissible graph

at the start of the mth iteration are deleted and new arcs incident to i are added. We claim that

13

3. The ε-Relaxation Method

i cannot have any incoming arcs which belong to the admissible graph. To see this, note that,

just before a price rise at node i, we have from (4) that

pj − pi − f+
ji (xji) ≤ ε, ∀ (j, i) ∈ A,

and since each price rise is at least βε, we must have

pj − pi − f+
ji (xji) ≤ (1− β)ε, ∀ (j, i) ∈ A,

after the price rise. Then, by Eq. (5), (j, i) cannot be in the push list of node j. By a similar

argument, we have that (i, j) cannot be in the push list of j for all (i, j) ∈ A. Thus, after a price

increase at i, node i cannot have any incoming incident arcs belonging to the admissible graph,

so no cycle involving i can be created. Q.E.D.

We say that a node i is a predecessor of a node j in the admissible graph G∗ if a directed

path from i to j exists in G∗. Node j is then called a successor of i. Observe that flow is pushed

towards the successors of a node and since G∗ is acyclic, flow cannot be pushed from a node to

any of its predecessors. A δ-flow push along an arc in G∗ is said to be saturating if δ is equal to

the flow margin of the arc. By our choice of δ (see Step 2 of the method), a nonsaturating flow

push always exhausts (i.e., sets to zero) the surplus of the starting node of the arc. Thus we have

the following proposition.

Proposition 5: The number of flow pushes between two successive price increases (not nec-

essarily at the same node) performed by the ε-relaxation method is finite.

Proof: We observe that a saturating flow push along an arc removes the arc from the admissible

graph, while a nonsaturating flow push does not add a new arc to the admissible graph. Thus

the number of saturating flow pushes that can be performed between successive price increases

is at most A. It will thus suffice to show that the number of nonsaturating flow pushes that

can be performed between saturating flow pushes is finite. Assume the contrary, that is, there

is an infinite sequence of successive nonsaturating flow pushes, with no intervening saturating

flow push. Then the admissible graph remains fixed throughout this sequence. Furthermore, the

surplus of some node i0 must be exhausted infinitely often during this sequence. This can happen

only if the surplus of some predecessor i1 of i0 is exhausted infinitely often during the sequence.

Continuing in this manner we construct an infinite succession of predecessor nodes {ik}. Thus

some node in this sequence must be repeated, which is a contradiction since the admissible graph

is acyclic. Q.E.D.

By refining the proof of Prop. 5, we can further show that the number of flow pushes

14

3. The ε-Relaxation Method

between successive price increases is at most (N + 1)A, from which a complexity result for the

ε-relaxation method may be derived. However, an implementation of the method with a sharper

complexity bound has been presented in [BPT96]. We will review the implementation and the

corresponding results later this section.

Propositions 1 and 5 prove that the ε-relaxation method terminates. Upon termination,

we have that the flow-price vector pair satisfies ε-CS and that the flow vector is feasible since

the surplus of all nodes will be zero. The following proposition, due to [BHT87], shows that the

flow vector and the price vector obtained upon termination are primal optimal and dual optimal

within a factor that is essentially proportional to ε.

Proposition 6: For each ε > 0, let x(ε) and p(ε) denote any flow and price vector pair

satisfying ε-CS with x(ε) feasible and let ξ(ε) denote any flow vector satisfying CS together with

p(ε) [note that ξ(ε) need not be feasible]. Then

0 ≤ f
(
x(ε)

)
+ q

(
p(ε)

)
≤ ε

∑

(i,j)∈A
|xij(ε)− ξij(ε)| .

Furthermore, f
(
x(ε)

)
+ q

(
p(ε)

)
→ 0 as ε → 0.

Proposition 6 does not give an estimate of how small ε has to be in order to achieve a certain

degree of optimality. However, in the common case where finiteness of the arc cost functions fij

imply lower and upper bounds on the arc flows, Prop. 6 together with the fact q
(
p(ε)

)
≥ −f∗

yields such an estimate for ε (see [BPT96]).

Complexity Analysis

We now derive a bound on the running time of the ε-relaxation method. The analysis was

orginally presented in the Ph.D. thesis of the second author [Pol95] and in the subsequent pub-

lication [BPT96]. We review here the basic ideas and provide the main results of the analysis

for completeness. We will also use these results for the analysis of the auction/sequential shortes

paths algorithm of the next section. The reader is referred to the above publications for a more

detailed treatment of the compelxity analyis of the ε-relaxation algorithm.

