
Defending Bit-Flip Attack through DNN Weight
Reconstruction

Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang Fan, Chaitali Chakrabarti
School of Electrical Computer and Energy Engineering

Arizona State University, Tempe, AZ, 85287

{jingtao1, asrakin, yxiong35, lchang21, zhezhihe, dfan, chaitali}@asu.edu

Abstract—Recent studies show that adversarial attacks on
neural network weights, aka, Bit-Flip Attack (BFA), can degrade
Deep Neural Network’s (DNN) prediction accuracy severely. In
this work, we propose a novel weight reconstruction method as a
countermeasure to such BFAs. Specifically, during inference, the
weights are reconstructed such that the weight perturbation due
to BFA is minimized or diffused to the neighboring weights. We
have successfully demonstrated that our method can significantly
improve the DNN robustness against random and gradient-based
BFA variants. Even under the most aggressive attacks (i.e., greedy
progressive bit search), our method maintains a test accuracy of
60% on ImageNet after 5 iterations while the baseline accuracy
drops to below 1%.

Index Terms—Bit-Flip Attack, Row-Hammer Attack, Security
of Deep Neural Network

I. INTRODUCTION

Neural networks have facilitated many real-world appli-

cations, including security-critical applications such as self-

driving and authentication systems. Consequently, the security

of neural networks has emerged as a very important problem. It

has been shown that neural network accuracy can be severely

compromised by adversarial input attacks; an adversary can

maliciously add input noise to the image to cause targeted

or un-targeted misclassification [1]. Very recently, it has been

shown that a small variation on the model parameters can also

draw similar devastating effects. For instance, it is demon-

strated in [2], [3] that the target DNN can be easily crushed

via naively flipping the exponential bit of weights stored in 32-

bit floating-point representation. A possible method to mitigate

it is by constraining the weight magnitude through fixed-point

quantization [4], [5]. However, a successive work [6] presented

a greedy progressive bit search algorithm which can precisely

identify the vulnerable bits of 8-bit quantized DNN. It showed

that a ResNet-18, with 93 million weight bits, can be fully

malfunctional with merely 13 bit-flips.

Bit-flip Attacks (BFAs) can be easily launched on the

DNN weights stored in DRAM through the well known Row-

Hammer Attack (RHA) [7], [8] causing a significant accu-

racy drop [4], [6]. This can cause catastrophic consequences

in security-critical applications such as object detection for

autonomous driving [9]. Existing approaches to mitigate RHA

include PARA [7], and Error-Correction Coding (ECC). How-

ever, it has been pointed out PARA needs modifications in

the memory controller and ECC scheme is still vulnerable to

attacks [10]. Recent research [11] creates a safety region for

the Page-Entry Table (PTE) via pure software updates.

Our approach is a low-cost method to reconstruct DNN

weights, including the attacked weights, in a way such that

the change in weight value caused by the BFA is either

dramatically reduced or is diffused to its neighboring weights.

We achieve this through averaging over a grain of weights

followed by an appropriate combination of quantization and

clipping of weight values in a grain. The proposed reconstruc-

tion is done on the weights prior to inference computation in a

three-step manner. We show that our method retains the clean

model information with high probability and thereby reduces

the effect of the weight perturbation caused by the BFA. The

reconstruction process is embedded in the forward pass of

training to achieve minimal accuracy degradation.

We evaluate the accuracy and loss degradation under three

BFA variants, namely random BFA, gradient-based BFA in-

cluding one-shot BFA and progressive BFA [6]. Our proposed

scheme consistently achieves significantly higher accuracy

compared to the baseline scheme. For instance, on the ResNet-

18 ImageNet model, we achieve around 60% accuracy after

5 iterations of progressive BFA while the baseline accuracy

drops to below 1%. Finally, through experiments on a gem-

5 based multi-core system, we demonstrate our method has

very small computation overhead. Our main contribution can

be summarized as:

• We present a technique to significantly mitigate adver-

sarial weight attack (a.k.a BFA). To the best of our

knowledge, this is the first paper that presents a low-cost

countermeasure solution to BFA.

