

3

Dual Ascent Methods

3.1 DUAL ASCENT

In this chapter we focus on the minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (1.1)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A. (1.2)

Throughout the chapter we will assume that the scalars aij , bij , cij , and si are
all integer. Usually, this is not an important practical restriction. However,
there are extensions of the algorithms of this chapter that handle noninteger
problem data, as will be discussed later.

The main idea of dual cost improvement (or dual ascent) algorithms is
to start with a price vector and successively obtain new price vectors with
improved dual cost value, with the aim of solving the dual problem. Recall
from Section 1.2.2 that this problem is

maximize q(p)
subject to no constraint on p,

(1.3)

133

134 Dual Ascent Methods Chap. 3

where the dual functional q is given by

q(p) =
∑

(i,j)∈A
qij(pi − pj) +

∑
i∈N

sipi, (1.4)

with

qij(pi − pj) = min
bij≤xij≤cij

{
(aij + pj − pi)xij

}

=
{

(aij + pj − pi)bij if pi ≤ aij + pj ,
(aij + pj − pi)cij if pi > aij + pj.

(1.5)

It is helpful here to introduce some terminology. For any price vector p,
we say that an arc (i, j) is

inactive if pi < aij + pj,

balanced if pi = aij + pj,

active if pi > aij + pj.

The complementary slackness (CS) conditions for a flow–price vector pair
(x, p), introduced in Section 1.2.2, can be restated as follows:

xij = bij , for all inactive arcs (i, j), (1.6)

bij ≤ xij ≤ cij , for all balanced arcs (i, j), (1.7)

xij = cij , for all active arcs (i, j), (1.8)

(see Fig. 1.1).
We restate for convenience the following basic duality result, proved in

Section 1.2.2.

Proposition 1.1: If a feasible flow vector x∗ and a price vector p∗ satisfy
the complementary slackness conditions (1.6)–(1.8), then x∗ is an optimal
solution of the minimum cost flow problem and p∗ is an optimal solution of
the dual problem (1.3).

The major dual ascent algorithms select at each iteration a connected
subset of nodes S, and change the prices of these nodes by equal amounts while
leaving the prices of all other nodes unchanged. In other words, each iteration
involves a price vector change along a direction of the form dS = (d1, . . . , dN),
where

di =
{

1 if i ∈ S
0 if i /∈ S

(1.9)

and S is a connected subset of nodes. Such directions will be called elemen-
tary .

0

aij

b ij cij x ij

p jpi -

Sec. 3.1 Dual Ascent 135

Figure 1.1 Illustration of the complementary slackness conditions. For

each arc (i, j), the pair (xij , pi − pj) should lie on the graph shown.

To check whether dS is a direction of dual ascent, we need to calculate
the corresponding directional derivative of the dual cost along dS and check
whether it is positive. From the dual cost expression (1.4)-(1.5), it is seen
that this directional derivative is

q′(p; dS) = lim
α↓0

q(p + αdS) − q(p)
α

=
∑

(j,i) : active, j /∈S, i∈S
cji +

∑
(j,i) : inactive or balanced, j /∈S, i∈S

bji

−
∑

(i,j) : active or balanced, i∈S, j /∈S

cij −
∑

(i,j) : inactive, i∈S, j /∈S
bij

+
∑
i∈S

si. (1.10)

In words, the directional derivative q′(p; dS) is the difference between inflow
and outflow across the node set S when the flows of the inactive and active
arcs are set at their lower and upper bounds, respectively, and the flow of
each balanced arc incident to S is set to its lower or upper bound depending
on whether the arc is incoming to S or outgoing from S.

To obtain a suitable set S, with positive directional derivative q′
(
p, dS

)
,

it is convenient to maintain a flow vector x satisfying CS together with p. This

136 Dual Ascent Methods Chap. 3

helps to organize the search for an ascent direction and to detect optimality,
as will now be explained.

For a flow vector x, let us define the surplus gi of node i as the difference
between total inflow into i minus the total outflow from i, that is,

gi =
∑

{j|(j,i)∈A}
xji −

∑
{j|(i,j)∈A}

xij + si. (1.11)

We have∑
i∈S

gi =
∑

{(j,i)∈A|j /∈S, i∈S}
xji −

∑
{(i,j)∈A|i∈S, j /∈S}

xij +
∑
i∈S

si, (1.12)

and if x satisfies CS together with p, we obtain using Eqs. (1.10) and (1.12)∑
i∈S

gi = q′(p; dS) +
∑

(j,i) : balanced, j /∈S, i∈S

(xji − bji)

+
∑

(i,j): balanced, i∈S, j /∈S

(cij − xij)

≥ q′(p; dS).

(1.13)

We see, therefore, that only a node set S that has positive total surplus is a
candidate for generating a direction dS of dual ascent. In particular, if there
is no balanced arc (i, j) with i ∈ S, j /∈ S, and xij < cij , and no balanced arc
(j, i) with j /∈ S, i ∈ S, and bij < xij , then∑

i∈S
gi = q′(p; dS), (1.14)

so if S has positive total surplus then dS is an ascent direction. The fol-
lowing lemma expresses this idea and provides the basis for the subsequent
algorithms.

Lemma 1.1: Suppose that x and p satisfy the CS conditions, and let S be
a subset of nodes. Let dS = (d1, d2, . . . , dN) be the vector with di = 1 if i ∈ S
and di = 0 otherwise, and assume that∑

i∈S
gi > 0.

Then either dS is a dual ascent direction, that is,

q′(p; dS) > 0,

or else there exist nodes i ∈ S and j /∈ S such that either (i, j) is a balanced
arc with xij < cij or (j, i) is a balanced arc with bji < xji.

Proof: Follows from Eq. (1.13). Q.E.D.

Sec. 3.1 Dual Ascent 137

Overview of Dual Ascent Algorithms

The algorithms of this chapter start with an integer flow–price vector pair
(x, p), satisfying CS, and operate in iterations. At the beginning of each
iteration, we have a subset of nodes S such that

∑
i∈S

gi > 0;

initially S consists of one or more nodes with positive surplus. According to
the preceding lemma, there are two possibilities:

(a) S defines a dual ascent direction dS = (d1, d2, . . . , dN), where di = 1 if
i ∈ S, and di = 0 otherwise.

(b) S can be enlarged by adding a node j /∈ S with the property described
in Lemma 1.1, that is, for some i ∈ S, either (i, j) is a balanced arc with
xij < cij , or (j, i) is a balanced arc with bji < xji.

In case (b), there are two possibilities:

(1) gj ≥ 0, in which case,

∑
i∈S∪{j}

gi > 0,

and the process can be continued with

S ∪ {j}

replacing S.

(2) gj < 0, in which case, it can be seen that there is a path originating at
some node i of the starting set S and ending at node j that is unblocked ,
that is, all its arcs have room for a flow increase in the direction from i to
j (see Fig. 1.2). Such a path is called an augmenting path (generalizing
slightly the notion of an augmenting path used in the Ford-Fulkerson
algorithm for the max-flow problem). By increasing the flow of the
forward arcs (direction from i to j) of the path and by decreasing the
flow of the backward arcs (direction from j to i) of the path, we can
bring both surpluses gi and gj closer to zero by an integer amount while
leaving the surplus of all other nodes unaffected and maintaining CS.

Since the total absolute surplus
∑

i∈N |gi| cannot be indefinitely reduced
by integer amounts, it is seen that starting from an integer flow–price vector
pair satisfying CS, after at most a finite number of iterations in which flow
augmentations occur without finding an ascent direction, one of three things
will happen:

Direction of Flow Change

iPositive Surplus g jNegative Surplus g

Backward arcForward arc Forward arc Backward arc

i ji1 i2 ik
x < c

ii1i i1
b < x

i1i2i1i2
b < x j ikj ik

. . . .

138 Dual Ascent Methods Chap. 3

Figure 1.2 Illustration of an augmenting path. The initial node i and the

final node j have positive and negative surplus, respectively. Furthermore, the

path is unblocked, that is, each arc on the path has room for flow change in the

direction from i to j. A flow change of magnitude δ > 0 in this direction reduces

the total absolute surplus
∑

m∈N |gm| by 2δ provided δ ≤ min{gi,−gj}.

(a) A dual ascent direction will be found; this direction can be used to
improve the dual cost by an integer amount.

(b) gi = 0 for all i; in this case the flow vector x is feasible, and since it
satisfies CS together with p, by Prop. 1.1, x is primal-optimal and p is
dual-optimal.

(c) gi ≤ 0 for all i but gi < 0 for at least one i; since by adding Eq. (1.12)
over all i ∈ N we have

∑
i∈N si =

∑
i∈N gi it follows that

∑
i∈N si < 0,

so the problem is infeasible.