Since the cost functions are convex, it is not possible to express the size of the problem in

terms of the problem data. To deal with this difficulty, we introduce a set of simple operations

performed by the method, and we estimate the number of these operations. In particular, in

addition to the usual arithmetic operations with real numbers, we consider the following opera-

tions:

15

3. The ε-Relaxation Method

(a) Given the flow xij of an arc (i, j), calculate the cost fij(xij), the left derivative f−ij (xij),

and the right derivative f+
ij (xij).

(b) Given the price differential tij = pi − pj of an arc (i, j), calculate sup{ξ | f+
ij (ξ) ≤ tij} and

inf{ξ | f−ij (ξ) ≥ tij}.

Operation (a) is needed to compute the push list of a node and a price increase increment;

operation (b) is needed to compute the flow margin of an arc and the flow initialization of Eq.

(6). We will thus estimate the total number of simple operations performed by the method (see

the following Prop. 8).

To obtain a sharper complexity bound, we introduce an order in which the nodes are chosen

in Step 1 of each iteration. This rule is based on the sweep implementation of the ε-relaxation

method, which was introduced in [Ber86a] and was analyzed in more detail in [BeE88], [BeT89],

and [BC91] for the linear cost network flow problem. All the nodes are kept in a linked list T ,

which is traversed from the first to the last element. The order of the nodes in the list is consistent

with the successor order implied by the admissible graph; that is, if a node j is a successor of a

node i, then j must appear after i in the list. If the initial admissible graph is empty, as is the

case with the initialization of Eq. (6), the initial list is arbitrary. Otherwise, the initial list must

be consistent with the successor order of the initial admissible graph. The list is updated in a

way that maintains the consistency with the successor order. In particular, let i be a node on

which we perform an ε-relaxation iteration, and let Ni be the subset of nodes of T that are after

i in T. If the price of i changes, then node i is removed from its position in T and placed in the

first position of T . The next node chosen for iteration, if Ni is nonempty, is the node i′ ∈ Ni

with positive surplus which ranks highest in T . Otherwise, the positive surplus node ranking

highest in T is picked. It can be shown (see the references cited earlier) that with this rule of

repositioning nodes following a price change, the list order is consistent with the successor order

implied by the admissible graph throughout the method.

A sweep cycle is a set of iterations whereby all nodes are chosen once from the list T and

an ε-relaxation iteration is performed on those nodes that have positive surplus. The idea of the

sweep implementation is that an ε-relaxation iteration at a node i that has predecessors with

positive surplus may be wasteful, since the surplus of i will be set to zero and become positive

again through a flow push at a predecessor node.

The complexity analysis follows the line of the corresponding analysis for the linear cost

problem. We will review here only the main results. The reader is referred to [BPT96] for

the proofs. First we have a proposition that estimates the number of sweep cycles required for

16

3. The ε-Relaxation Method

termination.

Proposition 7: Assume that for some integer K ≥ 1, the initial price vector p0 for the sweep

implementation of the ε-relaxation method satisfies Kε-CS together with some feasible flow vector

x0. Then, the number of sweep cycles up to termination is O(KN 2).

By using Prop. 7, we now bound the running time for the sweep implementation of the

ε-relaxation method. The dominant computational requirements are:

(1) The computation required for price increases.

(2) The computation required for saturating δ-flow pushes.

(3) The computation required for nonsaturating δ-flow pushes.

Proposition 8: Assume that for some K ≥ 1 the initial price vector p0 for the sweep imple-

mentation of the ε-relaxation method satisfies Kε-CS together with some feasible flow vector x0.

Then, the method requires O(KN3) operations up to termination.

It is well known that the theoretical and the practical performance of the ε-relaxation

method can be improved by scaling. A scaling approach in connection with the ε-relaxation

method for linear cost problems, is ε-scaling. This approach was originally introduced in [Ber79]

as a means of improving the performance of the auction algorithm for the assignment problem.

Its complexity analysis was given in [Gol87] and [GoT90].

The key idea of ε-scaling is to apply the ε-relaxation method several times, starting with a

large value of ε and to successively reduce ε up to a final value that will give the desirable degree

of accuracy to our solution. Furthermore, the price and flow information from one application of

the method is transferred to the next. The ε-scaling implementation of the ε-relaxation method

is presented in detail in [BPT96]. The result is summarized in the following proposition, where ε

is a desirable value for ε on termination and ε0 is sufficiently large so that the initial price vector

p0 satisfies ε0-CS with some feasible flow vector x0.

