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Abstract

In this paper we propose auction algorithms for solving several types of assignment problems

with inequality constraints. Included are asymmetric problems with different numbers of persons

and objects, and multiassignment problems, where persons may be assigned to several objects and

reversely. A central new idea in all these algorithms is to combine regular auction, where persons

bid for objects by raising their prices, with reverse auction, where objects compete for persons by

essentially offering discounts. Reverse auction can also be used to accelerate substantially (and

sometimes dramatically) the convergence of regular auction for symmetric assignment problems.
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1. Introduction

1. INTRODUCTION

Let us consider the classical symmetric assignment problem where we want to match n persons

and n objects on a one-to-one basis. The benefit for matching a person with an object is given,

and we want to assign all persons to distinct objects so as to maximize the total benefit. The

auction algorithm is a method for solving this problem that was first proposed in [Ber79], and was

subsequently developed in [Ber85], [Ber88], and [BeE88]. It operates like a real-life auction. There is

a price for each object, and at each iteration, unassigned persons bid simultaneously for their “best”

objects (the ones offering maximum benefit minus price), thereby raising the corresponding prices.

Objects are then awarded to the highest bidder. The bidding increments must be at least equal

to a positive parameter ε, and are chosen so as to preserve an ε-complementary slackness property.

For good theoretical as well as practical performance, it may be important to use ε-scaling, which

consists of applying the algorithm several times, starting with a large value of ε and successively

reducing ε up to an ultimate value that is less than some threshold (1/n when aij are integer). Each

scaling phase provides good initial prices for the next. For tutorial presentations of the auction

algorithm, we refer to [Ber90] and [Ber91].

We note that there are several extensions of the auction algorithm; to transportation problems

[BeC89a], and to minimum cost flow problems (the ε-relaxation method of [Ber86a] and [Ber86b], and

the network auction algorithm of [BeC89b]). Computational studies on serial and parallel machines

[BeC89b], [BeC89c], [CSW89], [Cas92], [KKZ89], [PhZ88], [WeZ90], [WeZ91], [Zak90] have shown

that the algorithm is very effective, particularly for sparse symmetric assignment problems and

special types of transportation problems.

In this paper we consider several new extensions of the auction algorithm for variations of the

assignment problem described above. For some of these problems, no effective adaptation of the

auction algorithm has been known so far, while for other problems, including the symmetric as-

signment problem, the ideas of this paper have resulted in auction algorithms with substantially

improved performance over the ones previously known.

Central to the present paper is an alternative form of the auction algorithm, called reverse

auction, where, roughly, the objects compete for persons by lowering their prices. In particular,

objects decrease their prices to a level that is sufficiently low to lure a person away from its currently

held object. One can show that forward and reverse auctions are mathematically equivalent, but

their combination results in algorithms that can solve problems that forward or reverse auction by

themselves either cannot solve at all or can solve but much more slowly.
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2. Reverse Auction for Symmetric Assignment Problems

In the next section, we show how to combine forward and reverse auction to solve symmetric

assignment problems. In particular we provide mechanisms for switching gracefully between the two

types of auction, using a special type of ε-complementary slackness condition. As shown by compu-

tational results given in Section 5, the combined forward/reverse method outperforms substantially

the regular (forward) method. The reason appears to be that the combined method suffers much less

from “price wars”, that is, protracted bid sequences involving a small number of persons competing

for a smaller number of objects using small bidding increments. In fact, it may not be necessary to

resort to ε-scaling, involving the solution of several subproblems, to improve the performance of the

method.

In Section 3, we consider asymmetric assignment problems, where the number of persons is less

than the number of objects. As a result, in a feasible assignment, we require that every person

but not necessarily every object be assigned. The original paper on the auction algorithm [Ber79]

showed that this problem can be solved by the auction algorithm provided the prices of all objects

start at zero. This approach is often very effective in practice, particularly when the number of

persons is much less than the number of objects, but unfortunately precludes the use of ε-scaling.

As a result, it is ineffective for problems where price wars are likely to arise. By suitably combining

forward and reverse auction, we eliminate this drawback. In particular, we give a new auction

algorithm for solving the asymmetric assignment problem, where the starting object prices can be

arbitrary, so that ε-scaling can be used in the same way as for symmetric problems.

In Section 4, we consider an interesting class of assignment-like problems, called multiassignment

problems, which arise in multitarget tracking applications (see the comments of Section 4). There

are no specialized network flow methods that can solve these problems at present, although they can

be solved by general purpose network methods such as primal-simplex, primal-dual, or relaxation

methods. We develop new classes of auction algorithms for multiassignment problems, by combining

the ideas of forward and reverse auctions.

Finally, in Section 5, we present computational results using various experimental codes imple-

menting the new algorithms of this paper. For each of the problems considered (symmetric and

asymmetric assignment, and two types of multiassignment problems), we show that the new meth-

ods of this paper outperform substantially (and often dramatically) current state-of-the-art codes.

2. REVERSE AUCTION FOR SYMMETRIC ASSIGNMENT PROBLEMS

In the symmetric assignment problem there are n persons and n objects. The benefit or value
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2. Reverse Auction for Symmetric Assignment Problems

for assigning person i to object j is aij . The set of objects to which person i can be assigned is a

nonempty set denoted A(i). An assignment S is a (possibly empty) set of person-object pairs (i, j)

such that j ∈ A(i) for all (i, j) ∈ S; for each person i there can be at most one pair (i, j) ∈ S; and

for every object j there can be at most one pair (i, j) ∈ S. Given an assignment S, we say that

person i is assigned if there exists a pair (i, j) ∈ S; otherwise we say that i is unassigned . We use

similar terminology for objects. An assignment is said to be feasible if it contains n pairs, so that

every person and every object is assigned; otherwise the assignment is called partial . We want to

find an assignment
{
(1, j1), . . . , (n, jn)

}
with maximum total benefit

∑n
i=1 aijj .

The auction algorithm for the symmetric assignment problem proceeds iteratively and terminates

when a feasible assignment is obtained. At the start of the generic iteration we have a partial

assignment S and a price vector p = (p1, . . . , pn) satisfying ε-complementary slackness (or ε-CS for

short). This is the condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S. (1)

As an initial choice, one can use an arbitrary set of prices together with the empty assignment, which

trivially satisfies ε-CS. The iteration consists of two phases: the bidding phase and the assignment

phase described in the following.

Bidding Phase:

Let I be a nonempty subset of persons i that are unassigned under the assignment S. For each person

i ∈ I:

1. Find a “best” object ji having maximum value, that is,

ji = arg max
j∈A(i)

{aij − pj},

and the corresponding value

vi = max
j∈A(i)

{aij − pj}, (2)

and find the best value offered by objects other than ji

wi = max
j∈A(i),j 6=ji

{aij − pj}. (3)

[If ji is the only object in A(i), we define wi to be −∞ or, for computational purposes, a number that

is much smaller than vi.]

2. Compute the “bid” of person i given by

biji = pji + vi − wi + ε = aiji − wi + ε. (4)

[We characterize this situation by saying that person i bid for object ji, and that object ji received a

bid from person i. The algorithm works if the bid has any value between pji + ε and pji + vi −wi + ε,

but it tends to work fastest for the maximal choice of Eq. (4).]
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2. Reverse Auction for Symmetric Assignment Problems

Assignment Phase:

For each object j:

Let P (j) be the set of persons from which j received a bid in the bidding phase of the iteration. If P (j)

is nonempty, increase pj to the highest bid:

pj := max
i∈P (j)

bij, (5)

remove from the assignment S any pair (i, j) (if j was assigned to some i under S), and add to S the

pair (ij , j), where ij is a person in P (j) attaining the maximum above.

Note that there is some freedom in choosing the subset of persons I that bid during an iteration.

One possibility is to let I consist of a single unassigned person. This version, known as the Gauss-

Seidel version in view of its similarity with Gauss-Seidel methods for solving systems of nonlinear

equations, usually works best in a serial computing environment. The version where I consists of

all unassigned persons is the most well suited for parallel computation, and is known as the Jacobi

version, in view of its similarity with Jacobi methods for solving systems of nonlinear equations.

The choice of bidding increment vi−wi+ε for a person i [cf. Eq. (4)] is such that ε-CS is preserved,

as stated in the following well known proposition.

