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Introduction

1.1 PROBLEM FORMULATION

This book deals with a single type of network optimization problem with
linear cost, known as the transshipment or minimum cost flow problem. In
this section, we formulate this problem together with several special cases.
One of the most important special cases is the assignment problem, which
we will discuss in detail because it is simple and yet captures most of the
important algorithmic aspects of the general problem.

Example 1.1. The Assignment Problem

Suppose that there are n persons and n objects that we have to match on a

one-to-one basis. There is a benefit or value aij for matching person i with

object j, and we want to assign persons to objects so as to maximize the total

benefit. There is also a restriction that person i can be assigned to object j

only if (i, j) belongs to a set of given pairs A. Mathematically, we want to

find a set of person-object pairs (1, j1), . . . , (n, jn) from A such that the objects

j1, . . . , jn are all distinct, and the total benefit
∑n

i=1 aiji is maximized.

The assignment problem is important in many practical contexts. The

most obvious ones are resource allocation problems, such as assigning em-

ployees to jobs, machines to tasks, etc. There are also situations where the

assignment problem appears as a subproblem in various methods for solving

more complex problems.
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We may associate any assignment with the set of variables {xij | (i, j) ∈
A}, where xij = 1 if person i is assigned to object j and xij = 0 otherwise.

We may then formulate the assignment problem as the linear program

maximize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = 1, ∀ i = 1, . . . , n,

∑
{i|(i,j)∈A}

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A.

(1.1)

Actually we should further restrict xij to be either 0 or 1; however, as

we will show in the next chapter, the above linear program has a remarkable

property: if it has a feasible solution at all, then it has an optimal solution

where all xij are either 0 or 1. In fact, the set of its optimal solutions includes

all the optimal assignments.

Another important property of the assignment problem is that it can be

represented by a graph as shown in Fig. 1.1. Here, there are 2n nodes divided

into two groups: n corresponding to persons and n corresponding to objects.

Also, for every (i, j) ∈ A, there is an arc connecting person i with object j.

In the terminology of network problems, the variable xij is referred to as the

flow of arc (i, j). The constraint
∑

{j|(i,j)∈A} xij = 1 indicates that the total

outgoing flow from node i should be equal to 1, which may be viewed as the

(exogenous) supply of the node. Similarly, the constraint
∑

{i|(i,j)∈A} xij = 1

indicates that the total incoming flow to node j should be equal to 1, which

may be viewed as the (exogenous) demand of the node.

Before we can proceed with a formulation of more general network flow
problems we must introduce some notation and terminology.

1.1.1 Graphs and Flows

We define a directed graph, G = (N ,A), to be a set N of nodes and a set
A of pairs of distinct nodes from N called arcs. The numbers of nodes and
arcs of G are denoted by N and A, respectively, and we assume throughout
that 1 ≤ N < ∞ and 0 ≤ A < ∞. An arc (i, j) is viewed as an ordered pair,
and is to be distinguished from the pair (j, i). If (i, j) is an arc, we say that
(i, j) is outgoing from node i and incoming to node j; we also say that j is
an outward neighbor of i and that i is an inward neighbor of j. We say that
arc (i, j) is incident to i and to j, and that i is the start node and j is the
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Figure 1.1 The graph representation of an assignment problem.

end node of the arc. The degree of a node i is the number of arcs that are
incident to i.

A graph is said to be bipartite if its nodes can be partitioned into two
sets S and T such that every arc has its start in S and its end in T . The
assignment graph of Fig. 1.1 is an example of a bipartite graph, with S and
T being the sets of persons and objects, respectively.

We do not exclude the possibility that there is a separate arc connecting
a pair of nodes in each of the two directions. However, we do not allow more
than one arc between a pair of nodes in the same direction, so that we can refer
unambiguously to the arc with start i and end j as arc (i, j). This was done
for notational convenience. Our analysis can be simply extended to handle
multiple arcs with start i and end j; the extension is based on modifying
the graph by introducing for each such arc, an additional node, call it n,
together with the two arcs (i, n) and (n, j). The codes in the appendixes can
handle graphs that have multiple arcs between any pair of nodes in the same
direction, without the above modification.

Paths and Cycles

A path P in a directed graph is a sequence of nodes (n1, n2, . . . , nk) with
k ≥ 2 and a corresponding sequence of k − 1 arcs such that the ith arc in the
sequence is either (ni, ni+1) (in which case it is called a forward arc of the path)
or (ni+1, ni) (in which case it is called a backward arc of the path). A path
is said to be forward (or backward) if all of its arcs are forward (respectively,
backward) arcs. We denote by P+ and P− the sets of forward and backward
arcs of P , respectively. Nodes n1 and nk are called the start node (or origin)
and the end node (or destination) of P , respectively.
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A cycle is a path for which the start and end nodes are the same. A
path is said to be simple if it contains no repeated arcs and no repeated nodes,
except that the start and end nodes could be the same (in which case the path
is called a simple cycle). These definitions are illustrated in Fig. 1.2.

Note that the sequence of nodes (n1, n2, . . . , nk) is not sufficient to specify
a path; the sequence of arcs is also important, as Fig. 1.2(c) shows. The
difficulty arises when for two successive nodes ni and ni+1 of the path, both
(ni, ni+1) and (ni+1, ni) are arcs, so there is ambiguity as to which of the two
is the corresponding arc of the path. However, when the path is known to be
forward or is known to be backward, it is uniquely specified by the sequence of
its nodes. Throughout the book, we will make sure that the intended sequence
of arcs is explicitly defined in ambiguous situations.

A graph that contains no simple cycles is said to be acyclic. A graph is
said to be connected if for each pair of nodes i and j, there is a path starting
at i and ending at j; it is said to be strongly connected if for each pair of nodes
i and j, there is a forward path starting at i and ending at j. For example,
the assignment graph of Fig. 1.1 may be connected but cannot be strongly
connected.

We say that G′ = (N′,A′) is a subgraph of G = (N ,A) if G′ is a graph,
N′ ⊂ N , and A′ ⊂ A. A tree is a connected acyclic graph. A spanning tree
of a graph G is a subgraph of G that is a tree and that includes all the nodes
of G.

Flow and Divergence

A flow vector x in a graph (N ,A) is a set of scalars
{
xij | (i, j) ∈ A

}
. We

refer to xij as the flow of the arc (i, j), and we place no restriction (such as
nonnegativity) on its value. The divergence vector y associated with a flow
vector x is the N -dimensional vector with coordinates

yi =
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji, ∀ i ∈ N . (1.2)

Thus, yi is the total flow departing from node i less the total flow arriving
at i; it is referred to as the divergence of i. For example, an assignment
corresponds to a flow vector x with xij = 1 if person i is assigned to object
j and xij = 0 otherwise (see Fig. 1.1); the assigned pairs involve each person
exactly once and each object exactly once, if the divergence of each person
node i is yi = 1, and the divergence of each object node j is yj = −1.

We say that node i is a source (respectively, sink) for the flow vector
x if yi > 0 (respectively, yi < 0). If yi = 0 for all i ∈ N , then x is called a
circulation. These definitions are illustrated in Fig. 1.3. Note that by adding
Eq. (1.2) over all i ∈ N , we obtain∑

i∈N
yi = 0
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(c)

The path P = (n  , n  , n  , n   , n  , n  , n  ) is also legitimate; 
1 2 4 33 2 3

it is not simple, and it is neither forward nor backward.

(b)  A simple cycle C = (n  , n  , n  , n  ) which is neither forward nor backward.1 2 3 1
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Figure 1.2 Illustration of various types of paths. Note that for the path

(c) it is necessary to specify the sequence of arcs of the path (rather than just the

sequence of nodes) because both (n3, n4) and (n4, n3) are arcs. For a somewhat

degenerate example that illustrates the fine points of the definitions, note that for

the graph of (c), the node sequence

C = (n3, n4, n3)

is associated with four cycles:

(1) The simple forward cycle with

C+ = {(n3, n4), (n4, n3)}, C− : empty.

(2) The simple backward cycle with

C− = {(n4, n3), (n3, n4)}, C+ : empty.

(3) The (nonsimple) cycle with

C+ = {(n3, n4)}, C− = {(n3, n4)}.

(4) The (nonsimple) cycle with

C+ = {(n4, n3)}, C− = {(n4, n3)}.

Note that the node sequence (n3, n4, n3) determines the cycle uniquely if it is

specified that the cycle is either forward or is backward.
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Figure 1.3 Illustration of various types of flows. The flow in (b) is a

circulation because yi = 0 for all i.

for any divergence vector y.
In applications, a negative arc flow indicates that whatever flow repre-

sents (material, electric current, etc.), moves in a direction opposite to the
direction of the arc. We can always change the sign of the arc flow to positive
as long as we change the arc direction, so in many situations we can assume
without loss of generality that all arc flows are nonnegative. For the devel-
opment of a general methodology, however, this device is often cumbersome,
which is why we prefer to simply accept the possibility of negative arc flows.

Conformal Decomposition

It is often convenient to break down a flow vector into the sum of simpler
components. A particularly useful decomposition arises when the components
involve simple paths and cycles with orientation which is consistent to that of
the original flow vector. This leads to the notion of a conformal realization,
which we proceed to discuss.
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We say that a path P conforms to a flow vector x if xij > 0 for all forward
arcs (i, j) of P and xij < 0 for all backward arcs (i, j) of P , and furthermore
either P is a cycle or else the start and end nodes of P are a source and a sink
of x, respectively. Roughly, a path conforms to a flow vector if it “carries flow
in the forward direction” – that is, in the direction from the start node to the
end node. In particular, for a forward cycle to conform to a flow vector, all
its arcs must have positive flow; for a forward path which is not a cycle to
conform to a flow vector, its arcs must have positive flow, and in addition the
start and end nodes must be a source and a sink, respectively.

A simple path flow is a flow vector that corresponds to sending a positive
amount of flow along a simple path; more precisely, it is a flow vector x of the
form

xij =

⎧⎨
⎩

a if (i, j) ∈ P+

−a if (i, j) ∈ P−

0 otherwise,
(1.3)

where a is a positive scalar, and P+ and P− are the sets of forward and
backward arcs, respectively, of some simple path P .

We say that a simple path flow xs conforms to a flow vector x if the
path P corresponding to xs via Eq. (1.3) conforms to x. This is equivalent to
requiring that

0 < xij for all arcs (i, j) with 0 < xs
ij,

xij < 0 for all arcs (i, j) with xs
ij < 0,

and that either P is a cycle or else the divergence (with respect to x) of the
start node of P is positive and the divergence (with respect to x) of the end
node of P is negative.

We now show that any flow vector can be decomposed into a set of
conforming simple path flows. This result, illustrated in Fig. 1.4, turns out
to be fundamental for our purposes. The proof is based on an algorithm that
can be used to construct the constituent conforming components one by one.
Such constructive proofs are often used in network optimization.

Proposition 1.1: (Conformal Realization Theorem) A nonzero flow vector
x can be decomposed into the sum of t simple path flow vectors x1, x2, . . . , xt

that conform to x, with t being at most equal to the sum of the numbers of
arcs and nodes A+N . If x is integer, then x1, x2, . . . , xt can also be chosen to
be integer. If x is a circulation, then x1, x2, . . . , xt can be chosen to be simple
circulations, and t ≤ A.

Proof: We first assume that x is a circulation. Our proof consists of showing
how to obtain from x a simple circulation x′ conforming to x and such that

0 ≤ x′
ij ≤ xij for all arcs (i, j) with 0 ≤ xij, (1.4a)
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Figure 1.4 Decomposition of a flow vector x into three simple path

flows conforming to x. The corresponding simple paths are (1, 2), (3, 4, 2), and

(2, 3, 4, 2). The first two are not cycles; they start at a source and end at a sink.

Consistent with the definition of conformance of a path flow, each arc (i, j) of these

paths carries positive (or negative) flow only if xij > 0 (or xij < 0, respectively).

Arcs (1, 3) and (3, 2) do not belong to any of these paths because they carry zero

flow. In this example, the decomposition is unique, but in general this need not

be the case.

xij ≤ x′
ij ≤ 0 for all arcs (i, j) with xij ≤ 0, (1.4b)

xij = x′
ij for at least one arc (i, j) with xij 	= 0. (1.4c)

Once this is done, we subtract x′ from x. We have xij − x′
ij > 0 only for

arcs (i, j) with xij > 0, xij − x′
ij < 0 only for arcs (i, j) with xij < 0, and

xij −x′
ij = 0 for at least one arc (i, j) with xij 	= 0. If x is integer, then x′ and

x − x′ will also be integer. We then repeat the process (for at most A times)
with the circulation x replaced by the circulation x − x′ and so on, until the
zero flow is obtained. This is guaranteed to happen eventually because x−x′

has at least one more arc with zero flow than x.
We now describe the procedure by which x′ with the properties (1.4) is

obtained; see Fig. 1.5. Choose an arc (i, j) with xij 	= 0. Assume that xij > 0.
(A similar procedure can be used when xij < 0.) Construct a sequence of
node subsets T0, T1, . . ., as follows: Take T0 = {j}. For k = 0, 1, . . ., given Tk,
let

Tk+1 =
{
n /∈ ∪k

p=0Tp | there is a node m ∈ Tk, and either an arc (m, n)

such that xmn > 0 or an arc (n, m) such that xnm < 0
}
,



Sec. 1.1 Problem Formulation 9

and mark each node n ∈ Tk+1 with the label “(m, n)” or “(n, m),” where m
is a node of Tk such that xmn > 0 or xnm < 0, respectively. The procedure
terminates when Tk+1 is empty. We may view Tk as the set of nodes n that
can be reached from j with a path of k arcs carrying “positive flow” in the
direction from j to n.

We claim that one of the sets Tk contains node i. To see this, consider
the set ∪kTk of all nodes that belong to one of the sets Tk. By construction,
there is no outgoing arc from ∪kTk with positive flow and no incoming arc
into ∪kTk with negative flow. If i did not belong to ∪kTk, there would exist
at least one incoming arc into ∪kTk with positive flow, namely the arc (i, j).
Thus, the total flow of arcs incoming to ∪kTk must be positive, while the total
flow of arcs outgoing from ∪kTk is negative or zero. On the other hand, these
two flows must be equal, since x is a circulation; this can be seen by adding
the equation ∑

{n|(m,n)∈A}
xmn =

∑
{n|(n,m)∈A}

xnm

over all nodes m ∈ ∪kTk. Therefore, we obtain a contradiction, and it follows
that one of the sets Tk contains node i.

We now trace labels backward from i until node j is reached. [This
will happen eventually because if “(m, n)” or “(n, m)” is the label of node n
and n ∈ Tk+1, then m ∈ Tk, so a “cycle” of labels cannot be formed before
reaching j.] In particular, let “(i1, i)” or “(i, i1)” be the label of i, let “(i2, i1)”
or “(i1, i2)” be the label of i1, etc., until a node ik with label “(ik, j)” or “(j, ik)”
is found. The cycle C = (j, ik, ik−1, . . . , i1, i, j) is simple, it contains (i, j) as a
forward arc, and is such that all its forward arcs have positive flow and all its
backward arcs have negative flow (see Fig. 1.2). Let a = min(m,n)∈C |xmn| > 0.
Then the circulation x′, where

x′
ij =

⎧⎨
⎩

a if (i, j) ∈ C+

−a, if (i, j) ∈ C−

0 otherwise,
has the required properties (1.4).

Consider now the case where x is not a circulation. We form an enlarged
graph by introducing a new node s and by introducing for each node i ∈ N an
arc (s, i) with flow xsi equal to the divergence yi of Eq. (1.2). Then (by using
also the fact

∑
i∈N yi = 0) the resulting flow vector is seen to be a circulation

in the enlarged graph. This circulation, by the result just shown, can be
decomposed into at most A + N simple circulations of the enlarged graph,
conforming to the flow vector. Out of these circulations, we consider those
containing node s, and we remove s and its two incident arcs while leaving the
other circulations unchanged. As a result we obtain a set of at most A + N
path flows of the original graph, which add up to x. These path flows also
conform to x, as is required in order to prove the proposition. Q.E.D.
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Figure 1.5 Construction of a cycle of nonzero flow arcs used in the proof

of the Conformal Realization Theorem.

1.1.2 The Minimum Cost Flow Problem

The minimum cost flow problem is to find a set of arc flows that minimize
a linear cost function subject to the constraints that they produce a given
divergence vector and lie within some bounds; that is,

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (1.5)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A, (1.6)

where aij , bij , cij , and si are given scalars.
We use the following terminology.

aij : the cost coefficient (or simply cost) of (i, j).

bij and cij : the flow bounds of (i, j).

[bij , cij ]: the feasible flow range of (i, j).

si: the supply of node i.
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We also refer to the constraints (1.5) and (1.6) as the conservation of flow
constraints, and the capacity constraints, respectively. A flow vector satisfying
both of these constraints is called feasible, and if it satisfies just the capacity
constraints, it is called capacity-feasible. If there exists at least one feasible
flow vector, problem (MCF) is called feasible; otherwise it is called infeasible.
Note that for feasibility we must have

∑
i∈N

si = 0, (1.7)

since by Eq. (1.2), for any flow vector, the sum of all the corresponding node
divergences must be zero.

For a typical application of the minimum cost flow problem, think of the
nodes as locations (cities, warehouses, or factories) where a certain product
is produced or consumed. Think of the arcs as transportation links between
the locations, each with transportation cost aij per unit transported. The
problem then is to move the product from the production points to the con-
sumption points at minimum cost while observing the capacity constraints of
the transportation links.

On occasion, we will consider the variation of the minimum cost flow
problem where the lower or the upper flow bound of some of the arcs is either
−∞ or ∞, respectively. In these cases, we will explicitly state so; thus, in the
absence of a contrary statement, we implicitly assume that every arc has real
lower and upper flow bounds.

The minimum cost flow problem is a special case of a linear programming
problem, but it has a much more favorable structure than a general linear
program. It has certain special properties that strongly affect the performance
of algorithms. For example, the minimum cost flow problem with integer
data can be solved using integer calculations exclusively. Furthermore, some
methods (relaxation, auction) are very efficient for some minimum cost flow
problems but are less efficient or inapplicable for general linear programs.
In practice, minimum cost flow problems can often be solved hundreds and
even thousands of times faster than general linear programs of comparable
dimension.

The assignment problem is a special case of the minimum cost flow
problem [see Eq. (1.1); by reversing the sign of the cost function, maximization
can be turned into minimization]. Two other important special cases are
described below.

Example 1.2. The Max-Flow Problem

In the max-flow problem there are two special nodes: the source (s) and the

sink (t). Roughly, the objective is to push as much flow as possible from s into

t while observing the capacity constraints. More precisely, we want to make
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the divergence of all nodes other than s and t equal to zero while maximizing

the divergence of s (or, equivalently, minimizing the divergence of t).

The max-flow problem arises in many practical contexts, such as calcu-

lating the throughput of a highway system or a communication network. It

also arises often as a subproblem in more complicated problems or algorithms.

We formulate this problem as a special case of the minimum cost flow

problem by assigning cost zero to all arcs and by introducing an arc (t, s) with

cost −1 and with an appropriately large upper flow bound and small lower

flow bound, as shown in Fig. 1.6. Mathematically, the problem is as follows:

maximize xts

subject to∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = 0, ∀ i ∈ N with i �= s and i �= t,

∑
{j|(s,j)∈A}

xsj =
∑

{i|(i,t)∈A}

xit = xts,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A with (i, j) �= (t, s),∑
{i|(i,t)∈A}

bit ≤ xts ≤
∑

{i|(i,t)∈A}

cit.