Proposition 9: The running time of the ε-relaxation method using the sweep implementation

and ε-scaling as described above is O
(
N3 ln(ε0/ε)

)
operations.

We note that a complexity bound of O
(
NA ln(N) ln(ε0/ε̄)

)
operations was derived in

[KaM93] for the tighten and cancel method. For relatively dense network flow problems where

A = Θ(N2/ln N), our complexity bound for the ε-relaxation method is more favorable, while for

sparse problems, where A = Θ(N), the reverse is true. We finally note that obtaining sharper

complexity estimates for our method when applied to special classes of problems, such as those

17

4. The ASSP Method

involving quadratic arc cost functions, remains an interesting subject for further research.

4. THE AUCTION/SEQUENTIAL SHORTEST PATH (ASSP) METHOD

The auction/sequential shortest path (ASSP) algorithm was proposed in [Ber92] in the

context of the classical minimum cost flow problem where the arc costs are linear. In this section

we will extend it to the case of convex costs, based on the general algorithmic framework of

Section 2 and the analysis for the ε-relaxation method of Section 3.

The ε-relaxation algorithm analyzed in the previous sections performed flow pushes and

price increases on positive surplus nodes using local information about their incident arcs. The

ASSP algorithm operates in a different way; it does not make any flow push until an unblocked

path of minimum cost connecting a source and a sink has been found. Once such an unblocked

path is found, a flow is pushed along the path from the source to the sink. Thus after such a flow

push the surplus of a source decreases and the deficit of a sink decreases, whereas the surpluses

of the rest of the nodes in the graph remain unchanged. In contrast the ε-relaxation algorithm

allowed a node to decrease its own surplus by increasing the surplus of a neighboring node.

We introduce some concepts that are essential for the ASSP algorithm, specifically, the no-

tion of a path and the operations performed on it. A path P is a sequence of nodes (n1, n2, . . . , nk)

and a corresponding sequence of k−1 arcs such that the ith arc on the sequence is either (ni, ni+1)

(in which case it is called a forward arc) or (ni+1, ni) (in which case it is called a reverse arc).

We denote by s(P) and t(P) the starting node and the terminal node respectively of path P. We

also define the sets P+, P− containing the forward and reverse arcs of P, respectively. A path

that consists of a single node (and no arcs) is called a degenerate path. A path is called simple

if it has no repeated nodes. It is called unblocked if all of its arcs are unblocked. An unblocked

path starting at a source and ending at a sink is called an augmenting path. An augmentation

(compare with the definition of a flow push we gave in Section 2) along such a path starting at

a source s(P) and ending at a sink t(P), consists of increasing the flow of all the arcs in P+,

decreasing the flow of all arcs in P−, decreasing the surplus of the source gs(P), and increasing

the surplus of the sink gt(P) by the same amount

δ = min
{
gs(P),−gt(P), min of flow margins of the arcs of P

}
.

We define two operations on a given path P = (n1, n2, . . . , nk) : A contraction of P deletes

18

4. The ASSP Method

the terminal node of P and the corresponding terminal arc. An extension of P by an arc

(nk, nk+1) or an arc (nk+1, nk), replaces P by the path (n1, n2, . . . , nk, nk+1) and adds to P the

corresponding arc.

The ASSP algorithm, described formally below, maintains a flow-price pair satisfying ε-CS

and also a simple path P, starting at some positive surplus node. At each iteration, the path

P is either extended or contracted. In case of a contraction the price of the terminal node of

P is strictly increased. In the case of an extension, no price change occurs, but if the new

terminal node has negative surplus then an augmentation along P is performed. Following an

augmentation, P is replaced by the degenerate path that consists of a single node with positive

surplus and the process is repeated. The algorithm terminates when all nodes have nonnegative

surplus. Then either all nodes have zero surplus and the flow vector x is feasible, or else some

node has negative surplus showing that the problem is infeasible. The algorithm is initialized in

the same way as the ε-relaxation algorithm, rendering the initial admissible graph acyclic. As

we discussed in Section 2, for these choices ε-CS is satisfied and the initial admissible graph is

acyclic since its arc set is empty. A typical iteration of the algorithm is as follows:

Typical Iteration of the ASSP Method

Step 1: Select a node i with positive surplus gi and let the path P consist of only this node; if no

such node exists, terminate the method.