Proposition 1: The auction algorithm preserves ε-CS throughout its execution, that is, if the

assignment and price vector available at the start of an iteration satisfy ε-CS, the same is true for

the assignment and price vector obtained at the end of the iteration.

Proof: See [Ber79] or [Ber88] or [BeT89] or [Ber91].

Furthermore, the algorithm is valid in the sense stated below.

Proposition 2: If at least one feasible assignment exists, the auction algorithm terminates in

a finite number of iterations with a feasible assignment that is within nε of being optimal (and is

optimal if the problem data is integer and ε < 1/n).

Proof: See [Ber79] or [Ber88] or [BeT89] or [Ber91].

The auction algorithm can be shown to have an O
(
A(n+nC/ε)

)
worst-case running time, where

A is the number of arcs of the assignment graph, and

C = max
(i,j)∈A

|aij|

is the maximum absolute object value; see [Ber79], [BeE88], [BeT89]. Thus, the amount of work to

solve the problem can depend strongly on the value of ε as well as C . In practice, the dependence

of the running time on ε and C is often significant, particularly for sparse problems.
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2. Reverse Auction for Symmetric Assignment Problems

To obtain polynomial complexity, one can use ε-scaling , which consists of applying the algorithm

several times, starting with a large value of ε and successively reducing ε up to an ultimate value

that is less than 1/n. Each application of the algorithm, called a scaling phase , provides good

initial prices for the next application. For integer data, it can be shown that the worst-case running

time of the auction algorithm using scaling and appropriate data structures is O
(
nA log(nC)

)
; see

[BeE88], [BeT89]. We note that while ε-scaling was suggested in the original proposal of the auction

algorithm [Ber79], it was first analyzed in [Gol87] (see also [GoT90]) in the context of ε-relaxation,

the minimum cost flow algorithm proposed in [Ber86a] and [Ber86b], which is essentially equivalent

to the auction algorithm. There is not much that is known about the average complexity of the

auction algorithm. However, an interesting analysis of [Sch90] suggests that for uniformly distributed

arc costs its running time grows proportionally to something like A log n or A log n log(nC); this is

roughly consistent with computational results using randomly generated problems.

Reverse Auction

In the auction algorithm, persons compete for objects by bidding and raising the price of their best

object. It is possible to use an alternative form of the auction algorithm, called reverse auction,

where objects compete for persons. In particular, objects decrease their prices to a level that is

sufficiently low to either attract an unassigned person or lure a person away from its currently held

object.

In order to describe reverse auction, we introduce a profit variable πi for each person i. Profits

play for persons a role analogous to the role prices play for objects. We can describe the reverse

auction algorithm in two equivalent ways; one where unassigned objects lower their prices as much

as possible to attract a person without violating ε-CS, and another where unassigned objects select

a best person and raise his/her profit as much as possible without violating ε-CS. For analytical

convenience, we will adopt the second description rather than the first.

Let us consider the following ε-CS condition for a (partial) assignment S and a profit vector π:

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S, (6)

where B(j) is the set of persons that can be assigned to object j,

B(j) = {i | (i, j) ∈ A}.

For feasibility, we assume that this set is nonempty for all j. Note the symmetry of this condition

with the corresponding one for prices; cf. Eq. (1). The reverse auction algorithm starts with, and

maintains an assignment and a profit vector π satisfying the above ε-CS condition. It terminates
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2. Reverse Auction for Symmetric Assignment Problems

when the assignment is feasible. At the beginning of each iteration, we have an assignment S and

a profit vector π satisfying the ε-CS condition (6).

Typical Iteration of Reverse Auction:

Let J be a nonempty subset of objects j that are unassigned under the assignment S. For each object

j ∈ J:

1. Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (7)

and find

ωj = max
i∈B(j),i 6=ij

{aij − πi}. (8)

[If ij is the only person in B(j), we define ωj to be −∞ or, for computational purposes, a number

that is much smaller than βj .]

2. Each object j ∈ J bids for person ij an amount

bij j = πij + βj − ωj + ε = aij j − ωj + ε. (9)

3. For each person i that received at least one bid, increase πi to the highest bid

πi := max
j∈P(i)

bij , (10)

where P (i) is the set of objects from which i received a bid; remove from the assignment S any pair

(i, j) (if i was assigned to some j under S), and add to S the pair (i, ji), where ji is an object in P (i)

attaining the maximum above.

Note that reverse auction is identical to (forward) auction with the roles of persons and objects as

well as profits and prices interchanged. Thus, by using the corresponding (forward) auction result

(cf. Prop. 2), we have:

Proposition 3: If at least one feasible assignment exists, the reverse auction algorithm terminates

in a finite number of iterations. The feasible assignment obtained upon termination is within nε of

being optimal (and is optimal if the problem data are integer and ε < 1/n).
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2. Reverse Auction for Symmetric Assignment Problems

Combined Forward and Reverse Auction

One of the reasons we are interested in reverse auction is to construct algorithms that switch

from forward to reverse auction and back. Such algorithms must simultaneously maintain a price

vector p satisfying the ε-CS condition (1) and a profit vector π satisfying the ε-CS condition (6). To

this end we introduce an ε-CS condition for the pair (π, p), which as we will see, implies the other

two. Maintaining this condition is essential for switching gracefully between forward and reverse

auction.

Definition 1: An assignment S and a pair (π, p) are said to satisfy ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (11a)

πi + pj = aij , ∀ (i, j) ∈ S. (11b)

We have the following proposition.

Proposition 4: Suppose that an assignment S together with a profit-price pair (π, p) satisfy

ε-CS. Then:

(a) S and π satisfy the ε-CS condition

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S. (12)

(b) S and p satisfy the ε-CS condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S. (13)

(c) If S is feasible, then S is within nε of being an optimal assignment.

Proof: (a) In view of Eq. (11b), for all (i, j) ∈ S, we have pj = aij − πi, so Eq. (11a) implies that

aij − πi ≥ akj − πk − ε for all k ∈ B(j). This shows Eq. (12).

(b) The proof is the same as the one of part (a) with the roles of π and p interchanged.

(c) Since by part (b), the ε-CS condition (13) is satisfied, by Prop. 2, S is within nε of being optimal.

Q.E.D.

We now introduce a combined forward/reverse algorithm. The algorithm starts with, and main-

tains an assignment S and a profit-price pair (π, p) satisfying the ε-CS condition (11). It terminates

when the assignment is feasible.
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2. Reverse Auction for Symmetric Assignment Problems

Combined Forward/Reverse Auction Algorithm

Step 1: (Run forward auction) Execute several iterations of the forward auction algorithm (subject

to the termination condition), and at the end of each iteration (after increasing the prices of the objects

that received a bid), set

πi = aiji − pji , (14)

for every person-object pair (i, ji) that entered the assignment during the iteration. Go to Step 2.

Step 2: (Run reverse auction) Execute several iterations of the reverse auction algorithm (subject

to the termination condition), and at the end of each iteration (after increasing the profits of the persons

that received a bid), set

pj = aij j − πij , (15)

for every person-object pair (ij , j) that entered the assignment during the iteration. Go to Step 1.

Note that the additional overhead of the combined algorithm over the forward or the reverse

algorithm is minimal; just one update of the form (14) or (15) is required per iteration for each

object or person that received a bid during the iteration. An alternative but probably less efficient

possibility is to update the profits πi of the assigned persons via Eq. (14) [or the prices pj of

the assigned objects via Eq. (15)] just before switching to reverse auction (or forward auction,

respectively). An important property is that the updates of Eqs. (14) and (15) maintain the ε-CS

condition (11) for the pair (π, p), and therefore, by Prop. 4, maintain the required ε-CS conditions

(12) and (13) for π and p, respectively. This is shown in the following proposition.

Proposition 5: If the assignment and profit-price pair available at the start of an iteration of

either the forward or the reverse auction algorithm satisfy the ε-CS condition (11), the same is true

for the assignment and profit-price pair obtained at the end of the iteration, provided Eq. (14) is

used to update π (in the case of forward auction), and Eq. (15) is used to update p (in the case of

forward auction).