Thus, for a feasible problem, the procedure just outlined can be used to find
a dual ascent direction and improve the dual cost starting at any nonoptimal
price vector. Figure 1.3 provides an illustration for a very simple problem.

In the next two sections, we discuss two different dual ascent methods.
The first, known as primal-dual , in its classical form, tries at each iteration
to use the steepest ascent direction, that is, the elementary direction with
maximal directional derivative. This method can also be implemented by
means of a shortest path computation. The second method, called relaxation,
is usually faster in practice. It tries to use directions that are not necessarily
steepest, but can be computed more quickly than the steepest ascent direction.

3.2 PRIMAL-DUAL (SEQUENTIAL SHORTEST PATH) METHODS

The primal-dual algorithm starts with any integer pair (x, p) satisfying CS.
One possibility is to choose the integer vector p arbitrarily and to set xij = bij

if (i, j) is inactive or balanced, and xij = cij otherwise. (Prior knowledge
could be built into the initial choice of x and p using, for example, the results
of an earlier optimization.) The algorithm preserves the integrality and CS
property of the pair (x, p) throughout.

Cost = 0

Feasible flow range: [0,5]

s = 11 s = -13

(a)

Flow = 0Flow = 0
g = 1

1
g = 02 g = -1

3

p = 01 p = 02 p = 03

(b)

Problem Data

Prior to the 1st Iteration

After the 1st Iteration

After the 2nd Iteration

Flow = 0Flow = 0
g = 1

1
g = 02 g = -1

3

p = 11 p = 12 p = 03

(c)

Flow = 1Flow = 1
g = 01

g = 02 g = 0
3

(d)

1 2 3

1 2 3

1 2 3

1 2 3

p = 11 p = 12 p = 03

Cost = 1

Sec. 3.2 Primal-Dual (Sequential Shortest Path) Methods 139

Figure 1.3 Illustration of a dual ascent method for the simple problem described in

(a). Initially, x = (0, 0) and p = (0, 0, 0) as shown in (b).

The first iteration starts with S = {1}. It can be seen using Eq. (1.13), that the

directional derivative q′(p; dS) is -4, so dS = (1, 0, 0) is not a direction of ascent. We

thus enlarge S by adding node 2 using the balanced arc (1, 2). Since there is no incident

balanced arc to S = {1, 2}, the direction dS = (1, 1, 0) is a direction of ascent [using Eq.

(1.13), q′(p; dS) = 1]. We thus increase the prices of the nodes in S by a common increment

γ, and we choose γ = 1 because this is the increment that maximizes the dual function along

the direction dS starting from p; this can be seen by checking the directional derivative of q

at the price vector (γ, γ, 0) along the direction dS and finding that it switches from positive

(= 1) to negative (= −4) at γ = 1 where the arc (2, 3) becomes balanced.

The second iteration starts again with S = {1}. As in the first iteration, S is

enlarged to S = {1, 2}. Since the corresponding direction dS = (1, 1, 0) is not a direction

of ascent [q′(p; dS) = −4], we explore the balanced incident arc (2, 3) and we discover the

negative surplus node 3. The augmenting path (1, 2, 3) has now been obtained, and the

corresponding augmentation sets the flows of the arcs (1, 2) and (2, 3) to 1. Since now

all node surpluses become zero, the algorithm terminates; x = (1, 1) is an optimal primal

solution and p = (1, 1, 0) is an optimal dual solution.

140 Dual Ascent Methods Chap. 3

At the start of the typical iteration, we have an integer pair (x, p) sat-
isfying CS. The iteration indicates that the primal problem is infeasible, or
else indicates that (x, p) is optimal, or else transforms this pair into another
pair satisfying CS. In particular, if gi ≤ 0 for all i, then in view of the fact∑

i∈N gi =
∑

i∈N si [see Eq. (1.12) with S = N], there are two possibilities:
(1) gi < 0 for some i, in which case

∑
i∈N si < 0 and the problem is infeasible,

or (2) gi = 0 for all i, in which case x is feasible and therefore also optimal,
since it satisfies CS together with p. In either case, the algorithm terminates.

If on the other hand we have gi > 0 for at least one node i, the iteration
starts by selecting a nonempty subset I of nodes i with gi > 0. The iteration
maintains two sets of nodes S and L, with S ⊂ L. Initially, S is empty and
L consists of the subset I. We use the following terminology.

S: Set of scanned nodes (these are the nodes whose incident arcs have been
“examined” during the iteration).

L: Set of labeled nodes (these are the nodes that have either been scanned
during the iteration or are current candidates for scanning).

In the course of the iteration we continue to add nodes to L and S until either
an augmenting path is found or L = S, in which case dS will be shown to
be an ascent direction. The iteration also maintains a label for every node
i ∈ L− I, which is an incident arc of i. The labels are useful for constructing
augmenting paths (see Step 3 of the following iteration).

Typical Primal-Dual Iteration

Step 0 (Initialization): Select a set I of nodes i with gi > 0. [If no such

node can be found, terminate; the pair (x, p) is optimal if gi = 0 for all i;

otherwise the problem is infeasible.] Set L := I and S := empty, and go to

Step 1.

Step 1 (Choose a Node to Scan): If S = L, go to Step 4; else select a

node i ∈ L − S, set S := S ∪ {i}, and go to Step 2.

Step 2 (Label Neighbor Nodes of i): Add to L all nodes j /∈ L such that

either (j, i) is balanced and bji < xji or (i, j) is balanced and xij < cij ; also for

every such j, give to j the label “(j, i)” if (j, i) is balanced and bji < xji, and

otherwise give to j the label “(i, j).” If for all the nodes j just added to L we

have gj ≥ 0, go to Step 1. Else select one of these nodes j with gj < 0 and go

to Step 3.

Step 3 (Flow Augmentation): An augmenting path P has been found

that begins at a node i belonging to the initial set I and ends at the node

j identified in Step 2. The path is constructed by tracing labels backward

starting from j, and is such that we have

xmn < cmn, ∀ (m, n) ∈ P +

Sec. 3.2 Primal-Dual (Sequential Shortest Path) Methods 141

xmn > bmn, ∀ (m, n) ∈ P−

where P + and P− are the sets of forward and backward arcs of P , respectively.

Let

δ = min
{
gi,−gj ,

{
cmn − xmn | (m, n) ∈ P +}

,
{
xmn − bmn | (m, n) ∈ P−}}

.

Increase by δ the flows of all arcs in P +, decrease by δ the flows of all arcs in

P−, and go to the next iteration.

Step 4 (Price Change): Let

γ = min
{
{pj + aij − pi | (i, j) ∈ A, xij < cij , i ∈ S, j /∈ S},
{pj − aji − pi | (j, i) ∈ A, bji < xji, i ∈ S, j /∈ S}

}
.

(2.1)

Set

pi :=

{
pi + γ, if i ∈ S
pi, otherwise.

Add to L all nodes j for which the minimum in Eq. (2.1) is attained by an

arc (i, j) or an arc (j, i); also for every such j, give to j the label “(i, j)” if the

minimum in Eq. (2.1) is attained by an arc (i, j), and otherwise give to j the

label “(j, i).” If for all the nodes j just added to L we have gj ≥ 0, go to Step

1. Else select one of these nodes j with gj < 0 and go to Step 3. [Note: If

there is no arc (i, j) with xij < cij , i ∈ S, and j /∈ S, or arc (j, i) with bji < xji,

i ∈ S, and j /∈ S, the problem is infeasible and the algorithm terminates; see

Prop. 2.1 that follows.]

Note the following regarding the primal-dual iteration:

(a) All operations of the iteration preserve the integrality of the flow–price
vector pair.

(b) The iteration maintains CS of the flow–price vector pair. To see this,
note that arcs with both ends in S, which are balanced just before a price
change, continue to be balanced after a price change. This means that a
flow augmentation step, even if it occurs following several executions of
Step 4, changes only flows of balanced arcs, so it cannot destroy CS. Also,
a price change in Step 4 maintains CS because no arc flow is modified
in this step and the price increment γ of Eq. (2.1) is such that no arc
changes status from active to inactive or vice versa.

(c) At all times we have S ⊂ L. Furthermore, when Step 4 is entered, we
have S = L and L contains no node with negative surplus. Therefore,
based on the logic of Step 2, there is no balanced arc (i, j) with xij < cij ,
i ∈ S, and j /∈ S, and no balanced arc (j, i) with bji < xji, i ∈ S, and
j /∈ S. It follows from the discussion preceding Lemma 1.1 [cf. Eq.
(1.14)] that dS is an ascent direction.