Step 2: Let i be the terminal node of the path P. If the push list of i is empty, then go to Step 3;

otherwise, go to Step 4.

Step 3 (Contract Path): Increase the price pi by the maximum amount that maintains ε-CS. If

i 6= s(P), contract P. Go to Step 2.

Step 4 (Extend Path): Pick an arc (i, j) (or (j, i)) from the push list of i and extend P. If the

surplus of j is negative go to Step 5; otherwise, go to Step 2.

Step 5 (Augmentation): Perform an augmentation along the path P by the amount δ. Go to Step

1.

We proceed now to establish the basic properties that will allow us to prove the validity of

the algorithm. The analysis will proceed in similar steps as for the naive algorithm of Section 2.

We first prove the following proposition:

Proposition 10: Suppose that at the start of an iteration:

19

4. The ASSP Method

1. (x, p) satisfies ε-CS and the corresponding admissible graph is acyclic.

2. P belongs to the admissible graph.

Then the same is true at the start of the next iteration.

Proof: Suppose that the iteration involves a contraction. Then, by definition, the price rise

preserves the ε-CS conditions. Since only the price of i changed and no arc flow changed, the

admissible graph remains unchanged except for the incident arcs to i. In particular, all incident

arcs of i in the admissible graph at the beginning of the iteration are deleted and the arcs in the

push list of i at the end of the iteration are added. Since all these arcs are outgoing from i in the

admissible graph, a cycle cannot be formed. Finally, after the contraction, P does not contain

the terminal node i, so it belongs to the admissible graph before the iteration. Thus P consists

of arcs that still belong to the admissible graph after the iteration.

Suppose now that the iteration involves an extension. Since the extension arc (i, j) or (j, i)

is unblocked and belongs to the push list of i, it belongs to the admissible graph and thus P

belongs to the admissible graph after the extension. Since no flow or price changes with an

extension, the ε-CS conditions and the admissible graph do not change after an extension. If

there is a subsequent augmentation because of Step 5, the ε-CS conditions are not affected, while

the admissible graph will not gain any new arcs, so it remains acyclic. Q.E.D.

The above proof also demonstrates the importance of relaxing the CS conditions by ε. If

we had taken ε = 0 then the preceding proof would break down, and the admissible graph might

not remain acyclic after an augmentation. For example, if following an augmentation, the flow

of some arc (i, j) with linear cost and flow margin δij lies strictly between the flow xij it had

before the augmentation and xij + δij , then both the arc (i, j) and the arc (j, i) would belong to

the admissible graph closing a cycle.

We make the following observations about the ASSP method, similar to the ones we made

for the naive method of Section 2:

1. The method preserves ε-CS and the prices are monotonically nondecreasing.

2. Once the surplus of a node becomes nonnegative, it remains nonnegative for all subsequent

iterations. The reason is that an augmentation along a path P cannot make the surplus of

the source s(P) negative, cannot decrease the surplus of terminal node t(P) and does not

change the surplus of the intermediate nodes of the path P (cf. Step 5).

3. If at some iteration a node has negative surplus, then its price must be equal to its initial

20

4. The ASSP Method

price. This is a consequence of observation 2 above and the fact that price changes occur

only at nodes with positive surplus (cf. Step 5, where if a node of negative surplus is

encountered, the algorithm performs an augmentation).

4. Each price rise increment is at least βε. This is a consequence of Step 3 and Proposition 3.

We conclude that Proposition 1 applies to our algorithm. Thus the number of price rises

that can be performed by our algorithm is bounded. In particular, if the initial price vector p0

for the ASSP algorithm satisfies Kε-CS with some feasible flow vector x0 for some K ≥ 1, then

the algorithm performs O(KN) price increases per node of positive surplus.

We will now complete the proof of the validity of the algorithm. First, we ensure that a

path from a source to some sink can be found. The sequence of iterations between successive

augmentations (or the sequence of iterations up to the first augmentation) will be called an

augmentation cycle. Let us fix an augmentation cycle and let p̂ be the price vector at the start of

this cycle. Let us now define an arc set AR by introducing for each arc (i, j) ∈ A, two arcs in AR :

an arc (i, j) with length f+
ij (xij)+ p̂j− p̂i +ε and an arc (j, i) with length p̂i−f−ij (xij)− p̂j +ε. The

resulting graph GR = (N ,AR) will be referred to as the reduced graph. Note that because the

pair (x, p) satisfy ε-CS the arc lengths of the reduced graph are nonnegative. Furthermore, the

reduced graph contains no zero length cycles since such a cycle would belong to the admissible

graph which we proved to be acyclic. During an augmentation cycle the reduced graph remains

unchanged, since no arc flow changes except for the augmentation at the end.