Proof: Assume for concreteness that forward auction is used, and let (π, p) and (π, p) be the

profit-price pair before and after the iteration, respectively. Then, pj ≥ pj for all j (with strict

inequality if and only if j received a bid during the iteration). Therefore, we have πi + pj ≥ aij − ε

for all (i, j) such that πi = πi. Furthermore, we have πi + pj = πi + pj = aij for all (i, j) that belong

to the assignment before as well as after the iteration. Also, in view of the update (14), we have

πi + pji
= aiji for all pairs (i, ji) that entered the assignment during the iteration. What remains is

to verify that the condition

πi + pj ≥ aij − ε, ∀ j ∈ A(i) (16)

holds for all persons i that submitted a bid and were assigned to an object, say ji, during the
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3. Auction Algorithms for Asymmetric Assignment Problems

iteration. Indeed for such a person i, we have by Eq. (4),

pji
= aiji − max

j∈A(i),j 6=ji
{aij − pj}+ ε.

which implies that

πi = aiji − pji
≥ aij − pj − ε ≥ aij − pj − ε, ∀ j ∈ A(i).

This shows the desired relation (16). Q.E.D.

Note that during forward auction, the object prices pj increase, while the profits πi decrease, but

exactly the opposite happens in reverse auction. For this reason, the termination proof used for

forward auction (see e.g. [BeT89], p. 371) does not apply to the combined method. Indeed, it is

possible to construct examples of feasible problems where the combined method never terminates if

the switch between forward and reverse auctions is done arbitrarily. However, it is easy to guarantee

that the combined algorithm terminates finitely for a feasible problem; it is sufficient to ensure that

some “irreversible progress” is made before switching between forward and reverse auction. One

easily implementable possibility is to refrain from switching until at least one more person-object

pair has been added to the assignment. In this way there can be a switch at most (n − 1) times

between the forward and reverse steps of the algorithm. Since for a feasible problem, forward and

reverse auction by themselves have guaranteed finite termination, the final step will terminate with

a feasible assignment satisfying ε-CS.

The combined forward/reverse auction algorithm often works substantially faster than the for-

ward version. It seems to to be affected less by “price wars”, that is, protracted sequences of small

price rises by a number of persons bidding for a smaller number of objects. Price wars can still occur

in the combined algorithm, but they arise through more complex and unlikely problem structures

than in the forward algorithm. For this reason the combined forward/reverse auction algorithm

depends less on ε-scaling for good performance than its forward counterpart. One consequence of

this is that starting with ε = 1/n and bypassing ε-scaling is often the best choice. Another conse-

quence is that a larger ε-reduction factor can typically be used with no price war effects in ε-scaled

forward/reverse auction than in ε-scaled forward auction. As a result, fewer ε-scaling phases are

typically needed in forward/reverse auction to deal effectively with price wars.

3. AUCTION ALGORITHMS FOR ASYMMETRIC ASSIGNMENT

PROBLEMS
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3. Auction Algorithms for Asymmetric Assignment Problems

Reverse auction can be used in conjunction with forward auction to provide algorithms for solving

the asymmetric assignment problem, where the number of objects n is larger than the number of

persons m. Here we still require that each person be assigned to some object, but we allow objects

to remain unassigned. As before, an assignment S is a (possibly empty) set of person-object pairs

(i, j) such that j ∈ A(i) for all (i, j) ∈ S; for each person i there can be at most one pair (i, j) ∈ S;

and for every object j there can be at most one pair (i, j) ∈ S. The assignment S is said to be

feasible if all persons are assigned under S.

The corresponding linear programming problem is

maximize
∑

(i,j)∈A

aijxij

subject to
∑

j∈A(i)

xij = 1, ∀ i = 1, . . . ,m,

∑

i∈B(j)

xij ≤ 1, ∀ j = 1, . . . , n,

0 ≤ xij, ∀ (i, j) ∈ A. (17)

We can convert this program to the minimum cost flow problem

minimize
∑

(i,j)∈A

(
−aij

)
xij

subject to
∑

j∈A(i)

xij = 1, ∀ i = 1, . . . , m,

∑

i∈B(j)

xij + xsj = 1, ∀ j = 1, . . . , n,

n∑

j=1

xsj = n−m,

0 ≤ xij, ∀ (i, j) ∈ A,

0 ≤ xsj , ∀ j = 1, . . . , n, (18)

by replacing maximization by minimization, by reversing the sign of aij , and by introducing a

supersource node s, which is connected to each object node j by an arc (s, j) of zero cost and

feasible flow range [0,∞).

Using the duality theory for minimum cost network flow problems (see e.g. [BeT89], p. 335, or

[Ber91], p. 35), it can be verified that the corresponding dual problem is

minimize

m∑

i=1

πi +

n∑

j=1

pj − (n−m)λ

subject to πi + pj ≥ aij , ∀ (i, j) ∈ A,

λ ≤ pj , ∀ j = 1, . . . , n, (19)
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3. Auction Algorithms for Asymmetric Assignment Problems

where we have converted maximization to minimization, we have used −πi in place of the price of

each person node i, and we have denoted by λ the price of the supersource node s.

We now introduce an ε-CS condition for an assignment S and a pair (π, p).

Definition 2: An assignment S and a pair (π, p) are said to satisfy ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (20a)

πi + pj = aij , ∀ (i, j) ∈ S, (20b)

pj ≤ min
k: assigned under S

pk , ∀ j : unassigned under S. (20c)

The following proposition clarifies the significance of the preceding ε-CS condition.

Proposition 6: If a feasible assignment S satisfies the ε-CS conditions (20) together with a pair

(π, p), then S is within mε of being optimal for the asymmetric assignment problem. The triplet

(π̂, p̂, λ), where

λ = min
k: assigned under S

pk, (21a)

π̂i = πi + ε, ∀ i = 1, . . . , m, (21b)

p̂j =

{
pj , if j is assigned under S,

λ, if j is unassigned under S
∀ j = 1, . . . , n, (21c)

is within mε of being an optimal solution of the dual problem (19).

Proof: For any feasible assignment {(i, ki) | i = 1, . . . , m} and for any triplet (π, p, λ) satisfying

the dual feasibility constraints πi + pj ≥ aij for all (i, j) ∈ A and λ ≤ pj for all j, we have

m∑

i=1

aiki ≤
m∑

i=1

πi +

m∑

i=1

pki
≤

m∑

i=1

πi +

n∑

j=1

pj − (n−m)λ.

By maximizing over all feasible assignments {(i, ki) | i = 1, . . . , m} and by minimizing over all

dual-feasible triplets (π, p, λ), we see that

A∗ ≤ D∗,

where A∗ is the optimal assignment value and D∗ is the minimal dual cost.

Let now S = {(i, ji) | i = 1, . . . , m} be the given assignment satisfying ε-CS together with (π, p),

and consider the triplet (π̂, p̂, λ) defined by Eq. (21). Since for all i, we have π̂i + p̂ji = aij + ε, we

obtain

A∗ ≥
m∑

i=1

aiji =

m∑

i=1

π̂i +

m∑

i=1

p̂ji −mε =

m∑

i=1

π̂i +

n∑

j=1

p̂j − (n−m)λ−mε ≥ D∗ −mε,
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3. Auction Algorithms for Asymmetric Assignment Problems

where the last inequality holds because the triplet (π̂, p̂, λ) is feasible for the dual problem. Since

we showed earlier that A∗ ≤ D∗, the desired conclusion follows. Q.E.D.

Consider now trying to solve the asymmetric assignment problem by means of auction. We can

start with any assignment S and pair (π, p) satisfying the first two ε-CS conditions (20a) and (20b),

and perform a forward auction (as defined earlier for the symmetric assignment problem) up to the

point where each person is assigned to a distinct object. For a feasible problem, it can be seen

that this will yield, in a finite number of iterations, a feasible assignment S satisfying the first two

conditions (20a) and (20b). If we select initially all object prices to be zero, then upon termination

of the algorithm, the prices of the unassigned objects will still be at zero, while the prices of the

assigned objects will be nonnegative. Therefore the ε-CS condition (20c) will also be satisfied,

and by Prop. 6, the assignment S obtained will be optimal. Unfortunately, the use of zero initial

prices precludes the use of ε-scaling, and leaves the method susceptible to price wars. To be able

to use ε-scaling we must be able to use arbitrary initial prices, but then the assignment S obtained

by forward auction may not be optimal because the prices of the unassigned objects may not be

minimal, that is, they may not satisfy the third ε-CS condition (20c). Roughly, what is happening

here is that forward auction cannot resolve whether the objects that were left unassigned upon

termination are intrinsically “undesirable” because they offer relatively low benefit to the persons,

or whether they were left unassigned because their initial prices were high relative to the initial

prices of the assigned objects.