142 Dual Ascent Methods Chap. 3

(d) Only a finite number of price changes occur at each iteration, so each
iteration executes to completion, either terminating with a flow aug-
mentation in Step 3, or with an indication of infeasibility in Step 4. To
see this, note that between two price changes, the set L is enlarged by
at least one node, so there can be no more than N price changes per
iteration.

(e) Only a finite number of flow augmentation steps are executed by the al-
gorithm, since each of these reduces the total absolute surplus

∑
i∈N |gi|

by an integer amount [by (a) above], while price changes do not affect
the total absolute surplus.

(f) The algorithm terminates. The reason is that each iteration will execute
to completion [by (d) above], and will involve exactly one augmentation,
while there will be only a finite number of augmentations [cf. (e) above].

The following proposition establishes the validity of the method.

Proposition 2.1: Consider the minimum cost flow problem and assume
that aij , bij , cij , and si are all integer.

(a) If the problem is feasible, then the primal-dual method terminates with
an integer optimal flow vector x and an integer optimal price vector p.

(b) If the problem is infeasible, then the primal-dual method terminates
either because gi ≤ 0 for all i and gi < 0 for at least one i or because
there is no arc (i, j) with xij < cij , i ∈ S, and j /∈ S, or arc (j, i) with
bji < xji, i ∈ S, and j /∈ S in Step 4.

Proof: The algorithm terminates as argued earlier, and there are three pos-
sibilities:

(1) The algorithm terminates because all nodes have zero surplus. In this
case the flow–price vector pair obtained upon termination is feasible and
satisfies CS, so it is optimal.

(2) The algorithm terminates because gi ≤ 0 for all i and gi < 0 for at least
one i. In this case the problem is infeasible, since for a feasible problem
we must have

∑
i∈N gi = 0.

(3) The algorithm terminates because there is no arc (i, j) with xij < cij ,
i ∈ S, and j /∈ S, or arc (j, i) with bji < xji, i ∈ S, and j /∈ S in Step
4. Then the flux across the cut Q = [S,N − S] is equal to the capacity
C(Q) and is also equal to the sum of the divergences of the nodes of S,
which is

∑
i∈S(si − gi) [cf. Eq. (1.11)]. Since gi ≥ 0 for all i ∈ S, gi > 0

for the nodes i ∈ I, and I ⊂ S, we see that

C(Q) <
∑
i∈S

si.

Sec. 3.2 Primal-Dual (Sequential Shortest Path) Methods 143

This implies that the problem is infeasible, since for any feasible flow
vector we must have

∑
i∈S

si = F (Q) ≤ C(Q),

where F (Q) is the corresponding flux across Q. [Another way to show
that the problem is infeasible in this case is to observe that dS is a
dual ascent direction, and if no arc (i, j) with the property stated exists,
the rate of increase of the dual function remains unchanged as we move
indefinitely along dS starting from p. This implies that the dual optimal
value is infinite or equivalently (by Prop. 3.2 in Section 2.3) that the
primal problem is infeasible.]

Since termination can occur only under the above circumstances, the
desired conclusion follows. Q.E.D.

There are a number of variations of the primal-dual method, using dif-
ferent choices of the initial set I of positive surplus nodes. The two most
common possibilities are:

(1) I consists of a single node i with gi > 0.

(2) I consists of all nodes i with gi > 0.

The primal-dual method was originally proposed with the latter choice. In this
case, whenever there is a price change, the set S contains all nodes with pos-
itive surplus, and from the directional derivative formulas (1.13) and (1.14),
it follows that the ascent direction used in Step 4 has the maximum pos-
sible directional derivative among elementary directions. This leads to the
interpretation of the primal-dual method as a steepest ascent method.

Figure 2.1 traces the steps of the primal-dual method for a simple ex-
ample.

The Shortest Path Implementation

We will now provide an alternative implementation of the primal-dual method
in terms of a shortest path computation. This is known as the sequential
shortest path method ; it will be seen to be mathematically equivalent with
the primal-dual method given earlier in the sense that it produces the same
sequence of flow–price vector pairs.

Given a pair (x, p) satisfying CS, define the reduced cost of an arc (i, j)
by

rij = aij + pj − pi. (2.2)

Recall that an unblocked path P with respect to x is a path such that xij < cij

for all forward arcs (i, j) ∈ P+ and bij < xij for all backward arcs (i, j) ∈ P−.

Cost/upper flow bound shown
next to each arc
(lower flow bound = 0).
Supply shown next to each
node.

p = 3
g = 0

1

1

p = 6
g = 0

2
2

3

p = 2
g = 0

3

p = 0
g = 0

4
4

0

1 1

1

1 0(h) 1 4

3

2

2

1

5/2

2/3

4/2

1/2

2/1

3/1
1 2

(a) 1 4

3

2

p = 1
g = 0

1

1

p = 2
g = 1

2
2

3

p = 0
g = 0

3

p = 0
g = -1

4
4

0

1 0

1

0 0(f) 1 4

3

2

p = 0
g = 1

1

1

p = 0
g = 2

2
2

p = 0
g = -13

3

p = 0
g = -2

4

4
0

0 0

0

0 0(b)

1

1

1

1

(c)

(e)

(g)

p = 23Δ

p = 42Δ

1p = 2Δ p = 0Δ
4

p = 0Δ
4

p = 0Δ
4

p = 02Δ

p = 22Δ

p = 03Δ

p = 03Δ

1
p = 0Δ

1
p = 1Δ

1 4

3

2

p = 1
g = 0

1
1

p = 0
g = 2

2
2

3

p = 0
g = 0

3

p = 0
g = -2

4
4

0

1 0

0

0 0(d) 1 4

3

2

1 4

3

2

1 4

3

2

1 4

3

2

144 Dual Ascent Methods Chap. 3

Figure 2.1 Example illustrating the primal-dual method, starting with zero prices.

(a) Problem data.

(b) Initial flows, prices, and surpluses.

(c) Augmenting path and price changes Δpi of first iteration (I = {1}).
(d) Flows, prices, and surpluses after the first iteration.

(e) Augmenting path and price changes Δpi of second iteration (I = {2}).
(f) Flows, prices, and surpluses after the second iteration.

(g) Augmenting path and price changes Δpi of third iteration (I = {2}). There are two

price changes here: first p2 increases by 2, and then p1, p2, and p3 increase by 2.

(h) Flows, prices, and surpluses after the third iteration. The algorithm terminates with

an optimal flow–price pair, since all node surpluses are zero.

Sec. 3.2 Primal-Dual (Sequential Shortest Path) Methods 145

Furthermore, P is an augmenting path if its start and end nodes have positive
and negative surplus, respectively. We define the length of an unblocked path
P by

LP =
∑

(i,j)∈P+

rij −
∑

(i,j)∈P−
rij . (2.3)

Note that since (x, p) satisfies CS, all forward arcs of an unblocked path P
must be inactive or balanced, while all backward arcs of P must be active or
balanced [cf. Eqs. (1.6)-(1.8)], so we have

rij ≥ 0, ∀ (i, j) ∈ P+, (2.4)

rij ≤ 0, ∀ (i, j) ∈ P−. (2.5)

Thus, the length of P is nonnegative.
The sequential shortest path method starts each iteration with an integer

pair (x, p) satisfying CS and with a set I of nodes i with gi > 0, and proceeds
as follows.

Sequential Shortest Path Iteration

Construct an augmenting path P with respect to x that has minimum length

over all augmenting paths with respect to x that start at some node i ∈
I. Then, carry out an augmentation along P (cf. Step 3 of the primal-dual

iteration) and modify the node prices as follows: let d be the length of P and

for each node m ∈ N , let dm be the minimum of the lengths of the unblocked

paths with respect to x that start at some node in I and end at m (dm = ∞
if no such path exists). The new price vector p is given by

pm = pm + max{0, d − dm}, ∀ m ∈ N . (2.6)

The method terminates under the following circumstances:

(a) All nodes i have zero surplus; in this case it will be seen that the current
pair (x, p) is primal and dual optimal.

(b) gi ≤ 0 for all i and gi < 0 for at least one i; in this case the problem is
infeasible, since

∑
i∈N si =

∑
i∈N gi < 0.

(c) There is no augmenting path with respect to x that starts at some node
in I; in this case it will be seen that the problem is infeasible.

We will show shortly that the method preserves the integrality and the
CS property of the pair (x, p), and that it terminates.

It is important to note that the shortest path computation can be ex-
ecuted using the standard shortest path algorithms described in Section 1.3.