• Through extensive experimentation, we show that our

proposed weight reconstruction method greatly mitigates

effect of BFA. On the ImageNet dataset, we show that

our accuracy is around 60% while the baseline has only

about 1% under PBFA attack.

• We show that the computation overhead of our scheme

is very small through Gem5 cycle-accurate simulations.

The rest of this paper is organized as follows: In section II,

we provide the background on BFA and the threat model.

In section III, we present the detailed weight reconstruction

method. In section IV, we present experimental results on the

effect of weight reconstruction against BFA. In section V, we

conclude our work.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE



II. BACKGROUND

A. Random Bit-Flip Attack

In this version of the BFA, the attacker randomly selects a

bit in any layer of a DNN model. It requires no knowledge

of the model. This attack needs flipping of at least 10% of

the weights to be able to breakdown the model as reported in

[12].

B. Gradient-based Bit-Flip Attack

To conduct a Gradient-based BFA, the attacker requires

access to a part of the dataset, DNN architecture and network

parameters (i.e., weights, biases). This is similar to the tradi-

tional white-box attack [13], [14] in a related security domain.

First, we present the One-shot Bit-Flip Attack (OBFA),

which identifies the bits with the highest gradient based on

one-time inference loss. Given a nq-bit quantized DNN weight

parameterized by binary bits, define tensor {Bl}Ll=1, where

l ∈ {1, 2, ..., L} is the layer index. The OBFA identifies

multiple bits with high gradient (by ranking elements in

|∇Bl
L|) as vulnerable bit candidates across all the layers of

the DNN, where L is the inference loss. Then OBFA flips

several top candidates from each layer of the DNN based on

gradient ranking.

Finally, we test our defense strategy against Progressive Bit-

Flip Attack (PBFA), which is an effective attack algorithm

presented in [6]. PBFA identifies vulnerable bits with a greedy

gradient-based ranking per layer followed by a progressive

search across layers. It performs intra-layer search similar

to OBFA, but only identifies the bit with highest gradient

(argmaxBl
|∇Bl

L|) as vulnerable bit candidate. The inter-

layer search is followed by an intra-layer search which com-

pares the bit candidates selected by the intra-layer search using

the increase in loss function for each bit candidate. The bit

searching in iteration i can be formulated as an optimization

process:

max
{B̂i

l}
L
(
f
(
x; {B̂

i

l}Ll=1

)
, t̃
)

s.t. t̃ = f(x; {Bl}Ll=1);
L∑

l=1

D(B̂
i

l,Bl) ∈ {0, 1, ..., Nb}
(1)

where x and t denotes the selected input mini-batch and

ground-truth labels. B̂
i

l is the quantized bit tensor of l-th layer

perturbed by BFA in i-th iteration. f(x; {B}Ll=1) compute the

outputs of DNN parameterized by {Bl}Ll=1. t̃ is the output of

clean model as the soft-label, which replaces the ground-truth

t to perform the attack. L(·, ·) computes the loss. The attack

efficacy can be measured by the Hamming distance (i.e., effec-

tive bit-flips) between prior- and post-attack model parameters

{B̂
i

l}Ll=1 and {Bl}Ll=1 given by
∑D(B̂

i

l,Bl). Finally the at-

tacker’s optimization goal is to cause the DNN to malfunction

with least number of bit-flips (i.e., min
∑D(B̂

i

l,Bl)).

C. Threat Model

A neural network model consists of parameters such as

weight, bias and batch-normalization parameters. The weights

are stored in DRAM and loaded in cache prior to computation.

We assume that the attacker has knowledge of the model

architecture, model parameters, and partial training dataset.
Fig. 1 shows the threat model in this study. The attacker

can identify the vulnerable bits using gradient-based BFA.

Once the vulnerable bits are identified, the attacker performs

RHA. To perform RHA, the attacker requires knowledge of

victim physical address, partial knowledge of the vulnerable

templates, methods to bypass cache, and OS behavior. We

eliminate the possibility that an attacker can use RHA to

attack the page table entry, by using the technique in [11]. We

also assume that the batch-normalization and bias parameters

cannot be attacked by RHA since they are difficult to precisely

target because of their small size (less than 1 MB) [4].