To resolve this dilemma, we use a modified form of reverse auction to lower the prices of the

objects that were left unassigned upon termination of the forward auction. After several reverse

auction iterations in which persons may be reassigned to other objects, the third condition (20c) is

satisfied. We will show that the assignment thus obtained satisfies all the ε-CS conditions (20a)-

(20c) and by Prop. 6, is optimal within mε (and thus optimal if the problem data are integer and

ε < 1/m).

The modified reverse auction starts with a feasible assignment S and with a pair (π, p) satisfying

the first two ε-CS conditions (20a) and (20b). (For a feasible problem, such an S and (π, p) can

be obtained by regular forward or reverse auction, as discussed earlier.) Let us denote by λ the

minimal assigned object price under the initial assignment,

λ = min
j: assigned under the initial assignment S

pj . (22)

The typical iteration of modified reverse auction is the same as the one of reverse auction, except

that only unassigned objects j with pj > λ participate in the auction. In particular, the algorithm

maintains a feasible assignment S and a pair (π, p) satisfying Eqs. (20a) and (20b), and terminates

13
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when all unassigned objects j satisfy pj ≤ λ, in which case it will be seen that the third ε-CS

condition (20c) will be satisfied as well. The scalar λ will be kept fixed throughout the algorithm.

Typical Iteration of Modified Reverse Auction for Asymmetric Assignment:

Select an object j that is unassigned under the assignment S, and satisfies pj > λ (if no such object can

be found, the algorithm terminates). Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (23)

and find

ωj = max
i∈B(j),i 6=ij

{aij − πi}. (24)

[If ij is the only person in B(j), we define ωj to be −∞.] If λ ≥ βj − ε, set pj := λ and go to the next

iteration. Otherwise, let

δ = min{βj − λ,βj − ωj + ε}. (25)

Set

pj := βj − δ, (26)

πij := πij + δ, (27)

add to the assignment S the pair (ij , j), and remove from S the pair (ij , j
′), where j ′ is the object that

was assigned to ij under S at the start of the iteration.

Note that the formula (25) for the bidding increment δ is such that the object j enters the

assignment at a price which is no less than λ [and is equal to λ if and only if the minimum in

Eq. (25) is attained by the first term]. Furthermore, we have δ ≥ ε (when δ is calculated, that is,

when λ > βj − ε), so it can be seen from Eqs. (26) and (27) that throughout the algorithm, prices

are monotonically decreasing and profits are monotonically increasing. The following proposition

establishes the validity of the method.

Proposition 7: The modified reverse auction algorithm for the asymmetric assignment problem

terminates in a finite number of iterations and the assignment obtained is within mε of being

optimal.

Proof: In view of Prop. 6, the result will follow once we prove the following:

(a) The modified reverse auction iteration preserves the first two ε-CS conditions (20a) and

(20b), as well as the condition

λ ≤ min
j: assigned under the current assignment S

pj , (28)

14



3. Auction Algorithms for Asymmetric Assignment Problems

so upon termination of the algorithm (necessarily with the prices of all unassigned objects

less or equal to λ), the third ε-CS condition (20c) is satisfied.

(b) The algorithm terminates finitely.

We will prove these facts in sequence.

We assume that the conditions (20a), (20b), and (28) are satisfied at the start of an iteration, and

we will show that they are also satisfied at the end of the iteration. First consider the case where

there is no change in the assignment, which happens when λ ≥ βj − ε. Then Eqs. (20b), and (28)

are automatically satisfied at the end of the iteration; only pj changes in the iteration according to

pj := λ ≥ βj − ε = max
i∈B(j)

{aij − πi} − ε,

so the condition (20a) is also satisfied at the end of the iteration.

Next consider the case where there is a change in the assignment during the iteration. Let (π, p)

and (π, p) be the profit-price pair before and after the iteration, respectively, and let j and ij be

the object and person involved in the iteration. By construction [cf. Eqs. (26) and (27)], we have

πij + pj = aij j and since πi = πi and pk = pk for all i 6= ij and k 6= j, we see that the condition

(20b) (πi + pk = aik) is satisfied for all assigned pairs (i, k) at the end of the iteration.

To show that the condition (20a) is satisfied at the end of the iteration, that is,

πi + pk ≥ aik − ε, ∀ (i, k) ∈ A, (29)

consider first objects k 6= j. Then, pk = pk and since πi ≥ πi for all i, the above condition holds,

since at the start of the iteration, we have πi + pk ≥ aik − ε for all (i, k). Consider next the case

k = j. Then, condition (29) holds for i = ij , since πij + pj = aijj . Also using Eqs. (23)-(26) and the

fact δ ≥ ε, we have for all i 6= ij ,

πi + pj = πi + pj ≥ πi + βj − (βj − ωj + ε) = πi + ωj − ε ≥ πi + (aij − πi) − ε = aij − ε,

so condition (29) holds for i 6= ij and k = j, completing the proof.

To see that condition (28) is maintained by the iteration, note that by Eqs. (23), (24), and (26),

we have

pj = βj − δ ≥ βj − (βj − λ) = λ.

Finally, to show that the algorithm terminates finitely, we note that in the typical iteration

involving object j and person ij , there are two possibilities:

(1) The price of object j is set to λ without the object entering the assignment; this occurs if

λ ≥ βj − ε.

15
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(2) The profit of person ij increases by at least ε [this is seen from the definition (25) of δ; we

have λ < βj − ε and βj ≥ ωj , so δ ≥ ε].

Since only objects j with pj > λ can participate in the auction, possibility (1) can occur only a

finite number of times. Thus, if the algorithm does not terminate, the profits of some persons will

increase to ∞. This is impossible, since when person i is assigned to object j, we must have by Eqs.

(20b) and (28)

πi = aij − pj ≤ aij − λ,

so the profits are bounded from above by max(i,j)∈A aij − λ. Thus the algorithm must terminate

finitely. Q.E.D.

As mentioned earlier, forward auction followed by modified reverse auction can start with ar-

bitrary initial prices. As a result, one can use ε-scaling, performing a sequence of auctions with

decreasing values of ε. This can be shown to improve the theoretical worst-case complexity of the

method, and is often beneficial in practice, particularly for sparse problems. Out of several possible

variations of the method, the one we found most effective is to use the modified reverse auction only

in the last ε-scaling phase. In all other ε-scaling phases we use just forward auction.

Reverse auction can be used also to solve the variation of the two-sided inequality constrained

assignment problem, where persons (as well as objects) need not be assigned if this degrades the

assignment’s value. This problem can be converted to an asymmetric assignment problem where all

persons must be assigned by introducing for each person i an artificial object i′ and a zero cost arc

(i, i′). One can then use the algorithm given earlier to solve this problem. The algorithm can be

streamlined so that the calculations involving the artificial objects and arcs are handled efficiently.

4. AUCTION ALGORITHMS FOR MULTIASSIGNMENT PROBLEMS

An interesting type of assignment problem is described by the linear program

maximize
∑

(i,j)∈A

aijxij

subject to
∑

j∈A(i)

xij ≥ 1, ∀ i = 1, . . . ,m,

∑

i∈B(j)

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij, ∀ (i, j) ∈ A, (30)
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where m < n. For feasibility, we assume that the sets A(i) and B(j) are nonempty for all i and all j,

respectively. This is known as the multiassignment problem, and is characterized by the possibility

of assignment of more than one object to a single person; such a person is said to be multiassigned .

Problems of this type arise in military applications such as multi-target tracking with sensors of

limited resolution [Bla86], where objects correspond to tracked vehicles and persons correspond

to data points each representing at least one vehicle (but possibly more than one, because of the

sensor’s limited resolution). The multiassignment problem results when we try to associate data

points with vehicles so as to match as closely as possible these data points with our prior knowledge

of the vehicles’ position.

We can convert the multiassignment problem to the minimum cost flow problem

minimize
∑

(i,j)∈A

(
−aij

)
xij

subject to
∑

j∈A(i)

xij − xsi = 1, ∀ i = 1, . . . , m,

∑

i∈B(j)

xij = 1, ∀ j = 1, . . . , n,

m∑

i=1

xsi = n−m,

0 ≤ xij , ∀ (i, j) ∈ A,

0 ≤ xsi, ∀ i = 1, . . . , n, (31)

by replacing maximization by minimization, by reversing the sign of aij , and by introducing a

supersource node s, which is connected to each person node i by an arc (s, i) of zero cost and

feasible flow range [0,∞) (see Fig. 1).