(1.8)

The upper and lower bounds on xts are introduced in order to place the prob-

lem in the minimum cost flow format; they are actually redundant since they

are implied by the upper and lower bounds on the flows of the arcs of A.

Also, viewing the problem as a maximization is consistent with its intuitive

interpretation. Alternatively, we could write the problem as a minimization

of −xts subject to the same constraints.

In an alternative formulation the flow bounds on xts could be discarded,

since they are implied by other bounds, namely bit ≤ xit ≤ cit for all (i, t) ∈ A.

We would then be dealing with a special case of the version of the minimum

cost flow problem in which some of the flow bounds are −∞ and/or ∞.

Example 1.3. The Transportation Problem

This problem is the same as the assignment problem except that the node

supplies need not be 1 or −1 and maximization is replaced by minimization.
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Figure 1.6 The minimum cost flow representation of a max-flow problem.

At the optimum, the flow xts equals the maximum flow that can be sent from s

to t through the subgraph obtained by deleting arc (t, s).

It has the form

minimize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = αi, ∀ i = 1, . . . , m,

∑
{i|(i,j)∈A}

xij = βj , ∀ j = 1, . . . , n,

0 ≤ xij ≤ min{αi, βj}, ∀ (i, j) ∈ A.

(1.9)

Here αi and βj are positive scalars, which for feasibility must satisfy

m∑
i=1

αi =

n∑
j=1

βj ,

[see Eq. (1.7)]. In an alternative formulation, the upper bound constraint

xij ≤ min{αi, βj} could be discarded, since it is implied by the conservation

of flow and the nonnegativity constraints.
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1.1.3 Transformations and Equivalences

The minimum cost flow problem can be represented in several equivalent
forms, which we describe below.

Setting the Lower Flow Bounds to Zero

The lower flow bounds bij can be changed to zero by a translation of variables,
that is, by replacing xij by xij − bij and by adjusting the upper flow bounds
and the supplies according to

cij := cij − bij ,

si := si −
∑

{j|(i,j)∈A}
bij +

∑
{j|(j,i)∈A}

bji.

Optimal flows and the optimal value of the original problem are obtained by
adding bij to the optimal flow of each arc (i, j) and adding

∑
(i,j)∈A aijbij to

the optimal value of the transformed problem, respectively. Working with the
transformed problem saves computation time and storage, and for this reason
most network flow codes assume that all lower flow bounds are zero.

Eliminating the Upper Flow Bounds

Once the lower flow bounds have been changed to zero, it is possible to elim-
inate the upper flow bounds, obtaining a problem with just a nonnegativity
constraint on all the flows. This can be done by introducing an additional
nonnegative variable zij that must satisfy the constraint

xij + zij = cij .

(In linear programming terminology, zij is known as a slack variable.) The
resulting problem is a minimum cost flow problem involving for each arc (i, j),
an extra node with supply cij , and two outgoing arcs, corresponding to the
flows xij and zij ; see Fig. 1.7.

Reduction to a Circulation Format

The problem can be put into circulation format , in which all node supplies
are zero. One way of doing this is to introduce a new node t and an arc (t, i)
for each node i with nonzero supply si. We may then introduce the constraint
si ≤ xti ≤ si and an arbitrary cost for the flow xti. Alternatively, we may
introduce an arc (t, i) and a constraint 0 ≤ xti ≤ si for all i with si > 0, and
an arc (i, t) and a constraint 0 ≤ xit ≤ −si for all i with si < 0. The cost of
these arcs should be very small (i.e., large negative) to force the corresponding
flows to be at their upper bound at the optimum; see Fig. 1.8.
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Figure 1.7 Eliminating the upper capacity bound by replacing each arc with

a node and two outgoing arcs. Since for feasibility we must have zij = cij − xij ,

the upper bound constraint xij ≤ cij is equivalent to the lower bound constraint

0 ≤ zij . Furthermore, in view again of the equation xij = cij−zij , the conservation

of flow equation

−
∑

j

zij −
∑

j

xji = si −
∑

j

cij

for the modified problem is equivalent to the conservation of flow equation∑
j

xij −
∑

j

xji = si

for the original problem. Using these facts, it can be seen that the feasible flow

vectors (x, z) of the modified problem can be paired on a one-to-one basis with

the feasible flow vectors x of the original problem, and that the corresponding

costs are equal. Thus, the modified problem is equivalent to the original problem.

Reduction to a Transportation or an Assignment Problem

Finally, the minimum cost flow problem may be transformed into a trans-
portation problem of the form (1.9); see Fig. 1.9. The transportation problem
(1.9) can itself be converted into an assignment problem by creating αi unit
supply sources (βj unit demand sinks) for each transportation problem source
i (sink j, respectively). For this reason, any algorithm that solves the assign-
ment problem can be extended into an algorithm for the minimum cost flow
problem. This motivates a useful way to develop and analyze new algorith-
mic ideas; apply them to the simpler assignment problem and generalize them
using the construction just given to the minimum cost flow problem.
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Figure 1.8 A transformation of the minimum cost flow problem into a

circulation format. All artificial arcs have very large negative cost, to force the

corresponding flows to their upper bounds at the optimum.

E X E R C I S E S

Exercise 1.1

Use the algorithm of the proof of the Conformal Realization Theorem to de-

compose the flow vector of Fig. 1.10 into simple path flows.

Exercise 1.2

Convert the minimum cost flow problem of Fig. 1.11 into a linear network flow

problem involving only nonnegativity constraints on the variables.

Exercise 1.3

Consider the minimum cost flow problem and let pi be a scalar for each node

i. Change the cost of each arc (i, j) from aij to aij + pj − pi. Show that the

optimal flow vectors are unaffected. Note: This transformation is often useful;

for example to make all arc costs nonnegative – see Section 1.3.5.
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Figure 1.9 Transformation of a minimum cost flow problem into a

transportation problem of the form (1.9). The idea is to introduce a new node

for each arc and introduce a slack variable for every arc flow; see Fig. 1.7. This

not only eliminates the upper bound constraint on the arc flows, as in Fig. 1.7,

but also creates a bipartite graph structure. In particular, we take as sources of

the transportation problem the arcs of the original network, and as sinks of the

transportation problem the nodes of the original network. Each transportation

problem source has two outgoing arcs with cost coefficients as shown. The supply

of each transportation problem source is the feasible flow range length of the

corresponding original network arc. The demand of each transportation problem

sink is the sum of the feasible flow range lengths of the outgoing arcs from the

corresponding original network node minus the supply of that node, as shown.

An arc flow xij in (MCF) corresponds to flows equal to xij and cij − bij − xij on

the transportation problem arcs
(
(i, j), j

)
and

(
(i, j), i

)
, respectively.

Exercise 1.4 (Breadth-First Search)

Let i and j be two nodes of a directed graph (N ,A).

(a) Consider the following algorithm, known as breadth-first search, for find-

ing a path from i to j. Let T0 = {i}. For k = 0, 1, . . ., let

Tk+1 = {n /∈ ∪k
p=0Tp | for some node m ∈ Tk, (m, n) or (n, m) is an arc},

and mark each node n ∈ Tk+1 with the label “(m, n)” or “(n, m),” where

m is a node of Tk such that (m, n) or (n, m) is an arc, respectively. The

algorithm terminates if either (1) Tk+1 is empty or (2) j ∈ Tk+1. Show
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Figure 1.10 Flow vector for Exercise 1.1. The arc flows are the numbers

shown next to the arcs.

Figure 1.11 Minimum cost flow problem for Exercise 1.2. All arc costs

are equal to 1, and all node supplies are equal to zero. The feasible flow ranges

of the arcs are shown next to the arcs.

that case (1) occurs if and only if there is no path from i to j. If case

(2) occurs, how would you use the labels to construct a path from i to

j?

(b) Show that a path found by breadth-first search has a minimum number

of arcs over all paths from i to j.

(c) Modify the algorithm of part (a) so that it finds a forward path from i

to j.

Exercise 1.5 (Path Decomposition Theorem)

Use the Conformal Realization Theorem to show that a forward path P can

be decomposed into a (possibly empty) collection of simple forward cycles,

together with a simple forward path that has the same start node and end

node as P . (Here “decomposition” means that the union of the arcs of the

component paths is equal to the set of arcs of P with the multiplicity of

repeated arcs properly accounted for.)
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Exercise 1.6 (Inequality Constrained Minimum Cost Flows)

Consider the following variation of the minimum cost flow problem:

minimize
∑

(i,j)∈A

aijxij

subject to

si ≤
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji ≤ si, ∀ i ∈ N ,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A,

where the bounds si and si on the divergence of node i are given. Convert this

problem into the standard form of the minimum cost flow problem by adding

an extra node and an arc from this node to every other node.

Exercise 1.7 (Node Throughput Constraints)

Consider the minimum cost flow problem with the additional constraints that

the total flow of the outgoing arcs from each node i must lie within a given

range [ti, ti], that is,

ti ≤
∑

{j|(i,j)∈A}

xij ≤ ti.

Convert this problem into the standard form of the minimum cost flow problem

by adding an extra node and an extra arc for each existing node.

Exercise 1.8 (Piecewise Linear Arc Costs)

Consider the minimum cost flow problem with the difference that, instead of

the linear form aijxij , each arc’s cost function has the piecewise linear form

fij(xij) =

{
a1

ijxij if bij ≤ xij ≤ mij

a1
ijmij + a2

ij(xij − mij) if mij ≤ xij ≤ cij ,

where mij , a1
ij , and a2

ij are given scalars satisfying bij ≤ mij ≤ cij and a1
ij ≤ a2

ij .

(a) Show that the problem can be converted to a linear minimum cost flow

problem where each arc (i, j) is replaced by two arcs with arc cost co-

efficients a1
ij and a2

ij , and arc flow ranges [bij , mij ] and [0, cij − mij ],

respectively.

(b) Generalize to the case of piecewise linear cost functions with more than

two pieces.



20 Introduction Chap. 1

1.2 THREE BASIC ALGORITHMIC IDEAS

In this section we will explain three main ideas underlying minimum cost flow
algorithms:

(a) Primal cost improvement. Here we try to iteratively improve the cost
to its optimal value by constructing a corresponding sequence of feasible
flows.

(b) Dual cost improvement. Here we define a problem related to the mini-
mum cost flow problem, called dual problem, whose variables are called
prices. We then try to iteratively improve the dual cost to its optimal
value by constructing a corresponding sequence of prices. Dual cost
improvement algorithms also iterate on flows, which are related to the
prices through a property called complementary slackness.

(c) Auction. This is a process that generates a sequence of prices in a way
that is reminiscent of real-life auctions. Strictly speaking, there is no pri-
mal or dual cost improvement here, although one may view the auction
process as trying to iteratively improve the dual cost in an approximate
sense. In addition to prices, auction algorithms also iterate on flows,
which are related to prices through a property called ε-complementary
slackness; this is an approximate form of the complementary slackness
property mentioned above.

For simplicity, in this chapter we will explain these ideas primarily
through the assignment problem and the max-flow problem, deferring a more
detailed development to subsequent chapters. Our illustrations, however, are
relevant to the general minimum cost flow problem, since this problem can be
reduced to the assignment problem (as was shown in the preceding section).
Except for the max-flow analysis and the duality theory, the explanations
in this section are somewhat informal. Precise statements of algorithms and
results will be given in subsequent chapters.

1.2.1 Primal Cost Improvement

An important algorithmic idea for the minimum cost flow problem is to start
from an initial feasible flow vector and then generate a sequence of feasible
flow vectors, each having a better cost than the preceding one. The difference
of any two successive flow vectors must be a circulation (since both are feasi-
ble), and for many interesting algorithms, including the simplex method, this
circulation involves only a simple cycle. This idea will be first illustrated in
terms of the assignment problem.
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Multi-Person Swaps in the Assignment Problem

Consider the n × n assignment problem and suppose that we have a feasible
assignment, that is, a set of n pairs (i, j) involving each person i exactly
once and each object j exactly once. Consider now what happens if we do
a two-person swap, that is, we replace two pairs (i1, j1) and (i2, j2) from the
assignment with the pairs (i1, j2) and (i2, j1). The resulting assignment will
still be feasible, and it will have a higher value if and only if

ai1j2 + ai2j1 > ai1j1 + ai2j2 .

Unfortunately, it may be impossible to improve the current assignment
by a two-person swap, even if the assignment is not optimal; see Fig. 2.1.
It turns out, however, that an improvement is possible by means of a k-
person swap, for some k ≥ 2, where a set of pairs (i1, j1), . . . , (ik, jk) from the
current assignment is replaced by the pairs (i1, j2), . . . , (ik−1, jk), (ik, j1). This
can be shown in the context of the minimum cost flow representation of the
assignment problem:

maximize
∑

(i,j)∈A
aijxij

subject to∑
{j|(i,j)∈A}

xij = 1, ∀ i = 1, . . . , n,

∑
{i|(i,j)∈A}

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A.

(2.1)

Feasible assignments correspond to feasible flow vectors {xij | (i, j) ∈ A}
such that xij is either 0 or 1, and a k-person swap corresponds to a simple
cycle with k forward arcs (corresponding to the new assignment pairs) and k
backward arcs (corresponding to the current assignment pairs that are being
replaced); see Fig. 2.2. Thus, performing a k-person swap is equivalent to
pushing one unit of flow along the corresponding simple cycle. The k-person
swap improves the assignment if and only if the value of the k-person swap,
defined by

aikj1 +
k−1∑
m=1

aimjm+1 −
k∑

m=1

aimjm, (2.2)

is positive.
By associating k-person swaps with simple cycle flows, we can show that

a value-improving k-person swap exists if the current assignment is not opti-
mal. For a detailed proof, see the subsequent Prop. 2.1. The main argument is
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Figure 2.1 An example of a nonoptimal feasible assignment that cannot

be improved by a two-person swap. The value of each pair is shown next to the

corresponding arc. Here, the value of the assignment {(1, 1), (2, 2), (3, 3)} is left

unchanged at 3 by any two-person swap. Through a three-person swap, however,

we obtain the optimal assignment, {(1, 2), (2, 3), (3, 1)}, which has value 6.

Figure 2.2 Correspondence of a k-person swap to a simple cycle. This

is the same example as in the preceding figure. The backward arcs of the cycle

are (1, 1), (2, 2), and (3, 3), and correspond to the current assignment pairs. The

forward arcs of the cycle are (1, 2), (2, 3), and (3, 1), and correspond to the new

assignment pairs. The k-person swap is value-improving because the sum of the

values of the forward arcs (2 + 2 + 2) is greater than the sum of the values of the

backward arcs (1 + 1 + 1).

based on the Conformal Realization Theorem (Prop. 1.1). Briefly, the differ-
ence between the flow vector corresponding to an optimal assignment and the
vector corresponding to the current assignment is a circulation with arc flows
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equal to 0, 1, or −1, which can be decomposed into several conforming simple
cycles (that is, k-person swaps). Thus, the value of the optimal assignment
is equal to the value of the current assignment plus the sum of the values of
the k-person swaps. It follows that if the current assignment is not optimal,
then the value of at least one of the k-person swaps must be positive.

Primal cost improvement algorithms for the assignment problem are
based on successive k-person swaps, each having positive or at least non-
negative value. There are several different algorithms of this type, including
various forms of the simplex method, which will be discussed in detail in the
next chapter.

Extension to the Minimum Cost Flow Problem

The algorithmic ideas just described for the assignment problem can be ex-
tended to the minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N ,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A.

The role of k-person swaps is played by simple cycles with special properties.
In particular, let x be a nonoptimal feasible flow vector, and let x∗ be another
feasible flow vector with smaller cost than x (for example, x∗ could be an
optimal flow vector). The difference w = x∗ −x is a circulation satisfying, for
all arcs (i, j),

bij ≤ x∗
ij < xij for all arcs (i, j) with wij < 0, (2.3a)

xij < x∗
ij ≤ cij for all arcs (i, j) with 0 < wij. (2.3b)

According to the Conformal Realization Theorem (Prop. 1.1), w can be de-
composed into the sum of several simple cycle flows xs, s = 1, . . . , t, which
are conforming in the sense that, for all arcs (i, j),

wij < 0 for all arcs (i, j) with xs
ij < 0, (2.4a)

0 < wij for all arcs (i, j) with 0 < xs
ij. (2.4b)

Let us define a path P to be unblocked with respect to x if xij < cij for all
forward arcs (i, j) ∈ P+ and bij < xij for all backward arcs (i, j) ∈ P−. From
Eqs. (2.3) and (2.4), we see that each of the simple cycle flows xs involves
a cycle that is unblocked with respect to x. Let us define also the cost of a
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simple cycle C as the sum of the costs of the forward arcs minus the sum of
the costs of the backward arcs of C, that is,∑

(i,j)∈C+

aij −
∑

(i,j)∈C−
aij.

Since w = x∗ − x, the cost of w (that is,
∑

(i,j)∈A aijwij) is equal to the
cost of x∗ minus the cost of x, so the cost of w must be negative. On the other
hand, w is the sum of the simple cycle flows xs, so the cost of w is equal to
the sum of the costs of the corresponding simple cycles multiplied by positive
constants (the flow values of the corresponding simple cycle flows). Therefore,
the cost of at least one of these simple cycles must be negative. We have thus
proved the following proposition.

Proposition 2.1: Consider the minimum cost flow problem and let x be a
feasible flow vector which is not optimal. Then there exists a simple cycle flow
that when added to x, produces a feasible flow vector with smaller cost that
x; the corresponding cycle is unblocked with respect to x and has negative
cost.

The major primal cost improvement algorithm for the minimum cost flow
problem, the simplex method, uses simple cycle flows to produce improved
feasible flow vectors, as will be discussed in the next chapter.

1.2.2 Application to the Max-Flow Problem – The
Max-Flow/Min-Cut Theorem

We will now illustrate the preceding primal cost improvement approach in
terms of the max-flow problem. In the process we will derive one of the most
celebrated theorems of network optimization. To get a sense of the main ideas,
consider the minimum cost flow formulation of the max-flow problem, given in
Example 1.2, which involves the artificial feedback arc (t, s). Then, a negative
cost cycle must necessarily include the arc (t, s), since this is the only arc with
nonzero cost. By Prop. 2.1, if a feasible flow vector x is not optimal, there
must exist a simple cycle with negative cost that is unblocked with respect
to x; this cycle must consist of the arc (t, s) and a path from s to t, which
is unblocked with respect to x. Thus, by adding to x the corresponding path
flow, we obtain an improved flow vector. By similar reasoning, it follows that
if there is no path from s to t that is unblocked with respect to a given flow
vector x, then x must be optimal.

