
4

Auction Algorithms

In this chapter we will first focus on the assignment problem. We will discuss
and analyze the auction algorithm described in Section 1.2.3, and some of its
variations. We will then present an auction-like algorithm for shortest path
problems. Finally, we will extend the auction algorithm to the minimum cost
flow problem and some of its special cases.

4.1 THE AUCTION ALGORITHM FOR THE ASSIGNMENT
PROBLEM

Recall the assignment problem where we want to match n persons and n
objects on a one-to-one basis. We are given a value or benefit aij for matching
person i with object j, and we want to assign persons to objects so as to
maximize the total benefit. The set of objects to which person i can be
assigned is a nonempty set denoted A(i). An assignment S is a (possibly
empty) set of person-object pairs (i, j) such that j ∈ A(i) for all (i, j) ∈ S; for
each person i there can be at most one pair (i, j) ∈ S; and for every object j
there can be at most one pair (i, j) ∈ S. Given an assignment S, we say that
person i is assigned if there exists a pair (i, j) ∈ S; otherwise we say that i
is unassigned . We use similar terminology for objects. An assignment is said
to be feasible if it contains n pairs, so that every person and every object is
assigned; otherwise the assignment is called partial .

167

168 Auction Algorithms Chap. 4

4.1.1 The Main Auction Algorithm

The auction algorithm, described somewhat loosely in Section 1.2.3, proceeds
iteratively and terminates when a feasible assignment is obtained. At the start
of the generic iteration we have a partial assignment S and a price vector p
satisfying ε-complementary slackness (ε-CS). This is the condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S (1.1)

introduced in Section 1.2.3. As an initial choice, one can use an arbitrary set of
prices together with the empty assignment, which trivially satisfies ε-CS. The
iteration consists of two phases: the bidding phase and the assignment phase
described in the following. We will show later that the iteration preserves the
ε-CS condition.

Bidding Phase

Let I be a nonempty subset of persons i that are unassigned under the assign-

ment S. For each person i ∈ I:

1. Find a “best” object ji having maximum value, that is,

ji = arg max
j∈A(i)

{aij − pj},

and the corresponding value

vi = max
j∈A(i)

{aij − pj}, (1.2)

and find the best value offered by objects other than ji

wi = max
j∈A(i), j �=ji

{aij − pj}. (1.3)

[If ji is the only object in A(i), we define wi to be −∞, or for computa-

tional purposes, a number that is much smaller than vi.]

2. Compute the “bid” of person i given by

biji = pji + vi − wi + ε = aiji − wi + ε. (1.4)

[We characterize this situation by saying that person i bid for object ji,

and that object ji received a bid from person i. The algorithm works if

the bid has any value between pji + ε and pji + vi − wi + ε, but it tends

to work fastest for the maximal choice of Eq. (1.4).]

Sec. 4.1 The Auction Algorithm for the Assignment Problem 169

Assignment Phase

For each object j, let P (j) be the set of persons from which j received a bid

in the bidding phase of the iteration. If P (j) is nonempty, increase pj to the

highest bid,

pj := max
i∈P (j)

bij , (1.5)

remove from the assignment S any pair (i, j) (if j was assigned to some i under

S), and add to S the pair (ij , j), where ij is a person in P (j) attaining the

maximum above.

Note that there is some freedom in choosing the subset of persons I
that bid during an iteration. One possibility is to let I consist of a single
unassigned person. This version, known as the Gauss-Seidel version because
of its similarity with Gauss-Seidel methods for solving systems of nonlinear
equations, usually works best in a serial computing environment. The version
where I consists of all unassigned persons, is the one best suited for parallel
computation; it is known as the Jacobi version because of its similarity with
Jacobi methods for solving systems of nonlinear equations.

During an iteration, the objects whose prices are changed are the ones
that received a bid during the iteration. Each price change involves an increace
of at least ε. To see this, note that from Eqs. (1.2) to (1.4) we have

biji = aiji − wi + ε ≥ aiji − vi + ε = pji + ε,

so each bid for an object, including the winning bid, exceeds the object’s cur-
rent price by at least ε. At the end of the iteration, we have a new assignment
that differs from the preceding one in that each object that received a bid is
now assigned to some person that was unassigned at the start of the iteration.
However, the assignment at the end of the iteration need not have more pairs
than the one at the start of the iteration, because it is possible that all objects
that received a bid were assigned at the start of the iteration.

The choice of bidding increment vi −wi + ε for a person i [cf. Eq. (1.4)]
is such that ε-CS is preserved by the algorithm, as shown by the following
proposition (in fact, it can be seen that it is the largest bidding increment for
which this is so).

Proposition 1.1: The auction algorithm preserves ε-CS throughout its
execution; that is, if the assignment and the price vector available at the start
of an iteration satisfy ε-CS, the same is true for the assignment and the price
vector obtained at the end of the iteration.

Proof: Suppose that object j∗ received a bid from person i and was assigned
to i during the iteration. Let pj and p′j be the object prices before and after
the assignment phase, respectively. Then we have [see Eqs. (1.4) and (1.5)]

p′j∗ = aij∗ − wi + ε.

170 Auction Algorithms Chap. 4

Using this equation, we obtain

aij∗ − p′j∗ = wi − ε = max
j∈A(i), j �=j∗

{aij − pj} − ε.

Since p′j ≥ pj for all j, this equation implies that

aij∗ − p′j∗ ≥ max
j∈A(i)

{aij − p′j} − ε, (1.6)

which shows that the ε-CS condition (1.1) continues to hold after the assign-
ment phase of an iteration for all pairs (i, j∗) that entered the assignment
during the iteration.

Consider also any pair (i, j∗) that belonged to the assignment just before
the iteration, and also belongs to the assignment after the iteration. Then, j∗

must not have received a bid during the iteration, so p′j∗ = pj∗ . Therefore, Eq.
(1.6) holds in view of the ε-CS condition that held prior to the iteration and
the fact p′j ≥ pj for all j. Hence, the ε-CS condition (1.1) holds for all pairs
(i, j∗) that belong to the assignment after the iteration, proving the result.
Q.E.D.

The next result establishes the validity of the algorithm. The proof relies
on the following facts:

(a) Once an object is assigned, it remains assigned throughout the remainder
of the algorithm’s duration. Furthermore, except at termination, there
will always exist at least one object that has never been assigned, and
has a price equal to its initial price. The reason is that a bidding and
assignment phase can result in a reassignment of an already assigned
object to a different person, but cannot result in the object becoming
unassigned.

(b) Each time an object receives a bid, its price increases by at least ε [see
Eqs. (1.4) and (1.5)]. Therefore, if the object receives a bid an infinite
number of times, its price increases to ∞.

(c) Every |A(i)| bids by person i, where |A(i)| is the number of objects in
the set A(i), the scalar vi defined by the equation

vi = max
j∈A(i)

{aij − pj} (1.7)

decreases by at least ε. The reason is that a bid by person i either
decreases vi by at least ε, or else leaves vi unchanged because there is
more than one object j attaining the maximum in Eq. (1.7). However,
in the latter case, the price of the object ji receiving the bid will increase
by at least ε, and object ji will not receive another bid by person i until

Sec. 4.1 The Auction Algorithm for the Assignment Problem 171

vi decreases by at least ε. The conclusion is that if a person i bids an
infinite number of times, vi must decrease to −∞.

Proposition 1.2: If at least one feasible assignment exists, the auction
algorithm terminates with a feasible assignment that is within nε of being
optimal (and is optimal if the problem data are integer and ε < 1/n).

Proof: We argue by contradiction. If termination did not occur, the subset
J∞ of objects that received an infinite number of bids is nonempty. Also, the
subset of persons I∞ that bid an infinite number of times is nonempty. As
argued in (b) above, the prices of the objects in J∞ must tend to ∞, while
as argued in (c) above, the scalars vi = maxj∈A(i){aij − pj} must decrease to
−∞ for all persons i ∈ I∞. This implies that

A(i) ⊂ J∞, ∀ i ∈ I∞. (1.8)

The ε-CS condition (1.1) states that aij − pj ≥ vi − ε for every assigned pair
(i, j), so after a finite number of iterations, each object in J∞ can only be
assigned to a person from I∞. Since after a finite number of iterations at
least one person from I∞ will be unassigned at the start of each iteration, it
follows that the number of persons in I∞ is strictly larger than the number
of objects in J∞. This contradicts the existence of a feasible assignment,
since by Eq. (1.8), persons in I∞ can only be assigned to objects in J∞.
Therefore, the algorithm must terminate. The feasible assignment obtained
upon termination satisfies ε-CS by Prop. 1.1, so by Prop. 2.3 of Section 1.2.3,
this assignment is within nε of being optimal. Q.E.D.

Consider now the case of an infeasible assignment problem. In this case,
the auction algorithm cannot possibly terminate; it will keep on increasing the
prices of some objects by increments of at least ε. Furthermore, some persons
i will be submitting bids infinitely often, and the corresponding maximum
values

vi = max
j∈A(i)

{aij − pj}

will be decreasing toward −∞. One can detect this situation by making use
of a precomputable lower bound on the above values vi, which holds when
the problem is feasible; see Exercise 1.5. Once vi gets below this bound for
some i, we know that the problem is infeasible. Unfortunately, it may take
many iterations for some vi to reach this bound. An alternative method to
detect infeasibility is to convert the problem to a feasible problem by adding
artificial arcs to the assignment graph. The values of these arcs should be very
small (i.e. large negative), so that they never participate in an optimal assign-
ment unless the problem is infeasible. Exercise 1.6 quantifies the appropriate
threshold for the values of the artificial arcs.

172 Auction Algorithms Chap. 4

4.1.2 The Approximate Coordinate Descent Interpretation

The Gauss-Seidel version of the auction algorithm resembles coordinate de-
scent algorithms, and the relaxation method of the previous chapter in par-
ticular, because it involves the change of a single object price with all other
prices held fixed. In contrast with the relaxation method, however, such a
price change may worsen strictly the value of the dual function

q(p) =
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj,

which was introduced in Prop. 2.4 of Section 1.2.
Generally we can interpret the bidding and assignment phases as a si-

multaneous “approximate” coordinate descent step for all price coordinates
that increase during the iteration. The coordinate steps are aimed at mini-
mizing approximately the dual function. In particular, we claim that the price
pj of each object j that received a bid during the assignment phase is increased
to either a value that minimizes q(p) when all other prices are kept constant
or else exceeds the largest such value by no more than ε. Figure 1.1 illustrates
this property and outlines its proof.

Figure 1.1 suggests that the amount of deterioration of the dual cost is
at most ε. Indeed, for the Gauss-Seidel version of the algorithm this can be
deduced from the argument given in Figure 1.1 and is left for the reader as
Exercise 1.1.

4.1.3 Computational Aspects – ε-Scaling

The auction algorithm can be shown to have an O
(
A(n + nC/ε)

)
worst-case

running time, where A is the number of arcs of the assignment graph and

C = max
(i,j)∈A

|aij |

is the maximum absolute object value; see [BeE88], [BeT89]. Thus, the
amount of work to solve the problem can depend strongly on the value of
ε as well as C. In practice, the dependence of the running time on ε and C
is often significant, particularly for sparse problems; this dependence can also
be seen in the example of Section 1.2.3 (cf. Fig. 2.14), and in Exercise 1.4.

The practical performance of the auction algorithm is often considerably
improved by using ε-scaling , which consists of applying the algorithm several
times, starting with a large value of ε and successively reducing ε up to an
ultimate value that is less than 1/n; cf. the discussion in Section 1.2.3. Each
application of the algorithm, called a scaling phase, provides good initial prices
for the next application. In the auction code of Appendix A.4, the integer

Dual cost along pj

Slope = -3

Slope = -2

Slope = -1

Slope = 0

Slope =1

Breakpoints y ; these are the price
levels at which j becomes the best
object for various persons i

Highest possible bid level of p after
the assignment phase

j

ε

Range of possible values of p
after an iteration at which
p is increasedj

j

p
j

ij

Sec. 4.1 The Auction Algorithm for the Assignment Problem 173

Figure 1.1 Form of the dual cost along the price coordinate pj . From the definition

of the dual cost q, the right directional derivative of q along pj is

d+
j = 1 − (number of persons i with j ∈ A(i) and pj < yij),

where

yij = aij − max
k∈A(i), k �=j

{aik − pk}

is the level of pj below which j is the best person for person i. The break points are yij for

all i such that j ∈ A(i). Let y = max{i|j∈A(i)}{aij − pj}, let i be a person such that y = y
ij
,

let ŷ = max{i|j∈A(i), i�=i}{aij − pj}, let î be a person such that î �= i and ŷ = yîj . Note that

the interval [ŷ, y] is the set of points that minimize q along the coordinate pj .

Let pj be the price of j just before an iteration at which j receives a bid and let p′j
be the price of j after the iteration. We claim that ŷ ≤ p′j ≤ y + ε. Indeed, if i is the person

that bids and wins j during the iteration, then p′j = yij + ε, implying that p′j ≤ y + ε. To

prove that p′j ≥ ŷ, we note that if pj ≥ ŷ, we must also have p′j ≥ ŷ, since p′j ≥ pj . On the

other hand, if p′j < ŷ, there are two possibilities:

1. At the start of the iteration, i was not assigned to j. In this case, either i was unassigned

in which case i will bid for j so that p′j = y + ε, or else i was assigned to an object j �= j,

in which case by ε-CS,

a
ij
− pj − ε ≤ a

i j
− p

j
≤ max

k∈A(i), k �=j

{a
ik
− pk} = a

ij
− y.

Thus, pj ≥ y − ε, implying that p′j ≥ y (since a bid increases a price by at least ε). In both

cases we have p′j ≥ y ≥ ŷ.

2. At the start of the iteration, i was assigned to j. In this case, î was not assigned to j,

so by repeating the argument of the preceding paragraph with î and ŷ replacing i and y,

respectively, we obtain p′j ≥ ŷ.

174 Auction Algorithms Chap. 4

benefits aij are first multiplied by n + 1 and the auction algorithm is applied
with progressively lower values of ε, to the point where ε becomes 1 or smaller
(because aij has been scaled by n+1, it is sufficient for optimality of the final
assignment to have ε ≤ 1). The sequence of ε values used is

ε(k) = max{1,Δ/θk}, k = 0, 1, . . . ,

where Δ and θ are parameters set by the user with Δ > 0 and θ > 1. (Typical
values for sparse problems are C/5 ≤ Δ ≤ C/2 and 4 ≤ θ ≤ 10. For nonsparse
problems, sometimes Δ = 1, which in effect bypasses ε-scaling, works quite
well.) The auction code of Appendix A.4 also uses an adaptive form of ε-
scaling, whereby, within the kth scaling phase, the value of ε is gradually
increased to the value ε(k) given above, starting from a relatively small value,
based on the results of the computation.

For integer data, it can be shown that the worst-case running time
of the auction algorithm using scaling and appropriate data structures is
O

(
nA log(nC)

)
; see [BeE88], [BeT89]. For randomly generated problems,

the running time of the algorithm seems to grow proportionally to something
like A log n or A log n log(nC); see also Exercise 1.3.

E X E R C I S E S

Exercise 1.1

Consider the Gauss-Seidel version of the auction algorithm, where only one

person can bid at each iteration. Show that, as a result of a bid, the dual cost

can be degraded by at most ε.

Exercise 1.2 (A Refinement of the Termination Tolerance [Ber79])

Show that the assignment obtained upon termination of the auction algorithm

is within (n − 1)ε of being optimal (rather than nε). Also, for every n ≥ 2,

construct an example of an assignment problem with integer data such that

the auction algorithm terminates with a nonoptimal assignment when ε =

1/(n − 1). (Try first n = 2 and n = 3, and generalize.) Hint : Modify slightly

the algorithm so that when the last object is assigned, its price is increased

by vi − wi (rather than vi − wi + ε). Then the assignment obtained upon

termination satisfies the ε-CS condition for n−1 objects and the CS condition

(ε = 0) for the last object. Modify the proof of Prop. 2.6 in Section 1.2.

Sec. 4.1 The Auction Algorithm for the Assignment Problem 175

Exercise 1.3

This problem uses a rough (and flawed) argument to estimate the average

complexity of the auction algorithm. We assume that at each iteration, only

one person submits a bid (that is, the Gauss-Seidel version of the algorithm

is used). Furthermore, every object is the recipient of a bid with equal prob-

ability (1/n), independently of the results of earlier bids. (This assumption

clearly does not hold, but seems to capture somewhat the real situation where

the problem is fairly dense and ε-scaling is used.)

(a) Show that when k objects are unassigned the average number of itera-

tions needed to assign a new object is n/k.

(b) Show that, on the average, the number of iterations is n(1 + 1/2 + · · ·+
1/n), which can be estimated as O(n log n).

(c) Assuming that the average number of bids submitted by each person

is the same for all persons, show that the average running time is

O(A log n).

Exercise 1.4

Consider the auction algorithm applied to assignment problems with benefits

in the range [0, C], starting with zero prices.

(a) Show that for dense problems (every person can bid for every object)

an object can receive a bid in at most 1 + C/ε iterations.

(b) [Cas91] Use the example of Fig. 1.2 to show that, in general, some objects

may receive a bid in a number of iterations that is proportional to nC/ε.

Exercise 1.5 (Detecting Infeasibility)

Consider application of the auction algorithm to a feasible assignment problem

with initial object prices {p0
j}. Let

vi = max
j∈A(i)

{aij − pj}

be the maximum object value for person i in the course of the algorithm. Show

that for any unassigned person i we have at all times

vi ≥ −(2n − 1)C − (n − 1)ε − max
j

{p0
j},

where C = max(i,j)∈A |aij |, and describe how this lower bound can be used to

detect that a problem is infeasible. Hint : Show that if the problem is feasible

and i is unassigned, there must exist an augmenting path starting from i and

ending at some unassigned object. Add the ε-CS condition along this path.

0

0

C

CC

C
C

C

C

0

0

0

C

C

C

176 Auction Algorithms Chap. 4

Figure 1.2 Assignment problem for which some objects receive a number

of bids that is proportional to nC/ε. The arc values are shown next to the

corresponding arcs.