Using duality theory again and appropriately redefining the price variables corresponding to the

nodes, it can be verified that the corresponding dual problem is

minimize

m∑

i=1

πi +

n∑

j=1

pj + (n−m)λ

subject to πi + pj ≥ aij , ∀ (i, j) ∈ A,

λ ≥ πi, ∀ i = 1, . . . , m. (32)

We now introduce an ε-CS condition for an assignment S and a pair (π, p).

Definition 3: A multiassignment S and a pair (π, p) are said to satisfy ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (33a)
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Figure 1: Converting a multiassignment problem into a minimum cost flow

problem involving a supersource node s and a zero cost artificial arc (s, i) with

feasible flow range [0,∞) for each person i.

πi + pj = aij , ∀ (i, j) ∈ S, (33b)

πi = max
k=1,...,m

πk , if i is multiassigned under S. (33c)

We have the following result.

Proposition 8: Assume that the benefits aij are integer. If a feasible assignment S satisfies the ε-

CS conditions (33) together with a pair (π, p) for ε < 1/m, then S is optimal for the multiassignment

problem.

Proof: If S is not optimal, there must exist a cycle Y in the equivalent network of Fig. 1 with no

repeated nodes along which the assignment S can be modified to result in a new feasible assignment

S′ with improved primal cost. Assume for the moment that the supersource s is in the cycle; thus,

let Y be

Y = (s, i1, j2, i2, . . . , ik−1, jk, ik, s).

In the above cycle, the nodes iq represent distinct persons, the nodes jq represent distinct objects

and

(iq, jq) ∈ S, jq ∈ A(iq−1), (iq−1, jq) /∈ S, q = 2, . . . , k.
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Augmentation along Y results in replacing the pairs (iq, jq) ∈ S, q = 2, . . . , k, by the pairs (iq−1, jq),

q = 2, . . . , k, in the assignment. It can be seen that ik must be multiassigned prior to the augmen-

tation; the reason is that with the augmentation along Y , the arc (ik, jk) will exit the assignment,

so person ik will be left unassigned and feasibility will be violated after the augmentation. Because

Y has no repeated nodes, we have k ≤ m, which, based on the hypothesis, implies kε < 1.

Since the augmentation results in strict cost improvement and the benefits are integer, we must

have
k∑

q=2

aiqjq + 1 ≤
k∑

q=2

aiq−1jq ,

or equivalently
k∑

q=2

(aiqjq − pjq) + 1 ≤
k∑

q=2

(aiq−1jq − pjq).

Using the above relation and the ε-CS condition (33a), it follows that

k∑

q=2

πiq + 1 =

k∑

q=2

(aiqjq − pjq) + 1 ≤
k∑

q=2

(aiq−1jq − pjq) ≤
k−1∑

q=1

πiq + (k − 1)ε.

From this relation, we obtain

1− (k − 1)ε ≤ πi1 − πik .

This is a contradiction because we argued earlier that kε < 1, and that ik is multiassigned, which

implies that πik ≥ πi1 [cf. Eq. (33c)].

If Y does not contain s, a similar argument establishes the result. Q.E.D.

Consider now trying to solve the multiassignment problem by means of auction. We can start

with any assignment S and profit-price pair (π, p) satisfying the first two ε-CS conditions (33a) and

(33b), and perform a forward auction up to the point where each person is assigned to a (single)

distinct object, while satisfying the conditions (33a) and (33b). However, this assignment will not

be feasible, because some objects will still be unsassigned.

To make further progress, we use a modified reverse auction, which starts with the final results

of the forward auction, that is, with an assignment S, where each person is assigned to a single

distinct object, and with a pair (π, p) satisfying the first two ε-CS conditions (33a) and (33b). Let

us denote by λ the maximal initial person profit,

λ = max
i=1,...,m

πi. (34)

The typical iteration, given below, is the same as the one of reverse auction, except that unassigned

objects j that bid for a person may not necessarily displace the object assigned to the person but may
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instead share the person with its already assigned object(s). In particular, the algorithm maintains

an assignment S, for which each person is assigned to at least one object, and a pair (π, p) satisfying

Eqs. (33a) and (33b); it terminates when all unassigned objects j have been assigned. It will be

seen that upon termination, the third ε-CS condition (33c) will be satisfied as well. The scalar λ is

kept fixed throughout the algorithm.

Typical Iteration of Modified Reverse Auction for Multiassignment:

Select an object j that is unassigned under the assignment S (if all objects are assigned, the algorithm

terminates). Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi}, (35)

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (36)

and find

ωj = max
i∈B(j),i 6=ij

{aij − πi}. (37)

[If ij is the only person in B(j), we define ωj to be −∞.] Let

δ = min{λ − πij , βj − ωj + ε}. (38)

Add (ij , j) to the assignment S, set

pj := βj − δ, (39)

πij := πij + δ, (40)

and if δ > 0, remove from the assignment S the pair (ij , j
′), where j ′ was assigned to ij under S.

Note that in an iteration, the number of assigned objects increases by one if and only if δ = 0

[which is equivalent to πij = λ, since the second term βj − ωj + ε in Eq. (38) is always greater or

equal to ε]. The following proposition establishes the validity of the method.

Proposition 9: The modified reverse auction algorithm for the multiassignment problem with

integer benefits terminates in a finite number of iterations with an optimal assignment when ε < 1/m.

Proof: In view of Prop. 8, the result will follow once we prove the following:

(a) The modified reverse auction iteration preserves the ε-CS conditions (33), as well as the

condition

λ = max
i=1,...,m

πi. (41)

(b) The algorithm terminates finitely (necessarily with a feasible assignment).
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To show (a) above, we use induction. In particular, we show that if the conditions (33) and (41)

are satisfied at the start of an iteration, they are also satisfied at the end of the iteration. Indeed

this is easily seen to be true for Eqs. (33a) and (33b). Equations (33c) and (41) are preserved since

we have λ = maxi=1,...,m πi at the start of the iteration and the only profit that changes is πij , which

by Eqs. (38) and (40) is set to something that is less or equal to λ, and is set to λ if and only if ij

is multiassigned at the end of the iteration.

To show finite termination, we observe that a person i can receive a bid only a finite number of

times after the profit πi is set to λ, since at each of these times the corresponding object will get

assigned to i without any object already assigned to i becoming unassigned. On the other hand, by

Eqs. (38) and (40), at an iteration where a person i receives a bid, the profit πi is either set equal

to λ or else increases by at least ε. Since profits are bounded above by λ throughout the algorithm,

it follows that each person can receive only a finite number of bids, proving finite termination.

Q.E.D.

Two-Sided Multiassignment Problem

There are several variations of the multiassignment problem and the preceding algorithm. For

example, the problem where is an upper bound αi on the number of objects person i can be assigned

to, that is,

maximize
∑

(i,j)∈A

aijxij

subject to

1 ≤
∑

j∈A(i)

xij ≤ αi, ∀ i = 1, . . . ,m,

∑

i∈B(j)

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij , ∀ (i, j) ∈ A, (42)

where αi are given integers. This multiassignment problem admits solution by a similar auction

algorithm as the preceding one; we will not give the details.

Another interesting variation of the multiassignment problem arises when objects, as well as

persons, can be multiassigned, up to a certain limit. This problem, referred to as two-sided multi-

assignment, can be written as

maximize
∑

(i,j)∈A

aijxij

subject to
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∑

j∈A(i)

xij ≥ 1, ∀ i = 1, . . . , m,

1 ≤
∑

i∈B(j)

xij ≤ αj , ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A, (43)

where αj are given integers less. Note that if αj = 1, this problem is identical to the earlier problem

(30).

Again, the above problem can be converted to a minimum cost network flow problem

minimize
∑

(i,j)∈A

(−aijxij)

subject to
∑

j∈A(i)

xij − xsi = 1, ∀ i = 1, . . . ,m,

∑

i∈B(j)

xij − xjs = 1, ∀ j = 1, . . . , n,

m∑

i=1

xsi −
n∑

j=1

xjs = n−m,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A,

0 ≤ xsi, ∀ i = 1, . . . ,m,

0 ≤ xjs ≤ αj − 1, ∀ j = 1, . . . , n, (44)

by replacing maximization by minimization, by reversing the sign of aij , by introducing a supersource

node s with supply n−m, an arc (s, i) for each person i of zero cost and feasible flow range [0,∞),

and an arc (j, s) for each object node j of zero cost and feasible flow range [0, αj − 1] (see Fig. 2).