The max-flow/min-cut theorem and the Ford-Fulkerson algorithm, to
be described shortly, are based on the above ideas. However, in view of the
simplicity of the max-flow problem, the subsequent analysis will be couched
in first principles; it will also develop some concepts that will be useful later.
First some definitions are needed.
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Cuts in a Graph

A cut Q in a graph (N ,A) is a partition of the node set N into two nonempty
subsets, a set S and its complement N − S; we will use the notation Q =
[S,N − S]. Note that the partition is ordered in the sense that the cut
[S,N − S] is distinct from the cut [N − S,S]. For a cut Q = [S,N − S], we
will use the notation

Q+ = {(i, j) ∈ A | i ∈ S, j /∈ S},

Q− = {(i, j) ∈ A | i /∈ S, j ∈ S},

and we will say that Q+ and Q− are the sets of forward and backward arcs of
the cut , respectively. We will say that the cut Q is nonempty if Q+ ∪Q− 	= ∅;
otherwise we will say that Q is empty . We will say that the cut [S,N − S]
separates node s from node t if s ∈ S and t /∈ S. These definitions are
illustrated in Fig. 2.3.

Figure 2.3 Illustration of a cut Q = [S,N − S], where S = {1, 2, 3}. We

have

Q+ = {(2, 4), (1, 5)}, Q− = {(4, 1), (5, 3), (6, 3)}.

Given a flow vector x, the flux across a nonempty cut Q = [S,N −S] is
defined to be the total net flow coming out of S, that is, the scalar

F (Q) =
∑

(i,j)∈Q+

xij −
∑

(i,j)∈Q−
xij.
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Using the definition of the divergence of a node [see Eq. (1.2)] and the fol-
lowing calculation, it can be seen that F (Q) is also equal to the sum of the
divergences yi of the nodes in S:

F (Q) =
∑

{(i,j)∈A|i∈S,j /∈S}
xij −

∑
{(i,j)∈A|i/∈S,j∈S}

xij

=
∑
i∈S

⎛
⎝ ∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji

⎞
⎠ =

∑
i∈S

yi.

(2.5)

(The second equality holds because the flow of an arc with both end nodes in
S cancels out within the parentheses; it appears twice, once with a positive
and once with a negative sign.)

Given flow bounds bij and cij for each arc (i, j), the capacity of a
nonempty cut Q is

C(Q) =
∑

(i,j)∈Q+

cij −
∑

(i,j)∈Q−
bij . (2.6)

Clearly, for any capacity-feasible flow vector x, the flux F (Q) across Q is no
larger than the cut capacity C(Q). If F (Q) = C(Q), then Q is said to be
a saturated cut with respect to x; the flow of each forward (backward) arc of
such a cut must be at its upper (lower) bound. By convention, every empty
cut is also said to be saturated. The following is a simple but very useful
result.

Proposition 2.2: Let x be a capacity-feasible flow vector, and let s and t
be two nodes. Then exactly one of the following two alternatives holds:

(1) There exists a path from s to t that is unblocked with respect to x.

(2) There exists a saturated cut Q that separates s from t.

Proof: The proof is obtained by constructing an algorithm that terminates
with either a path as in (1) or a cut as in (2). Consider the following algorithm,
which is similar to the breadth-first search algorithm of Exercise 1.4; see Fig.
2.4. It generates a sequence of node sets {Tk}, starting with T0 = {s}; each set
Tk represents the set of nodes that can be reached from s with an unblocked
path of k arcs.

Unblocked Path Search Algorithm

For k = 0, 1, . . ., given Tk, terminate if either Tk is empty or t ∈ Tk; otherwise,

set

Tk+1 =
{
n /∈ ∪k

i=0Ti| there is a node m ∈ Tk, and either an arc (m, n)

such that xmn < cmn, or an arc (n, m) such that bnm < xnm

}
,
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and mark each node n ∈ Tk+1 with the label “(m, n)” or “(n, m),” where m

is a node of Tk and (m, n) or (n, m) is an arc with the property stated in the

above equation, respectively.

Since the algorithm terminates if Tk is empty, and Tk must consist of
nodes not previously included in ∪k−1

i=0 Ti, the algorithm must eventually ter-
minate. Let S be the union of the sets Ti upon termination. There are two
possibilities:

(a) The final set Tk contains t, in which case, by tracing labels backward
from t, an unblocked path P from s to t can be constructed. The forward
arcs of P are of the form (m, n) with xmn < cmn and the label of n being
“(m, n)”; the backward arcs of P are of the form (n, m) with bnm < xnm

and the label of n being “(n, m).” Any cut separating s from t must
contain a forward arc (m, n) of P with xmn < cmn or a backward arc
(n, m) of P with bnm < xnm, and therefore cannot be saturated. Thus,
the result is proved in this case.

(b) The final set Tk is empty, in which case from the equation defining Tk,
it can be seen that the cut Q = [S,N − S] is saturated and separates
s from t. To show that there is no unblocked path from s to t, note
that for any such path, we must have either an arc (m, n) ∈ Q+ with
xmn < cmn or an arc (n, m) ∈ Q− with bnm < xnm, which is impossible,
since Q is saturated.

Q.E.D.

A generalization of Prop. 2.2 that involves two disjoint subsets of nodes
N+ and N− in place of s and t is given in Exercise 2.14.

The Max-Flow/Min-Cut Theorem

Consider now the max-flow problem. We have a graph (N ,A) with flow
bounds bij and cij for the arcs, and two special nodes s and t. We want to
maximize the divergence out of s over all capacity-feasible flow vectors having
zero divergence for all nodes other than s and t. Given any such flow vector
and any cut Q separating s from t, the divergence out of s is equal to the
flux across Q [cf. Eq. (2.5)], which in turn is no larger than the capacity of Q.
Thus, if the max-flow problem is feasible, we have

Maximum Flow ≤ Capacity of Q. (2.7)

The following theorem asserts that equality is attained for some Q. Part (a) of
the theorem will assume the existence of an optimal solution to the max-flow
problem. This assumption need not be satisfied; indeed it is possible that the
max-flow problem has no feasible solution at all (consider a graph consisting
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Figure 2.4 Illustration of the unblocked path search algorithm for finding

an unblocked path from node 1 to node 6, or a saturated cut separating 1 from

6. The triplet (lower bound, flow, upper bound) is shown next to each arc. The

figure shows the successive sets Tk generated by the algorithm. In case (a) there

exists a unblocked path from 1 to 6, namely the path (1, 3, 5, 6). In case (b),

where the flow of arc (6, 5) is at the lower bound rather than the upper bound,

there is a saturated cut [S,N − S] separating 1 from 6, where S = {1, 2, 3, 4, 5}
is the union of the sets Tk.

of a path from s to t the arcs of which have disjoint feasible flow ranges).
In Chapter 2, however, we will show using the theory of the simplex method
(see Prop. 3.1 in Section 2.3), that the max-flow problem (and indeed every
minimum cost flow problem) has an optimal solution if it has at least one
feasible solution. [This can also be easily shown using a fundamental result of
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mathematical analysis, the Weierstrass Theorem (see e.g. [Lue69], [Rud76]),
which states that a continuous function attains a maximum over a nonempty
and compact set.] If the lower flow bound is zero for every arc, the max-flow
problem has at least one feasible solution, namely the zero flow vector. Thus
the theory of Chapter 2 (or the Weierstrass Theorem) guarantees that the
max-flow problem has an optimal solution in this case. This is stated as part
(b) of the following theorem, even though its complete proof must await the
developments of Chapter 2.

Proposition 2.3: (Max-Flow/Min-Cut Theorem)

(a) If x∗ is an optimal solution of the max-flow problem, then the divergence
out of s corresponding to x∗ is equal to the minimum cut capacity over
all cuts separating s from t.

(b) If all lower arc flow bounds are zero, the max-flow problem has an op-
timal solution, and the maximal divergence out of s is equal to the
minimum cut capacity over all cuts separating s from t.

Proof: (a) Let F ∗ be the value of the maximum flow, that is, the divergence
out of s corresponding to x∗. There cannot exist an unblocked path P from s
to t with respect to x∗, since by increasing the flow of the forward arcs of P
and by decreasing the flow of the backward arcs of P by a common positive
increment, we would obtain a flow vector with divergence out of s larger than
F ∗. Therefore, by Prop. 2.2, there must exist a cut Q, that is saturated with
respect to x∗ and separates s from t. The flux across Q is equal to F ∗ and is
also equal to the capacity of Q [since Q is saturated; see Eqs. (2.5) and (2.6)].
Since we know that F ∗ is less or equal to the minimum cut capacity [cf. Eq.
(2.7)], the result follows.

(b) See the discussion preceding the proposition. Q.E.D.

The Ford-Fulkerson Algorithm

We now turn to an algorithm for solving the max-flow problem. This algo-
rithm is of the primal cost improvement type, because it improves the primal
cost (the divergence out of s) at every iteration. The idea is that, given a
feasible flow vector x (i.e., one that is capacity-feasible and has zero diver-
gence out of every node other than s and t), and a path P from s to t, which
is unblocked with respect to x, we can increase the flow of all forward arcs
(i, j) ∈ P+ and decrease the flow of all backward arcs (i, j) ∈ P− by the
positive amount

δ = min
{
{cij − xij | (i, j) ∈ P+}, {xij − bij | (i, j) ∈ P−}

}
.



30 Introduction Chap. 1

The resulting flow vector x, given by

xij =

⎧⎨
⎩

xij + δ if (i, j) ∈ P+

xij − δ if (i, j) ∈ P−

xij otherwise,

is feasible, and it has a divergence out of s that is larger by δ than the
divergence out of s corresponding to x. We refer to P as an augmenting path,
and we refer to the operation of replacing x by x as a flow augmentation along
P . Such an operation may also be viewed as a modification of x along the
negative cost cycle consisting of P and an artificial arc (t, s) that has cost −1;
see the formulation of the max-flow problem as a minimum cost flow problem
in Example 1.2 and Fig. 1.6, and the discussion at the beginning of the present
subsection.

The algorithm starts with a feasible flow vector x. If the lower flow
bound is zero for all arcs, the zero flow vector can be used as a starting
vector; otherwise, a feasible starting flow vector can be obtained by solving
an auxiliary max-flow problem with zero lower flow bounds – see Exercise
2.5. At each iteration the algorithm has a feasible flow vector x and uses
the unblocked path search method, given in the proof of Prop. 2.2, to either
generate a new feasible flow vector with larger divergence out of s or terminate
with a maximum flow and a minimum capacity cut.

Typical Iteration of Ford-Fulkerson Algorithm

Use the unblocked path search method to either (1) find a saturated cut sep-

arating s from t or (2) find an unblocked path P with respect to x starting

from s and ending at t. In case (1), terminate the algorithm; the current flow

vector solves the max-flow problem. In case (2), perform an augmentation

along P and go to the next iteration.

Figure 2.5 illustrates the Ford-Fulkerson algorithm.
Based on the preceding discussion, we see that with each augmentation

the Ford-Fulkerson algorithm will improve the primal cost (the divergence
out of s) by the augmentation increment δ. Thus, if δ is bounded below
by some positive number, the algorithm can execute only a finite number of
iterations and must terminate with an optimal solution. In particular, if the
arc flow bounds are integer and the initial flow vector is also integer, δ will
be a positive integer at each iteration, and the algorithm will terminate. The
same is true even if the arc flow bounds and the initial flow vector are rational;
by multiplication with a suitably large integer, one can scale these numbers
up to integer while leaving the problem essentially unaffected.

On the other hand, if the problem data are irrational, proving termi-
nation of the Ford-Fulkerson algorithm is nontrivial. The proof (outlined
in Exercise 2.10) depends on the use of the specific unblocked path search
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Figure 2.5 Illustration of the Ford-Fulkerson algorithm for finding a max-

imum flow from node s = 1 to node t = 5. The arc flow bounds are shown next

to the arcs in the top left figure, and the starting flow is zero. The sequence of

successive flow vectors is shown on the left, and the corresponding sequence of aug-

mentations is shown on the right. The saturated cut obtained is [{1, 2, 3}, {4, 5}].
The capacity of this cut as well as the maximum flow is 5.

method of Prop. 2.2; this method yields augmenting paths with as few arcs as
possible (Exercise 2.10). If unblocked paths are constructed using a different
method, then, surprisingly, the Ford-Fulkerson algorithm need not terminate,
and the generated sequence of divergences out of s may converge to a value
strictly smaller than the maximum flow (for an example, see Exercise 2.9, and
for a different example, see [FoF62], or [PaS82], p. 126, or [Roc84], p. 92).



Augmenting Path for Odd 
Numbered Iterations

Augmenting Path for Even
Numbered Iterations

1 4

3

2

[0,1]

[0,C]

[0,C]

[0,C]

[0,C]

1

1

1

1 4

3

2

1

-1

1

1 4

3

2

32 Introduction Chap. 1

Even with integer problem data, if the augmenting paths are constructed us-
ing a different unblocked path search method the Ford-Fulkerson algorithm
may terminate in a very large number of iterations; see Fig. 2.6.

Figure 2.6 An example showing that if the augmenting paths used in the

Ford-Fulkerson algorithm do not have a number of arcs that is as small as possible,

the number of iterations may be very large. Here, C is a large integer. The

maximum flow is 2C, and can be produced after a sequence of 2C augmentations

using the three-arc augmenting paths shown in the figure. If on the other hand the

two-arc augmenting paths (1, 2, 4) and (1, 3, 4) are used, only two augmentations

are needed.

The number of augmentations of the Ford-Fulkerson algorithm, with
the unblocked path search method given, can be estimated as O(NA) for an
O(NA2) running time [since each augmentation requires O(A) operations];
see Exercise 2.10. Several max-flow algorithms with more favorable worst
case complexity estimates are available; see the references and Chapter 4.
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1.2.3 Duality and Dual Cost Improvement

Linear programming duality theory deals with the relation between the origi-
nal linear program and another linear program called dual . To develop an in-
tuitive understanding of duality, we will focus on the assignment problem and
consider a closely related economic equilibrium problem. Consider matching
the n objects with the n persons through a market mechanism, viewing each
person as an economic agent acting in his or her own best interest. Suppose
that object j has a price pj and that the person who receives the object must
pay the price pj . Then the net value of object j for person i is aij − pj , and
each person i will logically want to be assigned to an object ji with maximal
value, that is, with

aiji − pji = max
j∈A(i)

{aij − pj}, (2.8)

where
A(i) = {j | (i, j) ∈ A}

is the set of objects that can be assigned to person i. When this condition
holds for all persons i, we say that the assignment and the set of prices sat-
isfy complementary slackness (CS for short); the name comes from standard
linear programming terminology. The economic system is then at equilib-
rium, in the sense that no person would have an incentive to unilaterally seek
another object. Such equilibrium conditions are naturally of great interest
to economists, but there is also a fundamental relation with the assignment
problem. We have the following proposition.

Proposition 2.4: If a feasible assignment and a set of prices satisfy the
complementary slackness conditions (2.8) for all persons i, then the assign-
ment is optimal and the prices are an optimal solution of the following problem

min
pj

j=1,...,n

{
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj

}
, (2.9)

called the dual problem. Furthermore, the benefit of the optimal assignment
and the optimal cost of the dual problem are equal.

Proof: The total cost of any feasible assignment {(i, ki) | i = 1, . . . , n}
satisfies

n∑
i=1

aiki ≤
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj, (2.10)

for any set of prices {pj | j = 1, . . . , n}, since the first term of the right-hand
side is no less than

n∑
i=1

(aiki − pki) ,
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while the second term is equal to
∑n

i=1 pki . On the other hand, the given
assignment and set of prices, denoted by {(i, ji) | i = 1, . . . , n} and {pj | j =
1, . . . , n}, respectively, satisfy the CS conditions, so we have

aiji − pji
= max

j∈A(i)
{aij − pj}, i = 1, . . . , n.

By adding this relation over all i, we see that

n∑
i=1

aiji =
n∑

i=1

(
max
j∈A(i)

{
aij − pj

}
+ pji

)
.

Therefore, the assignment {(i, ji) | i = 1, . . . , n} attains the maximum of
the left-hand side of Eq. (2.10) and is optimal for the primal problem, while
{pj | j = 1, . . . , n} attains the minimum of the right-hand side of Eq. (2.10)
and is optimal for the dual problem. Furthermore, the two optimal values are
equal. Q.E.D.

Duality for the Minimum Cost Flow Problem

Consider now the minimum cost flow problem, which in a duality context will
also be referred to as the primal problem. To develop duality theory for this
problem, we introduce a price vector p = {pj | j ∈ N}, and we say that
a flow-price vector pair (x, p) satisfies complementary slackness (or CS for
short) if x is capacity-feasible and

pi − pj ≤ aij for all (i, j) ∈ A with xij < cij, (2.11a)

pi − pj ≥ aij for all (i, j) ∈ A with bij < xij. (2.11b)

The above conditions also imply that we must have

pi = aij + pj for all (i, j) ∈ A with bij < xij < cij.

An equivalent way to write the CS conditions is that, for all arcs (i, j), we
have bij ≤ xij ≤ cij and

xij =
{

cij if pi > aij + pj

bij if pi < aij + pj .

The above definition of CS and the subsequent proposition are also valid
for the variations of the minimum cost flow problem where bij = −∞ and/or
cij = ∞ for some arcs (i, j). In particular, in the case where in place of the
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capacity constraints bij ≤ xij ≤ cij there are only nonnegativity constraints
0 ≤ xij , the CS conditions take the form

pi − pj ≤ aij, ∀ (i, j) ∈ A, (2.11c)

pi − pj = aij for all (i, j) ∈ A with 0 < xij. (2.11d)

The dual problem is obtained by a procedure which is standard in duality
theory. We view pi as a Lagrange multiplier associated with the conservation
of flow constraint for node i and we form the corresponding Lagrangian func-
tion

L(x, p) =
∑

(i,j)∈A
aijxij +

∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}
xji

⎞
⎠ pi

=
∑

(i,j)∈A
(aij + pj − pi)xij +

∑
i∈N

sipi.

(2.12)

Then the dual function value q(p) at a vector p is obtained by minimizing
L(x, p) over all capacity-feasible flows x,

q(p) = min
x

{
L(x, p) | bij ≤ xij ≤ cij , (i, j) ∈ A

}
. (2.13)

Because the Lagrangian function L(x, p) is separable in the arc flows xij , its
minimization decomposes into A separate minimizations, one for each arc
(i, j). Each of these minimizations can be carried out in closed form, yielding

q(p) =
∑

(i,j)∈A
qij(pi − pj) +

∑
i∈N

sipi, (2.14a)

where

qij(pi − pj) = min
xij

{
(aij + pj − pi)xij | bij ≤ xij ≤ cij

}
=

{
(aij + pj − pi)bij if pi ≤ aij + pj

(aij + pj − pi)cij if pi > aij + pj.

(2.14b)

The dual problem is

maximize q(p)
subject to no constraint on p,

(2.15)

with the dual functional q given by Eq. (2.14).
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Figure 2.7 illustrates the form of the functions qij . Since each of these
functions is piecewise linear, the dual function q is also piecewise linear. The
dual function also has some additional interesting structure. In particular,
suppose that all node prices are changed by the same amount. Then the
values of the functions qij do not change, since these functions depend on
the price differences pi − pj . If in addition we have

∑
i∈N si = 0, as we

must if the problem is feasible, we see that the term
∑

i∈N sipi also does not
change. Thus, the dual function value does not change when all node prices
are changed by the same amount, implying that the equal cost surfaces of the
dual cost function are unbounded. Figure 2.8 illustrates the dual function for
a simple example.

Figure 2.7 Form of the dual cost function qij for arc (i, j).

The following proposition is basic.