It can now be seen that the augmentation cycle is just the auction shortest path algorithm

of [Ber91] and it constructs a shortest path in the reduced graph GR starting at a source s(P)

and ending at a sink t(P). By the theory of the auction shortest path algorithm, a shortest path

in the reduced graph from a source to some sink will be found if one exists. Such a path will

exist if the convex cost flow problem is feasible.

Finally, we have to bound the total number of augmentations the algorithm performs be-

tween two successive price rises (not necessarily at the same node). First we observe that there

can be at most N successive extensions before either a price rise occurs or an augmentation is

possible. We say that an augmentation is saturating if the flow increment is equal to the flow

margin of at least one arc of the path. The augmentation is called exhaustive if, after it is per-

formed, the surplus of either the starting node s(P) or the terminal t(P) becomes zero (compare

with similar definitions we gave in Section 3). An augmentation cannot introduce new arcs in

the admissible graph G∗ since a saturating augmentation along a path P removes from G∗ all

the arcs of P whose flow margin is equal to the flow increment. Thus there can be at most

21

4. The ASSP Method

O(A) saturating augmentations. Furthermore, if a node has zero surplus at some point in the

algorithm, then its surplus remains zero for all subsequent iterations of the algorithm. Thus there

can be at most O(N) exhaustive flow pushes. Therefore at most O(NA) augmentations can be

performed between successive prices rises. Thus the algorithm terminates with a feasible flow

vector, and a flow-price pair satisfying the ε-CS conditions.

Complexity Analysis

The ASSP algorithm, as described above, has a complexity similar to the ε-relaxation without

the sweep implementation. To get a better complexity bound for the algorithm we could modify

the way it operates. For example, we consider a hybrid algorithm which performs ε-relaxation

iterations according to the sweep implementation along with some additional ASSP iterations.

This hybrid algorithm points out the issues that may lead to an efficient implementation of the

ASSP algorithm. In particular, all the nodes are kept in a linked list T which is traversed from

the first to the last element. The initial list is arbitrary. During the course of the algorithm, the

list is updated as follows: Whenever a price rise occurs at a node, the node is removed from its

current position at the list and is placed at the first position of the list. Furthermore, we perform

a fixed number C of ASSP iterations at the end of which we perform an ε-relaxation iteration at

s(P) and pick a new source from T. Let Ns(P) contain the nodes of T that are lower than s(P) in

T. The next node to be picked for an iteration is the node i′ ∈ Ns(P) with positive surplus which

ranks highest in T, if such a node exists. Otherwise, we declare that a cycle of the algorithm has

been completed and the positive surplus node ranking highest in T is picked.

This implementation of ASSP is in essence the sweep implementation of the ε-relaxation

algorithm with some additional (at most C at a time) iterations of the ASSP algorithm. In

particular, we note that a cycle for the hybrid algorithm, is the set of iterations whereby all

nodes of positive surplus in T performed either an ε-relaxation iteration or at least one a price

rise. Whenever a price increase occurs on a node i, then i can have no predecessors and is placed

at the top of the list. Thus, the nodes appear in the list before all their predecessors. Furthermore,

if no price rise has occurred during a cycle, then all nodes with positive surplus have performed

an ε-relaxation iteration and Proposition 8 applies. We conclude that from the analysis of Section

3 that the hybrid algorithm has a similar complexity bound with the ε-relaxation algorithm with

the sweep implementation. We can further make an ε-scaling implementation and obtain a result

similar to Proposition 9.

The above implementation is of importance in practice since it improves the performance

of the algorithm. In particular, if the ASSP algorithm has made numerous iterations with some

22

5. Computational Results

starting node s(P) without finding a path to a sink, we may deduce that the path to some sink

is “long” and many more iterations may be needed for the algorithm to find it. We can make

an augmentation along our current path and pick a new node on which to iterate. Thus we

may benefit in two ways. First, if the terminal node of the path is not a source, then, after the

augmentation, we have a source potentially closer to a sink than s(P). Secondly, we allow the

algorithm to pick a new source on which to iterate, enabling sources that are close to sinks to

find unblocked paths first. Experimentation has shown ([BeP94]) that such an implementation is

successful in the case of linear costs, especially when the paths from sources to sinks are unusually

long.