Exercise 1.6 (Dealing with Infeasibility by Using Artificial Arcs)

Suppose that we add to the arc set A of an assignment problem a set A
of artificial arcs (possibly for the purpose of guaranteeing that the problem

becomes feasible). Suppose also that we obtain an optimal assignment for

the modified problem using the auction algorithm with initial object prices

{p0
j}. Show that if the original problem was feasible, no arc (i, j) ∈ A will

participate in the optimal assignment, provided

aij < −(2n − 1)C − (n − 1)ε + p0
j − max

k
{p0

k}, ∀ (i, j) ∈ A,

where C = max(i,j)∈A |aij |. Hint : Use the result of Exercise 1.5.

Exercise 1.7 (Implementation of the Auction Algorithm [BeT91])

Frequently in the auction algorithm the two best objects for a given person do

not change between two successive bids of that person. This exercise develops

an implementation idea that attempts to exploit this fact by using a test to

check whether the two best objects from the previous bid continue to be best.

If the test is passed, the computation of the values aij − pj of the remaining

objects is unnecessary. The implementation is used in the code for asymmetric

assignment of Appendix A.4.

Suppose that at a given iteration, when we calculate the bid of the person

i on the basis of a price vector p we compute the best value vi = maxj∈A(i){aij−

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 177

pj}, the best object j1 = arg maxj∈A(i){aij − pj}, the second best value wi =

maxj∈A(i), j �=j1{aij −pj}, the second best object j2 = arg maxj∈A(i), j �=j1{aij −pj},
and the third best value yi = maxj∈A(i), j �=j1, j �=j2{aij − pj}. Suppose that at a

subsequent iteration when person i bids based on a price vector p, we have

aij1 − pj1
≥ yi and aij2 − pj2

≥ yi. Show that j1 and j2 continue to be the two

best objects for i (although j1 need not be better than j2).

4.2 REVERSE AUCTION AND INEQUALITY CONSTRAINED
ASSIGNMENT PROBLEMS

In the auction algorithm, persons compete for objects by bidding and raising
the price of their best object. It is possible to use an alternative form of the
auction algorithm, called reverse auction, where, roughly, the objects compete
for persons by essentially offering discounts.

To describe this algorithm, we introduce a profit variable πi for each
person i. Profits play for persons a role analogous to the role prices play
for objects. We can describe reverse auction in two equivalent ways: one
where unassigned objects lower their prices as much as possible to attract
an unassigned person or lure a person away from its currently held object
without violating ε-CS, and another where unassigned objects select a best
person and raise his or her profit as much as possible without violating ε-CS.
For analytical convenience, we will adopt the second description rather than
the first, leaving the proof of their equivalence as Exercise 2.1 for the reader.

Let us consider the following ε-CS condition for a (partial) assignment
S and a profit vector π:

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S, (2.1)

where B(j) is the set of persons that can be assigned to object j,

B(j) = {i | (i, j) ∈ A}.

For feasibility, we assume that this set is nonempty for all j. Note the sym-
metry of this condition with the corresponding one for prices; cf. Eq. (1.1).
The reverse auction algorithm starts with and maintains an assignment and
a profit vector π satisfying the above ε-CS condition. It terminates when
the assignment is feasible. At the beginning of each iteration, we have an
assignment S and a profit vector π satisfying the ε-CS condition (2.1).

178 Auction Algorithms Chap. 4

Typical Iteration of Reverse Auction

Let J be a nonempty subset of objects j that are unassigned under the as-

signment S. For each object j ∈ J :

1. Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (2.2)

and find

ωj = max
i∈B(j), i�=ij

{aij − πi}. (2.3)

[If ij is the only person in B(j), we define ωj to be −∞ or, for compu-

tational purposes, a number that is much smaller than βj .]

2. Each object j ∈ J bids for person ij an amount

bij j = πij + βj − ωj + ε = aij j − ωj + ε. (2.4)

3. For each person i that received at least one bid, increase πi to the highest

bid,

πi := max
j∈P (i)

bij , (2.5)

where P (i) is the set of objects from which i received a bid; remove from

the assignment S any pair (i, j) (if i was assigned to some j under S),

and add to S the pair (i, ji), where ji is an object in P (i) attaining the

maximum above.

Note that reverse auction is identical to (forward) auction with the roles
of persons and objects and those of profits and prices interchanged. Thus, by
using the corresponding (forward) auction result (cf. Prop. 1.2), we have the
following proposition.

Proposition 2.1: If at least one feasible assignment exists, the reverse
auction algorithm terminates with a feasible assignment that is within nε of
being optimal (and is optimal if the problem data are integer and ε < 1/n).

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 179

Combined Forward and Reverse Auction

One of the reasons we are interested in reverse auction is to construct algo-
rithms that switch from forward to reverse auction and back. Such algorithms
must simultaneously maintain a price vector p satisfying the ε-CS condition
(1.1) and a profit vector π satisfying the ε-CS condition (2.1). To this end we
introduce an ε-CS condition for the pair (π, p), which (as we will see) implies
the other two. Maintaining this condition is essential for switching gracefully
between forward and reverse auction.

Definition 2.1: An assignment S and a pair (π, p) are said to satisfy ε-CS
if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.6a)

πi + pj = aij, ∀ (i, j) ∈ S. (2.6b)

We have the following proposition.

Proposition 2.2: Suppose that an assignment S together with a profit-
price pair (π, p) satisfy ε-CS. Then:

(a) S and π satisfy the ε-CS condition

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S. (2.7)

(b) S and p satisfy the ε-CS condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S. (2.8)

(c) If S is feasible, then S is within nε of being an optimal assignment.

Proof: (a) In view of Eq. (2.6b), for all (i, j) ∈ S, we have pj = aij − πi, so
Eq. (2.6a) implies that aij − πi ≥ akj − πk − ε for all k ∈ B(j). This shows
Eq. (2.7).

(b) The proof is the same as the one of part (a) with the roles of π and p
interchanged.

(c) Since by part (b) the ε-CS condition (2.8) is satisfied, by Prop. 2.6 of
Section 1.2, S is within nε of being optimal. Q.E.D.

We now introduce a combined forward/reverse auction algorithm. The
algorithm starts with and maintains an assignment S and a profit-price pair
(π, p) satisfying the ε-CS condition (2.6). It terminates when the assignment
is feasible.

180 Auction Algorithms Chap. 4

Combined Forward/Reverse Auction Algorithm

Step 1 (Run forward auction): Execute several iterations of the forward

auction algorithm (subject to the termination condition), and at the end of

each iteration (after increasing the prices of the objects that received a bid)

set

πi = aiji − pji (2.9)

for every person-object pair (i, ji) that entered the assignment during the

iteration. Go to Step 2.

Step 2 (Run reverse auction): Execute several iterations of the reverse

auction algorithm (subject to the termination condition), and at the end of

each iteration (after increasing the profits of the persons that received a bid)

set

pj = aij j − πij (2.10)

for every person-object pair (ij , j) that entered the assignment during the

iteration. Go to Step 1.

Note that the additional overhead of the combined algorithm over the
forward or the reverse algorithm is minimal; just one update of the form (2.9)
or (2.10) is required per iteration for each object or person that received a bid
during the iteration. An important property is that these updates maintain
the ε-CS condition (2.6) for the pair (π, p), and therefore, by Prop. 2.2, main-
tain the required ε-CS conditions (2.7) and (2.8) for π and p, respectively.
This is shown in the following proposition.

Proposition 2.3: If the assignment and the profit-price pair available at
the start of an iteration of either the forward or the reverse auction algorithm
satisfy the ε-CS condition (2.6), the same is true for the assignment and the
profit-price pair obtained at the end of the iteration, provided Eq. (2.9) is
used to update π (in the case of forward auction), and Eq. (2.10) is used to
update p (in the case of reverse auction).

Proof: Assume for concreteness that forward auction is used, and let (π, p)
and (π, p) be the profit-price pair before and after the iteration, respectively.
Then, pj ≥ pj for all j (with strict inequality if and only if j received a bid
during the iteration). Therefore, we have πi + pj ≥ aij − ε for all (i, j) such
that πi = πi. Furthermore, we have πi + pj = πi + pj = aij for all (i, j) that
belong to the assignment before as well as after the iteration. Also, in view
of the update (2.9), we have πi + pji

= aiji for all pairs (i, ji) that entered the
assignment during the iteration. What remains is to verify that the condition

πi + pj ≥ aij − ε, ∀ j ∈ A(i) (2.11)

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 181

holds for all persons i that submitted a bid and were assigned to an object,
say ji, during the iteration. Indeed, for such a person i, we have, by Eq. (1.4),

pji
= aiji − max

j∈A(i), j �=ji
{aij − pj} + ε,

which implies that

πi = aiji − pji
≥ aij − pj − ε ≥ aij − pj − ε, ∀ j ∈ A(i).

This shows the desired relation (2.11). Q.E.D.

Note that during forward auction the object prices pj increase while the
profits πi decrease, but exactly the opposite happens in reverse auction. For
this reason, the termination proof that we used for forward and for reverse
auction does not apply to the combined method. Indeed, it is possible to
construct examples of feasible problems where the combined method never
terminates if the switch between forward and reverse auctions is done arbi-
trarily. However, it is easy to guarantee that the combined algorithm termi-
nates for a feasible problem; it is sufficient to ensure that some “irreversible
progress” is made before switching between forward and reverse auction. One
easily implementable possibility is to refrain from switching until the number
of assigned person-object pairs increases by at least one.

The combined forward/reverse auction algorithm often works substan-
tially faster than the forward version. It seems to to be affected less by “price
wars,” that is, protracted sequences of small price rises by a number of persons
bidding for a smaller number of objects (cf. Fig. 2.13 in Section 1.2). Price
wars can still occur in the combined algorithm, by they arise through more
complex and unlikely problem structures than in the forward algorithm. For
this reason the combined forward/reverse auction algorithm depends less on
ε-scaling for good performance than its forward counterpart; in fact, starting
with ε = 1/(n + 1), thus bypassing ε-scaling, is often the best choice.

4.2.1 Auction Algorithms for Asymmetric Assignment
Problems

Reverse auction can be used in conjunction with forward auction to provide
algorithms for solving the asymmetric assignment problem, where the number
of objects n is larger than the number of persons m. Here we still require
that each person be assigned to some object, but we allow objects to remain
unassigned. As before, an assignment S is a (possibly empty) set of person-
object pairs (i, j) such that j ∈ A(i) for all (i, j) ∈ S; for each person i there
can be at most one pair (i, j) ∈ S; and for every object j there can be at most
one pair (i, j) ∈ S. The assignment S is said to be feasible if all persons are
assigned under S.

182 Auction Algorithms Chap. 4

The corresponding linear programming problem is

maximize
∑

(i,j)∈A
aijxij

subject to ∑
j∈A(i)

xij = 1, ∀ i = 1, . . . , m, (2.12)

∑
i∈B(j)

xij ≤ 1, ∀ j = 1, . . . , n,

0 ≤ xij, ∀ (i, j) ∈ A.

We can convert this program to the minimum cost flow problem

minimize
∑

(i,j)∈A

(
−aij

)
xij

subject to ∑
j∈A(i)

xij = 1, ∀ i = 1, . . . , m, (2.13)

∑
i∈B(j)

xij + xsj = 1, ∀ j = 1, . . . , n,

n∑
j=1

xsj = n − m,

0 ≤ xij, ∀ (i, j) ∈ A,

0 ≤ xsj, ∀ j = 1, . . . , n,

by replacing maximization by minimization, by reversing the sign of aij , and
by introducing a supersource node s, which is connected to each object node
j by an arc (s, j) of zero cost and feasible flow range [0,∞) (see Fig. 2.1).

Using the theory of Section 1.2 (cf. Prop. 2.5 and Exercise 2.11 of that
section), it can be seen that the corresponding dual problem is

minimize
m∑

i=1

πi +
n∑

j=1

pj − (n − m)λ

subject to
πi + pj ≥ aij, ∀ (i, j) ∈ A, (2.14)
λ ≤ pj, ∀ j = 1, . . . , n,

where we have converted maximization to minimization, we have used −πi in
place of the price of each person node i, and we have denoted by λ the price
of the supersource node s.

n-m

SUPERSOURCE

1 1

i j

m

- aij

1 1

1 1

1 1

PERSONS OBJECTS

m+1

s n

1

1

m

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 183

Figure 2.1 Converting an asymmetric assignment problem into a minimum

cost flow problem involving a supersource node s and a zero cost artificial arc

(s, j) with feasible flow range [0,∞) for each object j.

We now introduce an ε-CS condition for an assignment S and a pair
(π, p).

Definition 2.2: An assignment S and a pair (π, p) are said to satisfy ε-CS
if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.15a)
πi + pj = aij, ∀ (i, j) ∈ S, (2.15b)

pj ≤ min
k: assigned under S

pk, ∀ j : unassigned under S. (2.15c)

The following proposition clarifies the significance of the preceding ε-CS
condition.

Proposition 2.4: If a feasible assignment S satisfies the ε-CS conditions
(2.15) together with a pair (π, p), then S is within mε of being optimal for
the asymmetric assignment problem. The triplet (π̂, p̂, λ), where

λ = min
k: assigned under S

pk, (2.16a)

184 Auction Algorithms Chap. 4

π̂i = πi + ε, ∀ i = 1, . . . , m, (2.16b)

p̂j =
{

pj, if j is assigned under S,
λ, if j is unassigned under S

∀ j = 1, . . . , n, (2.16c)

is within mε of being an optimal solution of the dual problem (2.14).

Proof: For any feasible assignment {(i, ki) | i = 1, . . . , m} and for any triplet
(π, p, λ) satisfying the dual feasibility constraints πi+pj ≥ aij for all (i, j) ∈ A
and λ ≤ pj for all j, we have

m∑
i=1

aiki ≤
m∑

i=1

πi +
m∑

i=1

pki
≤

m∑
i=1

πi +
n∑

j=1

pj − (n − m)λ.

By maximizing over all feasible assignments {(i, ki) | i = 1, . . . , m} and by
minimizing over all dual-feasible triplets (π, p, λ), we see that

A∗ ≤ D∗,

where A∗ is the optimal assignment value and D∗ is the minimal dual cost.
Let now S = {(i, ji) | i = 1, . . . , m} be the given assignment satisfying

ε-CS together with (π, p), and consider the triplet (π̂, p̂, λ) defined by Eq.
(2.16). Since for all i we have π̂i + p̂ji = aij + ε, we obtain

A∗ ≥
m∑

i=1

aiji =
m∑

i=1

π̂i +
m∑

i=1

p̂ji − mε ≥
m∑

i=1

π̂i +
n∑

j=1

p̂j − (n − m)λ − mε

≥ D∗ − mε,

where the last inequality holds because the triplet (π̂, p̂, λ) is feasible for the
dual problem. Since we showed earlier that A∗ ≤ D∗, the desired conclusion
follows. Q.E.D.

Consider now trying to solve the asymmetric assignment problem by
means of auction. We can start with any assignment S and pair (π, p) satisfy-
ing the first two ε-CS conditions (2.15a) and (2.15b), and perform a forward
auction (as defined earlier for the symmetric assignment problem) up to the
point where each person is assigned to a distinct object. For a feasible prob-
lem, by essentially repeating the proof of Prop. 1.2 for the symmetric case,
it can be seen that this will yield, in a finite number of iterations, a feasible
assignment S satisfying the first two conditions (2.15a) and (2.15b). However,
this assignment may not be optimal, because the prices of the unassigned ob-
jects j are not minimal; that is, they do not satisfy the third ε-CS condition
(2.15c).

To remedy this situation, we use a modified form of reverse auction to
lower the prices of the unassigned objects so that, after several iterations in

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 185

which persons may be reassigned to other objects, the third condition, (2.15c),
is satisfied. We will show that the assignment thus obtained satisfies all the
ε-CS conditions (2.15a)-(2.15c), and by Prop. 2.4, is optimal within mε (and
thus optimal if the problem data are integer and ε < 1/m).

The modified reversed auction starts with a feasible assignment S and
with a pair (π, p) satisfying the first two ε-CS conditions (2.15a) and (2.15b).
[For a feasible problem, such an S and (π, p) can be obtained by regular
forward or reverse auction, as discussed earlier.] Let us denote by λ the
minimal assigned object price under the initial assignment,

λ = min
j: assigned under the initial assignment S

pj. (2.17)

The typical iteration of modified reverse auction is the same as the one of
reverse auction, except that only unassigned objects j with pj > λ participate
in the auction. In particular, the algorithm maintains a feasible assignment
S and a pair (π, p) satisfying Eqs. (2.15a) and (2.15b), and terminates when
all unassigned objects j satisfy pj ≤ λ, in which case it will be seen that the
third ε-CS condition (2.15c) is satisfied as well. The scalar λ is kept fixed
throughout the algorithm.

Typical Iteration of Modified Reverse Auction for Asymmetric Assignment:

Select an object j that is unassigned under the assignment S and satisfies

pj > λ (if no such object can be found, the algorithm terminates). Find a

“best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (2.18)

and find

ωj = max
i∈B(j), i�=ij

{aij − πi}. (2.19)

[If ij is the only person in B(j), we define ωj to be −∞.] If λ ≥ βj − ε, set

pj := λ and go to the next iteration. Otherwise, let

δ = min{βj − λ, βj − ωj + ε}. (2.20)

Set

pj := βj − δ, (2.21)

πij := πij + δ, (2.22)

186 Auction Algorithms Chap. 4

add to the assignment S the pair (ij , j), and remove from S the pair (ij , j
′),

where j ′ is the object that was assigned to ij under S at the start of the

iteration.

Note that the formula (2.20) for the bidding increment δ is such that the
object j enters the assignment at a price which is no less that λ [and is equal
to λ if and only if the minimum in Eq. (2.20) is attained by the first term].
Furthermore, when δ is calculated (that is, when λ > βj − ε) we have δ ≥ ε,
so it can be seen from Eqs. (2.21) and (2.22) that, throughout the algorithm,
prices are monotonically decreasing and profits are monotonically increasing.
The following proposition establishes the validity of the method.

Proposition 2.5: The modified reverse auction algorithm for the asym-
metric assignment problem terminates with an assignment that is within mε
of being optimal.

Proof: In view of Prop. 2.4, the result will follow once we prove the follow-
ing:

(a) The modified reverse auction iteration preserves the first two ε-CS con-
ditions (2.15a) and (2.15b), as well as the condition

λ ≤ min
j: assigned under the current assignment S

pj, (2.23)

so upon termination of the algorithm (necessarily with the prices of all
unassigned objects less or equal to λ) the third ε-CS condition, (2.15c),
is satisfied.

(b) The algorithm terminates.