Proposition 2.5: If a feasible flow vector x∗ and a price vector p∗ satisfy
the complementary slackness conditions (2.11a) and (2.11b), then x∗ is an
optimal primal solution and p∗ is an optimal dual solution. Furthermore, the
optimal primal cost and the optimal dual cost are equal.

Proof: We first show that for any feasible flow vector x and any price vector
p, the primal cost of x is no less than the dual cost of p.
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Figure 2.8 Form of the dual cost function q for the 3-node problem in (a).

The optimal flow is x12 = 1, x23 = 1, x13 = 0. The dual function is

q(p1, p2, p3) = min{0, 1 + p2 − p1} + min{0, 1 + p3 − p2}
+ min{0, 3 + p3 − p1} + p1 − p3.

Diagram (b) shows the graph of the dual function in the space of p1 and p2, with

p3 fixed at 0. For a different value of p3, say γ, the graph is “translated” by the

vector (γ, γ); that is, we have q(p1, p2, 0) = q(p1 + γ, p2 + γ, γ) for all (p1, p2).

The dual function is maximized at the vectors p that satisfy CS together with the

optimal x. These are the vectors of the form (p1 + γ, p2 + γ, γ), where

1 ≤ p1 − p2, p1 ≤ 3, 1 ≤ p2.
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Indeed, we have

q(p) ≤ L(x, p)

=
∑

(i,j)∈A
aijxij +

∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}
xji

⎞
⎠ pi

=
∑

(i,j)∈A
aijxij ,

(2.16)

where the last equality follows from the feasibility of x. On the other hand,
we have by the definition (2.13) of q

q(p∗) = min
x

{
L(x, p∗) | bij ≤ xij ≤ cij , (i, j) ∈ A

}
= L(x∗, p∗) =

∑
(i,j)∈A

aijx∗
ij ,

where the second equality is true because

(x∗, p∗) satisfies CS if and only if
x∗

ij minimizes (aij + p∗j − p∗i )xij over all xij ∈ [bij , cij ], ∀ (i, j) ∈ A,

and the last equality follows from the Lagrangian expression (2.12) and the
feasibility of x∗. Therefore, x∗ attains the minimum of the primal cost on the
right-hand side of Eq. (2.16), and p∗ attains the maximum of q(p) on the left-
hand side of Eq. (2.16), while the optimal primal and dual values are equal.
Q.E.D.

There are also several other important duality results. In particular:

(a) The converse of the preceding proposition can be shown. That is, if x∗

and p∗ are optimal flow and price vectors for the minimum cost flow
problem, and its dual problem, respectively, then x∗ must be feasible
and together with p∗ it must satisfy CS.

(b) If the minimum cost flow problem (with upper and lower bounds on the
arc flows) is feasible, then it can be shown that optimal primal and dual
solutions x∗ and p∗ with equal cost exist. If the problem data (aij , bij ,
cij , and si) are integer, then these optimal solutions can be taken to
be integer. [If some of the arc flows have no upper bound constraints
the situation is somewhat more complicated, because it is possible that
there exist feasible flow vectors of arbitrarily small (i.e., large negative)
cost; such a problem will be called unbounded in Chapter 2. Barring
this possibility, the existence of primal and dual optimal solutions with
equal cost will be shown in Section 2.2.]

We will prove these results constructively in Chapter 2 (see Prop. 2.3 in Sec-
tion 2.2 and Prop. 3.2 in Section 2.3) by deriving algorithms that obtain
primal and dual optimal solutions, which are integer if the problem data are
integer.
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Interpretation of Complementary Slackness and the Dual
Problem

As in the case of the assignment problem, the CS conditions have an economic
interpretation. In particular, think of each node i as choosing the flow xij of
each of its outgoing arcs (i, j) from the range [bij , cij ], on the basis of the
following economic considerations: For each unit of the flow xij that node i
sends to node j along arc (i, j), node i must pay a transportation cost aij plus
a storage cost pj at node j; for each unit of the residual flow cij − xij that
node i does not send to j, node i must pay a storage cost pi. Thus, the total
cost to node j is

(aij + pj)xij + (cij − xij)pi.

It can be seen that the CS conditions (2.11) are equivalent to requiring that
node i act in its own best interest by selecting the flow that minimizes the
corresponding costs for each of its outgoing arcs (i, j); that is,

(x, p) satisfies CS if and only if
xij minimizes (aij + pj − pi)zij over all zij ∈ [bij , cij ], ∀ (i, j) ∈ A.

To interpret the dual function q(p), we continue to view aij and pi as
transportation and storage costs, respectively. Then, for a given price vector
p and supply vector s, the dual function

q(p) = min
bij≤xij≤cij ,

(i,j)∈A

⎧⎨
⎩

∑
(i,j)∈A

aijxij +
∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}
xji

⎞
⎠ pi

⎫⎬
⎭

is the minimum total transportation and storage cost to be incurred by the
nodes, by choosing flows that satisfy the capacity constraints.

Suppose now that we introduce an organization that sets the node prices
and collects the transportation and storage costs from the nodes. We see that
if the organization wants to maximize its total revenue (given that the nodes
will act in their own best interest), it must choose prices that solve the dual
problem optimally.

Finally, we provide in Fig. 2.9, a geometric view of the relation between
the primal and the dual problem. This geometric interpretation is directed
toward the advanced reader and will not be needed in what follows. It demon-
strates why the cost of any feasible flow vector is no less than the dual cost
of any price vector, and why the optimal primal and dual costs are equal.
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Figure 2.9 Geometric interpretation of duality for the reader who is familiar

with the notion and the properties of hyperplanes in a vector space. Consider the

(polyhedral) set S consisting of all pairs (y, z), where y is the divergence vector

corresponding to x and z is the cost of x, as x ranges over all capacity-feasible

flow vectors. Then feasible flow vectors correspond to common points of S and

the vertical line

L = {(s, z) | z : real number}.

The optimal primal cost corresponds to the lowest common point.

On the other hand, for a given price vector p, the dual cost q(p) can be

expressed as [cf. Eq. (2.13)]

q(p) = min
x: capacity feasible

L(x, p) = min
(y,z)∈S

{
z −

∑
i∈N

yipi

}
+

∑
i∈N

sipi.

Based on this expression, it can be seen that q(p) corresponds to the intersection

point of the vertical line L with the hyperplane{
(y, z)

∣∣∣ z −
∑
i∈N

yipi = q(p) −
∑
i∈N

sipi

}
,

which supports from below the set S, and is normal to the vector (−p, 1). The

dual problem is to find a price vector p for which the intersection point is as high

as possible. The figure illustrates the equality of the lowest common point of

S and L (optimal primal cost), and the highest point of intersection of L by a

hyperplane that supports S from below (optimal dual cost).
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Dual Cost Improvement Algorithms

In analogy with primal cost improvement algorithms, one may start with a
price vector and try to successively obtain new price vectors with improved
dual cost. The major algorithms of this type involve price changes along a
particular type of directions, known as elementary . Such directions are of the
form d = (d1, . . . , dN ), where

di =
{

1 if i ∈ S
0 if i /∈ S,

where S is a connected subset of nodes. Different algorithms correspond to
different methods for determining the node set S. Given an elementary direc-
tion of cost improvement and a corresponding set S, the prices are iterated
according to

pi :=
{

pi + γ if i ∈ S
pi if i /∈ S,

where γ is some positive scalar that is small enough to ensure that the new
price vector has an improved dual cost.

The existence of at least one elementary direction of improvement at a
nonoptimal price vector will be shown in Chapter 3. This is an important
and remarkable result, which may be viewed as a dual version of the result
of Prop. 2.1 (at a nonoptimal flow vector, there exists at least one unblocked
simple cycle with negative cost). In fact both results are special cases of a
more general theorem concerning elementary vectors of subspaces, which is
central in the theory of monotropic programming ; see [Roc70], [Roc84].

Most dual cost improvement methods, simultaneously with changing p
along a direction of dual cost improvement, also iterate on a flow vector x
satisfying CS together with p. They terminate when x becomes feasible, at
which time, by Prop. 2.5, the pair (x, p) must consist of a primal and a dual
optimal solution.

In Chapter 3 we will discuss two main methods that select elementary
directions of dual cost improvement in different ways:

(a) In the primal-dual method , the elementary direction has a steepest ascent
property , that is, it provides the maximal rate of improvement of the dual
cost per unit change in the price vector.

(b) In the relaxation (or coordinate ascent) method , the elementary direc-
tion is computed so that it has a small number of nonzero elements (i.e.,
the set S has few nodes). Such a direction may not be optimal in terms
of rate of dual cost improvement, but can typically be computed much
faster than the steepest ascent direction. Often the elementary direction
has only one nonzero element, in which case only one node price coor-
dinate is changed; this motivates the name “coordinate ascent.” Note,
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however, that coordinate ascent directions cannot be used exclusively to
improve the dual cost, as is shown in Fig. 2.10.

Figure 2.10 (a) The difficulty with using coordinate ascent iterations

exclusively. The dual cost is piecewise linear, so at some corner points it may

be impossible to improve the dual cost by changing any single price coordinate.

(b) A dual cost improvement is possible by changing several price coordinates by

equal amounts, which corresponds to an elementary direction.

As will be shown in Chapter 3, both the primal-dual method and the
relaxation method terminate if the problem data are integer. Furthermore,
simultaneously with an optimal price vector, they provide an optimal flow
vector.

1.2.4 Auction

Our third type of algorithm represents a significant departure from the cost
improvement idea; at any one iteration, it may deteriorate both the primal
and the dual cost, although in the end it does find an optimal primal solution.
It is based on an approximate version of complementary slackness, called ε-
complementary slackness, and while it implicitly tries to solve a dual problem,
it actually attains a dual solution that is not quite optimal. This subsection
introduces the main ideas underlying auction algorithms. Chapter 4 provides
a more complete discussion.

Naive Auction

Let us return to the assignment problem and consider a natural process for
finding an equilibrium assignment and price vector. We will call this process
the naive auction algorithm, because it has a serious flaw, as will be seen
shortly. Nonetheless, this flaw will help motivate a more sophisticated and
correct algorithm.
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The naive auction algorithm proceeds in iterations and generates a se-
quence of price vectors and partial assignments. By a partial assignment we
mean an assignment where only a subset of the persons have been matched
with objects. A partial assignment should be contrasted with a feasible or
complete assignment where all the persons have been matched with objects
on a one-to-one basis. At the beginning of each iteration, the CS condition
[cf. Eq. (2.8)]

aiji − pji = max
j∈A(i)

{aij − pj}

is satisfied for all pairs (i, ji) of the partial assignment. If all persons are
assigned, the algorithm terminates. Otherwise some person who is unassigned,
say i, is selected. This person finds an object ji which offers maximal value,
that is,

ji = arg max
j∈A(i)

{aij − pj}, (2.17)

and then:

(a) Gets assigned to the best object ji; the person who was assigned to ji

at the beginning of the iteration (if any) becomes unassigned.

(b) Sets the price of ji to the level at which he or she is indifferent between
ji and the second best object, that is, he or she sets pji to

pji + γi, (2.18)

where
γi = vi − wi, (2.19)

vi is the best object value,

vi = max
j∈A(i)

{aij − pj}, (2.20)

and wi is the second best object value,

wi = max
j∈A(i), j 	=ji

{aij − pj}. (2.21)

(Note that as pji is increased, the value aiji − pji offered by object ji to
person i is decreased. γi is the largest increment by which pji can be
increased, while maintaining the property that ji offers maximal value
to i.)

This process is repeated in a sequence of iterations until each person has
an assigned object.

We may view this process as an auction where at each iteration the
bidder i raises the price of a preferred object by the bidding increment γi.
Note that γi cannot be negative, since vi ≥ wi [compare Eqs. (2.20) and
(2.21)], so the object prices tend to increase. The choice γi is illustrated in
Fig. 2.11. Just as in a real auction, bidding increments and price increases
spur competition by making the bidder’s own preferred object less attractive
to other potential bidders.
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Figure 2.11 In the naive auction algorithm, even after the price of the

best object ji is increased by the bidding increment γi, ji continues to be the best

object for the bidder i, so CS is satisfied at the end of the iteration. However,

γi = 0 if there is a tie between two or more objects that are most preferred by i.

ε-Complementary Slackness

Unfortunately, the naive auction algorithm does not always work (although
it is an excellent initialization procedure for other methods, such as primal-
dual or relaxation, and it is useful in other specialized contexts; see Section
4.3). The difficulty is that the bidding increment γi is zero when two or more
objects offer maximum value for the bidder i. As a result, a situation may be
created where several persons contest a smaller number of equally desirable
objects without raising their prices, thereby creating a never ending cycle; see
Fig. 2.12.

To break such cycles, we introduce a perturbation mechanism, moti-
vated by real auctions where each bid for an object must raise its price by
a minimum positive increment, and bidders must on occasion take risks to
win their preferred objects. In particular, let us fix a positive scalar ε, and
say that a partial assignment and a price vector p satisfy ε-complementary
slackness (ε-CS for short) if

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε (2.22)

for all assigned pairs (i, j). In words, to satisfy ε-CS, all assigned persons of
the partial assignment must be assigned to objects that are within ε of being
best.
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At Start of Object Assigned Bidder Preferred Bidding

Iteration # Prices Pairs Object Increment

1 0,0,0 (1,1), (2,2) 3 2 0

2 0,0,0 (1,1), (3,2) 2 2 0

3 0,0,0 (1,1), (2,2) 3 2 0

Figure 2.12 Illustration of how the naive auction algorithm may never

terminate for a problem involving three persons and three objects. Here objects

1 and 2 offer benefit C > 0 to all persons, and object 3 offers benefit 0 to all

persons. The algorithm cycles as persons 2 and 3 alternately bid for object 2

without changing its price because they prefer equally object 1 and object 2

(γi = 0; compare Fig. 2.11).

The Auction Algorithm

We now reformulate the previous auction process so that the bidding incre-
ment is always at least equal to ε. The resulting method, the auction algo-
rithm, is the same as the naive auction algorithm, except that the bidding
increment γi is

γi = vi − wi + ε (2.23)

rather than γi = vi−wi as in Eq. (2.19). With this choice, the ε-CS condition is
satisfied, as illustrated in Fig. 2.13. The particular increment γi = vi −wi + ε
used in the auction algorithm is the maximum amount with this property.
Smaller increments γi would also work as long as γi ≥ ε, but using the largest
possible increment accelerates the algorithm. This is consistent with experi-
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Figure 2.13 In the auction algorithm, even after the price of the preferred

object ji is increased by the bidding increment γi , ji will be within ε of being

most preferred, so the ε-CS condition holds at the end of the iteration.

ence from real auctions, which tend to terminate faster when the bidding is
aggressive.

It can be shown that this reformulated auction process terminates, nec-
essarily with a feasible assignment and a set of prices that satisfy ε-CS. To get
a sense of this, note that if an object receives a bid at m iterations, its price
must exceed its initial price by at least mε. Thus, for sufficiently large m, the
object will become “expensive” enough to be judged “inferior” to some object
that has not received a bid so far. It follows that only for a limited number
of iterations can an object receive a bid while some other object still has not
yet received any bid. On the other hand, once every object has received at
least one bid, the auction terminates. (This argument assumes that any per-
son can bid for any object, but it can be generalized to the case where the
set of feasible person-object pairs is limited, as long as at least one feasible
assignment exists; see Prop. 1.2 in Section 4.1.) Figure 2.14 shows how the
auction algorithm, based on the bidding increment γi = vi − wi + ε [see Eq.
(2.23)], overcomes the cycling problem of the example of Fig. 2.12.

When the auction algorithm terminates, we have an assignment satis-
fying ε-CS, but is this assignment optimal? The answer depends strongly on
the size of ε. In a real auction, a prudent bidder would not place an exces-
sively high bid for fear of winning the object at an unnecessarily high price.
Consistent with this intuition, we can show that if ε is small, then the final
assignment will be “almost optimal.” In particular, we will show that the
total benefit of the final assignment is within nε of being optimal . The idea is
that a feasible assignment and a set of prices satisfying ε-CS may be viewed
as satisfying CS for a slightly different problem, where all benefits aij are the
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At Start of Object Assigned Bidder Preferred Bidding

Iteration # Prices Pairs Object Increment

1 0,0,0 (1,1), (2,2) 3 2 ε

2 0,ε,0 (1,1), (3,2) 2 1 2ε

3 2ε,ε,0 (2,1), (3,2) 1 2 2ε

4 2ε,3ε,0 (1,2), (2,1) 3 1 2ε

5 4ε,3ε,0 (1,2), (3,1) 2 2 2ε

6 · · · · · · · · · · · · · · ·

Figure 2.14 Illustration of how the auction algorithm overcomes the

cycling problem for the example of Fig. 2.12 by making the bidding increment at

least ε. The table shows one possible sequence of bids and assignments generated

by the auction algorithm, starting with all prices equal to 0 and with the partial

assignment {(1, 1), (2, 2)}. At each iteration except the last, the person assigned

to object 3 bids for either object 1 or 2, increasing its price by ε in the first iteration

and by 2ε in each subsequent iteration. In the last iteration, after the prices of 1

and 2 reach or exceed C, object 3 receives a bid and the auction terminates.

same as before except the benefits of the n assigned pairs, which are modified
by no more than ε.

Proposition 2.6: A feasible assignment, which satisfies ε-complementary
slackness together with some price vector, is within nε of being optimal. Fur-
thermore, the price vector is within nε of being an optimal solution of the
dual problem.
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Proof: Let A∗ be the optimal total assignment benefit

A∗ = max
ki, i=1,...,n

ki 	=km if i	=m

n∑
i=1

aiki

and let D∗ be the optimal dual cost

D∗ = min
pj

j=1,...,n

{
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj

}
.

If {(i, ji) | i = 1, . . . , n} is the given assignment satisfying the ε-CS condition
together with a price vector p, we have

max
j∈A(i)

{aij − pj} − ε ≤ aiji − pji
.

By adding this relation over all i, we see that

D∗ ≤
n∑

i=1

(
max
j∈A(i)

{
aij − pj

}
+ pji

)
≤

n∑
i=1

aiji + nε ≤ A∗ + nε.

Since we showed in Prop. 2.4 that A∗ = D∗, it follows that the total assignment
benefit

∑n
i=1 aiji is within nε of the optimal value A∗, while the dual cost of p

is within nε of the optimal dual cost. Q.E.D.

Suppose now that the benefits aij are all integer, which is the typical
practical case. (If aij are rational numbers, they can be scaled up to integer
by multiplication with a suitable common number.) Then the total benefit
of any assignment is integer, so if nε < 1, any complete assignment that is
within nε of being optimal must be optimal. It follows that if

ε <
1
n

and the benefits aij are all integer, then the assignment obtained upon termi-
nation of the auction algorithm is optimal .

Figure 2.15 shows the sequence of generated object prices for the exam-
ple of Fig. 2.14 in relation to the contours of the dual cost function. It can
be seen from this figure that each bid has the effect of setting the price of the
object receiving the bid nearly equal (within ε) to the price that minimizes
the dual cost with respect to that price, with all other prices held fixed (this
will be shown rigorously in Secton 4.1). Successive minimization of a cost
function along single coordinates is a central feature of coordinate descent
and relaxation methods, which are popular for unconstrained minimization
of smooth functions and for solving systems of smooth equations. Thus, the
auction algorithm can be interpreted as an approximate coordinate descent
method; as such, it is related to the relaxation method discussed in the pre-
vious subsection.
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Figure 2.15 A sequence of prices p1 and p2 generated by the auction

algorithm for the example of Figs. 2.12 and 2.14. The figure shows the equal dual

cost surfaces in the space of p1 and p2 with p3 fixed at 0.