Using duality theory and appropriately redefining the price variables corresponding to the nodes,

it can be seen that the corresponding dual problem is

minimize

m∑

i=1

πi +

n∑

j=1

(pj + max{0, (pj + λ)(αj − 1)}) +
∑

(i,j)∈A

max{0, aij − pj − πi}+ (n−m)λ

subject to λ ≥ πi, ∀ i = 1, . . . , m, (45)

where λ is the dual price of the supersource node s. The above dual problem is similar to the earlier

dual problem (32), with the exception of the cost terms introduced by the upper bounds on the

arcs.

For the two-sided multiassignment problem, we introduce the following ε-CS condition for an

assignment S and a pair (π, p):

Definition 4: A multiassignment S and a pair (π, p) are said to satisfy ε-CS for the two-sided

multiassignment problem if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (46a)
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Figure 2: Converting a two-sided multiassignment problem into a minimum cost

flow problem involving a supersource node s, zero cost artificial arcs (s, i) with

feasible flow range [0,∞) for each person i. and zero cost artificial arcs (j, s) with

feasible flow range [0, αj − 1] for each object j.

πi + pj ≤ aij , ∀ (i, j) ∈ S, (46b)

πi = max
k=1,...,m

πk = λ, if i is multiassigned under S, (46c)

pj + λ ≥ 0, if j is multiassigned under S, (46d)

if pj + λ > 0, j must be assigned to αj persons under S. (46e)

Using an argument similar to the proof of Proposition 8, we can establish the following result.

Proposition 10: Assume that the benefits aij are integer. If a feasible assignment S satis-

fies the ε-CS conditions (46) together with a pair (π, p) for ε < 1/m, then S is optimal for the

multiassignment problem.

Proof: If S is not optimal, there must exist a cycle Y in the equivalent network of Fig. 2 with no

repeated nodes along which the assignment S can be modified to result in a new feasible assignment

S′ with improved primal cost. There are five possible cases: 1) the cycle Y does not include node

s; 2) the cycle Y includes s followed by a person and preceded by another person; 3) the cycle Y

includes s followed by a person and preceded by an object; 4) the cycle Y includes s followed by an
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object and preceded by a person; and 5) the cycle Y includes s followed by an object and preceded

by another object.

Assume for the moment that the node s is in the cycle and that it is followed and preceded by

persons (case 2); thus, let Y be

Y = (s, i1, j2, i2, . . . , ik−1, jk, ik, s).

In order for augmentation along Y to result in a feasible assignment, we must have (iq , jq) ∈ S,

q = 2, . . . , k, jq+1 ∈ A(iq), q = 1, . . . , k − 1; furthermore, ik must be multiassigned. Because Y has

no repeated nodes, we have k ≤ m, which, based on the hypothesis, implies kε < 1.

Augmentation along Y results in replacing the pairs (iq , jq), q = 2, . . . , k, by the pairs (iq−1, jq),

q = 2, . . . , k, in the assignment. Since following augmentation along Y , the primal cost is strictly

improved, we must have
k∑

q=2

aiqjq + 1 ≤
k∑

q=2

aiq−1jq ,

or equivalently
k∑

q=2

(aiqjq − pjq) + 1 ≤
k∑

q=2

(aiq−1jq − pjq).

Using this relation, and the ε-CS conditions (46a) and (46b), we obtain

k∑

q=1

πiq − πi1 + 1 ≤
k∑

q=2

(aiqjq − pjq ) + 1 ≤
k∑

q=2

(aiq−1jq − pjq ) ≤
k∑

q=1

πiq − πik + (k − 1)ε.

This yields

1− (k − 1)ε ≤ πi1 − πik ,

which is a contradiction because kε < 1, and πi1 ≤ πik , since ik is multiassigned [cf. Eq. (46c)].

Similarly, assume that node s is preceded and followed by an object in Y (case 5); thus,

Y = (s, j1, i1, j2, i2, . . . , ik−1, jk , ik, jk+1, s).

In order for augmentation along Y to produce a feasible assignment, we must have (iq , jq) ∈ S,

q = 1, . . . , k, jq+1 ∈ A(iq), q = 1, . . . , k−1; furthermore, we must have (iq−1, jq) /∈ S, q = 2, . . . , k+1,

j1 must be multiassigned, and jk+1 must be assigned to less than αjk+1 persons. Because Y has no

repeated nodes, we have k ≤ m, which, based on the hypothesis, implies kε < 1.

Augmentation along Y results in replacing the pairs (iq, jq), q = 1, . . . , k by the pairs (iq, jq+1),

q = 1, . . . , k, in the assignment; note that since j1 is multiassigned and jk+1 can be assigned to at

least one more person, the resulting modified assignment is feasible. Thus, we must have

k∑

q=1

aiqjq + 1 ≤
k∑

q=1

aiqjq+1 ,
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or equivalently,
k∑

q=1

(aiqjq − πiq) + 1 ≤
k∑

q=1

(aiqjq+1 − πiq ).

Using the above relation and the ε-CS conditions (46a) and (46b), we obtain

k∑

q=1

pjq + 1 ≤
k∑

q=1

(aiqjq − πiq ) + 1 ≤
k∑

q=1

(aiqjq+1 − πiq ) ≤
k∑

q=1

pjq+1 + kε.

This yields 1−kε ≤ pjk+1 − pj1 , which is a contradiction because kε < 1, while by the CS conditions

(46d) and (46e), we have pik+1 = −λ ≤ pj1 , since jk+1 is assigned to less than αk+1 persons.

The proof for cases 1, 3, and 4 is similar. Q.E.D.

Consider now trying to solve the two-sided multiassignment problem using an auction algorithm.

We start from any assignment S that has at most one person assigned to each object and at most one

object assigned to each person, and a profit-price pair (π, p) satisfying the first two ε-CS conditions

associated with regular auction [cf. Eqs. (20a), (20b)]. We then use a forward auction algorithm up

to the point where each person is assigned to a single (distinct) object, while satisfying the first two

ε-CS conditions (46a) and (46b) [condition (46b) will actually be satisfied with equality]. Note that

this assignment will not be feasible since m < n.

At this point, we switch to using a modified reverse auction; denote by λ the maximal initial

person profit

λ = max
i=1,...,m

πi. (47)

Using this value of λ, we can determine which objects have prices pj indicating that they can be

multiassigned; in particular, the ε-CS condition (46e) suggest that any object with price pj greater

than −λ should be assigned to as many persons as possible. In order to determine these persons, we

use a reverse auction where each unassigned object, and each assigned object with price pj greater

than −λ and assigned to less than αj persons will bid to be assigned to an additional person. This

reverse auction is modified in order to satisfy the ε-CS conditions at termination, as follows:

Typical Iteration of Modified Reverse Auction for Two-Sided Multiassignment:

Select an object j that is unassigned, or is assigned to at least one and less than αj persons, and has pj

greater than −λ (if no such object can be found, the algorithm terminates). If the set {i ∈ B(j) | (i, j) /∈

S} is empty, set pj = −λ and go to the next iteration. Otherwise, find a “best” person ij such that

ij = arg max
i∈B(j),(i,j)/∈S

{aij − πi}, (48)

and the corresponding value

βj = max
i∈B(j),(i,j)/∈S

{aij − πi}, (49)
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and find

ωj = max
i∈B(j),i 6=ij ,(i,j)/∈S

{aij − πi}. (50)

[If the set i ∈ B(j), i 6= ij , (i, j) /∈ S is empty, we define ωj to be −∞.]

If j is unassigned, let

δ = min{λ − πij , βj − ωj + ε}. (51a)

Add (ij , j) to the assignment S, set

pj := ωj − ε, (51b)

πij := πij + δ, (51c)

and if δ > 0, remove from the assignment S the pair (ij , j
′), where j ′ was assigned to ij under S.

If j is assigned to at least one and less than αj persons, and pj + λ > 0, let

δ = min{λ− πij , βj − ωj + ε, βj + λ}, (52a)

and distinguish two cases:

(a) δ < βj + λ: In this case, add (ij , j) to the assignment S, set

pj := max{ωj − ε,−λ}, (52b)

πij := πij + δ, (52c)

πi := min{aij −max{ωj − ε,−λ}, λ}, ∀ i such that (i, j) ∈ S, (52d)

and if δ > 0, remove from S the pair (ij , j
′), where j ′ was assigned to ij under S.