5 COMPUTATIONAL RESULTS

We have developed and tested two experimental Fortran codes implementing the methods

of this paper for convex cost problems. We have chosen β = 0.5 for simplicity in the implemetna-

tion. The first code, named NE-RELAX-F, implements the ε-relaxation method with the sweep

implementation and ε-scaling as described in Section 3. The second code, named ASSP-NE im-

plements the auction/sequential shortest path method with the implementation enhancements

described in Section 4. These codes are based on corresponding codes for linear cost problems

described in Appendix 7 of [Ber91], which have been shown to be quite efficient. Several changes

and enhancements were introduced in the codes for convex cost problems. In particular, all

computations are done in real rather than integer arithmetic, and ε-scaling, rather than arc cost

scaling, is used. Furthermore, the updating of the push lists and prices were modified to improve

efficiency. Otherwise, the sweep implementation and the general structure of the codes for linear

and convex cost problems are identical.

The codes NE-RELAX-F and ASSP-NE were compared to two existing Fortran codes NRE-

LAX and MNRELAX from [BHT87]. The latter implement the relaxation method for, respec-

tively, strictly convex cost and convex cost problems, and are believed to be quite efficient. All

codes were compiled and run on a Sun Sparc-5 workstation with 24 megabytes of RAM under

the Solaris operating system. We used the -O compiler option in order to take advantage of the

floating point unit and the design characteristics of the Sparc-5 processor. Unless otherwise indi-

cated, all codes terminated according to the same criterion, namely that the cost of the feasible

flow vector and the cost of the price vector must agree in their first 12 digits.

For our testing, we used convex linear/quadratic problems corresponding to the case of (P)

23

5. Computational Results

where

fij(xij) =

{
aijxij + bijx2

ij if 0 ≤ xij ≤ cij ,

∞ otherwise,

for some aij , bij , and cij with −∞ < aij < ∞, bij ≥ 0, and cij ≥ 0. We call aij , bij , and cij the

linear cost coefficient, the quadratic cost coefficient, and the capacity, respectively, of arc (i, j).

We created the test problems using two Fortran problem generators. The first is the public-

domain generator NETGEN, written by Klingman, Napier and Stutz [KNS74], which generates

linear-cost assignment/transportation/transshipment problems having a certain random struc-

ture. The second is the generator CHAINGEN, written by the second author, which generates

transshipment problems having a chain structure as follows: starting with a chain through all

the nodes, a user-specified number of forward arcs are added to each node (for example, if the

user specifies 3 additional arcs per node then the arcs (i, i + 2), (i, i + 3), (i, i + 4) are added

for each node i) and, for a user-specified percentage of nodes i, a reverse arc (i, i − 1) is also

added. The graphs thus created have long diameters and earlier tests on linear cost problems

showed that the created problems are particularly difficult for all methods. As the above two

generators create only linear cost problems, we modified the created problems as in [BHT87] so

that, for a user-specified percent of the arcs, a nonzero quadratic cost coefficient is generated in

a user-specified range.

Our tests were designed to study two key issues:

(a) The performance of the ε-relaxation and auction methods relative to the earlier relaxation

methods, and the dependence of this performance on network topology and problem ill-

conditioning.

(b) The sensitivity of the ε-relaxation and auction methods to problem ill-conditioning.

Ill-conditioned problems were created by assigning to some of the arcs have much smaller

(but nonzero) quadratic cost coefficients compared to other arcs. When the arc cost functions have

this structure, ill-conditioning in the traditional sense of unconstrained nonlinear programming

tends to occur.

We experimented with three sets of test problems: the first set comprises well-conditioned

strictly convex quadratic cost problems generated using NETGEN (Table 1); the second set

comprises well-conditioned strictly convex quadratic cost problems generated using CHAINGEN

(Table 2); the third set comprises ill-conditioned strictly convex quadratic cost problems and

mixed linear/quadratic cost problems generated using NETGEN (Table 3). The running time of

the codes on these problems are shown in the last three to four columns of Tables 1–3. In all

problems, the ε-relaxation and action codes were run to the point where they yielded higher or

24

References

comparable solution accuracy than the relaxation codes. From the running times we can draw

the following conclusions: First, the ε-relaxation code NE-RELAX-F and ASSP-NE have similar

performance and both consistently outperform, by a factor of at least 3 and often much more,

the relaxation codes NRELAX and MNRELAX on all test problems, independent of network

topology and problem ill-conditioning. In fact, on the CHAINGEN problems, the ε-relaxation

and auction codes outperform the relaxation codes by an order of magnitude or more. The only

explanation we have for this phenomenon is the favorable complexity analysis that we presented

in this paper.