Scaling

Figure 2.15 also illustrates a generic feature of auction algorithms. The
amount of work needed to solve the problem can depend strongly on the
value of ε and on the maximum absolute object benefit

C = max
(i,j)∈A

|aij |.

Basically, for many types of problems, the number of iterations up to termi-
nation tends to be proportional to C/ε. This can be seen from the figure,
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where the total number of iterations is roughly C/ε, starting from zero initial
prices.

Note also that there is a dependence on the initial prices; if these prices
are “near optimal,” we expect that the number of iterations needed to solve
the problem will be relatively small. This can be seen from the figure; if the
initial prices satisfy p1 ≈ p3 +C and p2 ≈ p3 +C, the number of iterations up
to termination is quite small.

The preceding observations suggest the idea of ε-scaling, which consists
of applying the algorithm several times, starting with a large value of ε and
successively reducing ε until it is less than some critical value (for example,
1/n, when aij are integer). Each application of the algorithm provides good
initial prices for the next application. This is a common idea in nonlinear
programming; it is encountered, for example, in barrier and penalty function
methods; see e.g. [Ber82a], [Lue84]. An alternative form of scaling, called cost
scaling , is based on successively representing aij with an increasing number
of bits while keeping ε at a constant value.

In practice, scaling is typically beneficial, particularly for sparse assign-
ment problems, that is, problems where the set of feasible assignment pairs is
severely restricted.

Extension to the Minimum Cost Flow Problem

The ε-CS condition (2.22) can be generalized for the minimum cost flow prob-
lem. For a capacity-feasible flow vector x and a price vector p it takes the
form

pi − pj ≤ aij + ε for all (i, j) ∈ A with xij < cij, (2.24a)

pi − pj ≥ aij − ε for all (i, j) ∈ A with bij < xij, (2.24b)

[cf. Eq. (2.11)]. It will be shown in Section 4.1 (Prop. 4.1) that if the problem
data are integer, if ε < 1/N , where N is the number of nodes, and if x is
feasible and satisfies the ε-CS condition (2.24) together with some p, then x
is optimal.

The auction algorithm can also be generalized for the minimum cost
flow problem; see Chapter 4. A broad generalization, called generic auction
algorithm, is given in Section 4.4. It involves price increases and flow changes
that preserve ε-CS. An interesting special case of the generic algorithm, called
ε-relaxation, is discussed in Section 4.5. This algorithm may also be obtained
by using the transformation of Section 1.1.3 to convert the minimum cost flow
problem into an assignment problem and by applying the auction algorithm
to this problem. We may view ε-relaxation as an approximate coordinate
ascent method for maximizing the piecewise linear dual cost function (2.14)
introduced in the preceding subsection; see Section 4.5.
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1.2.5 Good, Bad, and Polynomial Algorithms

We have already discussed several types of methods, so the natural question
arises: is there a best method and what criterion should we use to rank
methods?

A practitioner who has a specific type of problem to solve, perhaps
repeatedly, with the data and size of the problem within some limited range,
will usually be interested in one or more of the following:

(a) Fast solution time.

(b) Flexibility to use good starting solutions (which the practitioner can
usually provide, on the basis of his or her knowledge of the problem).

(c) The ability to perform sensitivity analysis (resolve the problem with
slightly different problem data) quickly.

(d) The ability to take advantage of parallel computing hardware.

(e) Small memory requirements (this seems to be a diminishing concern
nowadays).

Given the diversity of these considerations, it is not surprising that there
is no algorithm that will dominate the others in all or even most practical sit-
uations. Otherwise expressed, every type of algorithm that we will discuss
is best given the right type of practical problem. Thus, to make intelligent
choices, the practitioner needs to understand the properties of different algo-
rithms relating to speed of convergence, flexibility, parallelization, and suit-
ability for specific problem structures. For challenging problems, the choice
of algorithm is usually settled by experimentation with several candidates.

A theoretical analyst may also have difficulty ranking different algo-
rithms for specific types of problems. The most common approach for this
purpose is worst-case computational complexity analysis. Here one tries to
bound the number of elementary numerical operations needed by a given algo-
rithm with some measure of the “problem size,” that is, with some expression
of the form

Kf(N, A, C, U, S), (2.25)

where

N is the number of nodes.

A is the number of arcs.

C is the arc cost range max(i,j)∈A |aij |.
U is the maximum arc flow range max(i,j)∈A(cij − bij).

S is the supply range maxi∈N |si|.
f is some known function.
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K is a (usually unknown) constant.

If a bound of this form can be found, we say that the running time or opera-
tion count of the algorithm is O

(
f(N, A, C, U, S)

)
. If f(N, A, C, U, S) can be

written as a polynomial function of the number of bits needed to express the
problem data, the algorithm is said to be polynomial . Examples of polyno-
mial complexity bounds are O

(
NαAβ

)
and O

(
NαAβ log C

)
, where α and β

are positive integers. The bound O
(
NαAβ

)
is sometimes said to be strongly

polynomial because it involves only the graph size parameters. A bound of the
form O

(
NαAβC

)
is not polynomial because C is not a polynomial expression

of log C, the number of bits needed to express a single number of value C.
Bounds like O

(
NαAβC

)
, which are polynomial in the problem data rather

than in the number of bits needed to express the data, are called pseudopoly-
nomial .

A common assumption in theoretical computer science is that polyno-
mial algorithms are “better” than pseudopolynomial, and pseudopolynomial
algorithms are “better” than exponential (for example, those with a bound
of the form K2g(N,A), where g is a polynomial in N and A). Furthermore, it
is thought that two polynomial algorithms can be compared in terms of the
degree of the polynomial bound; e.g., an O(N 2) algorithm is “better” than an
O(N 3) algorithm. Unfortunately, quite often this assumption is not supported
by computational practice in linear programming and network optimization.
Pseudopolynomial and even exponential algorithms are often faster in practice
than polynomial ones. In fact, the simplex method for general linear programs
is an exponential algorithm [KlM72], [Chv83], and yet it is still used widely,
because it performs very well in practice.

There are two main reasons why worst-case complexity estimates may
fail to predict the practical performance of network flow algorithms. First,
the upper bounds they provide may be very pessimistic as they may corre-
spond to possible but highly unlikely problem instances. (Average complexity
estimates would be more appropriate for such situations. However, obtain-
ing these is usually hard, and the statistical assumptions underlying them
may be inappropriate for many types of practical problems.) Second, worst-
case complexity estimates involve the (usually unknown) constant K, which
may dominate the estimate for all except for unrealistically large problem
sizes. Thus, a comparison between two algorithms that is based on the size-
dependent terms of running time estimates, and does not take into account
the corresponding constants may be far from the mark.

This book is guided more by insights obtained through computational
practice than by insights gained by estimating computational complexity.
However, this is not to suggest that worst-case complexity analysis is use-
less; for all its unreliability, it has repeatedly proved its value by illuminating
the computational bottlenecks of many algorithms and by stimulating the use
of efficient data structures. For this reason, throughout the book, we will
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comment on available complexity estimates, and we will try to relate these
estimates to computational practice. However, the treatment of complexity
bounds is brief, and most of the corresponding proofs are omitted.

E X E R C I S E S

Exercise 2.1

Solve the max-flow problem of Fig. 2.16 using the Ford-Fulkerson method,

where s = 1 and t = 5.

Figure 2.16 Max-flow problem for Exercise 2.1. The arc capacities are

shown next to the arcs.

Exercise 2.2

Use ε-CS to verify that the assignment of Fig. 2.17 is optimal and obtain

a bound on how far from optimal the given price vector is. State the dual

problem and verify the correctness of the bound by comparing the dual value

of the price vector with the optimal dual value.

Exercise 2.3

Consider the assignment problem.

(a) Show that every k-person swap can be accomplished with a sequence of

k − 1 successive two-person swaps.

(b) In light of the result of part (a), how do you explain that a nonoptimal

assignment may not be improvable by any two-person swap?
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Figure 2.17 Assignment problem for Exercise 2.2. Objects 1 and 2 have

value C for all persons. Object 3 has value 0 for all persons. Object prices are as

shown. The thick lines indicate the given assignment.

Exercise 2.4 (Feasible Distribution Theorem)

Show that the minimum cost flow problem has a feasible solution if and only

if
∑

i∈N si = 0 and for every cut Q = [S,N − S] we have

Capacity of Q ≥
∑
i∈S

si.

Show also that feasibility of the problem can be determined by solving a max-

flow problem with zero lower flow bounds. Hint: Assume first that all lower

flow bounds bij are zero. Introduce two nodes s and t. For each node i ∈ N
with si > 0 introduce an arc (s, i) with feasible flow range [0, si], and for

each node i ∈ N with si < 0 introduce an arc (i, t) with feasible flow range

[0,−si]. Apply the max-flow/min-cut theorem. In the general case, transform

the problem to one with zero lower flow bounds.

Exercise 2.5 (Finding a Feasible Flow Vector)

Show that one may find a feasible solution of a feasible minimum cost flow

problem by solving a max-flow problem with zero lower flow bounds. Further-

more, if the supplies si and the arc flow bounds bij and cij are integer, show

that the feasible solution found will be integer. Hint: Use the hint of Exercise

2.4.

Exercise 2.6 (Integer Approximations of Feasible Solutions)

Given a graph (N ,A) and a flow vector x, show that there exists an integer

flow vector x having the same divergence vector as x and satisfying

|xij − xij | < 1, ∀ (i, j) ∈ A.
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Hint: For each arc (i, j), define the integer flow bounds

bij = 	xij
, cij = �xij�.

Use the result of Exercise 2.5.

Exercise 2.7 (Maximal Matching/Minimal Cover Theorem)

Consider a bipartite graph consisting of two sets of nodes S and T such that

every arc has its start node in S and its end node in T . A matching is a

subset of arcs such that all the start nodes of the arcs are distinct and all the

end nodes of the arcs are distinct. A maximal matching is a matching with a

maximal number of arcs.

(a) Show that the problem of finding a maximal matching can be formulated

as a max-flow problem.

(b) Define a cover C to be a subset of S ∪ T such that for each arc (i, j),

either i ∈ C or j ∈ C (or both). A minimal cover is a cover with a

minimal number of nodes. Show that the number of arcs in a maximal

matching and the number of nodes in a minimal cover are equal. Hint:
Use the max-flow/min-cut theorem.

Exercise 2.8 (Feasibility of an Assignment Problem)

Show that an assignment problem is infeasible if and only if there exists a

subset of person nodes I and a subset of object nodes J such that I has more

nodes than J , and every arc with start node in I has an end node in J . Hint:
Use the maximal matching/minimal cover theorem of the preceding exercise.

Exercise 2.9 (Ford-Fulkerson Method – Counterexample [Chv83])

This exercise illustrates how the version of the Ford-Fulkerson method where

augmenting paths need not have as few arcs as possible may not terminate

for a problem with irrational arc flow bounds. Consider the max-flow problem

shown in Fig. 2.18.

(a) Verify that an infinite sequence of augmenting paths is characterized by

the table of Fig. 2.18; each augmentation increases the divergence out of

the source s but the sequence of divergences converges to a value which

can be arbitrarily smaller than the maximum flow.

(b) Solve the problem with the Ford-Fulkerson method as given in Section

1.2.
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After Iter. # Augm. Path x12 x36 x46 x65

6k + 1 (s, 1, 2, 3, 6, t) σ 1 − σ3k+2 σ − σ3k+1 0

6k + 2 (s, 2, 1, 3, 6, 5, t) σ − σ3k+2 1 σ − σ3k+1 σ3k+2

6k + 3 (s, 1, 2, 4, 6, t) σ 1 σ − σ3k+3 σ3k+2

6k + 4 (s, 2, 1, 4, 6, 3, t) σ − σ3k+3 1 − σ3k+3 σ σ3k+2

6k + 5 (s, 1, 2, 5, 6, t) σ 1 − σ3k+3 σ σ3k+4

6k + 6 (s, 2, 1, 5, 6, 4, t) σ − σ3k+4 1 − σ3k+3 σ − σ3k+4 0

6(k + 1) + 1 (s, 1, 2, 3, 6, t) σ 1 − σ3(k+1)+2 σ − σ3(k+1)+1 0

Figure 2.18 Max-flow problem illustrating that if the augmenting paths

in the Ford-Fulkerson method do not have a minimum number of arcs, then the

method may not terminate. All lower arc flow bounds are zero. The upper flow

bounds are larger than one, with the exception of the thick-line arcs; these are arc

(3, 6) which has upper flow bound equal to one, and arcs (1, 2) and (4, 6) which

have upper flow bound equal to σ =
(
− 1 +

√
5
)
/2. (Note a crucial property of

σ; it satisfies σk+2 = σk − σk+1 for all integer k ≥ 0.) The table gives a sequence

of augmentations.

Exercise 2.10 (Termination of the Ford-Fulkerson Algorithm)

Consider the Ford-Fulkerson algorithm as described in Section 1.2.2. This

exercice addresses the termination issue when the problem data are noninteger.

Let x0 be the initial feasible flow vector; let xk, k = 1, 2, . . ., be the flow vector

after the kth augmentation; and let Pk be the corresponding augmenting path.

An arc (i, j) is said to be a k+-bottleneck if (i, j) ∈ P +
k and xk

ij = cij , and it is

said to be a k−-bottleneck if (i, j) ∈ P−
k and xk

ij = bij .

(a) Show that if k < k and an arc (i, j) is a k+-bottleneck and a k
+
-
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bottleneck, then for some m with k < m < k we must have (i, j) ∈ P−
m .

Similarly, if an arc (i, j) is a k−-bottleneck and a k
−
-bottleneck, then

for some m with k < m < k we must have (i, j) ∈ P +
m .

(b) Show that Pk is a path with a minimal number of arcs over all aug-

menting paths with respect to xk−1. (This property depends on the

implementation of the unblocked path search as a breadth-first search.)

(c) For any path P that is unblocked with respect to xk, let nk(P ) be the

number of arcs of P , let a+
k (i) be the minimum of nk(P ) over all un-

blocked P from s to i, and let a−
k (i) be the minimum of nk(P ) over all

unblocked P from i to t. Show that for all i and k we have

a+
k (i) ≤ a+

k+1(i), a−
k (i) ≤ a−

k+1(i).

(d) Show that if k < k and arc (i, j) is both a k+-bottleneck and a k
+
-

bottleneck, or is both a k−-bottleneck and a k
−
-bottleneck, then a+

k (t) <

a+
k
(t).

(e) Show that the algorithm terminates after O(NA) augmentations, for an

O(NA2) running time.

Exercise 2.11 (Duality for Nonnegativity Constraints)

Consider the version of the minimum cost flow problem where there are non-

negativity constraints

minimize
∑

(i,j)∈A

aijxij

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀ i ∈ N ,

0 ≤ xij , ∀ (i, j) ∈ A.

Show that if a feasible flow vector x∗ and a price vector p∗ satisfy the following

CS conditions

p∗
i − p∗

j ≤ aij , for all (i, j) ∈ A,

p∗
i − p∗

j = aij for all (i, j) ∈ A with 0 < x∗
ij ,

then x∗ is optimal. Furthermore, p∗ is an optimal solution of the following

dual problem:

maximize
∑
i∈N

sipi

subject to pi − pj ≤ aij , ∀ (i, j) ∈ A.
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Hint: Complete the details of the following argument. Define

q(p) =

{∑
i∈N sipi if pi − pj ≤ aij , ∀ (i, j) ∈ A

−∞ otherwise

and note that

q(p) =
∑

(i,j)∈A

min
0≤xij

(
aij + pj − pi

)
xij +

∑
i∈N

sipi

= min
0≤x

⎧⎨
⎩

∑
(i,j)∈A

aijxij +
∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}

xji

⎞
⎠ pi

⎫⎬
⎭ .

Thus, for any feasible x and any p, we have

q(p) ≤
∑

(i,j)∈A

aijxij +
∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}

xji

⎞
⎠ pi

=
∑

(i,j)∈A

aijxij .

(2.26)

On the other hand, we have

q(p∗) =
∑
i∈N

sip
∗
i =

∑
(i,j)∈A

(
aij + p∗

j − p∗
i

)
x∗

ij +
∑
i∈N

sip
∗
i =

∑
(i,j)∈A

aijx
∗
ij ,

where the second equality is true because the CS conditions imply that (aij +

p∗
j−p∗

i )x
∗
ij = 0 for all (i, j) ∈ A, and the last equality follows from the feasibility

of x∗. Therefore, x∗ attains the minimum of the primal cost on the right-hand

side of Eq. (2.26). Furthermore, p∗ attains the maximum of q(p) on the left

side of Eq. (2.26), which means that p∗ is an optimal solution of the dual

problem.

Exercise 2.12 (Node-Disjoint Paths)

Given two nodes i and j in a graph, consider the problem of finding the

maximum number of paths starting at i and ending at j that are node-disjoint

in the sense that any two of them share no nodes other than i and j. Formulate

this problem as a max-flow problem.
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Exercise 2.13 (Hall’s Theorem of Distinct Representatives)

Given finite sets S1, S2, . . . , Sk, we say that the collection {s1, s2, . . . , sk} is a

system of distinct representatives if si ∈ Si for all i and si �= sj for i �= j. (For

example, if S1 = {a, b, c}, S2 = {a, b}, S1 = {a}, then s1 = c, s2 = b, s3 = a

is a system of distinct representatives). Show that there exists no system of

distinct representatives if and only if there exists an index set I ⊂ {1, 2, . . . , k}
such that the number of elements in ∪i∈ISi is less than the number of elements

in I. Hint: Consider a bipartite graph with each of the right side nodes

representing an element of ∪i∈ISi, with each of the left side nodes representing

one of the sets S1, S2, . . . Sk, and with an arc from a left node S to a right node

s if s ∈ S. Use the maximal matching/minimal cover theorem of Exercise 2.7.

Exercise 2.14

Prove the following generalization of Prop. 2.2. Let x be a capacity-feasible

flow vector, and let N+ and N− be two disjoint subsets of nodes. Then exactly

one of the following two alternatives holds:

(1) There exists a path that starts at some node of N+, ends at some node

of N−, and is unblocked with respect to x.

(2) There exists a saturated cut Q = [S,N − S] such that N+ ⊂ S and

N− ⊂ N − S.

Exercise 2.15 (Duality and the Max-Flow/Min-Cut Theorem)

Consider a feasible max-flow problem and let Q = [S,N − S] be a minimum

capacity cut separating s and t. Consider also the minimum cost flow problem

formulation (1.8) for the max-flow problem (see Example 1.2). Show that the

price vector

pi =
{

1 if i ∈ S
0 if i /∈ S

is an optimal solution of the dual problem. Furthermore, show that the max-

flow/min-cut theorem expresses the equality of the primal and the dual op-

timal values. Hint: Relate the capacity of Q with the dual function value

corresponding to p.