We will prove these facts in sequence.
We assume that the conditions (2.15a), (2.15b), and (2.23) are satisfied

at the start of an iteration, and we will show that they are also satisfied at the
end of the iteration. First consider the case where there is no change in the
assignment, which happens when λ ≥ βj − ε. Then Eqs. (2.15b), and (2.23)
are automatically satisfied at the end of the iteration; only pj changes in the
iteration according to

pj := λ ≥ βj − ε = max
i∈B(j)

{aij − πi} − ε,

so the condition (2.15a) is also satisfied at the end of the iteration.
Next consider the case where there is a change in the assignment during

the iteration. Let (π, p) and (π, p) be the profit-price pair before and after the
iteration, respectively, and let j and ij be the object and person involved in the
iteration. By construction [cf. Eqs. (2.21) and (2.22)], we have πij + pj = aijj

and since πi = πi and pk = pk for all i �= ij and k �= j, we see that the

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 187

condition (2.15b) (πi + pk = aik) is satisfied for all assigned pairs (i, k) at the
end of the iteration.

To show that the condition (2.15a) is satisfied at the end of the iteration,
that is,

πi + pk ≥ aik − ε, ∀ (i, k) ∈ A, (2.24)

consider first objects k �= j. Then, pk = pk and since πi ≥ πi for all i,
the above condition holds, since our hypothesis is that at the start of the
iteration we have πi + pk ≥ aik − ε for all (i, k). Consider next the case k = j.
Then condition (2.24) holds for i = ij , since πij + pj = aijj . Also using Eqs.
(2.18)-(2.21) and the fact δ ≥ ε, we have for all i �= ij

πi + pj = πi + pj ≥ πi + βj − (βj − ωj + ε)

= πi + ωj − ε ≥ πi + (aij − πi) − ε = aij − ε,

so condition (2.24) holds for i �= ij and k = j, completing the proof of Eq.
(2.24). To see that condition (2.23) is maintained by the iteration, note that
by Eqs. (2.18), (2.19), and (2.21), we have

pj = βj − δ ≥ βj − (βj − λ) = λ.

Finally, to show that the algorithm terminates, we note that in the
typical iteration involving object j and person ij there are two possibilities:

(1) The price of object j is set to λ without the object entering the assign-
ment; this occurs if λ ≥ βj − ε.

(2) The profit of person ij increases by at least ε [this is seen from the
definition (2.20) of δ; we have λ < βj − ε and βj ≥ ωj , so δ ≥ ε].

Since only objects j with pj > λ can participate in the auction, possibility
(1) can occur only a finite number of times. Thus, if the algorithm does not
terminate, the profits of some persons will increase to ∞. This is impossible,
since when person i is assigned to object j we must have by Eqs. (2.15b) and
(2.23)

πi = aij − pj ≤ aij − λ,

so the profits are bounded from above by max(i,j)∈A aij−λ. Thus the algorithm
must terminate. Q.E.D.

Note that one may bypass the modified reverse auction algorithm by
starting the forward auction with all object prices equal to zero. Upon termi-
nation of the forward auction, the prices of the unassigned objects will still be
at zero, while the prices of the assigned objects will be nonnegative. Therefore
the ε-CS condition (2.15c) will be satisfied, and the modified reverse auction
will be unnecessary (see Exercise 2.2).

188 Auction Algorithms Chap. 4

Unfortunately the requirement of zero initial object prices is incompat-
ible with ε-scaling. The principal advantage offered by the modified reverse
auction algorithm is that it allows arbitrary initial object prices for the for-
ward auction, thereby also allowing the use of ε-scaling. This can be shown
to improve the theoretical worst-case complexity of the method, and is often
beneficial in practice, particularly for sparse problems.

Reverse auction can be used also in the context of other types of network
flow problems. One example is the variation of the asymmetric assignment
problem where persons (as well as objects) need not be assigned if this de-
grades the assignment’s value (see Exercise 2.3). Another class of assignment-
like problems is described in the next subsection.

4.2.2 Auction Algorithms for Multiassignment Problems

An interesting type of assignment problem is described by the linear program

maximize
∑

(i,j)∈A
aijxij

subject to∑
j∈A(i)

xij ≥ 1, ∀ i = 1, . . . , m, (2.25)

∑
i∈B(j)

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij, ∀ (i, j) ∈ A,

where m < n. For feasibility, we assume that the sets A(i) and B(j) are
nonempty for all i and j. This is known as the multiassignment problem,
and is characterized by the possibility of assignment of more than one object
to a single person. Problems of this type arise in military applications such
as multi-target tracking with sensors of limited resolution [Bla86], [BaF88],
where objects correspond to tracked moving objects and persons correspond
to data points each representing at least one object (but possibly more than
one because of the sensor’s limited resolution). The multiassignment problem
results when we try to associate data points with moving objects so as to
match as closely as possible these data points with our prior knowledge of the
objects’ positions.

We can convert the multiassignment problem to the minimum cost flow
problem

minimize
∑

(i,j)∈A

(
−aij

)
xij

subject to

1 1

i j

m

- a ij

1 1

1 1

1 1

PERSONS OBJECTS

m+1

n-m
SUPERSOURCE

s

n

1

1

m

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 189

∑
j∈A(i)

xij − xsi = 1, ∀ i = 1, . . . , m, (2.26)

∑
i∈B(j)

xij = 1, ∀ j = 1, . . . , n,

m∑
i=1

xsi = n − m,

0 ≤ xij, ∀ (i, j) ∈ A,

0 ≤ xsi, ∀ i = 1, . . . , n,

by replacing maximization by minimization, by reversing the sign of aij , and
by introducing a supersource node s, which is connected to each person node
i by an arc (s, i) of zero cost and feasible flow range [0,∞) (see Fig. 2.2).

Figure 2.2 Converting a multiassignment problem into a minimum cost

flow problem involving a supersource node s and a zero cost artificial arc (s, i)

with feasible flow range [0,∞) for each person i.

Again using the theory of Section 1.2 and appropriately redefining the
price variables corresponding to the nodes, it can be seen that the correspond-

190 Auction Algorithms Chap. 4

ing dual problem is

minimize
m∑

i=1

πi +
n∑

j=1

pj + (n − m)λ

subject to
πi + pj ≥ aij, ∀ (i, j) ∈ A, (2.27)
λ ≥ πi, ∀ i = 1, . . . , m.

We define a multiassignment S to be a set of pairs (i, j) ∈ A such that
for each object j, there is at most one pair (i, j) in S. A person i for which
there are more than one pairs (i, j) in S is said to be multiassigned under
S. We now introduce an ε-CS condition for a multiassignment S and a pair
(π, p).

Definition 2.3: A multiassignment S and a pair (π, p) are said to satisfy
ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.28a)

πi + pj = aij, ∀ (i, j) ∈ S, (2.28b)

πi = max
k=1,...,m

πk, if i is multiassigned under S. (2.28c)

We have the following result.
Proposition 2.6: If a feasible multiassignment S satisfies the ε-CS condi-
tions (2.28) together with a pair (π, p), then S is within nε of being optimal
for the multiassignment problem. The triplet (π̂, p, λ̂), where

π̂i = πi + ε, ∀ i = 1, . . . , m,

λ̂ = max
k=1,...,m

π̂k,

is within nε of being an optimal solution of the dual problem (2.27).
Proof: Very similar to the proof of Prop. 2.4 – left for the reader. Q.E.D.

Consider now trying to solve the multiassignment problem by means of
auction. We can start with any multiassignment S and profit-price pair (π, p)
satisfying the first two ε-CS conditions (2.28a) and (2.28b), and perform a
forward auction up to the point where each person is assigned to a (single)
distinct object, while satisfying the conditions (2.28a) and (2.28b). However,
this multiassignment will not be feasible, because some objects will still be
unassigned.

To make further progress, we use a modified reverse auction that starts
with the final results of the forward auction (that is, a multiassignment S,

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 191

where each person is assigned to a single distinct object) and with a pair
(π, p) satisfying the first two ε-CS conditions (2.28a) and (2.28b). Let us
denote by λ the maximal initial person profit,

λ = max
i=1,...,m

πi. (2.29)

The typical iteration, given below, is the same as the one of reverse auction,
except that unassigned objects j that bid for a person may not necessarily
displace the object assigned to the person but may instead share the person
with its already assigned object(s); this will happen if and only if the person’s
profit has reached the upper bound λ.

The algorithm maintains a multiassignment S, for which each person is
assigned to at least one object, and a pair (π, p) satisfying Eqs. (2.28a) and
(2.28b); it terminates when all unassigned objects j have been assigned. It
will be seen that upon termination, the third ε-CS condition (2.28c) will be
satisfied as well. The scalar λ is kept fixed throughout the algorithm.

Typical Iteration of Modified Reverse Auction for Multiassignment

Select an object j that is unassigned under the multiassignment S (if all objects

are assigned, the algorithm terminates). Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi}, (2.30)

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (2.31)

and find

ωj = max
i∈B(j), i�=ij

{aij − πi}. (2.32)

[If ij is the only person in B(j), we define ωj to be −∞.] Let

δ = min{λ − πij , βj − ωj + ε}. (2.33)

Add (ij , j) to the multiassignment S, set

pj := βj − δ, (2.34)

πij := πij + δ, (2.35)

and, if δ > 0, remove from the multiassignment S the pair (ij , j
′), where j ′

was assigned to ij under S.

Note that in an iteration the number of assigned objects increases by
one if and only if δ = 0 [which is equivalent to πij = λ, since the second

192 Auction Algorithms Chap. 4

term βj − ωj + ε in Eq. (2.33) is always greater or equal to ε]. The following
proposition establishes the validity of the method.
Proposition 2.7: The modified reverse auction algorithm for the multias-
signment problem terminates with a feasible multiassignment that is within
nε of being optimal.

Proof: In view of Prop. 2.6, the result will follow once we prove the follow-
ing:

(a) The modified reverse auction iteration preserves the ε-CS conditions
(2.28), as well as the condition

λ = max
i=1,...,m

πi. (2.36)

(b) The algorithm terminates (necessarily with a feasible multiassignment).
To show (a) we use induction. In particular, we will show that if the

conditions (2.28) and (2.36) are satisfied at the start of an iteration, they are
also satisfied at the end of the iteration. This is easily seen to be true for
Eqs. (2.28a) and (2.28b). Equations (2.28c) and (2.36) are preserved, since
we have λ = maxi=1,...,m πi at the start of the iteration and the only profit that
changes is πij , which by Eqs. (2.33) and (2.35) is set to something that is less
or equal to λ, and is set to λ if and only if ij is multiassigned at the end of
the iteration.

To show termination, we observe that a person i can receive a bid only a
finite number of times after the profit πi is set to λ, since at each of these times
the corresponding object will get assigned to i without any object already
assigned to i becoming unassigned. On the other hand, by Eqs. (2.33) and
(2.35), at an iteration where a person receives a bid, his or her profit is either
set equal to λ or else increases by at least ε. Since profits are bounded above
by λ throughout the algorithm, it follows that each person can receive only a
finite number of bids; this proves termination. Q.E.D.

When the problem data are integer, Prop. 2.7 shows that the auction
algorithm terminates with an optimal multiassignment provided ε < 1/n. It is
possible to strengthen this result and show that it is sufficient that ε < 1/m for
optimality of the final multiassignment. This, however, requires a somewhat
different proof argument than the one we have used so far; see Prop. 4.1 and
Exercises 4.6 and 4.7 in Section 4.4.

E X E R C I S E S

Exercise 2.1 (Equivalence of Two Forms of Reverse Auction)

Show that the iteration of the Gauss-Seidel version of the reverse auction algo-

rithm for the (symmetric) assignment problem can equivalently be described

Sec. 4.2 Reverse Auction and Inequality Constrained Assignment Problems 193

by the following iteration, which maintains an assignment and a pair (π, p)

satisfying the ε-CS condition (2.6):

Step 1: Choose an unassigned object j.

Step 2: Decrease pj to the highest level for which two or more persons will

increase their profit by at least ε after assignment to j, that is, set pj to the

highest level for which aij − pj ≥ πi + ε for at least two persons i, where πi is

the profit of i at the start of the iteration.

Step 3: From the persons in Step 2, assign to j a person ij that experiences

maximum profit increase after assignment to j, and cancel the prior assignment

of ij if he or she was assigned at the start of the iteration. Set the profit of ij
to aij j − pj .

Exercise 2.2

Consider the asymmetric assignment problem and apply forward auction start-

ing with the zero price vector and the empty assignment. Show that, for a

feasible problem, the algorithm terminates with a feasible assignment that is

within mε of being optimal. Note: Because this method must start with the

zero price vector, it does not admit ε-scaling.

Exercise 2.3 (A Variation of the Asymmetric Assignment Problem)

Consider a problem which is the same as the asymmetric assignment problem

with the exception that in a feasible assignment S there can be at most one

incident arc for every person and at most one incident arc for every object

(that is, there is no need for every person, as well as for every object, to be

assigned). The corresponding linear program is

maximize
∑

(i,j)∈A

aijxij

subject to∑
j∈A(i)

xij ≤ 1, ∀ i = 1, . . . , m,

∑
i∈B(j)

xij ≤ 1, ∀ j = 1, . . . , n,

0 ≤ xij , ∀ (i, j) ∈ A.

(a) Show that this problem can be converted to an asymmetric assignment

problem where all persons must be assigned. Hint: For each person i

introduce an artificial object i′ and a zero cost arc (i, i′).

194 Auction Algorithms Chap. 4

(b) Adapt and streamline the auction algorithm of Section 4.2.1 to solve the

problem.

Exercise 2.4

Consider the multiassignment problem. Derive a combined forward/reverse

auction algorithm similar to the one for the symmetric assignment problem.

Forward auction iterations should be used only when there are unassigned

persons, and reverse auction iterations should be such that the quantity λ =

maxi πi is never increased.

Exercise 2.5 (A Refinement of the Optimality Conditions)

(a) Consider the asymmetric assignment problem with integer data, and

suppose that we have a feasible assignment S and a pair (π, p) satisfying

the first two ε-CS conditions (2.15a) and (2.15b) with ε < 1/m. Show

that in order for S to be optimal it is sufficient that

pk ≤ pt

for all k and t such that k is unassigned under S, t is assigned under S,

and there exists a path (k, i1, j1, . . . , iq, jq, iq+1, t) such that (ir, jr) ∈ S

for r = 1, . . . , q, and (iq+1, t) ∈ S. Hint : Consider the existence of cycles

with positive value along which S can be modified.

(b) Consider the multiassignment problem. Derive a result analogous to

the one of part (a), with the condition pk ≤ pt replaced by the condition

πk ≥ πt, where k is any multiassigned person and t is any person for

which there exists a path (k, j1, i1, . . . , jq, iq, jq+1, t) such that (k, j1) ∈ S

and (ir, jr+1) ∈ S for r = 1, . . . , q.

4.3 AN AUCTION ALGORITHM FOR SHORTEST PATHS

In this section we consider an algorithm for finding a shortest path from several
origins to a single destination in a directed graph (N ,A). We will see later
that this algorithm can also be viewed as an application of the naive auction
algorithm (this is the auction algorithm with ε = 0, discussed in Section 1.2.4)
to a special type of assignment problem that is equivalent to the shortest path
problem.

Sec. 4.3 An Auction Algorithm for Shortest Paths 195

We will assume throughout this section that all cycles have positive
length. When all the arc lengths are nonnegative, the cycle positivity as-
sumption can be weakened to a nonnegativity assumption at the expense of
complicating the algorithm somewhat; see Exercise 3.3.

To simplify the presentation, we also assume that each node except for
the destination has at least one outgoing incident arc; any node not satisfying
this condition can be connected to the destination with a very high length arc
without materially changing the problem and the subsequent algorithm.

For the single origin case the algorithm is very simple. It maintains a
single path starting at the origin. At each iteration, the path is either extended
by adding a new node or contracted by deleting its terminal node. When the
destination becomes the terminal node of the path, the algorithm terminates.

To get an intuitive sense of the algorithm, think of a person moving
in a graph-like maze, trying to reach a destination. The person criss-crosses
the maze, either advancing or backtracking along the current path. Each
time the person backtracks from a node, he or she records a measure of the
desirability of revisiting and advancing from that node in the future (this
will be implemented with the help of a price variable). The person revisits
and proceeds forward from a node when the node’s measure of desirability
is judged superior to those of other nodes. The algorithm of this section
emulates this search process efficiently, using simple data structures.

Similar to the algorithms of Section 1.3, complementary slackness condi-
tions are fundamental for the algorithm of this section. However, it is helpful
for our purposes to reformulate these conditions in terms of node prices pi

rather than the node labels di used in Section 1.3.
In particular, given a simple (forward) path P and a price vector p

consisting of prices pi, we say that the pair (P, p) satisfies complementary
slackness (CS) if

pi ≤ aij + pj, ∀ (i, j) ∈ A, (3.1a)

pi = aij + pj, for all pairs of successive nodes i and j of P . (3.1b)

[When we say that the pair (P, p) satisfies CS, we implicitly assume that P is
simple.]

The CS conditions given above are equivalent to the CS conditions for
the shortest path problem given in Prop. 3.1 in Section 1.3, with the labels
di of that proposition replaced by the negative prices −pi. It follows that if a
pair (P, p) satisfies CS, then the portion of P between any node i ∈ P and any
node k ∈ P is a shortest path from i to k, while pi − pk is the corresponding
shortest distance. This can also be seen directly by observing that by Eq.
(3.1b), pi − pk is the length of the portion of P between i and k, and every
path connecting i to k must have length at least equal to pi − pk [add Eq.
(3.1a) along the arcs of the path].

4 4

2

1

1

3
3

(b) (c)

1

2

3

4

1 2

2 2

(a)

p
1

p2

p
3

p
4

p
1 = 3

p2 = 2

p
3 = 1

p
4 = 0

21

2

2

2

1

2

2

2

Shortest path problem with
arc lengths shown next to the arcs.
Node 1 is the origin.
Node 4 is the destination.

196 Auction Algorithms Chap. 4

There is an interesting interpretation of the CS conditions in terms of
a mechanical model [Min57]. Think of each node as a ball, and for every arc
(i, j) ∈ A, connect i and j with a string of length aij . (This requires that
aij = aji > 0, which we assume.) Let the resulting balls-and-strings model be
at an arbitrary position in three-dimensional space, and let pi be the vertical
coordinate of node i. Then the CS condition pi − pj ≤ aij clearly holds for
all arcs (i, j), as illustrated in Fig. 3.1(b). If the model is picked up and left
to hang from the origin node (by gravity – strings that are tight are perfectly
vertical), then for all the tight strings (i, j) we have pi − pj = aij , so any tight
chain of strings corresponds to a shortest path between the endnodes of the
chain, as illustrated in Fig. 3.1(c). In particular, the length of the tight chain
connecting the origin node 1 to any other node i is p1 −pi and is also equal to
the shortest distance from 1 to i. (This result is essentially the min path/max
tension theorem described in Exercise 3.5 of Chapter 1.)