146 Dual Ascent Methods Chap. 3

The idea is to use rij as the length of each forward arc (i, j) of an unblocked
path, and to reverse the direction of each backward arc (i, j) of an unblocked
path and to use −rij as its length [cf. the unblocked path length formula (2.3)].
In particular, the iteration can be executed using the following procedure.

Consider the residual graph, which has the same node set N of the
original problem graph, and has

an arc (i, j) with length rij for every arc (i, j) ∈ A with xij < cij,

an arc (j, i) with length −rij for every arc (i, j) ∈ A with bij < xij.

[If this creates two arcs in the same direction between two nodes, discard the
arc with the larger length (in case of a tie, discard either arc).] Find a path P
that is shortest among paths of the residual graph that start at some node in I
and end at some node with negative surplus. Find also the shortest distances
dm from nodes of I to all other nodes m [or at least to those nodes m with
dm less than the length of P ; cf. Eq. (2.6)].

Figure 2.2 illustrates the sequential shortest path method and shows the
sequence of residual graphs for the example worked out earlier (cf. Fig. 2.1).

Note here that by Eqs. (2.4) and (2.5), the arc lengths of the residual
graph are nonnegative, so Dijkstra’s method can be used for the shortest
path computation. Since all forward paths in the residual graph correspond
to unblocked paths in the original problem graph, and corresponding paths
have the same length, it is seen that the shortest path P is an augmenting
path as required and that the shortest distances dm yield the vector p defined
by Eq. (2.6). We now prove the validity of the method.

Proposition 2.2: Consider the minimum cost flow problem and assume
that aij , bij , cij , and si are all integer. Then, for the sequential shortest path
method, the following hold:

(a) Each iteration maintains the integrality and the CS property of the pair
(x, p).

(b) If the problem is feasible, then the method terminates with an integer
optimal flow vector x and an integer optimal price vector p.

(c) If the problem is infeasible, then the method terminates either because
gi ≤ 0 for all i and gi < 0 for at least one i, or because there is no
augmenting path starting at some node of the set I and ending at some
node with negative surplus.

Proof: (a) We will show that if the starting pair (x, p) of an iteration is
integer and satisfies CS, the same is true for a pair (x, p) produced by the
iteration. Indeed, a flow augmentation maintains the integrality of the flows,
since the upper and lower flow bounds are assumed integer. Furthermore, the
arc lengths of the residual graph are integer, so by Eq. (2.6), p is integer.

Cost/upper flow bound shown
next to each arc
(lower flow bound = 0).
Supply shown next to each
node.

1

5/2

2/3

4/2

1/2

2/1

3/1

1

2

2
(a) 1 4

3

2

5

2

2

+

0

0

5
0

(f) 1 4

3

2

(b) 1 4

3

2

0

(d) 1 4

3

2

1

(c)
1

p = 1

1 4

3

2

p = 3
1

p = 23

1

1 (g)

p = 62

1 4

3

2

1

(e)

p = 22

1 4

3

2
4

+

0

2

3

+

0

2

2

4
3

6

1 2

4

+

0

0

0

–

–

–

–

Sec. 3.2 Primal-Dual (Sequential Shortest Path) Methods 147

Figure 2.2 The sequential shortest path method applied to the problem of

Fig. 2.1, starting with all zero prices. The sequences of flows, prices, and surpluses

are the same as those generated by the primal-dual method.

(a) Problem data.

(b) Initial residual graph with the arc lengths shown next to the arcs. The nodes

with positive, zero, and negative surplus are indicated by “+”, “0”, and “−”,

respectively.

(c) Shortest augmenting path and changed prices of first iteration (I = {1}).
(d) Residual graph with the arc lengths shown next to the arcs after the first

iteration.

(e) Shortest augmenting path and changed prices of second iteration (I = {2}).
(f) Residual graph with the arc lengths shown next to the arcs after the second

iteration.

(g) Shortest augmenting path and changed prices of third (and final) iteration

(I = {2}).

148 Dual Ascent Methods Chap. 3

To show that (x, p) satisfies CS, consider an arc (i, j) for which xij < cij .
We will show that pi − pj ≤ aij . We distinguish two cases:

(1) xij = cij . In this case, we have bij < xij , the direction of (i, j) is reversed
in the residual graph, and the reverse arc (j, i) lies on the shortest aug-
menting path P . Hence, we have

di ≤ d, dj ≤ d, di = dj − rij .

Using these equations, and Eqs. (2.2) and (2.6), we obtain

pi − pj = pi − pj + max{0, d − di} − max{0, d − dj}
= pi − pj − (di − dj) = pi − pj + rij = aij.

(2) xij < cij . In this case we have

dj ≤ di + rij ,

since (i, j) is an arc of the residual graph with length rij . Using this
relation and the nonnegativity of rij , we see that

max{0, d − di} ≤ max{0, d − dj + rij}
≤ max{rij , d − dj + rij} = max{0, d − dj} + rij .

Hence, we have

pi−pj = pi−pj+max{0, d−di}−max{0, d−dj} ≤ pi−pj+rij = aij.

Thus, in both cases we have pi − pj ≤ aij . We can similarly show that if
bij < xij , then pi − pj ≥ aij , completing the proof of the CS property of the
pair (x, p).

(b) and (c) Every completed iteration in which a shortest augmenting path is
found reduces the total absolute surplus

∑
i∈N |gi| by an integer amount, so

termination must occur. Part (a) shows that at the start of each iteration,
the pair (x, p) satisfies CS. There are two possibilities:

(1) gi ≤ 0 for all i. In this case, either gi = 0 for all i in which case x is
feasible, and x and p are primal and dual optimal, respectively, since
they satisfy CS, or else gi < 0 for some i, in which case the problem is
infeasible.

(2) gi > 0 for at least one i. In this case we can select a nonempty set I of
nodes with positive surplus, form the residual graph, and attempt the
corresponding shortest path computation. There are two possibilities:
either a shortest augmenting path is found, in which case the iteration

Sec. 3.2 Primal-Dual (Sequential Shortest Path) Methods 149

will be completed with an attendant reduction of the total absolute
surplus, or else there is no unblocked path with respect to x from a
node of I to a node with negative surplus. In the latter case, we claim
that the problem is infeasible. Indeed, by Prop. 2.2 in Section 1.2 (more
accurately, the generalization given in Exercise 2.12 in Section 1.2), there
exists a saturated cut Q = [S,N −S] such that all nodes of I belong to
S and all nodes with negative surplus belong to N −S. The flux across
Q is equal to the capacity C(Q) of Q and is also equal to the sum of
the divergences of the nodes of S, which is

∑
i∈S(si − gi) [cf. Eq. (1.11)].

Since gi ≥ 0 for all i ∈ S, gi > 0 for the nodes i ∈ I, and I ⊂ S, we see
that

C(Q) <
∑
i∈S

si.

This implies that the problem is infeasible, since for any feasible flow
vector we must have

∑
i∈S si = F (Q) ≤ C(Q), where F (Q) is the corre-

sponding flux across Q.

Thus, termination of the algorithm must occur in the manner stated in the
proposition. Q.E.D.

By appropriately adapting the shortest path algorithms of Section 1.3,
one can obtain a variety of implementations of the sequential shortest path
iteration. Here is an example, which adapts the generic single origin/single
destination algorithm of Section 1.3.4 and supplements it with a labeling
procedure that constructs the augmenting path. We introduce a candidate
list V , a label di for each node i, a shortest distance estimate d, and a node j
whose initial choice is immaterial. Given a pair (x, p) satisfying CS and a set
I of nodes with positive surplus, we set initially

V = I, d = ∞,

di = 0, ∀ i ∈ I, di = ∞, ∀ i /∈ I.

The shortest path computation proceeds in steps and terminates when V is
empty. The typical step (assuming V is nonempty) is as follows:

Typical Shortest Path Step in a Sequential Shortest Path Iteration

Remove a node i from V . For each outgoing arc (i, j) ∈ A, with xij < cij , if

di + rij < min{dj , d},

give the label “(i, j)” to j, set

dj := di + rij ,

150 Dual Ascent Methods Chap. 3

add j to V if it does not already belong to V , and if gj < 0, set d = di + rij

and j = j. Also, for each incoming arc (j, i) ∈ A, with bji < xji, if

di − rji < min{dj , d},

give the label “(j, i)” to j, set

dj := di − rji,

add j to V if it does not already belong to V , and if gj < 0, set d = di − rji

and j = j.