(b) δ = βj + λ: In this case, set

pj := −λ, (53a)

πij := πij + max{0, δ}, (53b)

πi := min{aij + λ, λ}, ∀ i such that (i, j) ∈ S. (53c)

and, if δ > 0, add (ij , j) to the assignment S and remove from S the pair (ij , j
′), where j ′ was

assigned to ij under S.

Note that the above algorithm uses two types of iterations. The first type occurs when the bidding

object is unassigned; then the number of unassigned objects decreases by one when δ is zero, which

is equivalent to πi = λ, so that person i can be multiassigned. The second type of iteration occurs

when the bidding object is already assigned, but has price pj > −λ; then either j is assigned to an

additional person, or else pj is reduced to the threshold price −λ.

The following proposition establishes the validity of the method.

Proposition 11: The modified reverse auction algorithm for the two-sided multiassignment

problem with integer benefits terminates in a finite number of iterations with an optimal assignment

when ε < 1/m.
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Proof: In view of Prop. 10, the result will follow once we prove the following:

(a) The modified reverse auction iteration preserves the ε-CS conditions (46a-d).

(b) The algorithm terminates finitely (necessarily with a feasible assignment).

(c) Upon termination, the ε-CS condition (46e) must be satisfied.

To show (a) above, we use induction. Let (π, p) and (π, p) be the profit-price pair before and

after an iteration of the modified reverse auction algorithm, respectively, and let j and ij be the

object and person involved in the iteration. At the beginning of the first iteration, S and (π, p)

satisfy

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A,

πi + pj = aij , ∀ (i, j) ∈ S.

By construction, we also have

πi ≤ λ, ∀ i = 1, . . . , m;

furthermore, every person is assigned to exactly one object, and every object is assigned to at most

one person. Thus, the ε-CS conditions (46a-d) are satisfied.

Assume that the ε-CS conditions (46a-d) are satisfied at the beginning of an iteration. We consider

three cases: a) object j is currently unassigned, b) object j is assigned and the bid increment δ

satisfies δ < βj + λ, and c) object j is assigned and the bid increment δ satisfies δ = βj + λ.

In case (a), by construction we have

πij + pj ≤ πij + βj − ωj + ε + pj ≤ aijj .

Furthermore, since πij does not decrease, the ε-CS condition (46a) will be satisfied for all k ∈ A(ij),

k 6= j. In addition, for any i′ 6= ij , i′ ∈ B(j), we have by Eq. (50)

πi′ + pj = πi′ + ωj − ε ≥ ai′j − ε,

establishing that the ε-CS conditions (46a,b) are satisfied at the end of the iteration. In addition,

the ε-CS condition (46c) is guaranteed to be satisfied by Eqs. (51a,c), and the ε-CS condition (46d)

continues to be satisfied, since the prices of multiassigned objects were not affected.

In case (b), the price pj , and the profits πij and πi, (i, j) ∈ S are modified. Conditions (46c,d)

will be satisfied by the modified profits and prices at the end of the iteration by construction [cf.

Eq. (52a-d)]. Assume δ = βj − ωj + ε; then −λ ≤ ωj − ε, so

pj = max{ωj − ε,−λ} = ωj − ε ≤ pj ,

27



4. Auction Algorithms for Multiassignment Problems

πij + pj = aij − δ − βj + ωj − ε = aij ,

establishing that the ε-CS condition (46b) holds for the new pair (ij , j) entering the assignment.

Similarly, the ε-CS condition (46b) is satisfied for all (i, j) ∈ S by construction [cf. Eq. (52d)]. Since

pj ≤ pj , Eq. (52d) implies that πi ≤ πi for all i, which in turn implies that the ε-CS condition (46a)

is satisfied for all k ∈ A(i), with (i, k) /∈ S and (i, j) ∈ S. Also, the ε-CS condition (46a) is satisfied

for all (i, j) /∈ S, i 6= ij because Eq. (50) implies

pj = ωj − ε ≥ aij − πi − ε, ∀ (i, j) /∈ S, i 6= ij .

If on the other hand, δ = λ− πi, then aij j ≥ 0 and ωj − ε ≤ aijj − λ. Thus, Eq. (46b) is satisfied

for (ij , j) at the end of the iteration, since

πij + pj = λ + max{−λ, ωj − ε} ≤ aijj .

Similarly, the ε-CS condition (46b) is satisfied for all (i, j) ∈ S by Eq. (52d). Since pj + λ > 0, pj

is not increased during the iteration. Thus, Eq. (52d) implies that πi ≤ πi for all i, so that the

ε-CS condition (46a) is satisfied for all k ∈ A(i), with (i, k) /∈ S, and (i, j) ∈ S. Furthermore, since

pj ≥ ωj − ε, the ε-CS condition (46a) is satisfied for all k ∈ B(j), with (k, j) /∈ S.

In case (c), assume δ = βj + λ > 0. Then, the ε-CS condition (46b) is satisfied for the pair (ij , j)

because

πijj + pj = aijj − βj + max{0, δ} − λ = aijj .

By assumption, the iteration decreases the price pj and increases the profit πij . Furthermore, Eq.

(53c) implies that the profits πi ≤ πi for all i, so that the ε-CS condition (46a) is satisfied for all

(i, k) ∈ A, (i, k) /∈ S, (i, j) ∈ S. Equation (53c) also guarantees that the ε-CS condition (46b) will

be satisfied at the end of the iteration. If δ ≤ 0, the assignment S is not modified; only the price pj

is decreased and the profits πi, (i, j) ∈ S are modified. The ε-CS condition (46b) is satisfied because

of Eq. (53c); in addition, the ε-CS condition (46a) is satisfied because

0 ≥ βj + λ ≥ aij − πi + λ = aij − πi − pj , ∀ (i, j) /∈ S,

and the profits πi, i ∈ B(j) are nondecreasing.

The above arguments establish that the ε-CS conditions (46a-d) are preserved by each modified

reverse auction iteration. To complete the proof, we must show that the algorithm terminates

finitely, and that at termination, the ε-CS condition (46e) is satisfied. It is easy to verify that the

number of assigned pairs is nondecreasing, and, as shown above, the profits πi are nondecreasing,

while the prices pj are nonincreasing. Furthermore, each iteration is guaranteed to produce one (or

more) of the following three outcomes: a) at least one profit πi increases, b) one additional pair
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is assigned, and c) S remains unchanged, but the price pj is set to the minimum value −λ. By

construction, the profits πi cannot rise above λ; furthermore, the prices pj can only be reduced to

−λ once per object, and there is a finite maximum number of assigned pairs, which establishes finite

termination. To show that the ε-CS condition (46e) is satisfied at termination, note that iterations

occur until this condition is satisfied. This completes the proof. Q.E.D.

5. NUMERICAL RESULTS

In this section we present some numerical results on the computational performance of the new

auction algorithms described in the previous sections. The algorithms have been implemented in

FORTRAN and have been compared with state-of-the-art algorithms for every class of problems

considered in this paper.

Symmetric Assignment Problems

We first tested the two versions of forward/reverse auction (a scaled and an unscaled version) ap-

plied to symmetric assignment problems versus two other state-of-the-art codes: a forward auction

code, and the code of Jonker and Volgenant [JoV87]. The latter, abbreviated as JV code, consists

of two phases: an initialization phase, which is based on the naive auction algorithm (the forward

auction algorithm with ε = 0), and a sequential shortest path method phase, which assigns the

persons that are left unassigned by the initialization phase. It is widely believed that though the

combination of the auction and the sequential shortest path algorithms, the JV code is substan-

tially faster than the best pure sequential shortest path and Hungarian assignment codes (for some

comparative evidence see [Ber90]).

Our results for symmetric assignment problems are summarized in Figs. 3-6, where each data

point represents an average over ten to thirty random problems with identical characteristics. In

Figs. 3-6, a different characteristic (number of nodes, average node degree, and benefit range)

of the problem was allowed to vary: the number of nodes in Fig. 3, the average node degree in

Fig. 4, and the benefit range in Figs. 5 and 6. Experiments with problems of constant density

and varying numbers of nodes and arcs have produced results that are qualitatively intermediate

between the results of Figs. 3 and 4. Figures 5 and 6 are similar but they correspond to sparse

and fully dense problems, respectively. It can be seen that the unscaled forward/reverse auction is

running considerably faster than the other codes. The auction algorithms (remarkably, including

the unscaled forward/reverse algorithm) are also quite insensitive to the benefit range; a similar
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conclusion regarding scaled forward auction was reached in [WeZ91]. Furthermore, all the auction

codes run much faster than the JV code except when the problem is quite dense (cf. Fig. 4 when the

number of arcs is large). Still even for fully dense problems the unscaled forward/reverse algorithm

is faster than the JV code, except when the benefit range is relatively small ([0,100] in Fig. 6).