Figure 3.1 Illustration of the CS conditions. If each node is a ball, and for

every arc (i, j) ∈ A, nodes i and j are connected with a string of length aij , the

vertical coordinates pi of the nodes satisfy pi − pj ≤ aij , as shown in (b) for the

problem given in (a). If the model is picked up and left to hang from the origin

node 1, then p1 − pi gives the shortest distance to each node i, as shown in (c).

The algorithm of this section can be interpreted in terms of the balls-
and-strings model, as we will see shortly. As a prelude to this, it is interesting
to note that Dijkstra’s algorithm can also be interpreted in terms of this

2 31 4 2 3

1

4

2

3

1

4 4

2

3

1

Initial position After 1st stage After 2nd stage After 3rd stage

Sec. 4.3 An Auction Algorithm for Shortest Paths 197

model, as shown in Fig. 3.2. At each iteration of the algorithm, the model is
lifted by the origin node to the level where at least one more string becomes
tight. Note that this interpretation leads to an interesting two-sided version
of Dijkstra’s algorithm for the single origin/single destination problem. In
particular, it can be seen that a solution can be obtained by lifting the model
upward from the origin, and simultaneously pulling the model downward from
the destination. The corresponding algorithm is given in Exercise 3.5.

Figure 3.2 Interpretation of Dijkstra’s algorithm in terms of the balls-

and-strings model for the shortest path problem of Fig. 3.1. The model initially

rests on a flat surface. It is then picked up from the origin and lifted in stages.

At each stage the origin is raised to the next higher level at which one more node

is ready to be lifted off the surface. Thus at each stage the shortest distance to

at least one more node is found. Furthermore, the shortest distances of the nodes

are obtained in the order of the nodes’ proximity to the origin.

4.3.1 Algorithm Description and Analysis

We describe the algorithm in its simplest form for the case of a single origin
and a single destination, and we defer the discussion of other and more efficient
versions.

Let node 1 be the origin node and let t be the destination node. The
algorithm maintains at all times a simple path P = (1, i1, i2, . . . , ik). (When
we refer to a path in this section, we implicitly assume that the path is forward ;
that is, all the arcs of the path are forward arcs.) The node ik is called the
terminal node of P . The degenerate path P = (1) may also be obtained
in the course of the algorithm. If ik+1 is a node that does not belong to a
path P = (1, i1, i2, . . . , ik) and (ik, ik+1) is an arc, extending P by ik+1 means
replacing P by the path (1, i1, i2, . . . , ik, ik+1), called the extension of P by
ik+1. If P does not consist of just the origin node 1, contracting P means
replacing P by the path (1, i1, i2, . . . , ik−1).

198 Auction Algorithms Chap. 4

The algorithm maintains also a price vector p satisfying CS together
with P . We assume that an initial pair (P, p) satisfying CS is available. This
is not a restrictive assumption when all arc lengths are nonnegative, since
then one can use the default pair

P = (1), pi = 0, ∀ i.

When some arcs have negative lengths, an initial choice of a pair (P, p) satis-
fying CS may not be obvious or available, but Exercise 3.2 provides a general
method for finding such a pair.

We now describe the algorithm. Initially, (P, p) is any pair satisfying CS.
The algorithm proceeds in iterations, transforming a pair (P, p) satisfying
CS into another pair satisfying CS. At each iteration, the path P is either
extended by a new node or else contracted by deleting its terminal node. In
the latter case the price of the terminal node is increased strictly. A degenerate
case occurs when the path consists by just the origin node 1; in this case the
path is either extended or is left unchanged with the price p1 being strictly
increased. The iteration is as follows.

Typical Iteration

Let i be the terminal node of P . If

pi < min
(i,j)∈A

{
aij + pj

}
, (3.2)

go to Step 1; else go to Step 2.

Step 1 (Contract path): Set

pi := min
(i,j)∈A

{
aij + pj

}
, (3.3)

and if i �= 1, contract P . Go to the next iteration.

Step 2 (Extend path): Extend P by node ji where

ji = arg min
(i,j)∈A

{
aij + pj

}
. (3.4)

If ji is the destination t, stop; P is the desired shortest path. Otherwise, go

to the next iteration.

Note that following an extension (Step 2), P is a simple path from 1 to
ji; if this were not so, then adding ji to P would create a cycle, and for every
arc (i, j) of this cycle we would have pi = aij + pj . By adding this condition
along the cycle, we see that the cycle should have zero length, which is not
possible by our assumptions.

Sec. 4.3 An Auction Algorithm for Shortest Paths 199

Figure 3.3 illustrates the algorithm. As can be seen from the example of
this figure, the terminal node traces the tree of shortest paths from the origin
to the nodes that are closer to the origin than the given destination. This
behavior is typical when the initial prices are all zero as we will show shortly.
We now derive the properties of the algorithm and establish its validity.

Proposition 3.1: The pairs (P, p) generated by the algorithm satisfy CS.
Furthermore, for every pair of nodes i and j, and at all iterations, pi − pj is
an underestimate of the shortest distance from i to j.

Proof: We first show by induction that (P, p) satisfies CS. Indeed, the initial
pair satisfies CS by assumption. Consider an iteration that starts with a pair
(P, p) satisfying CS and produces a pair (P̄ , p̄). Let i be the terminal node of
P . If

pi = min
(i,j)∈A

{aij + pj}, (3.5)

then P̄ is the extension of P by a node ji and p̄ = p, implying that the CS
condition (3.1b) holds for all arcs of P as well as arc (i, ji) [since ji attains
the minimum in Eq. (3.5); cf. Eq. (3.4)].

Suppose next that

pi < min
(i,j)∈A

{aij + pj}.

Then if P is the degenerate path (1), the CS condition holds vacuously. Oth-
erwise, P̄ is obtained by contracting P , we have p̄i > pi, and for all nodes
j ∈ P̄ , we have p̄j = pj , implying the CS conditions (3.1a) and (3.1b) for arcs
outgoing from nodes of P̄ . Also, for the terminal node i, we have

p̄i = min
(i,j)∈A

{aij + pj},

implying the CS condition (3.1a) for arcs outgoing from that node as well.
Furthermore, since p̄i > pi and p̄k = pk for all k �= i, we have p̄k ≤ akj + p̄j

for all arcs (k, j) outgoing from nodes k /∈ P . This completes the induction
proof that (P, p) satisfies CS.

Finally consider any path from a node i to a node j. By adding the CS
condition (3.1a) along that path, we see that the length of the path is at least
pi − pj , proving the last assertion of the proposition. Q.E.D.

Proposition 3.2: If P is a path generated by the algorithm, then P is a
shortest path from the origin to the terminal node of P .

Proof: This follows from the CS property of the pair (P, p) shown in Prop.
3.1; see the remarks following the CS conditions (3.1). In particular, by the
CS condition (3.1b), P has length p1 − pi, and by the CS condition (3.1a),

Shortest path problem with arc
lengths as shown

3

1

2

4

1 2

2 2
Origin Destination

Trajectory of terminal node
and final prices generated by
the algorithm

1

2

4

3

p =31

p =2
2

p =2
3

p =0
4

200 Auction Algorithms Chap. 4

Iteration # Path P prior Price vector p prior Type of action

to the iteration to the iteration during the iteration

1 (1) (0, 0, 0, 0) contraction at 1

2 (1) (1, 0, 0, 0) extension to 2

3 (1, 2) (1, 0, 0, 0) contraction at 2

4 (1) (1, 2, 0, 0) contraction at 1

5 (1) (2, 2, 0, 0) extension to 3

6 (1, 3) (2, 2, 0, 0) contraction at 3

7 (1) (2, 2, 2, 0) contraction at 1

8 (1) (3, 2, 2, 0) extension to 2

9 (1, 2) (3, 2, 2, 0) extension to 4

10 (1, 2, 4) (3, 2, 2, 0) stop

Figure 3.3 An example illustrating the algorithm starting with P = (1)

and p = 0.

Sec. 4.3 An Auction Algorithm for Shortest Paths 201

every path connecting 1 and i must have length at least equal to p1 − pi.
Q.E.D.

Interpretations of the Algorithm

The algorithm can be interpreted in terms of a balls-and-strings model where
nodes are raised in stages as illustrated in Fig. 3.4. All nodes are resting
initially on a flat surface. At each stage, we raise the last node in a tight
chain that starts at the origin to the level at which at least one more string
becomes tight. This should be contrasted with Dijkstra’s algorithm (cf. Fig.
3.2), where we raise the entire set of nodes that are connected with the origin
via a tight chain.

For an alternative interpretation, denote for each node i,

Di = shortest distance from the origin 1 to node i, (3.6)

with D1 = 0 by convention. By Prop. 3.1, we have throughout the algorithm

p1 − pj ≤ Dj, ∀ j ∈ N ,

while by Prop. 3.2, we have

p1 − pi = Di, for all i ∈ P .

The preceding two relations imply that

Di + pi − pt ≤ Dj + pj − pt, ∀ i ∈ P, and j ∈ N .

Since by Prop. 3.1 pj − pt is an estimate of the shortest distance from j to t,
we may view the quantity

Dj + pj − pt

as an estimate of the shortest distance from 1 to t using only paths passing
through j. Thus, intuitively, it makes sense to consider a node j as “most
desirable” for inclusion in the algorithm’s path if Dj + pj − pt is minimal.

Based on the preceding interpretation, it can be seen that:

(a) The algorithm maintains a path consisting of “most desirable” candi-
dates for participation in a shortest path from 1 to t.

(b) The algorithm extends P by a node j if and only if j is a “most desirable”
candidate.

(c) The algorithm contracts P if the terminal node i has no neighbor that
is “most desirable.” Then, the estimate of i’s shortest distance to t is

(b)

1

2

3

4

1 2

2 2

(a)

Shortest path problem with
arc lengths shown next to the arcs.
Node 1 is the origin.
Node 4 is the destination.

2 31 4

Initial position

2 3

1

4

After 1st stage

2

3

1

4

After 2nd stage

4

2

3

1

After 3rd stage

4

2

After 4th stage

3

1

202 Auction Algorithms Chap. 4

Figure 3.4 Illustration of the algorithm of this section in terms of the

balls-and-strings model for the problem shown in (a). The model initially rests on

a flat surface, and various balls are then raised in stages. At each stage we raise a

single ball i �= t, which is at a lower level than the origin and can be reached from

the origin through a sequence of tight strings; i should not have any tight string

connecting it to another ball, which is at a lower level, that is, i should be the last

ball in a tight chain hanging from the origin. (If the origin does not have any tight

string connecting it to another ball, which is at a lower level, we use i = origin.)

We then raise i to the first level at which one of the strings connecting it to a ball

at a lower level becomes tight. Each stage corresponds to a contraction. The ball

i, which is being raised, corresponds to the terminal node of the path.

Sec. 4.3 An Auction Algorithm for Shortest Paths 203

improved (i.e., is increased), and i is not “most desirable” (since Di+pi−
pt is not minimal anymore), thus justifying its deletion from P . Node
i will be revisited only after Di + pi − pt becomes minimal again, after
sufficiently large increases of the prices of the currently “most desirable”
nodes.

The preceding interpretation suggests also that the nodes become ter-
minal for the first time in the order of the initial values Dj + p0

j − p0
t , where

p0
i = initial price of node i. (3.7)

To formulate this property, denote for every node i

di = Di + p0
i . (3.8)

Index the iterations by 1, 2, . . ., and let

ki = the first iteration at which node i becomes the terminal node, (3.9)

where by convention, k1 = 0 and ki = ∞ if i never becomes a terminal node.

Proposition 3.3:

(a) At the end of iteration ki we have p1 = di.

(b) If ki < kj , then di ≤ dj .

Proof: (a) At the end of iteration ki, P is a shortest path from 1 to i by
Prop. 3.2, while the length of P is p1 − p0

i .

(b) By part (a), at the end of iteration ki we have p1 = di, while at the end of
iteration kj we have p1 = dj . Since p1 is monotonically nondecreasing during
the algorithm and ki < kj , the result follows. Q.E.D.

Note that the preceding proposition shows that when all arc lengths are
nonnegative, and the default initialization p = 0 is used, the nodes become
terminal for the first time in the order of their proximity to the origin. This
property is also evident from the interpretation of the algorithm in terms of
the balls-and-strings model; cf. Fig. 3.4.

Termination – Running Time of the Algorithm

The following proposition establishes the validity of the algorithm.

Proposition 3.4: If there exists at least one path from the origin to the
destination, the algorithm terminates with a shortest path from the origin to
the destination. Otherwise the algorithm never terminates and p1 → ∞.

204 Auction Algorithms Chap. 4

Proof: Assume first that there is a path from node 1 to the destination t.
Since by Prop. 3.1 p1 − pt is an underestimate of the (finite) shortest distance
from 1 to t, p1 is monotonically nondecreasing, and pt is fixed throughout the
algorithm, it follows that p1 must stay bounded. We next claim that pi must
stay bounded for all i. Indeed, in order to have pi → ∞, node i must become
the terminal node of P infinitely often, implying (by Prop. 3.1) that p1 − pi

must be equal to the shortest distance from 1 to i infinitely often, which is a
contradiction since p1 is bounded.

We next show that the algorithm terminates. Indeed, it can be seen
with a straightforward induction argument that for every node i, either pi is
equal to its initial value or else pi is the length of some path starting at i
plus the initial price of the final node of the path; we call this the modified
length of the path. Every path starting at i can be decomposed into a simple
path and a finite number of cycles, each having positive length by assumption
(Exercise 1.5 in Section 1.1), so the number of distinct modified path lengths
within any bounded interval is bounded. Now, pi was shown earlier to be
bounded. Furthermore, each time i becomes the terminal node by extension
of the path P , pi is strictly larger over the preceding time i became the
terminal node of P , corresponding to a strictly larger modified path length. It
follows that the number of times i can become a terminal node by extension
of the path P is bounded. Since the number of path contractions between
two consecutive path extensions is bounded by the number of nodes in the
graph, the number of iterations of the algorithm is bounded, implying that
the algorithm terminates.

Assume now that there is no path from node 1 to the destination. Then
the algorithm will never terminate, so by the preceding argument some node
i will become the terminal node by extension of the path P infinitely often,
and pi → ∞. At the end of iterations where this happens, p1 − pi must be
equal to the shortest distance from 1 to i, implying that p1 → ∞. Q.E.D.

We will now estimate the running time of the algorithm, assuming that
all the arc lengths and initial prices are integer. Our estimate involves the set
of nodes

I = {i | di ≤ dt}; (3.10)

by Prop. 3.3, these are the only nodes that ever become terminal nodes of the
paths generated by the algorithm. Let us denote

I = number of nodes in I, (3.11)

G = max
i∈I

gi, (3.12)

where gi is the number of outgoing incident arcs of node i, and let us also
denote by E the product

E = I · G. (3.13)

Sec. 4.3 An Auction Algorithm for Shortest Paths 205

Proposition 3.5: Assume that there exists at least one path from the
origin 1 to the destination t, and that the arc lengths and initial prices are all
integer. The worst case running time of the algorithm is O

(
E

(
Dt + p0

t − p0
1

))
.

Proof: Each time a node i becomes the terminal node of the path, we have
pi = p1 −Di (cf. Prop. 3.2). Since at all times we have p1 ≤ Dt + p0

t (cf. Prop.
3.1), it follows that

pi = p1 − Di ≤ Dt + p0
t − Di.

Using the definitions dt = Dt + p0
t and di = Di + p0

i , and the fact di ≥ d1 (cf.
Prop. 3.3), we see that throughout the algorithm we have

pi − p0
i ≤ dt − di ≤ dt − d1 = Dt + p0

t − p0
1, ∀ i ∈ I.

Therefore, since prices increase by integer amounts, Dt + p0
t − p0

1 + 1 bounds
the number of times that each price pi increases (with an attendant path
contraction if i �= 1). The computation per iteration is bounded by a con-
stant multiple of the number of outgoing arcs of the terminal node of the
path, so the computation corresponding to contractions and price increases is
O

(
E

(
Dt + p0

t − p0
1

))
.

The number of path extensions with i ∈ I becoming the terminal node of
the path is bounded by the number of increases of pi, which in turn is bounded
by Dt +p0

t −p0
1 +1. Thus the computation corresponding to extensions is also

O
(
E

(
Dt + p0

t − p0
1

))
. Q.E.D.

The actual running time of the algorithm can indeed, in the worst case,
depend strongly on the shortest distance Dt, as suggested by the estimate of
the preceding proposition. This is illustrated in Fig. 3.5 with a graph involving
a cycle with relatively small length. It is possible to use scaling to turn
the algorithm into one that is polynomial (see [Ber90]), but in practice this
device does not seem particularly effective, because the practical performance
of the algorithm is typically much better than suggested by the preceding
running time estimate. In fact, for randomly generated problems, it appears
that the number of iterations can be estimated quite reliably (within a small
multiplicative factor) by

nt − 1 +
∑

i∈I, i�=t

(2ni − 1), (3.14)

where ni is the number of nodes in a shortest path from 1 to i. For example,
for the problem of Fig. 3.3 the above estimate is exact; see also Exercise 3.4.
Note also that the number of iterations is reduced substantially when the
algorithm is implemented in a forward/reverse mode, as discussed in the next
subsection.

1 2 3

4

5
1 1

11

L
Origin Destination

206 Auction Algorithms Chap. 4

Assuming that the estimate (3.14) on the number of iterations is correct
(within a constant factor) the running time of the algorithm depends critically
on the number of nodes ni in the shortest path to node i averaged over all
nodes i. If the shortest paths are very long as in graphs with large diameter,
the average number of arcs on a shortest path is O(N), and the running
time of the algorithm is usually O(NA), where A is the number of arcs [a
more accurate estimate is O(NE), where E bounds the number of arcs in
the subgraph of nodes that are closer to the origin than the destination t, cf.
Eqs. (3.10)-(3.13)]. If on the other hand the shortest paths are short as in
graphs with small diameter, the average number of arcs on a shortest path is
O(1), and the running time of the algorithm is usually O(A) [a more accurate
estimate is O(E)].