When the shortest path computation terminates, an augmenting path
of length d can be obtained by tracing labels backward from the node j to
some node i ∈ I. The new price vector p is obtained via the equation pm =
pm + max{0, d − dm} for all m ∈ N [cf. Eq. (2.6)]. Note that if the node i
removed from V has the minimum label property

di = min
j∈V

dj,

the preceding algorithm corresponds to Dijkstra’s method.
We finally note that the primal-dual method discussed earlier and the

sequential shortest path method are mathematically equivalent in that they
produce identical sequences of pairs (x, p), as shown by the following propo-
sition (for an example, compare the calculations of Figs. 2.1 and 2.2). In fact
with some thought, it can be seen that the primal-dual iteration amounts to
the use of a form of Dijkstra’s algorithm to calculate the shortest augmenting
path and the corresponding distances.

Proposition 2.3: Suppose that a primal-dual iteration starts with a pair
(x, p), and let I be the initial set of nodes i with gi > 0. Then:

(a) An augmenting path P may be generated in the augmentation Step 3 of
the iteration (through some order of operations in Steps 1 and 2) if and
only if P has minimum length over all augmenting paths with respect
to x that start at some node in I.

(b) If p is the price vector produced by the iteration, then

pm = pm + max{0, d − dm}, ∀ m ∈ N , (2.7)

where d is the length of the augmenting path P of the iteration and for
each m ∈ N , dm is the minimum of the lengths of the unblocked paths
with respect to x that start at some node in I and end at m.

Proof: Let k ≥ 0 be the number of price changes of the iteration. If k = 0,
i.e., no price change occurs, then any augmenting path P that can be produced

Sec. 3.2 Primal-Dual (Sequential Shortest Path) Methods 151

by the iteration consists of balanced arcs, so its length is zero. Hence P has
minimum length as stated in part (a). Furthermore, p = p, which verifies Eq.
(2.7).

Assume that k ≥ 1, let Sk, k = 1, . . . , k, be the set of scanned nodes S
when the kth price change occurs, and let γk, k = 1, . . . , k, be the correspond-
ing price increment [cf. Eq. (2.1)]. Let also Sk+1 be the set S at the end of
the iteration. We note that the sets Sk (and hence also γk) depend only on
(x, p) and the set I, and are independent of the order of operations in Steps 1
and 2. In particular, S1 − I is the set of all nodes j such that there exists an
unblocked path of balanced arcs [with respect to (x, p)] that starts at some
node i ∈ I and ends at j. Thus, S1 and also γ1, is uniquely defined by I and
(x, p). Proceeding inductively, it is seen that Sk+1 − Sk is the set of all nodes
j such that there exists an unblocked path of balanced arcs [with respect to
(x, pk), where pk is the price vector after k price changes] that starts at some
node i ∈ Sk and ends at j. Thus, Sk+1 and γk+1 are uniquely defined by I and
(x, p) if S1, . . . ,Sk and γ1, . . . , γk are.

It can be seen from Eq. (2.1) that for all k,

γk =minimum over the lengths of all (single arc) unblocked paths
starting at a node i ∈ Sk and ending at a node j /∈ Sk.

Using this property, and an induction argument (left for the reader), we
can show that dm, which is defined as the minimum over the lengths of all
unblocked paths that start at some node i ∈ I and end at node m, satisfies
for all k,

dm = γ1 + γ2 + . . . + γk, ∀ m ∈ Sk+1 − Sk. (2.8)

Furthermore, the length of any unblocked path that starts at some node i ∈ I
and ends at a node m /∈ Sk+1 is larger than γ1 + γ2 + . . . + γk. In particular,
the length of any augmenting path produced by the iteration is

γ1 + γ2 + . . . + γk,

so it has the property stated in part (a). Also, the price vector p produced
by the primal-dual iteration is given by

pm =
{

pm + γ1 + γ2 + . . . + γk if m ∈ Sk+1 − Sk, k = 1, . . . , k,
pm otherwise,

which in view of Eq. (2.8), agrees with Eq. (2.7). Q.E.D.

Cost/upper flow bound shown
next to each arc
(lower flow bound = 0).
Supply or demand shown next
to each node.

5/2

2/3

6/2

2/1

3/1 3/10

2/10

0/51

2

1

2

1 0

3

2

5
-2/1

0

152 Dual Ascent Methods Chap. 3

E X E R C I S E S

Exercise 2.1

Use the primal-dual method and the sequential shortest path method to solve

the problem of Fig. 2.3. Verify that the two methods yield the same sequence

of flows and prices (with identical initial data and appropriate choices of the

initial sets I and augmenting paths).

Figure 2.3 Minimum cost flow problem for Exercise 2.1.

Exercise 2.2 (Relation of Primal-Dual and Ford-Fulkerson)

Consider the Ford-Fulkerson algorithm for the max-flow problem, where bij =

0 for all (i, j) ∈ A. Show that the method can be interpreted as an application

of the primal-dual method to the minimum cost flow formulation of the max-

flow problem of Example 1.2 in Section 1.1, starting with p = 0 and x = 0

[except for the flow of the artificial arc (t, s), which must be at its upper

bound to satisfy CS]. Show in particular that all iterations of the primal-dual

method start at s and terminate with an augmentation along a path ending

at t. Furthermore, the method will execute only one price change, which

will occur after a minimum cut is identified. The last iteration consists of an

augmentation along the artificial arc (t, s).

Exercise 2.3 (Relation of Primal-Dual and Dijkstra)

Consider the shortest path problem with node 1 being the origin and all other

nodes being destinations. Formulate this problem as a minimum cost flow

problem with the origin having supply N − 1 and all destinations having

supply −1. Assume that all arc lengths are nonnegative. Start with all flows

and prices equal to zero, and apply the primal-dual method. Show that the

Sec. 3.3 The Relaxation Method 153

method is equivalent to Dijkstra’s algorithm. In particular, each augmentation

uses a shortest path from the origin to some destination, the augmentations

are done in the order of the destinations’ proximity to the origin, and upon

termination, p1 − pi gives the shortest distance from 1 to each destination i

that can be reached from the origin via a forward path.

Exercise 2.4 (Noninteger Problem Data)

Verify that the primal-dual method terminates even when the arc costs are

noninteger. (Note, however, that the arc flow bounds must still be integer;

the max-flow example of Exercise 2.9 in Section 1.2 applies to the primal-dual

method as well, in view of the relation described in Exercise 2.2.) Modify the

primal-dual method so that augmenting paths have as few arcs as possible.

Show that with this modification, the arc flow bounds need not be integer for

the method to terminate. How should the sequential shortest path method be

modified so that it terminates even when the problem data are not integer?

3.3 THE RELAXATION METHOD

This method admits a similar implementation as the primal-dual method but
computes ascent directions much faster. In particular, while in the primal-
dual method we continue to enlarge the scanned set S until it is equal to the
labeled set L (in which case we are sure that dS is an ascent direction), in the
relaxation method we stop adding nodes to S immediately after dS becomes an
ascent direction [this is done by computing the directional derivative q′(p; dS)
using an efficient incremental method and by checking its sign]. In practice,
S often consists of a single node, in which case the ascent direction is a single
price coordinate, leading to the interpretation of the method as a coordinate
ascent method . Unlike the primal-dual method, the relaxation method cannot
be implemented using a shortest path computation.

As in the primal-dual method, at the start of the typical iteration we
have an integer pair (x, p) satisfying CS. The iteration indicates that the
primal problem is infeasible, or else indicates that (x, p) is optimal, or else
transforms this pair into another pair satisfying CS. In particular, if gi ≤ 0
for all i, then there are two possibilities: (1) gi < 0 for some i, in which case∑

i∈N si < 0 and the problem is infeasible, or (2) gi = 0 for all i, in which case
x is feasible and therefore also optimal, since it satisfies CS together with p.
In either case, the algorithm terminates.

If on the other hand we have gi > 0 for at least one node i, the iteration
starts by selecting a node i with gi > 0. As in the primal-dual method, the
iteration maintains two sets of nodes S and L, with S ⊂ L. At the start of the

154 Dual Ascent Methods Chap. 3

iteration, S is empty and L consists of the node i with gi > 0. The iteration
also maintains a label for every node i ∈ L except for the starting node i; the
label is an incident arc of i.

Typical Relaxation Iteration

Step 0 (Initialization): Select a node i with gi > 0. [If no such node can

be found, terminate; the pair (x, p) is optimal if gi = 0 for all i; otherwise the

problem is infeasible.] Set L := {i} and S := empty, and go to Step 1.

Step 1 (Choose a Node to Scan): If S = L, go to Step 4; else select a

node i ∈ L − S, set S := S ∪ {i}, and go to Step 2.

Step 2 (Label Neighbor Nodes of i): If

q′(p; dS) > 0, (3.1)

go to Step 4; else add to L all nodes j /∈ L such that either (j, i) is balanced

and bji < xji or (i, j) is balanced and xij < cij ; also for every such j, give to j

the label “(j, i)” if (j, i) is balanced and bji < xji, and otherwise give to j the

label “(i, j).” If for every node j just added to L, we have gj ≥ 0, go to Step

1; else select one of these nodes j with gj < 0 and go to Step 3.