Software Stack

Train

ALU

Hardware Stack

DRAM

Cache

BFA

RHA

Attacker

Safe

Weight

Test

Dataset

BatchNorm
Bias, etc.

DNN model

AttackableSafe ackab

Fig. 1. Threat model, where the attackers use gradient-based BFA to identify
the vulnerable bits and RHA to attack those bits

III. PROPOSED METHOD

A. Tackling Gradient-based BFA
To better understand the effect of gradient-based BFA, we

first investigate the gradient distribution of weights near the

target weight (similar to target bit), where a target weight is a

candidate weight whose bits will be flipped by PBFA attack.

Fig 2 shows the gradient distribution near the target weight

of a standard ResNet-18 model (baseline). The target weight

has much larger gradient compared to that of its neighboring

weights. After 5 iterations, the magnitude of gradient becomes

even larger. This is the main reason why PBFA, which targets

weights with large gradients, is much more effective than other

BFAs.

0.00E+00
1.00E-05
2.00E-05
3.00E-05
4.00E-05

Gradient near target weight at iteration 1 
(Baseline)

Seed=25 Seed=678 Seed=5002 Seed=2866 Seed=1525

0.00E+00
1.00E-03
2.00E-03
3.00E-03
4.00E-03

Gradient near target weight at iteration 5 
(Baseline)

Seed=25 Seed=678 Seed=5002 Seed=2866 Seed=1525

Fig. 2. Gradient distribution near the target weight of a standard ResNet-
18 model (Baseline) for PBFA iteration number 1 and 5. Note around 200x
increase in gradient values in iteration 5.

Consider a 8-bit weight with gradient ∇Bi
L that is picked

as the target by gradient-based attack. The attacker induces a

change of ΔW on the target weight. The overall effect on the

loss can be represented by:

|Δloss| = F (|∇Bi
L|, |ΔW |) (2)



where we assume that F is a a monotonically increasing

function. This is corroborated by our evaluation presented in

later sections. Thus, to reduce the overall increase in loss, we

present a weight reconstruction method capable of reducing

the ΔW caused by a potential bit-flip. We show that reducing

ΔW helps mitigate the effect of the BFA.

B. Weight Reconstruction Method

The goal of weight reconstruction is to reduce the change in

weight caused by the BFA. The proposed technique has three

main steps: averaging, quantization and clipping. The main

purpose of the averaging operation is to spread the effect of

|ΔW | on a group (or grain) of size G such that it only causes

a small |ΔW /G| change on the mean.

The purpose of the quantization step is to cancel the effect

of |ΔW /G| change on the quantized mean (Qmean). For an

8-bit weight, the average value before the attack could be any

value between -128 and 127. Hence, if the gap between two

quantization levels (Qlevel) is very large, the probability that

the quantization step will cancel the |ΔW /G| is high.

In Fig. 3 (a), we use hyperparameters P and K to control

the Qlevel, and vary P and K to get different Qlevel settings.

The Qlevel is shown as white bars between [-128, 127]; P
is the ratio of the active Qlevel range compared to the full

range (255); K is the number of Qlevels. If there is a change

in the value of |ΔW /G| on the mean before quantization, for

the P = 0.8,K = 2 setting with large gap in Fig. 3 (a), the

Qmean has a higher probability to stay unchanged compared

to the P = 0.8,K = 4 setting.

(b) (1-P) Clipping Range

Qmean

+127 +127+127

P=0.8 K=2 P=0.8 K=4 P=0.7 K=4

Mean

(a) P/(K-1) Qlevel Gap

-128 -128 -128

P=0.8 P=0.7

Mean

Qmean

Qmean

Qmean

Fig. 3. Effect of range control hyperparameter P and number of quantization
levels, K on weight reconstruction.