Figure 3.5 Example graph for which the number of iterations of the

algorithm is not polynomially bounded. The lengths are shown next to the arcs

and L > 1. By tracing the steps of the algorithm starting with P = (1) and

p = 0, we see that the price of node 3 will be first increased by 1 and then it

will be increased by increments of 3 (the length of the cycle) as many times as is

necessary for p3 to reach or exceed L.

The Case of Multiple Destinations or Multiple Origins

To solve the problem with multiple destinations and a single origin, one can
simply run the algorithm until every destination becomes the terminal node of
the path at least once. Also, to solve the problem with multiple origins and a
single destination, one can combine several versions of the algorithm – one for
each origin. However, the different versions can share a common price vector,
since regardless of the origin considered, the condition pi ≤ aij + pj is always
maintained. There are several ways to operate such a method; they differ in
the policy used for switching between different origins. One possibility is to
run the algorithm for one origin and, after the shortest path is obtained, to
switch to the next origin (without changing the price vector), and so on, until
all origins are exhausted. Another possibility, which is probably preferable in

Sec. 4.3 An Auction Algorithm for Shortest Paths 207

most cases, is to rotate between different origins, switching from one origin to
another, if a contraction at the origin occurs or the destination becomes the
terminal node of the current path.

4.3.2 Efficient Implementation – Forward/Reverse Algorithm

The main computational bottleneck of the algorithm is the calculation of

min
(i,j)∈A

{
aij + pj

}
,

which is done every time node i becomes the terminal node of the path. We
can reduce the number of these calculations using the following observation.
Since the CS condition pi ≤ aij + pj is maintained at all times for all arcs
(i, j), if some (i, ji) satisfies

pi = aiji + pji

it follows that
aiji + pji = min

(i,j)∈A

{
aij + pj

}
,

so the path can be extended by ji if i is the terminal node of the path. This
suggests the following implementation strategy: each time a path contraction
occurs with i being the terminal node, we calculate

min
(i,j)∈A

{
aij + pj

}

together with an arc (i, ji) such that

ji = arg min
(i,j)∈A

{
aij + pj

}
.

At the next time node i becomes the terminal node of the path, we check
whether the condition pi = aiji + pji is satisfied, and if it is we extend the
path by node ji without going through the calculation of min(i,j)∈A

{
aij + pj

}
.

In practice this device is very effective, typically saving from a third to a half
of the calculations of the preceding expression. The reason is that the test
pi = aiji +pji rarely fails; the only way it can fail is if the price pji is increased
between the two successive times i became the terminal node of the path.

The preceding idea can be strengthened further. Suppose that whenever
we compute the “best neighbor”

ji = arg min
(i,j)∈A

{
aij + pj

}

208 Auction Algorithms Chap. 4

we also compute the “second best neighbor” ki, given by

ki = arg min
(i,j)∈A, j �=ji

{
aij + pj

}
,

and the corresponding “second best level”

wi = aiki + pki .

Then, at the next time node i becomes the terminal node of the path, we can
check whether the condition aiji + pji ≤ wi is satisfied, and if it is we know
that ji still attains the minimum in the expression

min
(i,j)∈A

{
aij + pj

}
,

thereby obviating the calculation of this minimum. If on the other hand we
have aiji + pji > wi (due to an increase of pji subsequent to the calculation
of wi), we can check to see whether we still have wi = aiki + pki ; if this is so,
then ki becomes the “best neighbor,”

ki = arg min
(i,j)∈A

{
aij + pj

}
,

thus again obviating the calculation of the minimum.
With proper implementation the devices outlined above can typically

reduce the number of calculations of the expression min(i,j)∈A
{
aij + pj

}
by a

factor that is typically in the range from 3 to 5, thereby dramatically reducing
the total computation time.

Forward/Reverse Algorithm

In shortest path problems, one can exchange the roles of origins and desti-
nations by reversing the directions of all arcs. It is therefore possible to use
a destination-oriented version of our algorithm that maintains a path R that
ends at the destination and changes at each iteration by means of a contrac-
tion or an extension. This algorithm, presented below and called the reverse
algorithm, is equivalent to the earlier algorithm, which will henceforth be re-
ferred to as the forward algorithm. The CS conditions for the problem with
arc directions reversed are

pj ≤ aij + pi, ∀ (i, j) ∈ A,

pj = aij + pi, for all pairs of successive nodes i and j of R,

where p is the price vector. By replacing p by −p, we obtain the CS conditions
in the form pi ≤ aij+pj , thus maintaining a common CS condition for both the

Sec. 4.3 An Auction Algorithm for Shortest Paths 209

forward and the reverse algorithm. The following description of the reverse
algorithm also replaces p by −p, with the result that the prices are decreasing
instead of increasing. To be consistent with the assumptions made regarding
the forward algorithm, we assume that each node except for the origin has at
least one incoming arc.

In the reverse algorithm, initially, R is any path ending at the destina-
tion, and p is any price vector satisfying the CS conditions (3.1) together with
R; for example,

R = (t), pi = 0, ∀ i

if all arc lengths are nonnegative.

Typical Iteration of the Reverse Algorithm

Let j be the starting node of R. If

pj > max
(i,j)∈A

{
pi − aij

}
,

go to Step 1; else go to Step 2.

Step 1 (Contract path): Set

pj := max
(i,j)∈A

{
pi − aij

}

and, if j �= t, contract R (that is, delete the starting node j of R). Go to the

next iteration.

Step 2 (Extend path): Extend R by node ij , (that is, make ij the starting

node of R, preceding j), where

ij = arg max
(i,j)∈A

{
pi − aij

}
.

If ij is the origin 1, stop; R is the desired shortest path. Otherwise, go to the

next iteration.

The reverse algorithm is really the forward algorithm applied to a re-
verse shortest path problem, so by the results of Section 4.3.1, it is valid and
terminates with a shortest path, if at least one path exists from 1 to t.

We now consider combining the forward and the reverse algorithms into
one. In this combined algorithm, we initially have a price vector p, and two
paths P and R, satisfying CS together with p, where P starts at the origin and
R ends at the destination. The paths P and R are extended and contracted
according to the rules of the forward and the reverse algorithms, respectively,
and the combined algorithm terminates when P and R have a common node.
Since P and R satisfy CS together with p throughout the algorithm, it is seen
that when P and R meet, say at node i, the composite path consisting of the
portion of P from 1 to i and the portion of R from i to t will be shortest.

210 Auction Algorithms Chap. 4

Combined Algorithm

Step 1 (Run forward algorithm): Execute several iterations of the forward

algorithm (subject to the termination condition), at least one of which leads

to an increase of the origin price p1. Go to Step 2.

Step 2 (Run reverse algorithm): Execute several iterations of the reverse

algorithm (subject to the termination condition), at least one of which leads

to a decrease of the destination price pt. Go to Step 1.

To justify the combined algorithm, note that p1 can only increase and pt

can only decrease during its course, and that the difference p1 − pt can be no
more than the shortest distance between 1 and t. Assume that the arc lengths
and the initial prices are integer, and that there is at least one path from 1 to t.
Then, p1 and pt can change only by integer amounts, and p1 − pt is bounded.
Hence, p1 and pt can change only a finite number of times, guaranteeing
that there will be only a finite number of executions of Steps 1 and 2 of the
combined algorithm. By the results of Section 4.3.1, each Step 1 and Step 2
must contain only a finite number of iterations of the forward and the reverse
algorithms, respectively. It follows that the algorithm must terminate. Note
that this argument relies on the requirement that p1 increases at least once
in Step 1 and pt decreases at least once in Step 2. Without this requirement,
one can construct examples showing that the combined algorithm may never
terminate.

In practice, it appears that the combined algorithm is typically much
faster than either the forward or the reverse algorithm (often by a factor of
the order of ten or more). In particular, the running time of the (exclusively)
forward algorithm is typically proportional to the product mF hF , where mF is
the number of nodes reached by the algorithm, and hF is the average number
of nodes on the shortest paths from the origin to these nodes [cf. Eq. (3.14)].
Similarly, the running time of the (exclusively) reverse algorithm is typically
proportional to the product mRhR, where mR is the number of nodes reached
by the algorithm, and hR is the average number of nodes on the shortest paths
from these nodes to the destination. The running time of the forward/reverse
algorithm is typically proportional to mF hF +mRhR, where the terms mF , hF ,
and mR, hR are analogously defined, and correspond to the forward and the
reverse portions of the algorithm, respectively. For many types of problems it
appears that mF + mR is much less than both mF and mR, while hF + hR is
roughly comparable to hF and hR. This explains the experimentally observed
faster running time of the forward/reverse algorithm.

Note that the forward/reverse algorithm can also be interpreted in terms
of the balls-and-strings model. Just as the forward algorithm can be viewed
as a sequence of stages where some ball is lifted upward as in Fig. 3.4, the
reverse algorithm can be viewed as a sequence of stages where some ball is

Sec. 4.3 An Auction Algorithm for Shortest Paths 211

pulled downward. In the forward/reverse algorithm, we switch from raising to
lowering balls and reversely. It is apparent that the algorithm works provided
we make sure that, once in a while, the vertical distance between the origin
and the destination increases either because the origin is raised or because the
destination is lowered.

Forward/Reverse Algorithm for Multiple Origins

One may use the combined algorithm for the problem with multiple origins
and a single destination using an algorithm that combines a separate forward
version of the algorithm for each origin, and a reverse algorithm, which is
common for all origins. The same price vector can be used for all forward
versions, since the condition pi ≤ aij+pj is always maintained. One possibility
is to rotate between different origins and the destination, switching from a
forward algorithm for one origin to the reverse algorithm, then to another
origin, and so on. The switch is made if a contraction at the origin (in the
forward algorithm case) or the destination (in the reverse algorithm case)
occurs, or if the destination becomes the terminal node of the current path
(in the forward algorithm case). The code given in Appendix A.2 uses this
scheme.

4.3.3 Relation to Naive Auction and Dual Coordinate
Ascent

We now explain how our (forward) single origin/single destination algorithm
can be viewed as an instance of application of the naive auction algorithm to
a special type of assignment problem.

The naive auction algorithm was described in Section 1.2.4 for max-
imization assignment problems, where we want to maximize the benefit of
matching n persons and n objects on a one-to-one basis. It is convenient here
to reformulate the problem and the algorithm in terms of minimization by
reversing the signs of the cost coefficients and the prices, and by replacing
maximization by minimization. In particular, suppose that there is a cost cij

for assigning person i with object j and we want to assign persons to objects
so as to minimize the total cost. Mathematically, we want to find a feasible
assignment that minimizes the total cost

∑n
i=1 ciji , where by a feasible assign-

ment we mean a set of person-object pairs (1, j1), . . . , (n, jn) such that the
objects j1, . . . , jn are all distinct and (i, ji) ∈ A for all i.

The naive auction algorithm proceeds in iterations and generates a se-
quence of price vectors p and (partial) assignments. At the beginning of each
iteration, the complementary slackness condition

ciji + pji = min
(i,j)∈A

{cij + pj} (3.15)

212 Auction Algorithms Chap. 4

is satisfied for all pairs (i, ji) of the assignment [cf. Eq. (2.8) in Section 1.2.3].
The initial price vector–assignment pair is required to satisfy this condition,
but is otherwise arbitrary. If all persons are assigned, the algorithm termi-
nates. If not, some person who is unassigned, say i, is selected. This person
finds an object ji, which is best in the sense

ji = arg min
(i,j)∈A

{cij + pj},

and then:

(a) Gets assigned to the best object ji; the person that was assigned to ji

at the beginning of the iteration (if any) becomes unassigned.

(b) Sets the price of ji to the level at which he or she is indifferent between
ji and the second best object – that is, he or she sets pji to

pji + wi − vi,

where vi is the cost for acquiring the best object (including payment of
the corresponding price),

vi = min
(i,j)∈A

{cij + pj},

and wi is the cost for acquiring the second best object,

wi = min
(i,j)∈A, j �=ji

{cij + pj}.

This process is repeated in a sequence of iterations until each person is assigned
to an object.

The naive auction algorithm differs from the auction algorithm in the
choice of the increment of the price increase. In the auction algorithm the
price pji is increased by wi − vi + ε, where ε is a positive constant. Thus,
the naive auction algorithm is the same as the auction algorithm, except
that ε = 0. This is, however, a significant difference. As shown in Section
1.2.4 (cf. Fig. 2.10), whereas the auction algorithm is guaranteed to terminate
if at least one feasible assignment exists, the naive auction algorithm may
cycle indefinitely, with some objects remaining unassigned. If, however, the
naive auction algorithm terminates, the feasible assignment obtained upon
termination is optimal (cf. Prop. 2.4 in Section 1.2.3).

Formulation of the Shortest Path Problem as an Assignment
Problem

Given the shortest path problem of this section with node 1 as origin and
node t as destination, we formulate the following assignment problem.

t = 4

3'

5

2'

4

2

3

1'

0

0

3

1

4
24

2

5

t = 4
3

1

1 4

3

2

Sec. 4.3 An Auction Algorithm for Shortest Paths 213

Let 2, . . . , N be the “object” nodes, and for each node i �= t introduce a
“person” node i′. For every arc (i, j) of the shortest path problem with i �= t
and j �= 1, introduce the arc (i′, j) with cost aij in the assignment problem.
Introduce also the zero cost arc (i′, i) for each i �= 1, t. Figure 3.6 illustrates
the assignment problem and shows how, given the partial assignment that
assigns object i to person i′ for i �= 1, t, paths from 1 to t can be associated
with augmenting paths that start at 1′ and end at t.

Figure 3.6 A shortest path problem (the origin is 1, the destination is t = 4)

and its corresponding assignment problem. The arc lengths and the assignment

costs are shown next to the arcs. Consider the partial assignment that assigns

object i to person i′ for i �= 1, t. Then a shortest path can be associated with an

optimal augmenting path that starts at 1′ and ends at t.

Consider now applying the naive auction algorithm starting from a price
vector p satisfying the CS condition (3.1a), that is,

pi ≤ aij + pj, ∀ (i, j) ∈ A (3.16)

and the partial assignment

(i′, i), ∀ i �= 1, t.

This initial pair satisfies the corresponding complementary slackness condition
(3.15), because the cost of the assigned arcs (i′, i) is zero.

We impose an additional rule for breaking ties in the naive auction
algorithm: if at some iteration involving the unassigned person i′ the arc (i′, i)
is the best arc and is equally desirable with some other arc (i′, ji) (i.e., pi =
aiji +pji = min(i,j)∈A{aij +pj}), then the latter arc is preferred, that is, (i′, ji)
is added to the assignment rather than (i′, i). Furthermore, we introduce an
inconsequential modification of the naive auction iteration involving a bid of

214 Auction Algorithms Chap. 4

person 1′, in order to account for the special way of handling a contraction
at the origin in the shortest path algorithm. In particular, the bid of 1′ will
consist of finding an object j1 attaining the minimum in

min
(1,j)∈A

{a1j + pj},

assigning j1 to 1′, and deassigning the person assigned to j1 (in the case
j1 �= t), but not changing the price pj1 .

It can now be shown that the naive auction algorithm with the preceding
modifications is equivalent to the (forward) shortest path algorithm of Section
4.3.1. In particular, the following can be verified by induction:

(a) The CS condition (3.16) is preserved by the naive auction algorithm.

(b) Each assignment generated by the naive auction algorithm consists of a
sequence of the form

(1′, i1), (i′1, i2), . . . , (i
′
k−1, ik),

together with the additional arcs

(i′, i), for i �= i1, . . . , ik, t;

this sequence corresponds to a path P = (1, i1, . . . , ik) generated by the
shortest path algorithm. As long as ik �= t, the (unique) unassigned
person in the naive auction algorithm is person i′k, corresponding to the
terminal node of the path. When ik = t, a feasible assignment results,
in which case the naive auction algorithm terminates, consistently with
the termination criterion for the shortest path algorithm.

(c) In an iteration corresponding to an unassigned person i′ with i �= 1, the
arc (i′, i) is always a best arc; this is a consequence of the complementary
slackness condition (3.16). Furthemore, there are three possibilities:

(1) (i′, i) is the unique best arc, in which case (i′, i) is added to the
assignment, and the price pi is increased by

min
(i,j)∈A

{cij + pj} − pi;

this corresponds to contracting the current path by the terminal
node i.

(2) There is an arc (i′, ji) with ji �= t, which is equally preferred to
(i′, i), that is,

pi = aiji + pji ,

in which case, in view of the tie-breaking rule specified earlier,
(i′, ji) is added to the assignment and the price pji remains the

Sec. 4.3 An Auction Algorithm for Shortest Paths 215

same. Furthermore, the object ji must have been assigned to j′i
at the start of the iteration, so adding (i′, ji) to the assignment
[and removing (j′i, ji)] corresponds to extending the current path
by node ji. (The positivity assumption on the cycle lengths is
crucial for this property to hold.)

(3) The arc (i′, t) is equally preferred to (i′, i), in which case the hereto-
fore unassigned object t is assigned to i′, thereby terminating the
naive auction algorithm; this corresponds to the destination t be-
coming the terminal node of the current path, thereby terminating
the shortest path algorithm.

We have thus seen that the shortest path algorithm may be viewed
as an instance of the naive auction algorithm. However, the properties of
the former algorithm do not follow from generic properties of the latter. As
shown in Section 1.2.4 (see Fig. 2.12), the naive auction algorithm need not
terminate in general. In the present context it does terminate, thanks to the
special structure of the corresponding assignment problem, and also thanks
to the positivity assumption on all cycle lengths.

We finally note that the forward/reverse version of the shortest path
algorithm is equivalent to a combined forward/reverse version of naive auction,
with the minor modifications described earlier; see the algorithm of Section
4.2 with ε = 0.

Relation to Dual Coordinate Ascent

We next explain how the single origin/single destination algorithm can be
viewed as a dual coordinate ascent method.

As was seen in Section 1.3 [see Eq. (1.3) of that section], the shortest
path problem can be written in the minimum cost flow format as follows:

minimize
∑

(i,j)∈A
aijxij

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (3.17)

0 ≤ xij, ∀ (i, j) ∈ A,

where
s1 = 1, st = −1

si = 0, ∀ i �= 1, t.

The dual problem is (cf. Exercise 2.11 in Section 1.2)

maximize p1 − pt

subject to pi − pj ≤ aij, ∀ (i, j) ∈ A.