Step 3 (Flow Augmentation): An augmenting path P has been found that

begins at the starting node i and ends at the node j identified in Step 2. The

path is constructed by tracing labels backward starting from j, and is such

that we have

xmn < cmn, ∀ (m, n) ∈ P +, (3.2)

xmn > bmn, ∀ (m, n) ∈ P−, (3.3)

where P + and P− are the sets of forward and backward arcs of P , respectively.

Let

δ = min
{
gi,−gj , {cmn − xmn | (m, n) ∈ P +}, {xmn − bmn | (m, n) ∈ P−}

}
.

Increase by δ the flows of all arcs in P +, decrease by δ the flows of all arcs in

P−, and go to the next iteration.

Step 4 (Price Change): Set

xij = cij , ∀ balanced arcs (i, j) with i ∈ S, j /∈ S, (3.4)

xji = bji, ∀ balanced arcs (j, i) with i ∈ S, j /∈ S. (3.5)

Sec. 3.3 The Relaxation Method 155

Let

γ = min
{
{pj + aij − pi | (i, j) ∈ A, xij < cij , i ∈ S, j /∈ S},
{pj − aji − pi | (j, i) ∈ A, bji < xji, i ∈ S, j /∈ S}

}
.

(3.6)

Set

pi :=

{
pi + γ, if i ∈ S
pi, otherwise.

(3.7)

Go to the next iteration. [Note: As in the case of the primal-dual iteration,

if after the flow adjustments of Eqs. (3.4) and (3.5) there is no arc (i, j) with

xij < cij , i ∈ S, and j /∈ S, or arc (j, i) with bji < xji, i ∈ S, and j /∈ S, the

problem is infeasible and the algorithm terminates.]

It can be seen that the relaxation iteration is quite similar to the primal-
dual iteration. However, there are two important differences. First, in the
relaxation iteration, after a price change in Step 4, we do not return to Step
1 to continue the search for an augmenting path like we do in the primal-dual
method. Thus, the relaxation iteration terminates either with an augmenta-
tion as in Step 3 or with a price change as in Step 4, in contrast with the
primal-dual iteration, which can only terminate with an augmentation. The
second and more important difference is that in the relaxation iteration, a
price change may be performed in Step 4 even if S �= L [cf. Eq. (3.1)]. It is
because of this feature that the relaxation method identifies ascent directions
faster than the primal-dual method. Note that in contrast with the primal-
dual method, the total absolute surplus

∑
i∈N |gi| may increase as a result of

a relaxation iteration.

An important property of the method is that each time we enter Step 4,
dS is an ascent direction. To see this note that there are two possibilities: (1)
we have S = L (cf. Step 1) in which case dS is an ascent direction similar to
the corresponding situation in the primal-dual method, or (2) we have S �= L
(cf. Step 2) in which case by Eq. (3.1) dS is an ascent direction.

It is possible to “combine” several iterations of the relaxation method
into a single iteration in order to save computation time, and this is done
judiciously in the RELAX codes, which are public domain implementations
of the relaxation method [BeT88], [BeT90]. Figure 3.1 traces the steps of the
method for a simple example.

The following proposition establishes the validity of the method.

Proposition 3.1: Consider the minimum cost flow problem and assume
that aij , bij , cij , and si are all integer. If the problem is feasible, then the
relaxation method terminates with an integer optimal flow vector x and an
integer optimal price vector p.

Cost/upper flow bound
shown next to each arc
(lower flow bound = 0).
Supply shown next to each
node.

3

(i)

1

5/2

0/5

4/3

1/2

2/1

3/2

3 4
(a) 1 4

3

2

(f)

(c)

(e)

(g)

(b)

(d)

(h)

p = 7
g = 0

1

1

p = 2
g = 2

2
2

3

p = 0
g = 1

3

p = 0
g = -3

4

4
1

2 0

1

0 01 4

3

2

p = 0
g = 3

1

1

p = 0
g = 2

2
2

p = 0
g = -13

3

p = 0
g = -4

4

4
0

0 0

0

0 01 4

3

2

p = 5
g = 1

1
1

p = 0
g = 2

2
2

3

p = 0
g = 1

3

p = 0
g = -4

4
4

0

2 0

0

0 01 4

3

2

p = 9
g = 0

1

1

3

p = 0
g = 1

3

p = 0
g = -1

4
4

1

2 2

1

2 01 4

3

2

p = 9
g = 0

1

1

p = 4
g = 2

2
2

3

p = 0
g = 1

3

p = 0
g = -3

4

4
1

1 0

1

0 01 4

3

2

p = 1
g = 3

1

1

p = 0
g = 2

2
2

p = 0
g = -13

3

0

0 0

0

0 01 4

3

2

p = 7
g = 1

1
1

p = 2
g = 2

2
2

3

p = 0
g = 1

3

p = 0
g = -4

4
4

0

2 0

0

0 01 4

3

2

p = 9
g = 0

1

1

p = 4
g = 0

2
2

3

p = 0
g = 0

3

p = 0
g = 0

4
4

1

2

1

2 01 4

3

2

2

p = 0
g = -4

4
4

p = 4
g = 0

2
2

156 Dual Ascent Methods Chap. 3

Figure 3.1 An illustration of the relaxation method, starting with all zero prices.

(a) Problem data.

(b) Initial flows, prices, and surpluses.

(c) After the first iteration, which consists of a price change of node 1.

(d) After the second iteration, which consists of another price change of node 1 [note the

flow change of arc (1,3); cf. Eq. (3.4)].

(e) After the third iteration, which consists of a price change of nodes 1 and 2.

(f) After the fourth iteration, which consists of an augmentation along the path (1, 2, 4).

(g) After the fifth iteration, which consists of a price change of nodes 1 and 2.

(h) After the sixth iteration, which consists of an augmentation along the path (2, 3, 4).

(i) After the seventh iteration, which consists of an augmentation along the path (3, 4).

Sec. 3.3 The Relaxation Method 157

Proof: The proof is similar to the corresponding proof for the primal-dual
method (cf. Prop. 2.1). We first note that all operations of the iteration
preserve the integrality of the flow–price vector pair. To see that CS is also
maintained, note that a flow augmentation step changes only flows of balanced
arcs and therefore cannot destroy CS. Furthermore, the flow changes of Eqs.
(3.4) and (3.5), and the price changes of Eqs. (3.6) and (3.7) maintain CS,
because they set the flows of the balanced arcs that the price change renders
active (or inactive) to the corresponding upper (or lower) bounds.

Every time there is a price change in Step 4, there is a strict improvement
in the dual cost by the integer amount γq′(p; dS) [using the CS property, it
can be seen that γ > 0, and as argued earlier, dS is an ascent direction
so q′(p; dS) > 0]. Thus, for a feasible problem, we cannot have an infinite
number of price changes. On the other hand, it is impossible to have an
infinite number of flow augmentations between two successive price changes,
since each of these reduces the total absolute surplus by an integer amount. It
follows that the algorithm can execute only a finite number of iterations, and
must terminate. Since upon termination x is feasible and satisfies CS together
with p, it follows that x is primal-optimal and p is dual-optimal. Q.E.D.

If the problem is infeasible, the method may terminate because gi ≤ 0
for all i and gi < 0 for at least one i, or because after the flow adjustments of
Eqs. (3.4) and (3.5) in Step 4, there is no arc (i, j) with xij < cij , i ∈ S, and
j /∈ S, or arc (j, i) with bji < xji, i ∈ S, and j /∈ S. However, there is also the
possibility that the method will execute an infinite number of iterations and
price changes, with the prices of some of the nodes increasing to ∞. Exercise
3.2 shows that, when the problem is feasible, the node prices stay below a
certain precomputable bound in the course of the algorithm. This fact can be
used as an additional test to detect infeasibility.

It is important to note that the directional derivative q′(p; dS) needed
for the ascent test (3.1) in Step 2 can be calculated incrementally (as new
nodes are added one-by-one to S) using the equation

q′(p; dS) =
∑
i∈S

gi −
∑

(j,i): balanced, j /∈S, i∈S

(xji − bji)

−
∑

(i,j): balanced, i∈S, j /∈S

(cij − xij);
(3.8)

cf. Eq. (1.13). Indeed, it follows from this equation that, given q′(p; dS) and a
node i /∈ S, one can calculate the directional derivative corresponding to the

158 Dual Ascent Methods Chap. 3

enlarged set S ∪ {i} using the formula

q′(p; dS∪{i}) = q′(p; dS) +
∑

{j|(i,j): balanced, j∈S}

(xij − bij)

+
∑

{j|(j,i): balanced, j∈S}

(cji − xji)

−
∑

{j|(j,i): balanced, j /∈S}

(xji − bji)

−
∑

{j|(i,j): balanced, j /∈S}

(cij − xij).