After the attack, if the Qmean information of the clean

model is retained, it can be used as a base value and help

achieve reduction in perturbation caused by the BFA. The

clipping operation restricts all the weights to a small range

around the Qmean, that is, the maximum deviation of target

weight from the cleaned model is at most the whole clipping

range (Δ+−Δ−). The clipping range of Qlevels with different

P values is in shown in in Fig. 3, where the P = 0.8 case

has a smaller clipping range compared to the P = 0.7 case.

The blue-line area shows the allowed value range of the final

reconstructed weight.

The detailed operation is presented in Algorithm 1.

Algorithm 1 Pseudo-code for weight reconstruction

Input: 8-bit fixed point weight Wb in integer format, number

of weights in a grain G, ratio P of quantization range to

the full weight value range of [-128, 127], and number of

quantization levels K.

Output: Wr (reconstructed weight)

1: function RECONSTRUCT(Wb, G, P,K)

2: Level [1:K] ← P × (−128) : P×255
K−1 : P × 127

3: Δ− ← −(1− P )× 128
4: Δ+ ← (1− P )× 127
5: Iterator: wb ← G
6: for wb in Wb do
7: Mean ← average(wb)

8: Qmean ← round(Mean) to Level [1:K]
9: for item in Wb do

10: if item < Qmean + Δ− then:

11: item ← Qmean + Δ−
12: else if item > Qmean + Δ+ then:

13: item ← Qmean + Δ+

14: end if
15: end for
16: end for
17: Wr ← stack(wr)
18: return Wr

19: end function

We illustrate the reconstruction procedure with an example

in Fig. 4 (a) for G = 4, P = 0.8 and K = 4. The

original 8-bit weights are presented as integer values for better

demonstration. In step 1, the average value of the weights in

the grain (circled by gray dash-line) is computed. The four

quantization levels are -0.8 x 128 = -102 to 102 with step size

of 68, so the four levels are -102, -34, +34 and +102. The

mean is rounded to its nearest quantization level at -34 in step

2. Since Δ− is -26 and Δ+ is +25, the clipping is between

lower boundary of -34 - 26 = -60 and upper boundary of -9.

The first and second elements -74 and -105 are lower than -60

and get clipped to -60. The third and fourth elements do not

exceed the boundary and so stay unchanged.

Fig. 4 (b) and (c) show two possible attacking scenarios.

In Fig. 4 (b), the MSB of the third weight in the first row

is flipped, and thus the value is changed from -10 to +118.

The change of +128 on the third weight induces a change

of +32 on the mean. But thanks to the quantization step, the

Qmean remains unchanged. After clipping, the targeted weight

becomes -9 (-10 −→ +118 −→ -9) while all three other weights

in the same grain are unaffected. Thus, the effect of the attack

is greatly mitigated.

In Fig. 4 (c), the MSB of the fourth weight in the second

row is flipped by the BFA. Here the Qmean changes from +34



-74 -105 -10 -52

+8 -2 +18 +10

-114 -86 -54 -70

+125 +78 +92 +60

-60 -60 -10 -52

+8 +8 +18 +10

-114 -86 -77 -77

+125 +78 +92 +76

QuantizationAverage: on 1x4 Grain

Mean = -28
Qmean = -34

Clip to [-60, -9]

Clip to [Qmean-26, Qmean-25]

Mean = -28
Qmean = -34

Clip to [-60, -9]

(b) Reduction Case (c) Diffusion Case

Attack the 3rd
weight in the 
first row:

Attack the 4th
weight in the 
second row:

(a) Reconstruction Process

Step 2 Step 3

Weights Stored on DRAM Reconstructed Weights

-60

+9

-81

+89

-34

+34

-102

+102

Mean Quantized Mean

Step 1

+34

+102

+127

-34

-102

-128

[-60,-9]

-74 -105 +118 -52

-60 -60 -9 -52 -9 -9 -9 -60

-8 -2 +18 -118

Fig. 4. DNN Weight Reconstruction Process. (a) Three steps of the recon-
struction process. Two cases of bit-flip: (b) A direct reduction case, (c) A
diffusion case.

to -34, and the average value affected by the attack goes to

another quantization level. After clipping around the shifted

Qmean, the first three neighboring weights are shifted by -17,

-17, -27, respectively, and the targeted weight is shifted by

-70. The value reduction in the target weight is nearly equal

to the total value increase on its neighboring weights, so we

call this case “diffusion case”. This case is less favorable than

(b) because the change in the weight values is likely to affect

the accuracy. It is still better than the original case as the

change in value of the target weight is reduced by nearly half.