216 Auction Algorithms Chap. 4

Let us associate with a given path P = (1, i1, i2, . . . , ik) the flow

xij =
{ 1 if i and j are successive nodes in P

0 otherwise.

Then, the CS conditions (3.1a) and (3.1b) are equivalent to the complemen-
tary slackness conditions

pi ≤ aij + pj, ∀ (i, j) ∈ A,

pi = aij + pj, for all (i, j) ∈ A with 0 < xij

for the preceding minimum cost flow problem. For a pair (x, p), the above
conditions together with primal feasibility [the conservation of flow constraint
(3.17) for all i ∈ N , which in our case translates to the terminal node of
the path P being the destination node] are necessary and sufficient for x to
be primal-optimal and p to be dual-optimal. Thus, upon termination of the
shortest path algorithm, the price vector p is an optimal dual solution.

To interpret the algorithm as a dual ascent method, note that a path
contraction and an attendant price increase of the terminal node i of P , corre-
sponds to a step along the price coordinate pi that leaves the dual cost p1 −pt

unchanged if i �= 1. Furthermore, an increase of the origin price p1 by an
increment δ improves the dual cost by δ. Thus, the algorithm may be viewed
as a dual coordinate ascent algorithm, except that true ascent steps occur
only when the origin price increases; all other ascent steps are “degenerate,”
producing a price increase but no change in dual cost.

The above interpretation can also be visualized in terms of the balls-
and-strings model of Fig. 3.4. The dual cost is the vertical distance p1 − pt

between the balls representing the origin and the destination. In the forward
algorithm, the destination stays fixed at its initial position, and this vertical
distance increases only at the stages where the origin is raised; these are the
1st, 3rd, and 4th stages in the example of Fig. 3.4. In the forward/reverse
version of the algorithm, the vertical distance increases only at the stages
where either the origin is raised or the destination is lowered; at all other
stages it stays unchanged.

E X E R C I S E S

Exercise 3.1

Apply the forward/reverse algorithm to the example of Fig. 3.5, and show

that it terminates in a number of iterations that does not depend on the large

arc length L. Construct a related example for which the number of iterations

of the forward/reverse algorithm is not polynomially bounded.

Sec. 4.3 An Auction Algorithm for Shortest Paths 217

Exercise 3.2 (Finding an Initial Price Vector [Ber90])

In order to initialize the shortest path algorithm of this section, one needs a

price vector p satisfying the condition

pi ≤ aij + pj , ∀ (i, j) ∈ A. (3.18)

Such a vector may not be available if some arc lengths are negative. Fur-

thermore, even if all arc lengths are nonnegative, there are many cases where

it is important to use a favorable initial price vector in place of the default

choice p = 0. This possibility arises in a reoptimization context with slightly

different arc length data, or with a different origin and/or destination. This

exercise gives an algorithm to obtain a vector p satisfying the condition (3.18),

starting from another vector p satisfying the same condition for a different set

of arc lengths aij .

Suppose that we have a vector p̄ and a set of arc lengths {āij}, satisfying

pi ≤ aij + pj for all arcs (i, j), and we are given a new set of arc lengths {aij}.
(For the case where some arc lengths aij are negative, this situation arises

with p = 0 and aij = max{0, aij}.) Consider the following algorithm that

maintains a subset of arcs E and a price vector p, and terminates when E is

empty. Initially

E = {(i, j) ∈ A | aij < āij , i �= t}, p = p̄.

The typical iteration is as follows:

Step 1 (Select arc to scan): If E is empty, stop; otherwise, remove an arc

(i, j) from E and go to Step 2.

Step 2 (Add affected arcs to E): If pi > aij + pj , set

pi := aij + pj

and add to E every arc (k, i) with k �= t that does not already belong to E .

Assuming that each node i is connected to the destination t with at

least one path, and that all cycle lengths are positive, show that the algorithm

terminates with a price vector p satisfying

pi ≤ aij + pj , ∀ (i, j) ∈ A with i �= t.

Exercise 3.3 (Extension for the Case of Zero Length Cycles)

Extend the algorithms of this section for the case where all arcs have nonneg-

ative length but some cycles may consist exclusively of zero length arcs. Hint:
Any cycle of zero length arcs generated by the algorithm can be treated as a

single node.

1 2 3 N-1 t. . . . (a)

1

2

3

N-1

t

. . . .

(b)

218 Auction Algorithms Chap. 4

Exercise 3.4

Consider the two single origin/single destination shortest path problems shown

in Fig. 3.7.

(a) Show that the number of iterations required by the forward algorithm

is estimated accurately by the formula given in Section 4.3.1,

nt − 1 +
∑

i∈I, i�=t

(2ni − 1),

where ni is the number of nodes in a shortest path from 1 to i. Show

also that the corresponding running times are O(N 2).

(b) Show that for the problem of Fig. 3.7(a) the running time of the for-

ward/reverse algorithm (with a suitable “reasonable” rule for switching

between the forward and reverse algorithms) is O(N 2) (the number of

iterations is roughly half the corresponding number for the forward al-

gorithm). Show also that for the problem of Fig. 3.7(b) the running

time of the forward/reverse algorithm is O(N).

Figure 3.7 Shortest path problems for Exercise 3.4. In problem (a) arc

lengths are equal to 1. In problem (b), the length of each arc (1, i) is i, and the

length of each arc (i, t) is N .

Exercise 3.5 (A Forward/Reverse Version of Dijkstra’s Algorithm)

Consider the single origin/single destination shortest path problem and assume

that all arc lengths are nonnegative. Let node 1 be the origin, let node t be

the destination, and assume that there exists at least one path from 1 to

Sec. 4.3 An Auction Algorithm for Shortest Paths 219

t. This exercise provides a forward/reverse version of Dijkstra’s algorithm,

which is motivated by the balls-and-strings model analogy of Figs. 3.1 and

3.2. In particular, the algorithm may be interpreted as alternately lifting the

model upward from the origin (the following Step 1), and pulling the model

downward from the destination (the following Step 2).

The algorithm maintains a price vector p and two node subsets W1 and

Wt. Initially, p satisfies the CS condition

pi ≤ aij + pj , ∀ (i, j) ∈ A, (3.19)

W1 = {1}, and Wt = {t}. One may view W1 and Wt as the sets of permanently

labeled nodes from the origin and from the destination, respectively. The

algorithm terminates when W1 and Wt have a node in common. The typical

iteration is as follows:

Step 1 (Forward Step): Find

γ+ = min{aij + pj − pi | (i, j) ∈ A, i ∈ W1, j /∈ W1}

and let

V1 = {j /∈ W1 | γ+ = aij + pj − pi for some i ∈ W1}.

Set

pi :=

{
pi + γ+, if i ∈ W1

pi, if i /∈ W1.

Set

W1 := W1 ∪ V1.

If W1 and Wt have a node in common, terminate the algorithm; otherwise, go

to Step 2.

Step 2 (Backward Step): Find

γ− = min{aji + pi − pj | (j, i) ∈ A, i ∈ Wt, j /∈ Wt}

and let

Vt = {j /∈ Wt | γ+ = aji + pi − pj for some i ∈ Wt}.

Set

pi :=

{
pi − γ−, if i ∈ Wt

pi, if i /∈ Wt.

Set

Wt := Wt ∪ Vt.

220 Auction Algorithms Chap. 4

If W1 and Wt have a node in common, terminate the algorithm; otherwise, go

to Step 1.

(a) Show that throughout the algorithm, the condition (3.19) is maintained.

Furthermore, for all i ∈ W1, p1−pi is equal to the shortest distance from

1 to i. Similarly, for all i ∈ Wt, pi − pt is equal to the shortest distance

from i to t. Hint : Show that if i ∈ W1, there exists a path from 1 to i

such that pm = amn + pn for all arcs (m, n) of the path.

(b) Show that the algorithm terminates and that upon termination, p1 − pt

is equal to the shortest distance from 1 to t.

(c) Show how the algorithm can be implemented so that its running time

is O(N 2). Hint : Let dmn denote the shortest distance from m to n.

Maintain the labels

v+
j = min{d1i + aij | i ∈ W1, (i, j) ∈ A}, ∀ j /∈ W1,

v−
j = min{aji + dit | i ∈ Wt, (j, i) ∈ A}, ∀ j /∈ Wt.

Let p0
j be the initial price of node j. Show that

γ+ = min

{
min

j /∈W1, j /∈Wt

(
v+

j + p0
j

)
, pt + min

j /∈W1, j∈Wt

(
v+

j + djt

)}
− p1, (3.20)

γ− = min

{
min

j /∈W1, j /∈Wt

(
v−

j − p0
j

)
, −p1 + min

j∈W1, j /∈Wt

(
v−

j + d1j

)}
+ pt. (3.21)

Use these relations to calculate γ+ and γ− in O(N) time.

(d) Show how the algorithm can be implemented using binary heaps so that

its running time is O(A log N). Hint : One possibility is to use four heaps

to implement the minimizations in Eqs. (3.20) and (3.21).

(e) Apply the two-sided version of Dijkstra’s algorithm of Exercise 3.8 of

Section 3.1 with arc lengths aij + pj − pi and with the termination cri-

terion of part (c) of that exercise. Show that the resulting algorithm is

equivalent to the one of the present exercise.

Exercise 3.6 (A Generalized Auction Algorithm)

Consider the shortest path problem, and assume that all cycles have positive

length and that there is at least one path from each node to each other node.

Let p be a price vector satisfying the CS condition

pi ≤ aij + pj , ∀ (i, j) ∈ A (3.22)

Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 221

and let dmn be the shortest distance from m to n. For each node m define the

chain of m to be the subset of nodes

Tm(p) = {m} ∪ {n | pm − pn = dmn}.

(a) Show that n ∈ Tm(p) if and only if either n = m or else for every shortest

path P from m to n we have

pi = aij + pj , for all pairs of successive nodes i and j of P .

Hint : Think in terms of the balls-and-strings model of Fig. 3.1.

(b) Define a price rise of node m to be the operation that increases the

prices of the nodes in Tm(p) by the increment

γ = min
{
aij + pj − pi | (i, j) ∈ A, i ∈ Tm(p), j /∈ Tm(p)

}
.

Show that γ > 0 and that a price rise maintains the CS condition (3.22).

Interpret a price rise in terms of the balls-and-strings model of Fig. 3.1.

(c) Let 1 be the origin node and let t be the destination node. Consider an

algorithm that starts with a price vector satisfying Eq. (3.22), performs

price rises of nodes m such that t /∈ Tm(p) (in any order), and terminates

when t ∈ T1(p). Show that the algorithm terminates and that upon

termination, p1 − pt is the shortest distance from 1 to t.

(d) Show that the (forward) shortest path algorithm of this section is a

special case of the algorithm of part (c).

(e) Adapt the algorithm of part (c) for the all origins/single destination

problem, and discuss its potential for parallel computation. Hint : Note

that if p1 and p2 are two price vectors satisfying

p1
i ≤ aij + p1

j , p2
i ≤ aij + p2

j , ∀ (i, j) ∈ A,

then

max
{
p1

i , p
2
i

}
≤ aij + max

{
p1

j , p
2
j

}
, ∀ (i, j) ∈ A.

(f) Develop an algorithm similar to the one of part (c) but involving price

decreases in place of price increases. Develop also an algorithm in-

volving both price increases and price decreases, which contains the

forward/reverse algorithm of this section as a special case.

222 Auction Algorithms Chap. 4

4.4 A GENERIC AUCTION ALGORITHM FOR THE MINIMUM
COST FLOW PROBLEM

We will now generalize the auction idea and apply it to the minimum cost
flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (4.1)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A, (4.2)

where aij, bij , cij , and si are given integers. For a given flow vector x, the
surplus of each node i is denoted by

gi =
∑

{j|(j,i)∈A}
xji −

∑
{j|(i,j)∈A}

xij + si.

The algorithm to be described shortly maintains at all times a capacity-
feasible flow vector x and a price vector p satisfying the ε-CS condition

pi − pj ≤ aij + ε for all (i, j) ∈ A with xij < cij, (4.3a)

pi − pj ≥ aij − ε for all (i, j) ∈ A with bij < xij, (4.3b)

(see Fig. 4.1). The usefulness of ε-CS is due in large measure to the following
proposition.

Proposition 4.1: If ε < 1/N , where N is the number of nodes, x is feasible,
and x and p satisfy ε-CS, then x is optimal for the minimum cost flow problem
(MCF).

Proof: If x is not optimal, then by Prop. 2.1 in Section 1.2, there exists a
simple cycle Y that has negative cost, i.e.,

∑
(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij < 0, (4.4)

and is unblocked with respect to x, i.e.,

xij < cij, ∀ (i, j) ∈ Y +,

bij < xij, ∀ (i, j) ∈ Y −.

0

aij

b ij cij x ij

p jpi -

ε

ε

Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 223

Figure 4.1 Illustration of ε-CS. All pairs of arc flows xij and price differences

pi − pj should either lie on the thick lines or in the shaded area between the thick

lines.

By ε-CS [cf. Eq. (4.3)], the preceding relations imply that

pi ≤ pj + aij + ε, ∀ (i, j) ∈ Y +,

pj ≤ pi − aij + ε, ∀ (i, j) ∈ Y −.

By adding these relations over all arcs of Y (whose number is no more than
N), and by using the hypothesis ε < 1/N , we obtain

∑
(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij ≥ −Nε > −1.

Since the arc costs aij are integer, we obtain a contradiction of Eq. (4.4).
Q.E.D.

Exercises 4.5-4.7 provide various improvements of the tolerance ε < 1/N
in some specific contexts.

224 Auction Algorithms Chap. 4

Some Basic Algorithmic Operations

We now define some terminology and computational operations that can be
used as building blocks in various algorithms. Each of these definitions as-
sumes that (x, p) is a flow–price vector pair satisfying ε-CS, and will be used
only in that context.

Definition 4.1: An arc (i, j) is said to be ε+-unblocked if

pi = pj + aij + ε and xij < cij. (4.5)

An arc (j, i) is said to be ε−-unblocked if

pi = pj − aji + ε and bji < xji. (4.6)

The push list of a node i is the (possibly empty) set of outgoing arcs (i, j)
that are ε+- unblocked, and incoming arcs (j, i) that are ε−-unblocked.

In the algorithms of this chapter, flow is allowed to increase only along
ε+-unblocked arcs and is allowed to decrease only along ε−-unblocked arcs.
The next two definitions specify the type of flow changes considered.

Definition 4.2: For an arc (i, j) [or arc (j, i)] of the push list of node i, let
δ be a scalar such that 0 < δ ≤ cij − xij (0 < δ ≤ xji − bji, respectively). A
δ-push at node i on arc (i, j) [(j, i), respectively] consists of increasing the flow
xij by δ (decreasing the flow xji by δ, respectively), while leaving all other
flows, as well as the price vector unchanged.

In the context of the auction algorithm, a δ-push (with δ = 1) cor-
responds to assigning an unassigned person to an object; this results in an
increase of the flow on the corresponding arc from 0 to 1. The next operation
consists of raising the prices of a subset of nodes by the maximum common
increment γ that will not violate ε-CS.

Definition 4.3: A price rise of a nonempty, strict subset of nodes I (i.e.,
I �= ∅, I �= N) consists of leaving the flow vector x and the prices of nodes
not belonging to I unchanged, and increasing the prices of the nodes in I by
the amount γ given by

γ =
{

min{S+, S−}, if S+ ∪ S− �= ∅
0, if S+ ∪ S− = ∅, (4.7)

where S+ and S− are the sets of scalars given by

S+ = {pj + aij + ε − pi | (i, j) ∈ A such that i ∈ I, j /∈ I, xij < cij}, (4.8)

S− = {pj − aji + ε − pi | (j, i) ∈ A such that i ∈ I, j /∈ I, bji < xji}. (4.9)

Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 225

In the case where the subset I consists of a single node i, a price rise of the
singleton set {i} is also referred to as a price rise of node i. If the price
increment γ of Eq. (4.7) is positive, the price rise is said to be substantive; if
γ = 0, the price rise is said to be trivial . (A trivial price rise changes nothing;
it is introduced in order to facilitate the statement of some of the algorithms
given below.)

Note that every scalar in the sets S+ and S− of Eqs. (4.8) and (4.9) is
nonnegative by the ε-CS conditions (4.3a) and (4.3b), respectively, so we have
γ ≥ 0, and we are indeed dealing with price rises.

The generic algorithm to be described shortly consists of a sequence of δ-
push and price rise operations. The following proposition lists some properties
of these operations that are important in the context of this algorithm.

Proposition 4.2: Let (x, p) be a flow–price vector pair satisfying ε-CS.

(a) The flow–price vector pair obtained after a δ-push or a price rise satisfies
ε-CS.

(b) Let I be a subset of nodes such that
∑

i∈I gi > 0. Then if the sets of
scalars S+ and S− of Eqs. (4.8) and (4.9) are empty, the problem is
infeasible.

Proof: (a) By the definition of ε-CS, the flow of an ε+-unblocked and an
ε−-unblocked arc can have any value within the feasible flow range. Since a δ-
push only changes the flow of an ε+-unblocked or ε−-unblocked arc, it cannot
result in violation of ε-CS. Let p and p′ be the price vectors before and after
a price rise of a set I, respectively. For arcs (i, j) with i ∈ I, and j ∈ I, or
with i /∈ I and j /∈ I, the ε-CS condition (4.3) is satisfied by (x, p′), since it
is satisfied by (x, p) and we have pi − pj = p′i − p′j . For arcs (i, j) with i ∈ I,
j /∈ I and xij < cij we have, using Eqs. (4.7) and (4.8),

p′i − p′j = pi − pj + γ ≤ pi − pj + (pj + aij + ε − pi) = aij + ε, (4.10)

so the ε-CS condition (4.3a) is satisfied. For arcs (j, i) with i ∈ I, j /∈ I and
xji > bji the ε-CS condition (4.3b) is similarly satisfied.

(b) Since S+ ∪ S− is empty,

xij = cij , for all (i, j) ∈ A with i ∈ I, j /∈ I, (4.11)

xji = bji, for all (j, i) ∈ A with i ∈ I, j /∈ I. (4.12)

We have

0 <
∑
i∈I

gi =
∑
i∈I

si −
∑

{(i,j)∈A|i∈I, j /∈I}
xij +

∑
{(j,i)∈A|i∈I, j /∈I}

xji, (4.13)

226 Auction Algorithms Chap. 4

and by combining Eqs. (4.11)-(4.13), it follows that

0 <
∑
i∈I

si −
∑

{(i,j)∈A|i∈I, j /∈I}
cij +

∑
{(j,i)∈A|i∈I, j /∈I}

bji.