(3.9)

This formula is convenient because it involves only the incident balanced arcs
of the new node i, which must be examined anyway while executing Step 2.

In practice, the method is implemented using iterations that start from
both positive and negative surplus nodes. This seems to improve substantially
the performance of the method. It can be shown that for a feasible problem,
the algorithm terminates properly under these circumstances (Exercise 3.3).
Another important practical issue has to do with the initial choice of flows
and prices. One possibility is to try to choose an initial price vector that is
as close to optimal as possible (for example, using the results of some earlier
optimization); one can then choose the arc flows to satisfy the CS conditions.

Line Search and Coordinate Ascent Iterations

The stepsize γ of Eq. (3.6) corresponds to the first break point of the piece-
wise linear dual function along the ascent direction dS . It is also possible to
calculate through a line search an optimal stepsize that maximizes the dual
function along dS . We leave it for the reader to verify that this computation
can be done quite economically, using Eq. (1.10) or Eq. (1.13) to test the sign
of the directional derivative of the dual function at successive break points
along dS . Computational experience shows that a line search is beneficial in
practice. For this reason, it has been used in the RELAX codes [BeT88],
[BeT90].

Consider now the case where there is a price change via Step 4 and the
set S consists of just the starting node, say node i. This happens when the
iteration scans the incident arcs of i at the first time Step 2 is entered and finds
that the corresponding coordinate direction leads to a dual cost improvement
[q′

(
p; d{i}

)
> 0]. If line search of the type just described is performed, the

price pi is changed to a break point where the right derivative is nonpositive
and the left derivative is nonnegative (cf. Fig. 3.2).

A precise description of this single-node relaxation iteration with line
search, starting from a pair (x, p) satisfying CS, is as follows:

1 2

3 4

i

[0,20] [0,10]

[0,20] [0,30]

Price of node i

Dual cost along pi

Values of p for which the corresponding
incident arcs become balanced

i

Slope = 40

Slope = 20

Slope = 10 Slope = -10

Slope = -40

Maximizing point where

p - a1 1i p + a4 i 43 3 ip - a2 i 2p + a

right derivative ≤ 0 ≤ left derivative

Sec. 3.3 The Relaxation Method 159

Figure 3.2 Illustration of single-node relaxation iteration. Here, node i

has four incident arcs (1, i), (3, i), (i, 2), and (i, 4) with flow ranges [0, 20], [0, 20],

[0, 10], and [0, 30], respectively, and supply si = 0. The arc costs and current

prices are such that

p1 − a1i ≤ p2 + ai2 ≤ p3 − a3i ≤ p4 + ai4,

as shown in the figure. The break points of the dual cost along the price pi

correspond to the values of pi at which one or more incident arcs to node i become

balanced. For values between two successive break points, there are no balanced

arcs. For any price pi to the left of the maximizing point, the surplus gi must be

positive to satisfy CS. A single-node iteration with line search increases pi to the

maximizing point.

Single-Node Relaxation Iteration

Choose a node i with gi > 0. Let

B+
i = {j | (i, j) : balanced, xij < cij}, (3.10)

B−
i = {j | (j, i) : balanced, bji < xji}. (3.11)

160 Dual Ascent Methods Chap. 3

Step 1: If

gi ≥
∑
j∈B+

i

(cij − xij) +
∑
j∈B−

i

(xji − bji),

go to Step 4. Otherwise, if gi > 0, choose a node j ∈ B+
i with gj < 0 and go

to Step 2, or choose a node j ∈ B−
i with gj < 0 and go to Step 3; if no such

node can be found, or if gi = 0, go to the next iteration.

Step 2 (Flow Adjustment on Outgoing Arc): Let

δ = min{gi,−gj , cij − xij}.

Set

xij := xij + δ, gi := gi − δ, gj := gj + δ

and if xij = cij , delete j from B+
i ; go to Step 1.

Step 3 (Flow Adjustment on Incoming Arc): Let

δ = min{gi,−gj , xji − bji}.

Set

xji := xji − δ, gi := gi − δ, gj := gj + δ

and if xji = bji, delete j from B−
i ; go to Step 1.

Step 4 (Increase Price of i): Set

gi := gi −
∑
j∈B+

i

(cij − xij) −
∑
j∈B−

i

(xji − bji), (3.12)

xij = cij , ∀ j ∈ B+
i , (3.13)

xji = bji, ∀ j ∈ B−
i , (3.14)

pi := min
{
{pj + aij | (i, j) ∈ A, pi < pj + aij},
{pj − aji | (j, i) ∈ A, pi < pj − aji}

}
.

(3.15)

If after these changes gi > 0, recalculate the sets B+
i and B+

i using Eqs. (3.10)

and (3.11), and go to Step 1; else, go to the next iteration. [Note: If the set

of arcs over which the minimum in Eq. (3.15) is calculated is empty, there are

two possibilities: (a) gi > 0, in which case it can be shown that the dual cost

increases without bound along pi and the primal problem is infeasible, or (b)

gi = 0, in which case the cost stays constant along pi; in this case we leave p

unchanged and go to the next iteration.]

Sec. 3.3 The Relaxation Method 161

Note that the single-node iteration may be unsuccessful in that it may
fail to change either x or p. In this case, it should be followed by a regular
relaxation iteration that labels the appropriate neighbors of node i, etc. Ex-
perience has shown that the most efficient way to implement the relaxation
iteration is to first attempt its single-node version; if this fails to change x or
p, then we proceed with the multiple node version, while salvaging whatever
computation is possible from the single-node attempt. The RELAX codes
[BeT88], [BeT90] make use of this idea. Experience shows that single-node
iterations are very frequent in the early stages of the relaxation algorithm and
account for most of the total dual cost improvement, but become much less
frequent near the algorithm’s termination.

A careful examination of the single-node iteration logic shows that in
Step 4, after the surplus change of Eq. (3.12), the surplus gi may be equal
to zero; this will happen if gi = 0 and simultaneously there is no balanced
arc (i, j) with xij < cij , or balanced arc (j, i) with bji < xji. In this case, it
can be shown (see also Fig. 3.2) that the price change of Eq. (3.15) leaves the
dual cost unchanged, corresponding to movement of pi along a flat segment
to the next breakpoint of the dual cost, as shown in Fig. 3.3. This is known
as a degenerate ascent iteration. Computational experience has shown that it
is generally preferable to allow such iterations whenever possible. For special
types of problems such as assignment, the use of degenerate ascent iterations
can reduce dramatically the overall computation time.

We finally note that single-node relaxation iterations may be used to
initialize the primal-dual method. In particular, one may start with several
cycles of single-node iterations, where each node with nonzero surplus is taken
up for relaxation once in each cycle. The resulting pair (x, p) is then used as
a starting pair for the primal-dual method. Experience has shown that this
initialization procedure is very effective.

E X E R C I S E S

Exercise 3.1

Use the relaxation method to solve the problem of Fig. 2.3.

Exercise 3.2 (An Infeasibility Test for the Relaxation Method)

Consider the relaxation method, let p0
i be the initial price of node i, and let M

be the set of nodes that have negative surplus initially. For every simple path

P that ends at a node j ∈ M, let HP be the sum of the costs of the forward

arcs of the path minus the sum of the costs of the backward arcs of the path,

and let H = maxP HP . Show that, if the problem is feasible, then during the

Price of node i

Dual cost along pi

Slope = 30

Slope = 10 Slope = -10Slope = 0

Slope = -40

p - a1 1i p + a4 i 43 3 ip - a2 i 2p + a

Set of maximizing points

Values of p for which the corresponding
incident arcs become balanced

i

1 2

3 4

i

[0,20] [0,10]

[0,10] [0,30]

162 Dual Ascent Methods Chap. 3

Figure 3.3 Illustration of a degenerate price increase. The difference

between this example and the example of Fig. 3.2 is that the feasible flow range

of arc (3, i) is now [0, 10] instead of [0, 20]. Here, there is a flat segment of the

graph of the dual cost along pi, corresponding to maximizing points. A degenerate

price increase moves pi from the extreme left maximizing point to the extreme

right maximizing point.

course of the algorithm, the price of any positive surplus node cannot exceed

its initial price by more than H + maxj∈M p0
j − mini∈N p0

i . Discuss how to use

this bound to test for problem infeasibility in the relaxation method. Hint:
Observe that at any point in the algorithm the prices of all nodes with negative

surplus have not changed since the start of the algorithm. Show also that if

i is a node with positive surplus, there must exist some node with negative

surplus j and an unblocked path starting at i and ending at j.