There is an explanation for the excellent performance of the JV code for a fully dense problem with

a small benefit range. What happens here is that the problem is solved essentially in the naive

auction initialization phase of the code and the sequential shortest path phase plays no role. Thus,

in this case, the JV code behaves like a very efficient auction algorithm.
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Figure 3: Run times for symmetric assignment problems on a MAC II. The

degree of each person node is 10. Each data point represents an average of ten

randomly generated problems. The arc benefits are drawn from the range [0,1000]

according to a uniform distribution.

In the test problems of Figs. 3-6 the arc benefits are uniformly distributed over the benefit range.

In Fig. 7 we tested the effect of a two-level arc benefit distribution on the performance of the

auction algorithms. Here 80% of the arcs are drawn from the benefit range [0,100] and 20% of

the arcs have benefit 100000. Such arc benefit distributions are generally considered “difficult” for

auction algorithms since they tend to stimulate price wars. As mentioned earlier, forward/reverse

auction tends to resolve price wars faster than forward auction, and this advantage is manifested
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Figure 4: Run times for symmetric assignment problems on a NeXT 68040.

The number of person nodes is 1024 and the average node degree varies. Each

data point represents an average of thirty randomly generated problems. The arc

benefits are drawn from the range [0,100000] according to a uniform distribution.

dramatically in the results of Fig. 7 for the difficult problems. It should be noted that, in the

difficult problem experiments in Fig. 7, the scaling parameters of forward auction were optimized.

This optimization resulted in an improvement of roughly a factor of 6 in run time over the codes

with the default scaling parameters given in [Ber91].

Except on artificially constructed examples, we have found the performance of unscaled for-

ward/reverse auction remarkably robust. Indeed, it is only in very special classes of problems that

the performance of this algorithm is significantly hampered by the occurrence of price wars. The

paper [Cas92] provides a comprehensive computational study of the performance and the robustness

of the forward/reverse algorithms for a variety of problem structures.

Asymmetric Assignment Problems

The new forward/reverse auction algorithm for asymmetric one-on-one assignment problems was

tested versus the asymmetric version of the JV algorithm. We performed tests with two types of
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Figure 5: Run times for symmetric assignment problems on a NeXT 68040.

The number of person nodes is 4000 and the degree of each is 8. Each data point

represents an average of thirty randomly generated problems. The arc benefits

are drawn from the range indicated according to a uniform distribution.

randomly generated problems. For both classes of problems, each person node has 10 incident arcs.

However, in the first class of problems, the end nodes of the arcs, and the arc benefits were generated

in a completely random fashion. Figure 8 gives the running times of the the scaled forward reverse

auction algorithm, the unscaled auction algorithm, and the JV code for this class of problems. A

comparison of this figure with Fig. 3 indicates that this class of problems is relatively “easy” for

all methods. In particular, price wars were very infrequent, and the unscaled auction algorithm

outperformed its scaled version as well as the JV code by a large margin.

The second class of asymmetric assignment problems was specially designed to create price wars

by making some nodes difficult to assign. In particular, we introduced two levels of arc benefits that

are different by approximately three orders of magnitude. This kind of bipartite problems is quite

typical in many applications where nearly infeasible problems frequently arise, e.g. in target tracking

applications where potentially false measurements or tracks cannot be matched to confirmed targets.

Figure 9 gives the run times of the various codes versus the number of arcs. It can be seen that

the run times of both (scaled and unscaled) auction algorithms again grow almost linearly with
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Figure 6: Run times for fully dense symmetric assignment problems with 1024

persons on a NeXT 68040. Each data point represents an average of thirty ran-

domly generated problems. The arc benefits are drawn from the range indicated

according to a uniform distribution.

the number of arcs, but the scaled auction algorithm outperforms the unscaled one by an almost

constant factor of 25. The run time of the JV algorithm grows almost quadratically as it did for

symmetric problems. The performance of scaled auction is significantly better than that of the JV

algorithm, but unscaled auction is worse than JV in these experiments. Note, however, that our

unscaled auction for asymmetric assignment problems does not involve a reverse portion. The initial

object prices in all runs were 0, and as mentioned in Section 3, upon termination of the forward

auction part of the code, all the ε-CS conditions are satisfied, and the reverse auction part is never

used. Thus the mechanism that helped the forward/reverse unscaled auction algorithm to avoid

price wars in the difficult problems of Fig. 7 was not employed in the unscaled asymmetric auction
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FR FR SFR10 SFR10 SF3 SF3 SF5 SF5 SF10 SF10

Mean St. Dev. Mean Std. Mean Std. Mean Std. Mean Std.

Easy 0.27 0.14 0.46 0.08 0.51 0.04 0.45 0.04 0.46 0.12

Difficult 0.25 0.05 1.15 0.09 1.77 0.11 1.91 0.32 2.99 0.40

Figure 7: Mean and standard deviation of run times for 30 experiments with

symmetric assignment problems on a NeXT 68040. The number of person nodes

is 2000 and the degree of each is 8. For the easy problems, the arc benefits are

drawn from the range [0,100]. For the difficult problems, 80% of the arc benefits

are drawn from the range [0,100] and 20% of the arcs have benefit 100000. The

codes are as follows:

FR: Unscaled forward/reverse auction.

SFRk: Scaled forward/reverse auction with ε-reduction factor k.

SFk: Scaled forward auction with ε-reduction factor k.

algorithm for the difficult problems of Fig. 9.

Multiassignment Problems

Next, we tested the multiassignment auction algorithm (abbreviated multiauction) for one-sided

asymmetric problems versus the state-of-the-art relaxation code RELAX [BeT88], which solves the

equivalent minimum cost network flow problems, and versus the state-of-the-art primal-simplex

code NETFLO due to Kennington and Helgason [KeH80], which solves the same equivalent network

flow problems. We do not know of any specialized assignment code (including the Hungarian or

mixed auction/Hungarian code such as JV) than can be easily modified to handle multiassignment

problems. It was found that the NETFLO run times were approximately 40 times higher than those

of RELAX for about 5000 arcs and that factor was growing for higher numbers of arcs. In Fig. 10

we show the solution times versus the number of arcs for RELAX and the new multiassignment

algorithm for a sequence of randomly generated asymmetric problems with a fixed number of arcs

per node. The run times for multiauction grow almost linearly as the number of arcs increases,

and this behavior is very consistent across all runs. Furthermore, multiauction is approximately 4

times faster than RELAX, whose run times also grow roughly linearly but with quite a bit more

fluctuation.

Scaling is important for multiassignment problems as it is for one-on-one assignment problems.

Although this may not be apparent for randomly generated problems, it is frequently needed in
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Figure 8: Run times for “easy” asymmetric assignment problems on a MAC II.

The degree of each person node is 10 and the arc benefit range is [0,1000]. Each

data point represents an average of ten randomly generated problems. The arc

benefits are drawn from the benefit range according to a uniform distribution.

applications, particularly for nearly infeasible problems. In Fig. 11 we show run time results of

scaled and unscaled one-sided multiauction algorithms applied to a practical dynamic multi-target

tracking and correlation problem over a fixed period of time. At each point in time a sensor’s scan

produces a set of measurements of target positions that are to be matched with another set of

existing tracks by making use of the multiauction algorithms. It can be seen from Fig. 11 that the

unscaled multiauction performs worse and far less consistently than the scaled version for this class

of practical problems.

Finally, the new two-sided multiassignment algorithm was tested versus RELAX for randomly

generated problems. The results, shown in Fig. 12, indicate a substantial speed advantage for the

new multiauction algorithm.
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[BeC89b] Bertsekas, D. P., and Castañon, D. A., “The Auction Algorithm for the Minimum Cost

Network Flow Problem,” Laboratory for Information and Decision Systems Report LIDS-P-1925,

M.I.T., Cambridge, MA, November 1989.
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