For any feasible vector, the above relation implies that the sum of the diver-
gences of nodes in I exceeds the capacity of the cut [I,N − I], which is a
contradiction. Therefore, the problem is infeasible. Q.E.D.

The Generic Algorithm

Suppose that the minimum cost flow problem (MCF) is feasible, and consider
a pair (x, p) satisfying ε-CS. Suppose that for some node i we have gi > 0.
There are two possibilities:

(a) The push list of i is nonempty, in which case a δ-push at node i is
possible.

(b) The push list of i is empty, in which case the set S+∪S− corresponding to
the set I = {i} [cf. Eqs. (4.8) and (4.9)] is nonempty, since the problem
is feasible [cf. Prop. 4.2(b)]. Therefore, from Eqs. (4.7)-(4.9), a price rise
of node i will be substantive.

Thus, if gi > 0 for some i and the problem is feasible, then either a δ-push or
a substantive price rise is possible at node i.

The preceding observations motivate a method, called generic algorithm,
which starts with a pair (x, p) satisfying ε-CS and performs a sequence of δ-
pushes and substantive price rises. The algorithm keeps ε at a fixed positive
value and terminates when gi ≤ 0 for all nodes i.

Typical Iteration of the Generic Algorithm

Perform in sequence and in any order a finite number of δ-pushes and sub-

stantive price rises; there should be at least one δ-push but not necessarily at

least one price rise. Each δ-push should be performed at some node i with

gi > 0, and the flow increment δ must satisfy δ ≤ gi. Furthermore, each price

rise should be performed on a set I with gi ≥ 0 for all i ∈ I.

The following proposition establishes the validity of the generic algo-
rithm.

Proposition 4.3: Assume that the minimum cost flow problem (MCF)
is feasible. If the increment δ of each δ-push is integer, then the generic
algorithm terminates with a pair (x, p) satisfying ε-CS. The flow vector x is
feasible, and is optimal if ε < 1/N .

Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 227

Proof: We first make the following observations.

(a) The algorithm preserves ε-CS; this is a consequence of Prop. 4.2.

(b) The prices of all nodes are monotonically nondecreasing during the al-
gorithm.

(c) Once a node has nonnegative surplus, its surplus stays nonnegative
thereafter. The reason is that a δ-push at a node i cannot drive the
surplus of i below zero (since δ ≤ gi), and cannot decrease the surplus
of neighboring nodes.

(d) If at some time a node has negative surplus, its price must have never
been increased up to that time, and must be equal to its initial price.
This is a consequence of (c) above and of the assumption that only nodes
with nonnegative surplus can be involved in a price rise.

Suppose, to arrive at a contradiction, that the algorithm does not ter-
minate. Then, since there is at least one δ-push per iteration, an infinite
number of δ-pushes must be performed at some node i on some arc (i, j).
Since for each δ-push, δ is integer, an infinite number of δ-pushes must also
be performed at node j on the arc (i, j). This means that arc (i, j) becomes
alternately ε+-unblocked with gi > 0 and ε−-unblocked with gj > 0 an infinite
number of times, which implies that pi and pj must increase by amounts of
at least 2ε an infinite number of times. Thus we have pi → ∞ and pj → ∞,
while either gi > 0 or gj > 0 at the start of an infinite number of δ-pushes.

Let N∞ be the set of nodes whose prices increase to ∞. To preserve
ε-CS, we must have, after a sufficient number of iterations,

xij = cij for all (i, j) ∈ A with i ∈ N∞, j /∈ N∞, (4.14)

xji = bji for all (j, i) ∈ A with i ∈ N∞, j /∈ N∞. (4.15)

After some iteration, by (d) above, every node in N∞ must have nonnegative
surplus, so the sum of surpluses of the nodes in N∞ must be positive at the
start of the δ-pushes where either gi > 0 or gj > 0. It follows using the
argument of the proof of Prop. 4.2(b) [cf. Eqs. (4.11)-(4.13)] that

0 <
∑

i∈N∞
si −

∑
{(i,j)∈A|i∈N∞, j /∈N∞}

cij +
∑

{(j,i)∈A|i∈N∞, j /∈N∞}
bji.

For any feasible vector, the above relation implies that the sum of the diver-
gences of nodes in N∞ exceeds the capacity of the cut [N∞,N −N∞], which
is impossible. It follows that there is no feasible flow vector, contradicting
the hypothesis. Thus the algorithm must terminate. Since upon ternination
we have gi ≤ 0 for all i and the problem is assumed feasible, it follows that
gi = 0 for all i. Hence the final flow vector x is feasible and by (a) above it

1 2 3 4

s = 13

s = -14

s = 01 s = 02 Cost =0

Flow range: [0,1]

Cost =0 Cost =0

228 Auction Algorithms Chap. 4

satisfies ε-CS together with the final p. By Prop. 4.1, if ε < 1/N , x is optimal.
Q.E.D.

The example of Fig. 4.2 shows how the generic algorithm may never
terminate even for a feasible problem, if we do not require that it performs at
least one δ-push per iteration.

Figure 4.2 Example of a feasible problem where the generic algorithm does

not terminate, if it does not perform at least one δ-push per iteration. Initially,

all flows and prices are zero. Here, the first iteration raises the price of node 1 by

ε. Subsequent iterations consist of a price rise of node 2 by an increment of 2ε

followed by a price rise of node 1 by an increment of 2ε.

Consider now what happens when the problem is infeasible. Let us
assume that the generic algorithm is operated so that for each δ-push, δ is
integer. Then either the algorithm will terminate with gi ≤ 0 for all i and
gi < 0 for at least one i, in which case infeasibility will be detected, or else
it will perform an infinite number of iterations and, consequently, an infinite
number of δ-pushes. In the latter case, from the proof of Prop. 4.3 it can be
seen that the prices of the nodes involved in an infinite number of δ-pushes
will diverge to infinity. This, together with a bound on the total price change
of a node given in Exercise 4.9, can be used to detect infeasibility. It may also
be possible to detect infeasibility by discovering in the course of the algorithm
a subset of nodes I such that

∑
i∈I gi > 0, and the sets of scalars S+ and S−

of Eqs. (4.8) and (4.9) are empty [cf. Prop. 4.2(b)]. There is no guarantee,
however, that such a set will be encountered during the algorithm’s execution.

The generic algorithm can be applied in different ways to a variety of
problems with special structure, yielding a variety of specific algorithms. In
particular, it yields as a special case the auction algorithm for the symmetric
assignment problem (see Exercise 4.1). The next section discusses an algo-
rithm for the general minimum cost flow problem. We give here an example
for an important class of transportation problems. Several related possibilities
are explored in Exercises 4.1-4.4.

Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 229

Example 4.1. Transportation Problems with Unit Sources

Consider a transportation problem where all the sources have unit supply. It

has the form

minimize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = 1, ∀ i = 1, . . . , m,

∑
{i|(i,j)∈A}

xij = βj , ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A.

Here aij are integers, and βj are positive integers satisfying
∑n

j=1 βj = m.

The following algorithm is a special case of the generic algorithm. (With

a little thought it can also be seen to be equivalent to the auction algorithm

with similar objects, given in Exercise 4.2.) At the start of each iteration, we

have a pair (x, p) satisfying ε-CS and also the following two properties:

(a) xij = 0 or xij = 1 for all arcs (i, j).

(b) gi = 0 or gi = 1 for all sources i, and gj ≤ 0 for all sinks j.

During the typical iteration, we do the following.

Step 1: Select a source i with gi = 1 and an arc (i, ji) with pji + aiji =

min(i,j)∈A{pj + aij}.
Step 2: Perform a price rise of i (to the level pji + aiji + ε), then a 1-push

operation at node i along the arc (i, ji), then another price rise of i (to the

level min(i,j)∈A, j �=ji
{pj + aij} + ε).

Step 3: Let mi be such that

mi = arg min
{m|(m,ji)∈A, xmji

=1}
{pm − amji},

perform a price rise of ji (to the level pmi − amiji + ε); if gji = 1 (after the

1-push operation of Step 2) perform a 1-push operation at node ji along arc

(mi, ji), and then perform a price rise of ji.

It can be seen that the properties (a) and (b) mentioned above, as well

ε-CS, are preserved by the iteration. Furthermore, each iteration qualifies as

an iteration of the generic algorithm, because a finite number of 1-pushes and

price rises are performed, while at least one 1-push is performed. Therefore,

Prop. 4.3 applies and asserts termination, if the problem is feasible. The flow

230 Auction Algorithms Chap. 4

vector obtained upon termination will be optimal if ε < 1/(m+n). (Actually,

for optimality it is sufficient that ε < 1/2n; see Exercise 4.6.)

It is possible to derive auction algorithms for other types of transporta-

tion problems similar to the one just given. For example, a generalization

for the case where the supplies of the sources can be greater than 1 is given

in Exercise 4.8. Other generalizations, based on the reverse auction ideas of

Section 4.2, can be used to solve various transportation problems involving

inequality constraints. Finally, algorithms for problems with unit sinks are

possible (see [BeC90a] and Exercise 4.3), as well as algorithms for the general

transportation problem (see [BeC90a] and Exercise 4.4).

E X E R C I S E S

Exercise 4.1 (Relation to the Auction Algorithm for Assignment)

Describe how the auction algorithm for the symmetric assignment problem is

a special case of the generic algorithm of this section. Hint: Introduce a price

variable for each person. Show that a bid by a person i can be described as a

price rise of i, followed by a 1-push operation along the arc (i, j) corresponding

to the person’s preferred object j, followed by another price rise of i, followed

by a 1-push operation along arc (i′, j) (if j is already assigned to i′), followed

by a price rise of j.

Exercise 4.2 (Auction Algorithm with Similar Objects [BeC89a])

Given a symmetric assignment problem, we say that two objects j and j ′ are

similar, and write j ∼ j ′, if for all persons i = 1, . . . , n we have

j ∈ A(i) ⇒ j ′ ∈ A(i) and aij = aij′ .

For each object j, the set of all objects similar to j is called the similarity class
of j and is denoted M(j). Consider a variation of the auction algorithm that

is the same as the one of Section 4.1 except for one difference: in the bidding

phase, wi is defined now as

wi = max
j∈A(i), j /∈M(ji)

{aij − pj}

(instead of wi = maxj∈A(i), j �=ji
{aij − pj}).

(a) Show that if the initial assignment S satisfies ε-CS together with the

initial vector p̂ defined by

p̂j = min
k∈M(j)

pk, j = 1, . . . , n,

Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 231

that is,

aij − p̂j ≥ max
k∈A(i)

{aik − p̂k} − ε, ∀ (i, j) ∈ S,

the same is true of the assignment and the vector p̂ obtained at the end

of each assignment phase.

(b) Show also that the algorithm is equivalent to the algorithm of Example

4.1, and that for integer problem data it terminates with an optimal

assignment if ε < 1/n. (Actually, it is sufficient that ε < 1/m, where m

is the number of similarity classes, but proving this requires an argument

of the type given in the proof of Prop. 4.1; see also the subsequent

Exercise 4.6.)

Exercise 4.3

Derive an algorithm similar to the one of Example 4.1 for the transportation

problem, where all sinks have unit demand. Hint: At the start of each iteration

we must have xij = 0 or xij = 1 for all arcs (i, j), gi ≥ 0 for all sources i, and

gj = 0 or gj = −1 for all sinks j.

Exercise 4.4 (Auction for Transportation Problems [BeC89a])

Consider the symmetric assignment problem. We say that two persons i and

i′ are similar, and write i ∼ i′, if for all objects j = 1, . . . , N we have

j ∈ A(i) ⇒ j ∈ A(i′) and aij = ai′j .

The set of all persons similar to i is called the similarity class of i.

(a) Generalize the auction algorithm with similar objects given in Exercise

4.2 so that it takes into account both similar persons and similar objects.

Hint: Consider simultaneous bids by all persons in the same similarity

class.

(b) Show how the algorithm of part (a) can be applied to transportation

problems.

Exercise 4.5 (Improved Optimality Condition [BeE87b])

Show that if x is feasible, and x and p satisfy ε-CS, then x is optimal for the

minimum cost flow problem, provided

ε < min
All simple cycles Y

{
− Cost of Y

Number of arcs of Y

∣∣∣ Cost of Y < 0
}

,

232 Auction Algorithms Chap. 4

where

Cost of Y =
∑

(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij .

Show that this is true even if the problem data are not integer.

Exercise 4.6 (Termination Tolerance for Transportation Problems)

Consider a transportation problem with m sources and n sinks and integer

data. Show that in order for a feasible x to be optimal it is sufficient that it

satisfies ε-CS together with some p and

ε <
1

2min{m, n}

[instead of ε < 1/(m + n)]. Hint : Modify the proof of Prop. 4.1 or use the

result of Exercise 4.5.

Exercise 4.7 (Termination Tolerance for Multiassignment)

Consider the multiassignment problem of Section 4.2.2, and assume that the

problem data are integer. Show that in order for the modified reverse auction

algorithm to yield an optimal multiassignment it is sufficient that ε < 1/m

(instead of ε < 1/n). Hint : Observe the similarity with Exercises 4.5 and 4.6.

Exercise 4.8 (Auction for Capacitated Transportation Problems)

Consider the transportation problem

minimize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = αi, ∀ i = 1, . . . , m,

∑
{i|(i,j)∈A}

xij = βj , ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A,

where the problem data are all integer, and αi > 0, βj > 0 for all i and j,

respectively. The following algorithm starts with a flow–price vector pair (x, p)

such that ε-CS is satisfied, each xij is either 0 or 1, and

∑
{j|(i,j)∈A}

xij ≤ αi, ∀ i,

Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 233

∑
{i|(i,j)∈A}

xij ≤ βj , ∀ j.

In the typical iteration, we select a source i with
∑

{j|(i,j)∈A} xij < αi (if no

such source can be found the algorithm terminates). Then, we find

p̂i = min{z | the number of sinks j with z ≥ aij + pj + ε is greater than αi},

p̃i = min{z | the number of sinks j with z ≥ aij + pj + ε is no less than αi}.

We also consider sinks j with xij = 0 and p̃i ≥ aij + pj + ε, and we find a

subset T , which consists of αi −
∑

{j|(i,j)∈A} xij such sinks and includes all sinks

j with p̃i > aij + pj + ε. We then set pi = p̂i and xij = 1 for all j ∈ T . After

these changes, for each j ∈ T with
∑

{k|(k,j)∈A} xkj ≥ βj , we find

p̃j = min
{k|xkj=1}

{pk − akj + ε},

and a source k̃ that attains the above minimum. If
∑

{k|(k,j)∈A} xkj = βj , we

set pj = p̃j ; otherwise, we also find

p̂j = min
{k|xkj=1, k �=k̃}

{pk − akj + ε},

and we set pj = p̂j and xk̃j = 0.

(a) Show that the algorithm is a special case of the generic algorithm, and

for a feasible problem, it terminates with a pair (x, p) satisfying ε-CS.

Show also that when αi = 1 and βj = 1 for all i and j, respectively,

the algorithm reduces to the (forward) auction algorithm for symmetric

assignment problems.

(b) Derive a reverse and a combined forward/reverse version of the algo-

rithm.

(c) Consider an asymmetric version of the problem where the equality con-

straints
∑

{i|(i,j)∈A} xij = βj are replaced by the inequality constraints

∑
{i|(i,j)∈A}

xij ≤ βj .

Derive a forward/reverse auction algorithm along the lines of the asym-

metric assignment algorithm of Section 4.2.

234 Auction Algorithms Chap. 4

Exercise 4.9 (Dealing with Infeasibility)

Consider the generic algorithm applied to a feasible minimum cost flow prob-

lem with initial prices p0
i .

(a) Show that the total price increase (pi − p0
i) of any node i prior to termi-

nation of the algorithm satisfies

pi − p0
i ≤ (N − 1)(C + ε) + max

j∈N
p0

j − min
j∈N

p0
j ,

where C = max(i,j)∈A |aij |. Hint: Let x0 be a feasible flow vector and let

(x, p) be the flow–price vector pair generated by the algorithm prior to

its termination. Show that there exist nodes t and s such that gt > 0

and gs < 0, and a simple path H starting at s and ending at t such that

xij −x0
ij > 0 for all (i, j) ∈ H+ and xij −x0

ij < 0 for all (i, j) ∈ H−. Now

use ε-CS to assert that

pj + aij ≤ pi + ε, ∀ (i, j) ∈ H+,

pi ≤ pj + aij + ε, ∀ (i, j) ∈ H−.

Add these conditions along H to obtain

pt − ps ≤ (N − 1)(C + ε).

Use the fact ps = p0
s to conclude that

pt − p0
t ≤ (N − 1)(C + ε) + ps − p0

s ≤ (N − 1)(C + ε) + max
j∈N

p0
j − min

j∈N
p0

j .

(b) Discuss how the result of part (a) can be used to detect infeasibility.

(c) Suppose we introduce some artificial arcs to guarantee that the problem

is feasible. Discuss how to select the cost coefficients of the artificial arcs

so that optimal solutions are not affected in the case where the original

problem is feasible; cf. Exercise 1.6 in Section 4.1.

Exercise 4.10 (Suboptimality of a Feasible Flow Satisfying ε-CS)

Let x∗ be an optimal flow vector for the minimum cost flow problem and let

x be a feasible flow vector satisfying ε-CS together with a price vector p.

(a) Show that the cost of x is within ε
∑

(i,j)∈A |xij − x∗
ij | from the optimal.

Hint : Show that (x − x∗) satisfies CS together with p for a minimum

cost flow problem with arcs (i, j) having flow range [bij − x∗
ij , cij − x∗

ij]

and arc cost âij that differs from aij by no more than ε.

(b) Show by example that the suboptimality bound ε
∑

(i,j)∈A |cij − bij | de-

duced from part (a) is tight. Hint : Consider a graph with two nodes and

multiple arcs connecting these nodes. All the arcs have cost ε except for

one that has cost −ε.