REFERENCES

[Ber79] Bertsekas, D. P., “A Distributed Algorithm for the Assignment Problems,” Laboratory

for Information and Decision Systems Working Paper, M.I.T., Cambridge, MA, 1979.

[Ber85] Bertsekas, D. P., “A Unified Framework for Minimum Cost Network Flow Problems,”

Mathematical Programming, Vol. 32, 1985, pp. 125-145.

[Ber86a] Bertsekas, D. P., “Distributed Relaxation Methods for Linear Network Flow Problems,”

Proceedings of 25th IEEE Conference on Decision and Control, 1986, pp. 2101-2106.

[Ber86b] Bertsekas, D. P., “Distributed Asynchronous Relaxation Methods for Linear Network

Flow Problems,” Laboratory for Information and Decision Systems Report P-1606, M.I.T., Cam-

bridge, MA, 1986.

[Ber91] Bertsekas, D. P., Linear Network Optimization: Algorithms and Codes, M.I.T. Press,

Cambridge, MA, 1991.

[Ber92] Bertsekas, D. P., “An Auction/Sequential Shortest Path Algorithm for the Min Cost Flow

Problem,” Laboratory for Information and Decision Systems Report P-2146, M.I.T., Cambridge,

MA, 1992.

[BC91] Bertsekas, D. P., Castanon, D. A. “A Generic Auction Algorithm for the Minimum Cost

Network Flow Problem,” Laboratory for Information and Decision Systems Report LIDS-P-2084,

M.I.T., Cambridge, MA, 1991, Compuatational Optimization and Applications, 1994.

[BCE95] Bertsekas, D. P., Castanon, D., Eckstein, J., and Zenios, S. A., “Parallel network opti-

mization survey”, to appear in Encyclopedia of OR.

25

References

[BeE87] Bertsekas, D. P., and Eckstein, J., “Distributed Asynchronous Relaxation Methods for

Linear Network Flow Problems,” Proceedings of IFAC ’87, Munich, Germany, July 1987.

[BeE88] Bertsekas, D. P., and Eckstein, J., “Dual Coordinate Step Methods for Linear Network

Flow Problems,” Mathematical Programming, Vol. 42, 1988, pp. 203-243.

[BeE87] Bertsekas, D. P., and El Baz, D., “Distributed Asynchronous Relaxation Methods for

Convex Network Flow Problems,” SIAM Journal on Control and Optimization, Vol. 25, 1987,

pp. 74-85.

[BHT87] Bertsekas, D. P., Hosein, P. A., and Tseng, P., “Relaxation Methods for Network Flow

Problems with Convex Arc Costs,” SIAM Journal on Control and Optimization, Vol. 25, 1987,

pp. 1219-1243.

[BPT96] Bertsekas, D. P., Polymenakos, L. C., and Tseng, P., “An ε-Relaxation Method for

Separable Convex Cost Network Flow Problems,” accepted for publication, SIAM Journal on

Optimization.

[BeP94] Polymenakos, L. C., Personal Communication with Bertsekas, D. P. on computational

experimentations for the linear cost network flow problem.

[BeT88] Bertsekas, D. P., and Tseng, P., “Relaxation Methods for Minimum Cost Ordinary and

Generalized Network Flow Problems,” Operations Research, Vol. 36, 1988, pp. 93-114.

[BeT94] Bertsekas, D. P., and Tseng, P., “ RELAX-IV: A Faster Version of the RELAX Code

for Solving Minimum Cost Flow Problems,” Laboratory for Information and Decision Systems

Report P-2276, M.I.T., Cambridge, MA, 1994.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[BlJ92] Bland, R. G., and Jensen, D. L., “On the Computational Behavior of a Polynomial-Time

Network Flow Algorithm,” Mathematical Programming, Vol. 54, 1992, pp. 1-39.

[DMZ95] De Leone, R., Meyer, R. R., and Zakarian, A., “An ε-Relaxation Algorithm for Con-

vex Network Flow Problems,” Computer Sciences Department Technical Report, University of

Wisconsin, Madison, WI, 1995.