Exercise 3.3

Write the form of the relaxation iteration starting from both positive and

negative surplus nodes. Show that the method terminates at an optimal flow–

price vector pair if a feasible solution exists. Hint : Show that each price

Sec. 3.4 Implementation Issues 163

change improves the dual cost by an integer amount, while there can be only

a finite number of flow augmentations between successive price changes.

3.4 IMPLEMENTATION ISSUES

For the application of the methods of this chapter, one can represent the prob-
lem using the five arrays START , END , COST , CAPACITY , and SUPPLY ,
as in simplex methods (cf. Section 2.4). For an efficient implementation, how-
ever, it is essential to provide additional data structures that facilitate the
labeling operations, the ascent steps of Step 4, and the shortest path com-
putations. In particular, it is necessary to have easy access to the set of all
incident arcs of each node. This can be done with the help of the following
four additional arrays.

FIRST IN (i): The first arc incoming to node i (= 0 if i has no incoming
arcs).

FIRST OUT (i): The first arc outgoing from node i (= 0 if i has no
outgoing arcs).

NEXT IN (a): The arc following arc a with the same end node as a (= 0
if a is the last incoming arc of the end node of a).

NEXT OUT (a): The arc following arc a with the same start node as a
(= 0 if a is the last outgoing arc of the start node of a).

Figure 5.1 illustrates these arrays. As an example of their use, suppose
that we want to scan all the incoming arcs of node i. We first obtain the
arc a1 = FIRST IN(i), then the arc a2 = NEXT IN(a1), then the arc a3 =
NEXT IN(a2), etc., up to the arc ak for which NEXT IN(ak) = 0.

It is possible to forgo the use of the array NEXT OUT if the arcs are
stored in the order of their starting node, that is, the arcs outgoing from each
node i are arcs FIRST OUT (i) to FIRST OUT (i + 1) − 1 . Then the array
FIRST OUT is sufficient to generate all arcs outgoing from any one node.
Some codes (for example the assignment codes of Appendixes A.4 and A.5)
use this device; they require that the arcs of the problem be ordered by starting
node, thereby saving storage of one array (and usually some computation as
well). The drawback to this idea is that it complicates sensitivity analysis. In
particular, if the problem data are changed to add or remove some arcs, all
the arrays describing the problem, except for SUPPLY , must be recompiled.

An additional data structure, useful primarily for the relaxation method,
stores the balanced incident arcs of each node so as to facilitate the labeling
step (Step 2). These arcs can be stored in two arrays of length N and two ar-
rays of length A, much like the arrays FIRST IN , FIRST OUT , NEXT IN ,

4/2

0/1

2/1

-5/10

Cost/upper flow
bound shown
next to each arc

5/2

2/3

3/1

-2/10

0/51

2

1

2

1 4

3

2

5

0

164 Dual Ascent Methods Chap. 3

ARC START END COST CAPACITY NEXT IN NEXT OUT

1 1 2 5 2 4 2

2 1 3 0 1 3 0

3 2 3 4 2 0 5

4 3 2 3 1 0 7

5 2 5 -2 10 0 6

6 2 4 2 1 7 0

7 3 4 2 3 8 0

8 5 4 0 5 0 0

9 4 5 -5 10 5 0

NODE SUPPLY FIRST IN FIRST OUT

1 1 0 1

2 2 1 3

3 -2 2 4

4 0 6 9

5 -1 9 8

Figure 4.1 Representation of the data of a minimum cost flow problem in

terms of the nine arrays START , END , COST , CAPACITY , SUPPLY , FIRST IN ,

FIRST OUT , NEXT IN , and NEXT OUT .

Sec. 3.5 Notes and Sources 165

and NEXT OUT . However, as the set of balanced arcs changes in the course
of the algorithm, the arrays used to store this set must be updated. We will
not go into further details, but the interested reader can study the RELAX
codes [BeT88], [BeT90] to see how this can be done efficiently.

Overall it can be seen that dual ascent methods require more arrays
of length A than simplex methods, and therefore also more storage space
(roughly twice as much).

3.5 NOTES AND SOURCES

3.1. A dual ascent method that we did not cover here is the dual simplex
method. This is a general linear programming method that has been special-
ized to the minimum cost flow problem by several authors (see e.g. [HeK77],
[JeB80]) but has not achieved much popularity.

3.2. The primal-dual method was first proposed in [Kuh55] for assignment
problems under the name “Hungarian method.” The method was generalized
to the minimum cost flow problem in [FoF56a] and [FoF57]. A further gen-
eralization, the out-of-kilter method, was proposed independently in [FoF62]
and [Min60]; see [Law76], [Roc84], and [BJS90] for detailed discussions. The
out-of-kilter method can get started with any flow–price vector pair, not nec-
essarily one that satisfies CS. It appears, however, that there isn’t much that
can be gained in practice by this extra flexibility, since for any given flow–price
vector pair one can modify very simply the arc flows to satisfy CS. A method
that is closely related to the primal-dual method and emphasizes the shortest
path implementation was given by [BuG61]. An extension of the primal-dual
method to network problems with gains was given in [Jew62], and extensions
of the primal-dual and out-of-kilter methods to network flow problems with
separable convex cost functions are given in [Roc84]. Primal-dual methods for
the assignment problem are discussed in [Eng82], [McG83], [Der85], [CaS86],
[CMT88]. Combinations of naive auction and sequential shortest path meth-
ods are discussed in [Ber81], [JoV86], [JoV87]; the code of Appendix A.5 is
based on these references. Variations of the Hungarian and the primal-dual
methods that are well suited for parallel computation have been developed in
[BMP89], [BeC90a], and [BeC90b].

One can show a pseudopolynomial worst-case bound on the running
time of the primal-dual method. The (practical) average running time of
the method, however, is much better than the one suggested by this bound.
It is possible to convert the algorithm to a polynomial one by using scaling
procedures; see [EdK72] and [BlJ85]. Unfortunately, these procedures do not
seem to improve the algorithm’s performance in practice.

Despite the fundamentally different principles underlying the simplex
and primal-dual methods (primal cost versus dual cost improvement), these

166 Dual Ascent Methods Chap. 3

methods are surprisingly related. It can be shown that the big-M version
of the simplex method with a particular pivot selection rule is equivalent to
the steepest ascent version of the primal-dual method [Zad79]. This suggests
that the simplex method with the empirically best pivot selection rule should
be more efficient in practice than the primal-dual method. Computational
experience tends to agree with this conjecture. However, in many practical
contexts, the primal-dual method has an advantage: it can easily use a good
starting flow and price vector pair, obtained for example from the solution of
a slightly different problem by modifying some of the arc flows to satisfy CS;
this is true of all the methods of this chapter. Simplex methods are generally
less capable of exploiting such prior knowledge; see also the discussion on
sensitivity analysis in Section 5.5.

3.3. The relaxation method was first proposed in the context of the assign-
ment problem by the author in [Ber81]. Its extension to the general minimum
cost flow problem was given in [Ber82b]. References [BeT85] and [Tse86]
consider the case where the problem data are noninteger. The relaxation
method has been extended to network flow problems with gains ([BeT85]
and [Tse86]), to general linear programs ([Tse86] and [TsB87a]), to network
flow problems with convex arc cost functions [BHT87], and to monotropic
programming problems [TsB87b]. When the arc cost functions are strictly
convex, the method is particularly well suited for parallel implementation; see
[BeE87a], [BHT87], [ElB89], [ChZ90], and [TBT90].

Extensive computational experience shows that the relaxation method
typically outperforms primal-dual methods substantially for general minimum
cost flow problems. In fact, primal-dual methods can often be speeded up con-
siderably by initialization with a number of single-node relaxation iterations,
although not to the point of challenging the relaxation method. The compari-
son between the relaxation method and simplex methods is less clear, although
the relaxation method seems much faster for randomly generated problems.
The relaxation method is also more capable of exploiting prior knowledge
about an optimal solution; this advantage is shared with the primal-dual
method. On the other hand, in contrast with the simplex method, the re-
laxation method requires that the problem data be integer; modified versions
that can handle noninteger problem data ([BeT85] and [Tse86]), need not
terminate, although they yield optimal solutions asymptotically.

3.4. The data structures for implementation of primal-dual methods briefly
discussed in this section were proposed in [AaM76], and were used in the
construction of an efficient out-of-kilter code. They are well suited for most
types of dual ascent methods.