Exercise 2.16

Consider a feasible max-flow problem. Show that if the upper flow bound

of each arc is increased by α > 0, then the value of the maximum flow is

increased by no more than αA, where A is the number of arcs.
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Exercise 2.17 (Dual Cost Improvement Directions)

Consider the assignment problem. Let pj be the price of object j, let T be a

subset of objects, and let

S =
{
i | the maximum of aij − pj over j ∈ A(i) is attained

by some element of T
}
.

Suppose that

(1) For each i ∈ S, the maximum of aij − pj over j ∈ A(i) is attained only

by elements of T .

(2) S has more elements than T .

Show that the direction d = (d1, . . . , dn), where dj = 1 if j ∈ T and dj = 0

if j /∈ T , is a direction of dual cost improvement. Note: Directions of this

type are used by the most common dual cost improvement algorithms for the

assignment problem.

1.3 THE SHORTEST PATH PROBLEM

The shortest path problem is a classical and important combinatorial problem
that arises in many contexts. We are given a directed graph (N ,A) with nodes
numbered 1, . . . , N . Each arc (i, j) ∈ A has a cost or “length” aij associated
with it. The length of a path (i1, i2, . . . , ik), which consists exclusively of
forward arcs, is equal to the length of its arcs

k−1∑
n=1

ainin+1 .

This path is said to be shortest if it has minimum length over all paths with
the same origin and destination nodes. The length of a shortest path is also
called the shortest distance. The shortest distance from a node to itself is
taken to be zero by convention. The shortest path problem deals with finding
shortest distances between selected pairs of nodes. [Note that here we are
optimizing over forward paths, that is, paths consisting of forward arcs; when
we refer to a path (or a cycle) in connection with the shortest path problem,
we implicitly assume that the path (or the cycle) is forward.]

All the major shortest path algorithms are based on the following simple
proposition.

Proposition 3.1: Let d = (d1, d2, . . . , dN ) be a vector satisfying

dj ≤ di + aij, ∀ (i, j) ∈ A (3.1)
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and let P be a path starting at a node i1 and ending at a node ik. If

dj = di + aij, for all arcs (i, j) of P (3.2)

then P is a shortest path from i1 to ik.

Proof: By adding Eq. (3.2) over the arcs of P , we see that the length of P
is dik − di1 . By adding Eq. (3.1) over the arcs of any other path P ′ starting
at i1 and ending at ik, we see that the length of P ′ must be at least equal to
dik − di1 . Therefore, P is a shortest path. Q.E.D.

The conditions (3.1) and (3.2) will be called the complementary slackness
(CS) conditions for the shortest path problem. This terminology is motivated
by the connection of the problem of finding a shortest path from i1 to ik with
the following minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (3.3)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N ,

0 ≤ xij, ∀ (i, j) ∈ A,

where

si1 = 1, sik = −1, si = 0, ∀ i 	= i1, ik.

It can be seen that a path P from i1 to ik is shortest if and only if the
path flow x defined by

xij =
{

1 if (i, j) belongs to P

0 otherwise
(3.4)

is an optimal solution of the minimum cost flow problem (3.3).
The CS conditions (3.1) and (3.2) of Prop. 3.1 are in effect the CS

conditions for the equivalent minimum cost flow problem (3.3), which take
the form

pi ≤ aij + pj, ∀ (i, j) ∈ A, (3.5)

pi = aij + pj, for all arcs (i, j) with 0 < xij (3.6)

[cf. Eqs. (2.11c) and (2.11d)]. Indeed, if we associate the given path P in
Prop. 3.1 with the flow vector of Eq. (3.4), and we identify pi with −di,
we see that the conditions (3.1) and (3.2) are identical to the CS conditions
(3.5) and (3.6). Thus, the optimality of the path P under the conditions
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of Prop. 3.1 can also be inferred from the general result of Prop. 2.5, which
asserts optimality of feasible pairs (x, p) satisfying CS. It also follows from
the same general result that if a vector d satisfies the conditions of Prop. 3.1,
then p = −d is an optimal solution of the dual problem corresponding to the
minimum cost flow problem (3.3).

Most shortest path algorithms can be viewed as primal cost or dual cost
improvement algorithms for an appropriate variation of the minimum cost
flow problem (3.3), as we will see later. However, the shortest path problem
is simple, so we will discuss it first without much reference to cost improve-
ment. This choice serves a dual purpose. First, it provides an opportunity
to illustrate some basic concepts in the context of a simple problem, which is
rich in intuition. Second, it allows the early development of some ideas and
results that will be used later in a variety of other algorithmic contexts.

1.3.1 A General Single Origin/Many Destinations Shortest
Path Method

The shortest path problem can be posed in a number of ways; for example,
finding a shortest path from a single origin to a single destination, or finding
a shortest path from each of several origins to each of several destinations.
We will focus initially on the single origin/many destinations problem. For
concreteness, we take the origin node to be node 1.

Let us now describe a prototype shortest path method that contains
several interesting algorithms as special cases. In this method, we start with
some vector (d1, d2, . . . , dN ), we successively select arcs (i, j) that violate the
CS condition (3.1), that is, dj > di + aij , and we set

dj := di + aij.

This is continued until the CS condition dj ≤ di + aij is satisfied for all arcs
(i, j).

A key idea is that, in the course of the algorithm, di can be interpreted
for all i as the length of some path Pi from 1 to i. Therefore, if dj > di+aij for
some arc (i, j), the path obtained by extending path Pi by arc (i, j), which has
length di +aij , is a better path than the current path Pj , which has length dj .
Thus, the algorithm finds successively better paths from the origin to various
destinations.

It should be noted that replacing the current path Pj with the shorter
path consisting of Pi followed by the arc (i, j), as discussed above, is essentially
a primal cost improvement operation; in the context of a minimum cost flow
formulation of the many destinations shortest path problem [cf. Eq. (3.3)], it
can be interpreted as pushing one unit of flow along the cycle that starts at
1, traverses Pi and (i, j) in the forward direction, and then traverses Pj in the
backward direction. The cost of this cycle, as defined earlier in Section 1.2.1,
is equal to the length of Pi, plus the length of (i, j), minus the length of Pj , and
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is therefore negative. Thus the general algorithm of this section can be viewed
as a primal cost improvement algorithm. It will be seen in Chapter 3 (Exercise
2.3) that an important special case, Dijkstra’s method to be discussed shortly,
can also be viewed as a dual cost improvement algorithm. Another algorithm,
the auction/shortest path algorithm to be presented in Section 4.3, does not
fit the framework of the present section (even though it crucially depends on
the CS conditions of Prop. 3.1); it will be shown to be a dual cost improvement
algorithm.

It is usually most convenient to implement the prototype shortest path
method by examining the outgoing arcs of a given node i consecutively. The
corresponding algorithm, referred to as generic, maintains a list of nodes V ,
called the candidate list , and a vector d = (d1, d2, . . . , dN ), where each dj ,
called the label of node j, is either a real number or ∞. Initially,

V = {1}, (3.7)

d1 = 0, di = ∞, ∀ i 	= 1. (3.8)

The algorithm proceeds in iterations and terminates when V is empty. The
typical iteration (assuming V is nonempty) is as follows:

Typical Iteration of the Generic Shortest Path Algorithm

Remove a node i from the candidate list V . For each outgoing arc (i, j) ∈ A,

with j �= 1, if dj > di + aij , set

dj := di + aij (3.9)

and add j to V if it does not already belong to V .

It can be seen that, in the course of the algorithm, the labels are mono-
tonically nonincreasing. Furthermore, we have

di < ∞ ⇐⇒ i has entered the candidate list V at least once.

Figure 3.1 illustrates the algorithm. The following proposition gives its main
properties.

Proposition 3.2: Consider the generic shortest path algorithm.

(a) At the end of each iteration, the following conditions hold:

(i) d1 = 0.

(ii) If dj < ∞ and j 	= 1, then dj is the length of some path that starts
at 1, never returns to 1, and ends at j.

(iii) If i /∈ V , then either di = ∞ or else

dj ≤ di + aij, ∀ j such that (i, j) ∈ A.
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Iteration # Candidate List V Node Labels Node out of V

1 {1} (0,∞,∞,∞) 1

2 {2, 3} (0, 3, 1,∞) 2

3 {3, 4} (0, 3, 1, 5) 3

4 {4, 2} (0, 2, 1, 4) 4

5 {2} (0, 2, 1, 4) 2

∅ (0, 2, 1, 4)

Figure 3.1 Illustration of the generic shortest path algorithm. The numbers

next to the arcs are the arc lengths. Note that node 2 enters the candidate list

twice. If in iteration 2 node 3 was removed from V instead of node 2, each node

would enter V only once. Thus, the order in which nodes are removed from V is

significant.

(b) If the algorithm terminates, then upon termination, for all j 	= 1 such
that dj < ∞, dj is the shortest distance from 1 to j and

dj = min
(i,j)∈A

{di + aij}; (3.10)

furthermore, dj = ∞ if and only if there is no path from 1 to j.

(c) If the algorithm does not terminate, then there exist paths of arbitrarily
small (i.e., large negative) length that start at 1 and never return to 1.

Proof: (a) Condition (i) holds because initially d1 = 0, and by the rules of
the algorithm, d1 cannot change.

We prove (ii) by induction on the iteration count. Indeed, initially (ii)
holds, since node 1 is the only node j with dj < ∞. Suppose that (ii) holds
at the start of some iteration at which a node i is removed from V . If i = 1,
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which happens only at the first iteration, then at the end of the iteration we
have dj = a1j for all outward neighbors j of 1, and dj = ∞ for all other j 	= 1,
so dj has the required property. If i 	= 1, then di < ∞ (which is true for all
nodes of V by the rules of the algorithm), and (by the induction hypothesis)
di is the length of some path Pi starting at 1, never returning to 1, and ending
at i. When a label dj changes as a result of the iteration, dj is set to di + aij ,
which is the length of the path Pj consisting of Pi followed by arc (i, j). Since
j 	= 1, Pj never returns to 1. This completes the induction proof of (ii).

To prove (iii), note that for any i, each time i is removed from V ,
the condition dj ≤ di + aij is satisfied for all (i, j) ∈ A by the rules of the
algorithm. Up to the next entrance of i into V , di stays constant, while the
labels dj for all j with (i, j) ∈ A cannot increase, thereby preserving the
condition dj ≤ di + aij .

(b) We first introduce the sets

I = {i | di < ∞ upon termination},
I = {i | di = ∞ upon termination},

and we show that we have di ∈ I if and only if there is no path from 1 to j.
Indeed, if i ∈ I, then, since i /∈ V upon termination, it follows from condition
(iii) of part (a) that j ∈ I for all (i, j) ∈ A. Therefore, if j ∈ I, there is no
path from any node of I (and in particular, node 1) to node j. Conversely, if
there is no path from 1 to j, it follows from condition (ii) of part (a) that we
cannot have dj < ∞ upon termination, so j ∈ I.

We show now that for all i ∈ I, we have dj = min(i,j)∈A{di + aij} upon
termination. Indeed, conditions (ii) and (iii) of part (a) imply that upon
termination we have, for all i ∈ I,

dj ≤ di + aij, ∀ j such that (i, j) ∈ A
while di is the length of some path Pi from 1 to i. Fix a node m ∈ I. By
adding this condition over the arcs (i, j) of any path P from 1 to m, we see
that the length of P is no less than dm. Hence Pm is a shortest path from 1
to m. Furthermore, the equality dj = di + aij must hold for all arcs (i, j) on
the shortest paths Pm, m ∈ I, implying that dj = min(i,j)∈A{di + aij}.
(c) If the algorithm never terminates, some label dj must decrease strictly an
infinite number of times, generating a corresponding sequence of distinct paths
Pj as per condition (ii) of part (b). Each of these paths can be decomposed
into a simple path from 1 to j plus a collection of simple cycles, as in Exercise
1.5. Since the number of simple paths from 1 to j is finite, and the length
of the path Pj is monotonically decreasing, it follows that Pj eventually must
involve a cycle with negative length. By replicating this cycle a sufficiently
large number of times, one can obtain paths from 1 to j with arbitrarily small
length. Q.E.D.
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Termination and the Existence of Negative Length Cycles

So far we have imposed no assumptions on the structure of the graph of the
problem or the lengths of the arcs. Thus, Prop. 3.2 does not guarantee that
the algorihm will terminate. On the other hand, Prop. 3.2 shows that the
generic algorithm will terminate if and only if there is a lower bound on the
length of all paths that start at node 1 and never return to node 1. Thus,
the algorithm will terminate if and only if there is no path starting at node
1, never returning to 1, and containing a cycle with negative length. One
can detect the presence of such a cycle (and stop the algorithm) once some
label dj becomes less than (N −1) min(i,j)∈A aij , which is a lower bound to the
length of all simple paths.

Bellman’s Equation and Shortest Path Construction

When all cycles have nonnegative length and there exists a path from 1 to
every node j, then Prop. 3.2 shows that the generic algorithm terminates and
that, upon termination, all labels are finite and satisfy

dj = min
(i,j)∈A

{di + aij}, ∀ j 	= 1, (3.11a)

d1 = 0. (3.11b)

This equation, which is in effect the CS conditions of Prop. 3.1, is called
Bellman’s equation. It expresses that the shortest distance from 1 to j is the
sum of the shortest distance from 1 to the node preceding j on the shortest
path, plus the length of the arc connecting that node to j.

From Bellman’s equation, we can obtain the shortest paths (as opposed
to the shortest path lengths) if all cycles not including node 1 have strictly
positive length. To do this, select for each j 	= 1 one arc (i, j) that attains the
minimum in dj = min(i,j)∈A{di + aij} and consider the subgraph consisting of
these N − 1 arcs; see Fig. 3.2. To find the shortest path to any node j, start
from j and follow the corresponding arcs of the subgraph backward until node
1 is reached. Note that the same node cannot be reached twice before node 1 is
reached, since a cycle would be formed that [on the basis of Eq. (3.11)] would
have zero length. [Let (i1, i2, . . . , ik, i1) be the cycle and add the equations

di1 = di2 + ai2i1

. . .

dik−1 = dik + aikik−1

dik = di1 + ai1ik ,
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obtaining ai2i1 + · · ·+aikik−1 +ai1ik = 0.] Since the subgraph is connected and
has N − 1 arcs, it must be a spanning tree. We call this subgraph a shortest
path spanning tree, and we note that it has the special structure of having a
root (node 1), with every arc of the tree directed away from the root. The
preceding argument can also be used to show that Bellman’s equation has no
solution other than the shortest distances; see Exercise 3.12.

A shortest path spanning tree can also be constructed in the process of
executing the generic shortest path algorithm by recording the arc (i, j) every
time dj is decreased to di + aij ; see Exercise 3.3.

Figure 3.2 Example of construction of shortest path spanning tree. The

arc lengths are shown next to the arcs, and the shortest distances are shown next

to the nodes. For each j �= 1, we select an arc (i, j) such that

dj = di + aij

and we form the shortest path spanning tree. The arcs selected in this example

are (1, 3), (3, 2), and (2, 4).

Implementations of the Generic Algorithm

There are many implementations of the generic algorithm; they differ in how
they select the node to be removed from the candidate list V . They are
broadly divided into two categories:

(a) Label setting methods. In these methods, the node i removed from V is
a node with minimum label. Under the assumption that all arc lengths
are nonnegative, these methods have a remarkable property: each node
will enter V at most once; its label has its permanent or final value the
first time it is removed from V . The most time consuming part of these
methods is calculating the minimum label node from V at each iteration;
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there are several implementations, that use a variety of creative methods
to calculate this minimum.

(b) Label correcting methods. In these methods the choice of the node i
removed from V is less sophisticated than in label setting methods, and
requires less calculation. However, a node may enter V multiple times.

Generally in practice, when the arc lengths are nonnegative, the best
label setting methods and the best label correcting methods are competitive.
There are also several worst case complexity bounds for label setting and label
correcting methods. The best bounds correspond to label setting methods.
The best practical methods, however, are not necessarily the ones with the
best complexity bounds, as will be discussed shortly.

1.3.2 Label Setting (Dijkstra) Methods

The basic label setting method, first published by Dijkstra [Dij59] but also
discovered independently by several other researchers, is the special case of
the generic algorithm where the node j removed from the candidate list V at
each iteration has minimum label, that is,

dj = min
i∈V

di.

For convenient reference, let us state this method explicitly.
Initially, we have

V = {1}, (3.12)

d1 = 0, di = ∞, ∀ i 	= 1. (3.13)

The method proceeds in iterations and terminates when V is empty. The
typical iteration (assuming V is nonempty) is as follows:

Typical Iteration of the Label Setting Method

Remove from the candidate list V a node i such that

di = min
j∈V

dj .

For each outgoing arc (i, j) ∈ A, with j �= 1, if dj > di + aij , set

dj := di + aij (3.14)

and add j to V if it does not already belong to V .
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Iteration # Candidate List V Node Labels Node out of V

1 {1} (0,∞,∞,∞,∞) 1

2 {2, 3} (0, 2, 1,∞,∞) 3

3 {2, 4} (0, 2, 1, 4,∞) 2

4 {4, 5} (0, 2, 1, 3, 2) 5

5 {4} (0, 2, 1, 3, 2) 4

∅ (0, 2, 1, 3, 2)

Figure 3.3 Example illustrating the label setting method. At each iteration,

the node with the minimum label is removed from V . Each node enters V only

once.

Figure 3.3 illustrates the label setting method.
Some insight into the label setting method can be gained by considering

the set W of nodes that have already been in V but are not currently in V ,

W = {i | di < ∞, i /∈ V }. (3.15)

We will see that as a consequence of the policy of removing from V a minimum
label node, W contains nodes with “small” labels throughout the algorithm,
in the sense that

dj ≤ di, if j ∈ W and i /∈ W. (3.16)

On the basis of this property and the assumption aij ≥ 0, it can be seen that
when a node i is removed from V , we have, for all j ∈ W for which (i, j) is
an arc,

dj ≤ di + aij.
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Hence, once a node enters W , it stays in W and its label does not change
further. Thus, W can be viewed as the set of permanently labeled nodes, that
is, the nodes that have acquired a final label, which by Prop. 3.2, must be
equal to their shortest distance from the origin.

To understand why the property (3.16) is preserved, consider an iteration
in which node i is removed from V , and assume that Eq. (3.16) holds at the
start of the iteration. Then, any label dj that changes during the iteration
must correspond to a node j /∈ W (as was argued below), and at the end of
the iteration it must satisfy dj = di + aij ≥ di ≥ dk for all k ∈ W , thereby
maintaining Eq. (3.16).

The following proposition makes the preceding arguments more precise
and proves some additional facts.

Proposition 3.3: Assume that all arc lengths are nonnegative and that
there exists at least one path from node 1 to each other node.

(a) For any iteration of the label setting method, the following hold for the
set

W = {i | di < ∞, i /∈ V }.

(i) No node belonging to W at the start of the iteration will enter the
candidate list V during the iteration.

(ii) At the end of the iteration, we have di ≤ dj for all i ∈ W and
j /∈ W .

(iii) For each node i, consider paths that start at 1, end at i, and have
all their other nodes in W at the end of the iteration. Then the
label di at the end of the iteration is equal to the length of the
shortest of these paths (di = ∞ if no such path exists).

(b) In the label setting method, all nodes will be removed from the candidate
list V exactly once in order of increasing shortest distance from node 1;
that is, i will be removed before j if the final labels satisfy di < dj .