Sec. 4.5 The ε-Relaxation Method 235

4.5 THE ε-RELAXATION METHOD

We now describe the ε-relaxation method, which is a special case of the generic
algorithm of the previous section, where, at each iteration, all δ-pushes and
price rises involve a single node. The ε-relaxation method may also be viewed
as a mathematically equivalent method to the auction algorithm for the assign-
ment problem of Section 4.1. Indeed the auction algorithm can be obtained as
a special case of ε-relaxation (see Exercise 5.3). Conversely, we can convert the
minimum cost flow problem to a transportation problem (see Example 1.3 in
Section 1.1), and then convert the latter problem to an assignment problem
(by creating enough duplicate persons and objects). The reader can verify
that when the auction algorithm is applied to this assignment problem, and
the computation is appropriately streamlined, one obtains the ε-relaxation
method.

We assume that the problem is feasible. In practice, the method could be
supplemented with additional mechanisms to detect infeasibility, as discussed
in the preceding section (see also Exercise 4.9).

We use a fixed positive value of ε, and we start with a pair (x, p) satis-
fying ε-CS. Furthermore, the starting arc flows are integer, and it will be seen
that the integrality of the arc flows is preserved thanks to the integrality of
the node supplies and the arc flow bounds. (Implementations that have good
worst case complexity also require that all initial arc flows be at either their
upper or their lower bound; see e.g. [BeT89]. This can be easily enforced,
although it does not seem to be very important in practice.)

At the start of a typical iteration we have a flow–price vector pair (x, p)
satisfying ε-CS and we select a node i with gi > 0; if no such node can be
found, the algorithm terminates. During the iteration we perform several δ-
push and price rise operations of the type described in the previous section
involving node i.

Typical Iteration of the ε-Relaxation Method

Step 1: If the push list of node i is empty, go to Step 3; else select an arc a

from the push list of i and go to Step 2.

Step 2: Let j be the end-node of arc a, which is opposite to i. Let

δ =

{
min{gi, cij − xij} if a = (i, j)

min{gi, xji − bji} if a = (j, i).
(5.1)

Perform a δ-push of i on arc a. If as a result of this operation we obtain gi = 0,

go to Step 3; else go to Step 1.

Step 3: Perform a price rise of node i. If gi = 0, go to the next iteration; else

go to Step 1.

236 Auction Algorithms Chap. 4

Some insight into the ε-relaxation iteration can be obtained by noting
that in the limit as ε → 0 it yields the single node relaxation iteration of Sec-
tion 3.3. Figure 5.1 illustrates the sequence of price rises in an ε-relaxation
iteration; this figure should be compared with the corresponding Fig. 3.2 in
Section 3.3 for the single node relaxation iteration. As Fig. 5.1 illustrates,
the ε-relaxation iteration can be interpreted as an approximate coordinate
ascent or Gauss-Seidel relaxation iteration. This interpretation parallels the
approximate coordinate descent interpretation of the mathematically equiva-
lent auction algorithm, cf. Fig. 1.1 in Section 4.1.

We now establish the validity of the ε-relaxation method by using the
analysis of the preceding section. In particular, we claim that the above
iteration consists of a finite (but positive) number of δ-pushes with δ integer,
and a finite (possibly zero) number of price rises at nodes with nonnegative
surplus. Indeed, since the starting arc flows, the node supplies, and the arc
flow bounds are integer, the flow increments δ of all δ-pushes will be positive
integers throughout the algorithm. Furthermore, from Eq. (5.1) it is seen that
the condition δ ≤ gi of the generic algorithm is satisfied. We also note that
at most one δ-push per incident arc of node i is performed at each iteration
because from Eq. (5.1) it is seen that a δ-push on arc a in Step 2 either sets
the arc flow to the corresponding flow bound, which causes arc a to drop
out of the push list of i through the end of the iteration, or else results in
gi = 0, which leads the iteration to branch to Step 3 and subsequently stop.
Therefore, the number of δ-pushes per iteration is finite. In addition we have
gi > 0 at the start and gi = 0 at the end of an iteration, so at least one δ-push
must occur before an iteration can stop.

Regarding price rises, it is seen that Step 3 can be reached under two
conditions:

(a) The push list of i is empty and gi > 0, in which case the price rise in
Step 3 will be substantive [in view of the assumption that the problem
is feasible and Prop. 4.2(b)], and the iteration will branch to Step 1 with
the push list of i having at least one new arc, or

(b) gi = 0, in which case the iteration will stop after a (possibly trivial)
price rise in Step 3.

Thus, all price rises involve a node with nonnegative surplus as required in
the generic algorithm. Since after each substantive price rise with gi > 0 at
least one δ-push must be performed, it follows that the number of substantive
price rises per iteration is finite.

From the preceding observations it is seen that, if the problem is feasible,
the ε-relaxation method is a special case of the generic algorithm and satisfies
the assumptions of Prop. 4.3. Therefore, it must terminate with a feasible
flow vector, which is optimal if ε < 1/N .

εε

First
price
rise

Starting
price

Final
price

1 2

3 4

i

[0,20] [0,10]

[0,20] [0,30]

Price of node i

Dual cost along pi

Values of p for which the corresponding
incident arcs become balanced

i

Slope = 40

Slope = 20

Slope = 10 Slope = -10

Slope = -40

Maximizing point where

p - a1 1i p + a4 i 43 3 ip - a2 i 2p + a

right derivative ≤ 0 ≤ left derivative

Second
price
rise

Sec. 4.5 The ε-Relaxation Method 237

Figure 5.1 Illustration of the price rises of the ε-relaxation iteration.

Here, node i has four incident arcs (1, i), (3, i), (i, 2), and (i, 4) with flow ranges

[0, 20], [0, 20], [0, 10], and [0, 30], respectively, and supply si = 0. The arc costs

and current prices are such that

p1 − a1i ≤ p2 + ai2 ≤ p3 − a3i ≤ p4 + ai4,

as shown in the figure. The break points of the dual cost along the price pi

correspond to the values of pi at which one or more incident arcs to node i become

balanced. For values between two successive break points, there are no balanced

arcs. Each price rise of the ε-relaxation iteration increases pi to the point which is

ε to the right of the next break point larger than pi, (assuming that the starting

price of node i is to the left of the maximizing point by more than ε). In the

example of the figure, there are two price rises, the second of which sets pi at the

point which is ε to the right of the maximizing point, leading to the approximate

(within ε) coordinate ascent interpretation.

238 Auction Algorithms Chap. 4

Scaling

The ε-relaxation method, with the use of some fairly simple data structures
(the so called sweep implementation), but without the use of scaling, can be
shown to have an

O
(
N 3 + N 2L/ε)

)
(5.2)

worst-case running time, where L is the maximum over the lengths of all
simple paths, with the length of each arc (i, j) being the absolute reduced
cost value |pj + aij − pi|, and p being the initial price vector. (The sweep
implementation together with the above estimate were first given in [Ber86a];
see [BeE88] and [BeT89] for a detailed description and analysis.) Thus, the
amount of work to solve the problem can depend strongly on the values of ε
and L.

The ε-scaling technique discussed for the auction algorithm in Section
5.1 is also important in the context of the ε-relaxation method, and improves
both the practical and the theoretical worst-case performance of the method.
Although ε-scaling was first proposed in [Ber79] in connection with the auction
algorithm, its first analysis was given in [Gol87] and [GoT90]. These references
provided an O

(
NA log(N) log(NC)

)
running time estimate for a scaled ver-

sion of ε-relaxation that uses some complicated data structures called dynamic
trees. By using ε-scaling and the sweep implementation referred to earlier, the
worst-case running time of the algorithm for integer data can be shown to be
O

(
N 3 log(NC)

)
, where C = max(i,j)∈A |aij |; see [BeE87b], [BeE88], [BeT89].

These references actually analyze an alternative form of scaling, known as
cost scaling , which is based on successively representing the cost coefficients
by an increasing number of bits. Cost scaling and ε-scaling admit a very sim-
ilar complexity analysis. Their practical performance is roughly comparable,
although ε-scaling is somewhat easier to implement. For this reason, ε-scaling
was used in the codes of Appendix A.4 and Appendix A.7.

Surplus Scaling

When applying the ε-scaling technique, except for the last scaling phase, it
is not essential to reduce the surpluses of all nodes to zero; it is possible to
terminate a scaling phase prematurely, and reduce ε further, in an effort to
economize on computation. A technique that is typically quite effective is
to iterate only with nodes whose surplus exceeds some threshold, which is
gradually reduced to zero with each scaling phase. The threshold is usually
set by some heuristic scheme.

Negative Surplus Node Iterations

It is possible to define a symmetric form of the ε-relaxation iteration that starts
from a node with negative surplus and decreases (rather than increases) the

Sec. 4.5 The ε-Relaxation Method 239

price of that node. Furthermore, one can mix positive surplus and negative
surplus iterations in the same algorithm; this is analogous to the combined
forward/reverse auction algorithm for assignment and the forward/reverse
auction algorithm for shortest paths. However, if the two types of iterations
are mixed arbitrarily, the algorithm is not guaranteed to terminate even for
a feasible problem; for an example, see [BeT89], p. 373. For this reason,
some care must be exercised in mixing the two types of iterations in order to
guarantee that the algorithm eventually makes progress.

Application to the Max-Flow Problem

The ε-relaxation method can be applied to the max-flow problem, once this
problem is converted to the minimum cost flow format, involving a feedback
arc connecting the sink with the source, and having cost −1 (see Example 1.2
in Section 1.2). Since all other arc costs are zero, the maximum path length L
used in Eq. (5.2) is equal to 1, assuming a zero initial price vector. Therefore,
the complexity estimate of Eq. (5.2) becomes

O
(
N 3 + N 2/ε

)
. (5.3)

One can solve the problem without using scaling by taking ε = 1/(N + 1), so
in this case the preceding estimate yields an O(N 3) worst-case running time.
With the use of more sophisticated data structures, this running time can be
considerably improved; see the references at the end of the chapter.

In practice, the ε-relaxation method initialized with zero flow and zero
price vectors often finds a minimum cut very quickly. It may then work quite
a bit more to set the remaining positive surpluses to zero. Thus, if one is
interested in just a minimum cut or just the value of the maximum flow, it is
worth testing periodically to see whether a minimum cut can be determined
before the algorithm terminates. A method for detecting whether a minimum
cut has been found is outlined in Exercise 5.4 and is used in the code of
Appendix A.6. Given a minimum cut, one may find a maximum flow by
continuing the algorithm until all node surpluses are zero, or by employing
a version of the Ford-Fulkerson algorithm to return the positive surpluses to
the source (see Exercise 5.4).

E X E R C I S E S

Exercise 5.1

Apply the ε-relaxation method to the problem of Fig. 2.3 of Section 3.2 with

ε = 1. Comment on the optimality of the solution obtained.

240 Auction Algorithms Chap. 4

Exercise 5.2 (Degenerate Price Rises)

In this exercise, we consider a variation of the ε-relaxation method that in-

volves degenerate price rises. A degenerate price rise changes the price of a

node that currently has zero surplus to the maximum possible value that does

not violate ε-CS with respect to the current flow vector (compare with de-

generate price increases in the context of the single-node relaxation iteration

where ε = 0, as illustrated in Fig. 3.3 of Section 3.3). One example of such

a price rise occurs when Step 3 of the ε-relaxation iteration is executed with

gi = 0.

Consider a variation of the ε-relaxation method where there are two

types of iterations: (1) regular iterations, which are of the form described in

the present section, and (2) degenerate iterations, which consist of a single

degenerate price rise.

(a) Show that if the problem is feasible and the number of degenerate iter-

ations is bounded by a constant times the number of regular iterations,

then the method terminates with a pair (x, p) satisfying ε-CS.

(b) Show that the assumption of part (a) is essential for the validity of the

method. Hint : Consider the example of Fig. 4.2.

Exercise 5.3 (Deriving Auction from ε-Relaxation)

Consider the assignment problem formulated as a minimum cost flow problem

(see Example 1.1 in Section 1.1). We say that source i is assigned to sink j if

(i, j) has positive flow. We consider a version of the ε–relaxation algorithm in

which ε-relaxation iterations are organized as follows: between iterations (and

also at initialization), only source nodes i can have positive surplus. Each

iteration finds any unassigned source i (i.e., one with positive surplus), and

performs an ε-relaxation iteration at i, and then takes the sink j to which i

was consequently assigned and performs an ε-relaxation iteration at j, even if

j has zero surplus. (If j has zero surplus, such an iteration will consist of just

a degenerate price rise; see Exercise 5.2.)

More specifically, an iteration by an unassigned source i works as follows:

(1) Source node i sets its price to pj + aij + ε, where j minimizes pk + aik + ε

over all k for which (i, k) ∈ A. It then sets xij = 1, assigning itself to j.

(2) Node i then raises its price to pj′ + aij′ + ε, where j ′ minimizes pk + aik + ε

for k �= j, (i, k) ∈ A.

(3) If sink j had a previous assignment xi′j = 1, it breaks the assignment

by setting xi′j := 0. (One can show inductively that if this occurs, pj =

pi′ − ai′j + ε.)

Sec. 4.6 Implementation Issues 241

(4) Sink j then raises its price pj to

pi − aij + ε = pj′ + aij′ − aij + 2ε.

Show that the corresponding algorithm is equivalent to the Gauss-Seidel

version of the auction algorithm.

Exercise 5.4 (Detecting a Minimum Cut Using ε-Relaxation)

Consider the max-flow problem with zero lower arc flow bounds. Suppose that

we have a pair (x, p) satisfying the 1-CS condition

pi − pj ≤ 1 for all (i, j) ∈ A with xij < cij ,

pi − pj ≥ −1 for all (i, j) ∈ A with 0 < xij ,

ps = pt + N + 2.

[These are the 1-CS conditions for the equivalent minimum cost flow problem

obtained by introducing an artificial arc (t, s) with cost −(N + 1).] Suppose

also that we have a cut Q = [S,N − S] with s ∈ S and t /∈ S, which is

saturated with respect to x. Finally, suppose that the surplus of all nodes in

S except s is nonnegative, while the surplus of all nodes in N − S except t is

nonpositive.

(a) Show that Q is a minimum cut. Hint : Apply the ε-relaxation method

with ε = 1 starting with (x, p). Argue that the flux across Q will not

change.

(b) Given Q, show that a maximum flow can be found by solving two fea-

sibility problems (which are in turn equivalent to some other max-flow

problems; cf. Exercise 2.5 in Section 1.2). One feasibility problem should

involve just the nodes of S and the other should involve just the nodes

not in S.

(c) Construct algorithms based on augmentations that solve the feasibility

problems in part (b), thereby yielding a maximum flow.

4.6 IMPLEMENTATION ISSUES

The main operations of auction algorithms involve scanning the incident arcs
of nodes; this is a shared feature with dual ascent methods. For this reason
the data structures and implementation ideas discussed in connection with

242 Auction Algorithms Chap. 4

dual ascent methods, also apply to auction algorithms. In particular, for
the max-flow and the minimum cost flow problems, using the FIRST IN ,
FIRST OUT , NEXT IN , and NEXT OUT arrays, described in Section 3.5,
is convenient. In addition, a similar set of arrays can be used to store the arcs
of the push lists in the ε-relaxation method; see the code given in Appendix
A.7.

4.7 NOTES AND SOURCES

4.1. The auction algorithm, and the notions of ε-complementary slackness
and ε-scaling were first proposed by the author in [Ber79] (see also [Ber85]
and [Ber88]). Reference [BeE88] surveys coordinate step methods based on ε-
complementary slackness and derives the worst-case complexity of the auction
algorithm; see also [BeT89]. The parallel implementation aspects of the auc-
tion algorithm have been explored by several authors; see [BeC89c], [KKZ89],
[PhZ88], [WeZ90], and [Zak90]. Exercise 1.3 that deals with the average com-
plexity of the auction algorithm was inspired by [Sch90], which derives related
results for the Jacobi version of the algorithm and its potential for parallelism.

4.2. The reverse auction algorithm and its application in inequality con-
strained assignment problems is due to [BCT91], which discusses additional
related algorithms and gives computational results. Note that aside from
faster convergence, the combined forward/reverse algorithm has potential for
greater concurrency in a parallel machine than the forward algorithm.

4.3. The auction algorithm for shortest paths is due to the author [Ber90].
This reference also discusses an arc length scaling technique that can be used
to make the algorithm polynomial. In practice, this scaling technique does
not seem to be very useful, primarily because pseudopolynomial practical
behavior appears to be unlikely, particularly for the forward/reverse version
of the algorithm. The MS thesis [Pol91] discusses the parallelization aspects
of the method. The interpretation of the forward/reverse version of Dijkstra’s
algorithm of Exercise 3.5 and the generalized auction algorithm of Exercise
3.6 are new.

4.4. The generic auction algorithm for minimum cost flow problems is due
to [BeC89b]. Reference [BeC89a] describes various special cases involving
bipartite graphs; see also Exercises 4.2 and 4.4.

4.5. The ε-relaxation method is due to the author; it was first published in
[Ber86a] and [Ber86b], although it was known much earlier (since the devel-
opment of the equivalent auction algorithm). Various implementations of the
method aimed at improved worst-case complexity can be found in [BeE87b],
[BeE88], [BeT89], [Gol87], and [GoT90]. The worst-case complexity of ε-

Sec. 4.7 Notes and Sources 243

scaling was first analyzed in [Gol87] in connection with various implementa-
tions of the ε-relaxation method. Computational experience suggests, how-
ever, that the complexity analysis of the ε-relaxation method is not very useful
in predicting practical behavior. In particular, despite its excellent polynomial
complexity, the method is typically outperformed by the relaxation method of
the previous chapter, which can be shown to have pseudopolynomial complex-
ity. However, the ε-relaxation method is better suited for parallel computation
than the other minimum cost flow methods described in this book; see [BeT89]
for a discussion of related issues.

When the ε-relaxation method is applied to the max-flow problem, it
bears a close resemblance with an O(N 3) max-flow algorithm first proposed
in [Gol85b]; see also [GoT86], which describes a similar max-flow algorithm
that achieves a more favorable worst-case complexity using sophisticated data
structures. These max-flow algorithms were derived from a different point of
view that is unrelated to duality or ε-CS. They use node “labels,” which in the
context of the ε-relaxation approach can be viewed as prices. The max-flow
version of the ε-relaxation method, first given in [Ber86a], is simpler than the
algorithms of [Gol85] and [GoT86] in that it obtains a maximum flow in one
phase rather than two. It can also be initialized with arbitrary prices, whereas
in the max-flow algorithms of [Gol85], [GoT86] the initial prices must satisfy
pi ≤ pj + 1 for all arcs (i, j). Related max-flow algorithms are discussed in
[AhO86], [ChM87], and [AMO89].