[EdK72] Edmonds, J., and Karp, R. M., “Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems,” Journal of the ACM, Vol. 19, 1972, pp. 248-264.

[FoF62] Ford, L. R., Jr., and Fulkerson, D. R., Flows in Networks, Princeton University Press,

26

References

Princeton, NJ, 1962

[GoT90] Goldberg, A. V., and Tarjan, R. E., “Solving Minimum Cost Flow Problems by Succes-

sive Approximation,” Mathematics of Operations Research, Vol. 15, 1990, pp. 430-466.

[Gol87] Goldberg, A. V., “Efficient Graph Algorithms for Sequential and Parallel Computers,”

Laboratory for Computer Science Technical Report TR-374, M.I.T., Cambridge, MA, 1987.

[Hag92] Hager, W. W., “The Dual Active Set Algorithm,” in Advances in Optimization and

Parallel Computing, Edited by P. M. Pardalos, North-Holland, Amsterdam, Netherland, 1992,

pp. 137-142.

[HaH93] Hager, W. W., and Hearn, D. W., “Application of the Dual Active Set Algorithm to

Quadratic Network Optimization,” Computational Optimization and Applications, Vol. 1, 1993,

pp. 349-373.

[KaM84] Kamesam, P. V., and Meyer, R. R., “Multipoint Methods for Separable Nonlinear

Networks,” Mathematical Programming Study, Vol. 22, 1984, pp. 185-205.

[KaM93] Karzanov, A. V., and McCormick, S. T., “Polynomial Methods for Separable Convex

Optimization in Unimodular Linear Spaces with Applications to Circulations and Co-circulations

in Network,” Faculty of Commerce Report, University of British Columbia, Vancouver, BC, 1993;

to appear in SIAM Journal on Computing.

[KNS74] Klingman, D., Napier, A., and Stutz, J., “NETGEN - A Program for Generating Large

Scale (Un) Capacitated Assignment, Transportation, and Minimum Cost Flow Network Prob-

lems,” Management Science, Vol. 20, 1974, pp. 814-822.

[LiZ91] Li, X., and Zenios, S. A., “Data Parallel Solutions of Min-Cost Network Flow Prob-

lems Using ε-Relaxations,” Department of Decision Sciences Report 1991-05-20, University of

Pennsylvania, Philadelphia, PA, 1991.

[Mey79] Meyer, R. R., “Two-Segment Separable Programming,” Management Science, Vol. 25,

1979, pp. 285-295.

[NiZ93] Nielsen, S. S., and Zenios, S. A., “On the Massively Parallel Solution of Linear Network

Flow Problems,” in Network Flow and Matching: First DIMACS Implementation Challenge,

Edited by D. Johnson and C. McGeoch, American Mathematical Society, Providence, RI, 1993,

pp. 349-369.

Optimization:

27

References

[Pol94] Polymenakos, L. C. “Parallel Shortest Path Auction Algorithms,” Parallel Computing,

Vol. 20, 1994, pp. 1221-1247.

[Pol95] Polymenakos, L. C. “ε-Relaxation and Auction Algorithms for the Convex Cost Network

Flow Problem,” Electrical Engineering and Computer Science Department Ph.D. Thesis, M.I.T.,

Cambridge, MA, 1995.

[Roc80] Röck, H., “Scaling Techniques for Minimal Cost Network Flows,” in Discrete Structures

and Algorithms, Edited by U. Pape, Carl Hanser, München, Germany, 1980, pp. 181-191.

[Roc70] Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[Roc84] Rockafellar, R. T., Network Flows and Monotropic Programming, Wiley-Interscience,

New York, NY, 1984.

[Tse86] Tseng, P., “Relaxation Methods for Monotropic Programming Problems,” Operations

Research Center Ph.D. Thesis, M.I.T., Cambridge, MA, 1986.

[TBT90] Tseng, P., Bertsekas, D. P., and Tsitsiklis, J. N., “Partially Asynchronous, Parallel

Algorithms for Network Flow and Other Problems,” SIAM Journal on Control and Optimization,

Vol. 28, 1990, pp. 678-710.

[Ven91] Ventura, J. A., “Computational Development of a Lagrangian Dual Approach for Quadra-

tic Networks,” Networks, Vol. 21, 1991, pp. 469-485.

[Wei74] Weintraub, A., “A Primal Algorithm to Solve Network Flow Problems with Convex

Costs,” Management Science, Vol. 21, 1974, pp. 87-97.

28