Proof: (a) Properties (i) and (ii) will be proved simultaneously by induction
on the iteration count. Clearly (i) and (ii) hold for the initial iteration at which
node 1 exits V and enters W .

Suppose that (i) and (ii) hold for iteration k−1, and suppose that during
iteration k, node i satisfies di = minj∈V dj and exits V . Let W and W be the
set of Eq. (3.15) at the start and at the end of iteration k, respectively. Let dj

and dj be the label of each node j at the start and at the end of iteration k,
respectively. Since by the induction hypothesis we have dj ≤ di for all j ∈ W ,
and aij ≥ 0 for all arcs (i, j), it follows that dj ≤ di +aij for all arcs (i, j) with
j ∈ W . Hence, a node j ∈ W cannot enter V at iteration k. This completes
the induction proof of property (i), and shows that

W = W ∪ {i}.
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Thus, at iteration k, the only labels that may change are the labels dj of nodes
j /∈ W such that (i, j) is an arc; the label dj at the end of the iteration will
be min{dj, di + aij}. Since aij ≥ 0, di ≤ dj for all j /∈ W , and di = di, we
must have di ≤ dj for all j /∈ W . Since by the induction hypothesis we have
dm ≤ di and dm = dm for all m ∈ W , it follows that dm ≤ dj for all m ∈ W
and j /∈ W . This completes the induction proof of property (ii).

To prove property (iii), choose any node i and consider the subgraph
consisting of the nodes W ∪ {i} together with the arcs that have both end
nodes in W ∪ {i}. Consider also a modified shortest path problem involving
this subgraph and the same origin and arc lengths as in the original shortest
path problem. In view of properties (i) and (ii), the label setting method
applied to the modified shortest path problem yields the same sequence of
nodes exiting V and the same sequence of labels as when applied to the
original problem up to the current iteration. By Prop. 3.2, the label setting
method for the modified problem terminates with the labels equal to the
shortest distances of the modified problem at the current iteration. This
means that the labels at the end of the iteration have the property stated in
the proposition.

(b) By Prop. 3.2, we see that, under our assumptions, the label setting method
will terminate with all labels finite. Therefore, each node will enter V at least
once. At each iteration the node removed from V is added to W , and accord-
ing to property (i) (proved above), no node from W is ever returned to V .
Therefore, each node will be removed from V and simultaneously entered in
W exactly once, and, by the rules of the algorithm, its label cannot change
after its entrance in W . Property (ii) then shows that each new node added to
W has a label at least as large as the labels of the nodes already in W . There-
fore, the nodes are removed from V in the order stated in the proposition.
Q.E.D.

Performance and Implementations of the Label Setting
Method

In label setting methods, the candidate list V is typically maintained with the
help of some data structure that facilitates the removal and the addition of
nodes, and also facilitates finding the minimum label node from the list. The
choice of data structure is crucial for good practical performance as well as
for good theoretical worst case performance.

To gain some insight into this, we first consider a naive implementation
that will serve as a yardstick for comparison. By Prop. 3.3, there will be
exactly N iterations, and in each of these the candidate list V will be searched
for a minimum label node. Suppose this is done by examining all nodes in
sequence, checking whether they belong to V , and finding one with minimum
label among those who do. Searching V in this way requires O(N) operations
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per iteration, for a total of O(N 2) operations. Also during the algorithm,
we must examine each arc (i, j) exactly once to check whether j 	= 1 or
whether the condition dj > di + aij holds, and to set dj := di + aij if it does.
This requires O(A) operations, which is dominated by the preceding O(N 2)
estimate.

The O(A) operation count for arc examination is unavoidable and cannot
be reduced. However, the O(N 2) operation count for minimum label searching
can be reduced considerably by using appropriate data structures. The best
estimates of the worst case running time that have been thus obtained are
O(A + N log N) and O(A + N

√
log C), where C is the arc length range C =

max(i,j)∈A aij ; see [FrT84], [AMO88]. On the basis of present experience,
however, the methods that perform best in practice have far worse running
time estimates. We will discuss two of these methods.

Binary Heap Method

Here the nodes are organized as a binary heap on the basis of label values and
membership in V ; see Fig. 3.4. The node at the top of the heap is the node of
V that has minimum label, and the label of every node in V is no larger than
the labels of all the nodes that are in V and are its descendants in the heap.
Nodes that are not in V may be in the heap but may have no descendants
that are in V .

At each iteration, the top node of the heap is removed from V . Further-
more, the labels of some nodes already in V may decrease, so these may have
to be repositioned in the heap; also, some other nodes may enter V for the
first time and have to be inserted in the heap at the right place. It can be
seen that each of these removals, repositionings, and insertions can be done
in O(log N) time. Since there is one removal per iteration, and at most one
repositioning or node insertion per arc (each arc is examined at most once),
the total operation count for maintaining the heap is O(A log N). This domi-
nates the O(A) operation count to examine all arcs, so the worst case running
time of the method is O(A log N). For sparse graphs, where A << N 2, the
binary heap method performs very well in practice.

Dial’s Algorithm [Dia69]

This algorithm requires that all arc lengths be nonnegative integers. It uses
a naive yet often surprisingly effective method for finding the minimum label
node in V . We first note that, since every finite label is equal to the length
of some path with no cycles [Prop. 3.3(a), part (iii)], the possible label values
range from 0 to (N − 1)C, where

C = max
(i,j)∈A

aij.
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Figure 3.4 A binary heap organized on the basis of node labels is a binary

balanced tree such that the label of each node of V is no larger than the labels of all

its descendants that are in V . Nodes that are not in V may have no descendants

that are in V . The topmost node, called the root , has the minimum label. The

tree is balanced in that the numbers of arcs in the paths from the root to any

nodes with no descendants differ by at most 1. If the label of some node decreases,

the node must be moved upward toward the root, requiring O(log N) operations.

[It takes O(1) operations to compare the label of a node i with the label of one

of its descendants j, and to interchange the positions of i and j if the label of j

is smaller. Since there are log N levels in the tree, it takes at most log N such

comparisons and interchanges to move a node upward to the appropriate position

once its label is decreased.] Similarly, when the topmost node is removed from V ,

moving the node downward to the appropriate level in the heap requires at most

log N steps and O(log N) operations. (Each step requires the interchange of the

position of the node and the position of one of its descendants. The descendant

must be in V for the step to be executed; if both descendants are in V , the one

with smaller label is selected.)

Suppose that for each possible label value, we keep a list of the nodes that
have this label value. Then we may scan the (N−1)C+1 possible label values
(in ascending order) looking for a label value with nonempty list, instead of
scanning the candidate list V . As will be seen shortly, this leads to a worst
case operation count of O(NC) for minimum label node searching, and to an
O(A+NC) operation count overall. The algorithm is pseudopolynomial, but
for small values of C (much smaller than N) it performs very well in practice.

To visualize the algorithm, it is useful to think of each integer in the
range [0, (N − 1)C] as some kind of container, referred to as a bucket . Each
bucket b holds the nodes with label equal to b. A data structure such as
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Bucket b 0 1 2 3 4 5 6 7 8

Contents 3 – 1,4,5 2,7 – 6 – – –

FIRST (b) 3 0 1 2 0 6 0 0 0

Node i 1 2 3 4 5 6 7

Label di 2 3 0 2 2 5 3

NEXT (i) 4 7 0 5 0 0 0

PREVIOUS (i) 0 0 0 1 4 0 2

Figure 3.5 Organization of the candidate list V in buckets using a doubly

linked list. For each bucket b we maintain the first node of the bucket in an array

element FIRST (b), where FIRST (b) = 0 if bucket b is empty. For every node i we

maintain two array elements, NEXT (i) and PREVIOUS(i), giving the next node

and the preceding node, respectively, of node i in the bucket where i is curently

residing [NEXT (i) = 0 or PREVIOUS(i) = 0 if i is the last node or the first node

in its bucket, respectively]. In this example, there are 7 nodes and 8 buckets.

a doubly linked list (see Fig. 3.5) can be used to maintain the set of nodes
belonging to a given bucket, so that checking the emptiness of a bucket and
inserting or removing a node from a bucket are easy, requiring O(1) operations.

Figure 3.6 illustrates the method with an example. Tracing steps, we see
that the method starts with the origin node 1 in bucket 0 and all other buckets
empty. At the first iteration, each node j with (1, j) ∈ A enters the candidate
list V and is inserted in bucket dj = a1j . If for some j we have dj = 0, then
node j is inserted in bucket 0, and is removed next from V . After we are done
with bucket 0, we proceed to check bucket 1. If it is nonempty, we repeat the
process, removing from V all nodes with label 1 and moving other nodes to
smaller numbered buckets as required; if not, we check bucket 2, and so on.

We note that it is sufficient to maintain only C +1 buckets, rather than
(N − 1)C + 1, thereby significantly saving in memory. The reason is that if
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Iter. Cand. Node Buck. Buck. Buck. Buck. Buck. Out

# List V Labels 0 1 2 3 4 of V

1 {1} (0,∞,∞,∞,∞) 1 – – – – 1

2 {2, 3} (0, 2, 1,∞,∞) 1 3 2 – – 3

3 {2, 4} (0, 2, 1, 4,∞) 1 3 2 – 4 2

4 {4, 5} (0, 2, 1, 3, 2) 1 3 2,5 4 – 5

5 {4} (0, 2, 1, 2, 2) 1 3 2,4,5 – – 4

∅ (0, 2, 1, 2, 2) 1 3 2,4,5 – –

Figure 3.6 An example illustrating Dial’s method.

we are currently searching bucket b, then all buckets beyond b + C are known
to be empty. To see this, note that the label dj of any node j must be of
the form di + aij , where i is a node that has already been removed from the
candidate list. Since di ≤ b and aij ≤ C, it follows that dj ≤ b + C.

The idea of using buckets to maintain the nodes of the candidate list
can be generalized considerably. In particular, buckets of width larger than 1
may be used. This results in fewer buckets to search over, thereby alleviating
the O(NC) bottleneck of the operation count of the algorithm. There is a
price for this, namely the need to search for a minimum label node within
the current bucket. This search can be speeded up by using buckets with
nonuniform widths, and by breaking down buckets of large width into buckets
of smaller width at the right moment. With intelligent strategies of this type,
one may obtain label setting methods with very good polynomial complexity
bounds; see [Joh77], [DeF79], [AMO88].

1.3.3 Label Correcting Methods

In these methods, the selection of the node to be removed from the candidate



76 Introduction Chap. 1

list V is faster than in label setting methods, at the expense of multiple
entrances of nodes in V .

All of these methods use some type of queue to maintain the candidate
list V . They differ in the way the queue is structured, and in the choice of
the queue position into which nodes are entered.

The simplest of these methods, operates in cycles of iterations. In each
cycle the nodes are scanned in some order; when a node i is found to belong to
V , an iteration removing i from V is performed. This is a variant of one of the
first methods proposed for the shortest path problem, known as the Bellman-
Ford method . It is possible to show that if all cycles have nonnegative length
this method requires at most N cycles; see Exercise 3.4. Each cycle consists
of at most N iterations, requiring a total of O(A) operations (each arc is
examined at most once in each cycle). Thus, the total operation count for the
method is O(NA).

The best practical implementations of label correcting methods are more
sophisticated than the one just described. Their worst case complexity bound
is no better than the O(NA) bound for the simple implementation derived
above, and in some cases it is far worse. Yet their practical performance is
far better.

The D’Esopo-Pape Algorithm

In this method, a node is always removed from the top of the queue used to
store the candidate list V . A node, upon entrance in the queue, is placed at
the bottom of the queue if it has never been in the queue before; otherwise
it is placed at the top. The idea here is that when a node i is removed from
the queue, its label affects the labels of a subset Bi of the neighbor nodes j
with (i, j) ∈ A. When the label of i changes again, it is likely that the labels
of the nodes in Bi will require updating also. It is thus intuitively sensible to
place the node at the top of the queue so that the labels of the nodes in Bi

get a chance to be updated as quickly as possible.
The D’Esopo-Pape algorithm is very simple to implement and performs

very well in practice for a broad variety of problems. Despite this fact, exam-
ples have been constructed [Ker81], [ShW81], where it performs very poorly.
In particular, in these examples, the number of times some nodes enter the
candidate list V is not polynomial. References [Pal84] and [GaP88] give a
polynomial variation of the algorithm, which is the basis for the code of Ap-
pendix A.2.

The Threshold Algorithm

The premise of this algorithm is that it is generally a good policy to remove
from the candidate list a node with relatively small label . When the arc lengths
are nonnegative, this policy tends to reduce the number of times a node
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reenters the candidate list. In particular, when the node with smallest label
is removed from the candidate list, as in Dijkstra’s algorithm, this node never
reenters the list; see also the discussion preceding Prop. 3.3 and Exercise 3.7.

The threshold algorithm attempts to emulate approximately the mini-
mum label selection policy of Dijkstra’s algorithm with a much smaller com-
putational effort. The candidate list V is organized into two distinct queues
Q′ and Q′′ using a threshold parameter s. The queue Q′ contains nodes with
“small” labels; that is, it contains only nodes whose labels are no larger than
s. At each iteration, a node is removed from Q′, and any node j to be added
to the candidate list is inserted in Q′′. When the queue Q′ is exhausted, the
entire candidate list is repartitioned. The threshold is adjusted and the queues
Q′ and Q′′ are recalculated, so that Q′ consists of the nodes with labels that
are no larger than the new threshold.

The performance of this method is quite sensitive to the method used
to adjust the thresholds. For example, if s is taken to be equal to the current
minimum label, the method is identical to Dijkstra’s algorithm; if s is larger
than all node labels, Q′′ is empty and the algorithm reduces to the generic
label correcting method. With an effective choice of threshold, the practical
performance of the algorithm is very good. A number of heuristic approaches
have been developed for selecting the threshold (see [GKP85a], [GKP85b],
and [GaP88]). If all arc lengths are nonnegative, a bound O(NA) on the
operation count of the algorithm can be shown; see Exercise 3.7.

1.3.4 Single Origin/Single Destination Methods

Suppose that there is only one destination, call it t, and we want to find the
shortest distance from the origin node 1 to t. We could use our earlier single
origin/all destinations algorithms, but some improvements are possible.

Label Setting

Suppose first that we use the label setting method. Then we can stop the
method when the destination t becomes permanently labeled; further com-
putation will not improve the label dt. If t is closer to the origin than many
other nodes, the saving in computation time will be significant. Note that this
approach can also be used when there are several destinations. The method
is stopped when all destinations have been permanently labeled.

Another interesting possibility is to use a two-sided label setting method ;
that is, a method that simultaneously proceeds from the origin to the desti-
nation and from the destination to the origin. In this method, we successively
label permanently the closest nodes to the origin (with their shortest dis-
tance from the origin) and the closest nodes to the destination (with their
shortest distance to the destination). When some node gets permanently la-
beled from both sides, the labeling can stop; by combining the forward and
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backward paths of each labeled node and by comparing the resulting origin-
to-destination paths, one can obtain a shortest path (see Exercise 3.8). For
many problems, this approach can lead to a dramatic reduction in the to-
tal number of iterations. However, this two-sided labeling approach does not
work when there are multiple destinations.

Label Correcting

Unfortunately, when label correcting methods are used, it may not be easy
to realize the savings just discussed in connection with label setting. The
difficulty is that even after we discover several paths to the destination t
(each marked by an entrance of t into V ), we cannot be sure that better
paths will not be discovered later. In the presence of additional problem
structure, however, the number of times various nodes will enter V can be
reduced considerably.

Suppose that at the start of the algorithm we have, for each node i, an
underestimate ui of the shortest distance from i to t (we require ut = 0). For
example, if all arc lengths are nonnegative we may take ui = 0 for all i. (We
do not exclude the possibility that ui = −∞ for some i, which corresponds
to the case where no underestimate is available for the shortest distance of
i.) The following algorithm is a modified version of the generic shortest path
algorithm.

Initially
V = {1},

d1 = 0, di = ∞, ∀ i 	= 1.

The algorithm proceeds in iterations and terminates when V is empty. The
typical iteration (if V is assumed nonempty) is as follows.

Typical Iteration of the Generic Single Origin/Single Destination Algorithm

Remove a node i from V . For each outgoing arc (i, j) ∈ A, with j �= 1, if

di + aij < min{dj , dt − uj}

set

dj := di + aij

and add j to V if it does not already belong to V .

The preceding iteration is the same as that of the generic algorithm,
except that the test di + aij < dj for entering a node j into V is replaced by
the more stringent test di + aij < min{dj, dt − uj}. (In fact, when the trivial
underestimate uj = −∞ is used for all j 	= t the two iterations coincide.) The
idea is as follows: The label dj corresponds at all times to the best path found
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thus far from 1 to j (cf. Prop. 3.2). Intuitively, the purpose of entering node j
in V when its label is reduced is to generate shorter paths to the destination
that pass through node j. If Pj is the path from 1 to j corresponding to
di + aij , then di + aij + uj is an underestimate of the shortest path length
among the set of paths Pj that first follow path Pj to node j and then follow
some other path from j to t. If

di + aij + uj ≥ dt,

then the current best path to t, which corresponds to dt, is at least as short
as any of the paths in Pj , which have Pj as their first component. It is
unnecessary to consider such paths, and for this reason node j need not be
entered in V . In this way, the number of node entrances in V may be sharply
reduced.

Figure 3.7 illustrates the algorithm. The following proposition proves
its validity.

Proposition 3.4: Consider the generic single origin/single destination al-
gorithm.

(a) At the end of each iteration, the following conditions hold:

(i) d1 = 0.

(ii) If dj < ∞ and j 	= 1, then dj is the length of some path that starts
at 1, never returns to 1, and ends at j.

(b) If the algorithm terminates, then upon termination, either dt < ∞, in
which case dt is the shortest distance from 1 to t, or else there is no path
from 1 to t.

(c) If the algorithm does not terminate, there exist paths of arbitrarily small
length that start at 1 and never return to 1.

Proof: (a) The proof is identical to the corresponding parts of Prop. 3.2.

(b) If upon termination we have dt = ∞, then the extra test di + aij +
uj < dt for entering V is always passed, so the algorithm generates the same
label sequences as the generic (many destinations) shortest path algorithm.
Therefore, Prop. 3.2(b) applies and shows that there is no path from 1 to t.

Let dj be the final values of the labels dj obtained upon termination and
suppose that dt < ∞. Assume, to arrive at a contradiction, that there is a path
Pt = (1, j1, j2, . . . , jk, t) that has length Lt with Lt < dt. For m = 1, . . . , k, let
Ljm be the length of the path Pm = (1, j1, j2, . . . , jm).

Let us focus on the node jk preceding t on the path Pt. We claim that
Ljk < djk . Indeed, if this were not so, then jk must have been removed at
some iteration from V with a label djk satisfying djk ≤ Ljk . If dt is the label
of t at the start of that iteration, we would then have

djk + ajkt ≤ Ljk + ajkt = Lt < dt ≤ dt,
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Iter. # Candidate List V Node Labels Node out of V

1 {1} (0,∞,∞,∞,∞) 1

2 {2, 3} (0, 2, 1,∞,∞) 2

3 {3, 5} (0, 2, 1,∞, 2) 3

4 {5} (0, 2, 1,∞, 2) 5

∅ (0, 2, 1,∞, 2)

Figure 3.7 Illustration of the generic single origin/single destination

algorithm. Here the destination is t = 5 and the underestimates of shortest

distances to t are ui = 0 for all i. Note that at iteration 3, when node 3 is

removed from V , the label of node 4 is not improved to d4 = 2 and node 4 is not

entered in V . The reason is that d3 +a34 (which is equal to 2) is not smaller than

d5 − u4 (which is also equal to 2). Note also that upon termination the label of a

node other than t may not be equal to its shortest distance (e.g. d4).

implying that the label of t would be reduced at that iteration from dt to
djk + ajkt, which is less than the final label dt – a contradiction.