The small value change in its neighbors, which have smaller

gradient, have a minor effect on the loss, which is supported

by our gradient distribution study in 2.

The reduction case demonstrated in Fig. 4(b) reduces the

change in value induced by BFA due to several reasons. First,

since the weights in a grain have similar value, the average

value is very close to its original value. Next, the quantization

step cancels the change in the mean value. Finally, the clipping

operation clips the value inside a small range near the Qmean,

which ensures that the weight will always be very close to the

average value.

Effect of parameters G, P and K: The choice of hyper-

parameters G, P and K affect the accuracy and resiliency to

BFA. We find that for different neural network architectures,

the optimal hyperparameters are different. However, there are

certain characteristics that are true for all networks.

By increasing grain size G, we can achieve higher reduction

on the change in mean value, which is linked to better perfor-

mance. However a large G may have a regularization effect

on the weight distribution, to the point that the average value

is close to zero, leading to poor accuracy. The gap between

two quantization levels is a linear function of P and 1/K. A

larger gap implies a higher probability of canceling the error

at the expense of reduced accuracy of weight representation.

The modification of weights during inference implies that

re-training or fine-tuning has to be done to achieve high model

accuracy. Our training algorithm is as follows.

Algorithm 2 Proposed Training Method

Setting: Function Reconstruct(Wb, G, P and K). L is the

number of layers, C is the loss function for a mini-batch and

η is the learning rate. al is the activation value in layer l.
W t−1 represents the full-precision weight reference, and the

8-bit fixed point weights W t−1
b and biases bt−1 of iteration

t− 1 are reconstructed as weights W t−1
r for standard forward

pass.

1. Forward Propagation:
W t−1

b ←− Quantize(W t−1)

W t−1
r ←− Reconstruct(W t−1

b , G, P,K)

for l = 1 : L
Compute al given al−1, W t−1

r and bt−1

2. Backward Propagation:
Initialize output layer’s activation gradient ∂C

∂aL

for l = L to 2
Compute ∂C

∂al−1
given ∂C

∂al
and W t−1

r

3. Parameter Update:
Compute ∂C

∂W t−1
r

and ∂C
∂bt−1 given ∂C

∂al
and al−1

W t ←− W t−1 − η ∂C
∂W t−1

r

bt ←− bt−1 − η ∂C
∂bt−1

In the training algorithm, the full-precision weights are used

as a reference for training only. The back-propagation through

non-differentiable functions (such quantization and clipping)

is done by using straight-through estimator [15] to perform

standardized quantized neural network training [16]. After

training converges, the full precision weights are quantized to

8-bit format and the quantized weights are stored for inference.

IV. EXPERIMENTAL RESULTS

A. Experimental Setting

Dataset. To evaluate our defense strategy, we used two

popular visual datasets for image recognition: CIFAR-10 [17]

and ImageNet [18]. CIFAR-10 contains 60k RGB images with

32×32 size evenly sampled from 10 classes, with 50k images

as training-set and 10k images as test-set. ImageNet dataset

contains 1000 distinct classes with 1.2M training samples. To

conduct Progressive BFA we randomly select a sample test

batch of size 128 for CIFAR-10 and size 256 for ImageNet,

respectively.

DNN model. We use ResNet-20 model for CIFAR-10

dataset and ResNet-18 model for ImageNet [19]. ResNet-20

model uses a batch size of 128. It is trained from scratch

for 200 epochs using Adam [20], a learning rate of 0.01 and

learning rate decay of 0.0001. For ImageNet, we do fine-tuning

on the trained model for 20 epochs using stochastic gradient

descent (SGD) [21] method and batch size of 256.



Platform. All experiments are conducted on a machine

equipped with an NVIDIA RTX 2080ti GPU. The training and

inference for the DNN models are implemented using Pytorch.