Next we focus on the node jk−1 preceding jk and t on the path Pt. We use
a similar (though not identical) argument to show that Ljk−1 < djk−1 . Indeed,
if this were not so, then jk−1 must have been removed at some iteration from
V with a label djk−1 satisfying djk−1 ≤ Ljk−1 . If djk and dt are the labels of jk

and t at the start of that iteration, we would then have

djk−1 + ajk−1jk ≤ Ljk−1 + ajk−1jk = Ljk < djk ≤ djk , (3.17)

and since Ljk + ujk ≤ Lt < dt ≤ dt, we would also have

djk−1 + ajk−1jk < dt − ujk . (3.18)
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From Eqs. (3.17) and (3.18), it follows that the label of jk would be reduced
at that iteration from djk to djk + ajkt, which is less than the final label djk –
a contradiction.

Proceeding similarly, we obtain Ljm < djm for all m = 1, . . . , k, and in
particular a1j1 = Lj1 < dj1 . Since

a1j1 + uj1 ≤ Lt < dt,

and dt is monotonically nonincreasing throughout the algorithm, we see that
at the first iteration, j1 will enter V with the label a1j1 , which cannot be
less than the final label dj1 . This is a contradiction; the proof of part (b) is
complete.

(c) The proof is identical to the proof of Prop. 3.2(c). Q.E.D.

There are a number of possible implementations of the algorithm of this
subsection, which parallel the ones given earlier for the many destinations
problem. An interesting possibility to speed up the algorithm arises when an
overestimate vj of the shortest distance from j to t is known a priori . (We
require vt = 0; also vj = ∞ implies that no overestimate is known for j.) The
idea is that the method still works if the test di + aij < dt − uj is replaced
by the possibly sharper test di + aij < D − uj , where D is any overestimate
of the shortest distance from 1 to t with D ≤ dt (check the proof of Prop.
3.4). We can obtain estimates D that may be strictly smaller than dt by
using the scalars vj as follows: each time the label of a node j is reduced,
we check whether dj + vj < D; if this is so, we replace D by dj + vj . In this
way, we make the test for future admissibility into the candidate list V more
stringent and save some unnecessary node entrances in V . This idea is used
in some versions of the branch-and-bound method for integer programming;
see Section 1.4 of [Ber87].

1.3.5 Multiple Origin/Multiple Destination Methods

Consider now the all-pairs shortest path problem where we want to find a
shortest path from each node to each other node. The Floyd-Warshall algo-
rithm is specifically designed for this problem, and it is not any faster when
applied to the single destination problem. It starts with the initial condition

D0
ij =

{
aij, if (i, j) ∈ A
∞, otherwise

and generates sequentially for all k = 0, 1, . . . , N − 1, and all nodes i and j,

Dk+1
ij =

{
min

{
Dk

ij, Dk
i(k+1) + Dk

(k+1)j

}
, if j 	= i

∞, otherwise.
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An induction argument shows that Dk
ij gives the shortest distance from

node i to node j using only nodes from 1 to k as intermediate nodes. Thus, DN
ij

gives the shortest distance from i to j (with no restriction on the intermediate
nodes). There are N iterations, each requiring O(N 2) operations, for a total
of O(N 3) operations.

Unfortunately, the Floyd-Warshall algorithm cannot take advantage of
sparsity of the graph. It appears that for sparse problems it is typically better
to apply a single origin/all destinations algorithm separately for each origin.
If all the arc lengths are nonnegative, a label setting method can be used
separately for each origin. If there are negative arc lengths (but no negative
length cycles), one can of course apply a label correcting method separately
for each origin, but there is another alternative that results in a superior
worst-case complexity. It is possible to apply a label correcting method only
once to a single origin/all destinations problem and obtain an equivalent all-
pairs shortest path problem with nonnegative arc lengths; the latter problem
can be solved using N separate applications of a label setting method. This
alternative is based on the following proposition, which applies to the general
minimum cost flow problem.

Proposition 3.5: Every minimum cost flow problem with arc costs aij such
that all simple forward cycles have nonnegative cost is equivalent to another
minimum cost flow problem involving the same graph and nonnegative arc
costs âij of the form

âij = aij + di − dj, ∀ (i, j) ∈ A,

where the scalars di can be found by solving a single origin/all destinations
shortest path problem. The two problems are equivalent in the sense that
they have the same constraints, and the cost function of one is the same as
the cost function of the other plus a constant.

Proof: Let (N ,A) be the graph of the given problem. Introduce a new node
0 and an arc (0, i) for each i ∈ N , thereby obtaining a new graph (N′,A′).
Consider the shortest path problem involving this graph, with arc lengths aij

for the arcs (i, j) ∈ A and 0 for the arcs (0, i). Since all incident arcs of node
0 are outgoing, all simple forward cycles of (N′,A′) are also simple forward
cycles of (N ,A) and, by assumption, have nonnegative length. Since any
forward cycle can be decomposed into a collection of simple forward cycles
(cf. Exercise 1.5), all forward cycles (not necessarily simple) of (N′,A′) have
nonnegative length. Furthermore, there is at least one path from node 0 to
every other node i, namely the path consisting of arc (0, i). Therefore, the
shortest distances di from node 0 to all other nodes i can be found by a label
correcting method, and by Prop. 3.2, we have

âij = aij + di − dj ≥ 0, ∀ (i, j) ∈ A.
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Let us now view
∑

(i,j)∈A âijxij as the cost function of a minimum cost
flow problem involving the graph (N ,A) and the constraints of the original
problem. We have

∑
(i,j)∈A

âijxij =
∑

(i,j)∈A

(
aij + di − dj

)
xij

=
∑

(i,j)∈A
aijxij +

∑
i∈N

di

⎛
⎝ ∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji

⎞
⎠

=
∑

(i,j)∈A
aijxij +

∑
i∈N

disi,

where si is the given supply of node i. Thus, the two cost functions
∑

(i,j)∈A âijxij

and
∑

(i,j)∈A aijxij differ by the constant
∑

i∈N disi. Q.E.D.

It can be seen now that the all-pairs shortest path problem can be solved
by using a label correcting method to solve the single origin/all destinations
problem described in the above proof, thereby obtaining the scalars di and
âij , and by then applying a label setting method N times to solve the all-pairs
shortest path problem involving the nonnegative arc lengths âij . The shortest
distance Dij from i to j is obtained by adding di − dj to the shortest distance
from i to j found by the label setting method.

Still another possibility for solving the all-pairs shortest path problem
is to solve N separate single origin/all destinations problems but to also use
the results of the computation for one origin to start the computation for the
next origin. This can be done efficiently in the context of the simplex method
presented in the next chapter; see also [GaP86], [GaP88].

E X E R C I S E S

Exercise 3.1

Consider the graph of Fig. 3.8. Find a shortest path from 1 to all nodes using

the binary heap method, Dial’s algorithm, and the D’Esopo-Pape algorithm.

Exercise 3.2

Consider the graph of Fig. 3.8. Find a shortest path from node 1 to node 6

using the generic single origin/single destination method of Section 1.3.4 with

all distance underestimates equal to zero.
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Figure 3.8 Graph for Exercises 3.1 and 3.2. The arc lengths are the

numbers shown next to the arcs.

Exercise 3.3 (Shortest Path Tree Construction)

Consider the single origin/all destinations shortest path problem and assume

that all cycles have nonnegative length. Consider the generic algorithm of

Section 1.3.1, and assume that each time a label dj is decreased to di +aij the

arc (i, j) is recorded in an array PRED(j ). Consider the subgraph of the arcs

PRED(j ), j ∈ N , j �= 1. Show that after the first iteration this subgraph is a

tree rooted at the origin, and that upon termination it is a shortest path tree.

Exercise 3.4 (The Bellman-Ford Algorithm)

Consider the single origin/all destinations shortest path problem. Assume

that there is a path from the origin to all destinations, and that all cycles

have nonnegative length. The Bellman-Ford algorithm starts with the initial

conditions

d0
1 = 0, d0

j = ∞, ∀ j �= 1

and generates dk
j , k = 1, 2, . . ., according to

dk
1 = 0, dk

j = min
(i,j)∈A

{dk−1
i + aij}, ∀ j �= 1.

(a) Show that for all k, dk
j is the shortest distance from 1 to j using paths

with k arcs or less.

(b) Show that the algorithm terminates after at most N iterations, in the

sense that for some k ≤ N we have dk
j = dk−1

j for all j. Conclude that

the running time of the algorithm is O(NA).
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(c) Consider a label correcting method that operates in cycles of iterations.

In each cycle the nodes are scanned in a fixed order, and when a node

i is found to belong to V an iteration removing i from V is performed

(thus, there are as many as N iterations in a single cycle). Show that if

d
k

j is the label of node j at the end of the kth cycle then d
k

j ≤ dk
j , where

dk
j are the iterates of the Bellman-Ford algorithm. Conclude that this

label correcting method has an O(NA) running time.

Exercise 3.5 (Min-Path/Max-Tension Theorem)

For a price vector p = (p1, . . . , pN ), define the tension of arc (i, j) as tij = pi−pj

and the tension of a forward path P as TP =
∑

(i,j)∈P+ tij . Show that the

shortest distance between two nodes i1 and i2 is equal to the maximal tension

TP over all forward paths P starting at i1 and ending at i2, and all price vectors

p satisfying the constraint tij ≤ aij for all arcs (i, j). Interpret this as a duality

result. Note: An intuitive explanation of this result in terms of a mechanical

model is given in Section 4.3; see Fig. 3.1 of that section.

Exercise 3.6 (Path Bottleneck Problem)

Consider the framework of the shortest path problem. For any path P , define

the bottleneck arc of P as an arc that has maximum length over all arcs of

P . Consider the problem of finding a path connecting two given nodes and

having minimum length of bottleneck arc. Derive an analog of Prop. 3.1 for

this problem. Consider also a single origin/all destinations version of this

problem. Develop an analog of the generic algorithm of Section 1.3.1, and

prove an analog of Prop. 3.2. Hint: Replace di + aij with max{di, aij}.

Exercise 3.7 (Complexity of the Generic Algorithm)

Consider the generic algorithm, and assume that all arc lengths are nonnega-

tive.

(a) Consider a node j satisfying at some time

dj ≤ di, ∀ i ∈ V.

Show that this relation will be satisfied at all subsequent times and that

j will never again enter V . Furthermore, dj will remain unchanged.

(b) Suppose that the algorithm is structured so that it removes from V a

node of minimum label at least once every k iterations (k is some inte-

ger). Show that the algorithm will terminate in at most kN iterations.
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(c) Show that the running time of the threshold algorithm is O(NA). Hint:
Define a cycle to be a sequence of iterations between successive repar-

titionings of the candidate list V . In each cycle, the node of V with

minimum label at the start of the cycle will be removed from V during

the cycle.

Exercise 3.8 (Two-Sided Label Setting)

Consider the shortest path problem from an origin node 1 to a destination node

t, and assume that all arc lengths are nonnegative. This exercise considers an

algorithm where label setting is applied simultaneously and independently

from the origin and from the destination. In particular, the algorithm main-

tains a subset of nodes W , which are permanently labeled from the origin,

and a subset of nodes V , which are permanently labeled from the destination.

When W and V have a node i in common the algorithm terminates. The idea

is that a shortest path from 1 to t cannot contain a node j /∈ W ∪V ; any such

path must be longer than a shortest path from 1 to i followed by a shortest

path from i to t (unless j and i are equally close to both 1 and to t).

Consider two subsets of nodes W and V with the following properties:

(1) 1 ∈ W and t ∈ V .

(2) W and V have nonempty intersection.

(3) If i ∈ W and j /∈ W , then the shortest distance from 1 to i is less than

or equal to the shortest distance from 1 to j.

(4) If i ∈ V and j /∈ V , then the shortest distance from i to t is less than or

equal to the shortest distance from j to t.

Let d1
i be the shortest distance from 1 to i using paths all the nodes of which,

with the possible exception of i, lie in W (d1
i = ∞ if no such path exists), and

let dt
i be the shortest distance from i to t using paths all the nodes of which,

with the possible exception of i, lie in V (dt
i = ∞ if no such path exists).

(a) Show that such W , V , d1
i , and dt

i can be found by applying a label

setting method simultaneously for the single origin problem with origin

node 1 and for the single destination problem with destination node t.

(b) Show that the shortest distance D1t from 1 to t is given by

D1t = min
i∈W

{
d1

i + dt
i

}
= min

i∈W∪V

{
d1

i + dt
i

}
= min

i∈V

{
d1

i + dt
i

}
.

(c) Show that the nonempty intersection condition (2) can be replaced by

the condition mini∈W

{
d1

i + dt
i

}
≤ maxi∈W d1

i + maxi∈V dt
i.
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Exercise 3.9 (k Shortest Node-Disjoint Paths)

Consider a graph with an origin 1, a destination t, and a length for each arc.

We want to find k paths from 1 to t which share no node other 1 and t and

which are such that the sum of the k path lengths is minimum. Formulate this

problem as a minimum cost flow problem. Hint: Replace each node i other

than 1 and t with two nodes i and i′ and a connecting arc (i, i′) with flow

bounds 0 ≤ xii′ ≤ 1.

Exercise 3.10 (The Doubling Algorithm)

The doubling algorithm for solving the all-pairs shortest path problem is given

by

D1
ij =

{
aij , if (i, j) ∈ A
0, if i = j

∞, otherwise

D2k
ij =

{
minm

{
Dk

im + Dk
mj

}
, if i �= j, k = 1, 2, . . . , 	log(N − 1)


0, if i = j, k = 1, 2, . . . , 	log(N − 1)
.
Show that for i �= j, Dk

ij gives the shortest distance from i to j using paths

with 2k−1 arcs or fewer. Show also that the running time is O
(
N 3 log m∗),

where m∗ is the maximum number of arcs in a shortest path.

Exercise 3.11 (Nonstandard Initial Conditions)

It is sometimes useful to start the generic algorithm with initial conditions

other than the standard V = {1}, d1 = 0, dj = ∞ for j �= 1. Such a possibility

arises, for example, when shortest paths with respect to slightly different arc

lengths are known from an earlier optimization. This exercise characterizes

initial conditions under which the algorithm maintains its validity.

(a) Suppose that the initial V and d in the generic algorithm satisfy condi-

tions (i), (ii), and (iii) of part (a) of Prop. 3.2. Show that the algorithm

is still valid in the sense that parts (b) and (c) of Prop. 3.2 hold.

(b) Use the result of part (a) to derive “promising” initial conditions for

application of the generic algorithm using paths from 1 to all other

nodes, which are shortest with respect to slightly different arc lengths.

Exercise 3.12 (Uniqueness of Solution of Bellman’s Equation)

Assume that all cycles have positive length. Show that if a vector d =

(d1, d2, . . . , dN ) satisfies

dj = min
(i,j)∈A

{di + aij}, ∀ j �= 1,
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d1 = 0,

then for all j, dj is the shortest distance from 1 to j. Show by example that

this need not be true if there is a cycle of length 0. Hint: Consider the arcs

(i, j) attaining the minimum in the above equation and consider the paths

formed by these arcs.

1.4 NOTES AND SOURCES

Network problems are discussed in many books ([BeG62], [Dan63], [BuS65],
[Iri69], [Hu69], [FrF70], [Chr75], [Mur76], [Law76], [Zou76], [BaJ78], [Min78],
[KeH80], [JeB80], [PaS82], [Chv83], [GoM84], [Lue84], [Roc84], [BJS90]). Sev-
eral of these books discuss linear programming first and develop linear network
optimization as a special case. An alternative approach that relies heavily on
duality, is given in [Roc84]. Bibliographies on the subject are provided in
[GoM77], [VoR82], and [VoR85].

1.1. The conformal realization theorem has been developed in different forms
in several sources [FoF62], [BuS65]. In our presentation we follow [Roc84].

1.2. The primal cost improvement approach for network optimization was
initiated by Dantzig [Dan51], who specialized the simplex method to the trans-
portation problem. The extensive subsequent work using this approach is
surveyed at the end of Chapter 2.

The max flow-min cut theorem was discovered independently in [DaF56],
[EFS56], and [FoF56b]. The proof that the Ford-Fulkerson algorithm with
breadth-first search has polynomial complexity O(NA2) (Exercise 2.10) is
due to [EdK72]. With proper implementation, this bound was improved
to O(N 2A) in [Din70], and to O(N 3) in [Kar74]. A number of algorithms
based on augmentation ideas were subsequently proposed ([Che77], [MKM78],
[Gal80], [GaN80]). A different approach, which bears a close connection to
the auction and ε-relaxation ideas discussed in Chapter 4, was proposed in
[Gol85b]; see also [GoT86], [AhO86].

The dual cost improvement approach was initiated by Kuhn [Kuh55]
who proposed the Hungarian method for the assignment problem. (The name
of the algorithm honors its connection with the research of the Hungarian
mathematician Egervary [Ege31].) Work using this approach is surveyed in
Chapter 3.

The auction approach was initiated by the author in [Ber79] for the
assignment problem, and in [Ber86a], [Ber86b] for the minimum cost flow
problem. Work using this approach is surveyed at the end of Chapter 4.

The feasible distribution theorem (Exercise 2.5) is due to [Gal57] and
[Hof60]. The maximal matching/minimal cover theorem is due to [Kon31]
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and [Ege31]. The theory of distinct representatives (Exercise 2.13) originated
with [Hal56]; see also [HoK56] and [MeD58].

1.3. Work on the shortest path problem is very extensive. Literature surveys
are given in [Dre69], [GPR82], and [DeP84]. The generic algorithm was first
explicitly suggested as a unifying framework of many of the existing shortest
path algorithms in [Pal84] and [GaP86].

The first label setting method was suggested in [Dij59], and also indepen-
dently in [Dan60] and [WhH60]. The binary heap and related implementa-
tions were suggested in [Joh77]. Dial’s algorithm was proposed in [Dia69]
and received considerable attention after the appearance of [DGK79]; see
also [DeF79]. For related algorithms using variable size buckets, see [Joh77],
[DeF79], and [AMO88].

Label correcting methods were proposed in [Bel57] and [For56]. The
D’Esopo-Pape algorithm appeared in [Pap74] based on an earlier suggestion
of D’Esopo. The threshold algorithm is developed in [GKP85a], [GKP85b],
and [GGK86a].

Two-sided label setting methods for the single origin/single destination
problem (Exercise 3.8) were proposed in [Nic66]; see also [HKS89], which con-
tains extensive computational results. A new type of two-sided label setting
method is described in Section 4.3 (Exercise 3.5).

The Floyd-Warshall algorithm was given in [Flo62] and uses a theorem
due to [War62]. Alternative algorithms for the all-pairs problem are given in
[Dan67] and [Tab73].