B. BFA Settings

For each set of bit-flip injection experiments, we repeat 5

times to get the average accuracy and loss. For RBFA, we

randomly inject 20, 40, 80, 160, 320 bit-flips on each layer

of the network. In OBFA, the adversary needs to pinpoint the

targeted location to perform the attack, and so we inject fewer

bit-flips. With 10 bit-flips on each layer, the baseline accuracy

drops to a very low value, and so we pick GBF-2, 4, 6, 8, 10

in the experiments. In PBFA, the attack needs multiple rounds

of inference of target system, which adds to the time cost and

difficulty. The accuracy of baseline drops more quickly, so we

only perform iteration of progressive search till the baseline

accuracy drops to around 20% for CIFAR-10 and around 1%

for ImageNet.

C. Defending against RBFA/OBFA

For the ResNet-20 model on CIFAR-10, we train the

baseline model (8-bit fixed point standard model) and our

proposed weight reconstruction based model (WRecon). We

select G = 4, P = 0.8, and K = 8. The test accuracy of the

reconstruction model with no attack (clean model) is 90.83%,

which is 1% lower than the baseline model of 91.89%.

RBFA: We perform RBFA with different numbers of bit-

flips. The test accuracy and loss versus number of bit-flips

are shown in Fig. 5. The accuracy drop and increase in loss

are much slower for WRecon. With 320 bit-flips in each layer,

the baseline reduces to below 60% while WRecon still has a

75% accuracy.

0 20 40 80 160 320
Number of Bit-Flips per Layer

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y

0

1

2

3

4

5

L
os

s

Baseline Accuracy

WRecon Accuracy

Baseline Loss

WRecon Loss

Fig. 5. RBFA: Comparison of test accuracy and loss of the baseline and
proposed WRecon for ResNet-20 model on CIFAR-10 (the standard deviation
is represented by the shaded area).

OBFA: We perform OBFA on the baseline model and the

WRecon model with G = 4, P = 0.8, and K = 8, and

vary the number of bit-flips from 2 to 10 in each layer. The

test accuracy and loss values are shown in Fig. 5. For the

baseline, the accuracy degradation is much more severe when

the number of bit-flips increases, compared to the RBFA case

in Fig. 5. With 10 bit-flips in each layer, the accuracy of the

baseline model reduces to around 20% while WRecon has a

45% accuracy.

0 2 4 6 8 10
Number of Bit-Flips per Layer

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y

0

5

10

15

20

25

L
os

s

Baseline Accuracy
WRecon Accuracy

Baseline Loss
WRecon Loss

Fig. 6. OBFA: Comparison of test accuracy and loss of the baseline and
proposed WRecon for ResNet-20 model on CIFAR-10 (the standard deviation
is represented by the shaded area).

D. Defending against PBFA

For ResNet-20 model on CIFAR-10, we run PBFA for up to

20 iterations. We use the WRecon model with P = 0.8, G = 4
and K = 4. Fig. 7 shows the test accuracy and loss value

as a function of the number of iterations for the two models.

The accuracy and loss of the proposed WRecon model change

slowly compared to the baseline model. After 10 iterations, the

accuracy of the baseline model reduces to below 40%, while

the proposed WRecon has 75% accuracy. After 20 iterations,

the baseline model accuracy degrades further to below 20%

while WRecon has around 45% accuracy.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Iterations in PBFA

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y

0

20

40

60

80

100

L
os

s

Baseline Accuracy
WRecon Accuracy

Baseline Loss
WRecon Loss

Fig. 7. PBFA: Comparison of test accuracy and loss of the baseline and model
with proposed weight reconstruction for ResNet-20 model on CIFAR-10 (the
standard deviation is represented by the shaded area).

Next, we present results for the ResNet-18 model on Im-

ageNet. We perform PBFA for only 5 iterations for both the

baseline model and the reconstruction model using P = 0.8,

G = 16 and K = 8. The test accuracy of the WRecon

model with no attack (clean model) is 69.23%, which is 0.5%

lower than the baseline model of 69.79%. After 5 iterations

of PBFA, the baseline accuracy degrades to below 1%, while

the WRecon model has an accuracy of 60%.

E. Weight gradient analysis

As already demonstrated in Fig. 2, PBFA attacks weights

with large gradients and causes a disastrous drop in accuracy

for the baseline model. This is the main reason for the

effectiveness of PBFA on the baseline model. For the WRecon

model, the gradient distribution near the target weight is shown

in Fig. 9. At iteration 1, compared with the baseline shown in

Fig. 2, the gradient of WRecon model does not show much

difference. While at iteration 5, the gradient of models with



0 1 2 3 4 5
Number of Iterations in PBFA

0

20

40

60

80
T

es
t A

cc
ur

ac
y

0

20

40

60

80

100

L
os

s

Baseline Accuracy

WRecon Accuracy

Baseline Loss

WRecon Loss

Fig. 8. PBFA: Comparison of test accuracy and loss of the baseline and model
with proposed weight reconstruction for ResNet-18 model on ImageNet (the
standard deviation is represented by the shaded area).

weight reconstruction increases at a much lower rate (increase

by 10x compared to baseline by 200x).

0.00E+00
1.00E-05
2.00E-05
3.00E-05
4.00E-05

Gradient near target weight at iteration 1 
(WRecon)

Seed=25 Seed=678 Seed=5002 Seed=2866 Seed=1525

0.00E+00
1.00E-03
2.00E-03
3.00E-03
4.00E-03

Gradient near target weight at iteration 5
(WRecon)

Seed=25 Seed=678 Seed=5002 Seed=2866 Seed=1525

Fig. 9. Gradient distribution near the target weight of ResNet-18 models with
weight reconstruction (G16P0.8K8) at PBFA iteration of 1 and 5.

F. Overhead Analysis

For each layer, we compute the inference of one input

and collect the execution time of each kernel for a multi-

core 14nm node simulated in Gem5. For the case when the

fully connected layer has 128 input neurons and 1024 output

neurons and weight matrix is of size 128x1024, the execution

time is 2.691ms and the reconstruction process costs another

0.013ms. For convolutional layer, we consider the input size

of 32x32x3 with zero-padding, output size of 32x32x16 and

kernel size of 3x3. The computation time of 2D convolution is

0.363ms while the reconstruction time costs another 0.009ms.

Thus in both cases, the overhead introduced by reconstruction

process is very small, and this cost will further decrease when

the input is processed in batches.

V. CONCLUSION

In this work, we present a weight reconstruction method

to mitigate several types of BFAs, including the powerful

progressive BFA (PBFA), on neural networks. We assume that

the attacker meets the white-box assumption and is capable of

implementing different types of BFA through perform RHA.

Our low overhead method reduces the effect of these attacks

through changing the value of the attacked weight through a

combination of averaging over a grain of weights followed by

appropriate quantization and clipping. On a ResNet-18 model,

the proposed method achieves 60% accuracy after 5 iterations

of PBFA while the baseline accuracy drops to 1%.

REFERENCES

[1] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP), pp.
39–57.

[2] M. A. Hanif, F. Khalid, R. V. W. Putra, S. Rehman, and M. Shafique,
“Robust machine learning systems: Reliability and security for deep
neural networks,” in 2018 IEEE 24th International Symposium on On-
Line Testing And Robust System Design (IOLTS), pp. 257–260.

[3] X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Experimental
evaluation of deep neural network resistance against fault injection
attacks.” IACR Cryptology ePrint Archive, vol. 2019, p. 461, 2019.

[4] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitraş, “Terminal
brain damage: Exposing the graceless degradation in deep neural net-
works under hardware fault attacks,” arXiv preprint arXiv:1906.01017,
2019.

[5] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural
network,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 131–138.

[6] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network
with progressive bit search,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2019, pp. 1211–1220.

[7] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[8] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP), pp.
245–261.

[9] S. Hecker, D. Dai, and L. Van Gool, “Failure prediction for autonomous
driving,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1792–
1799.

[10] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting
codes: On the effectiveness of ecc memory against rowhammer attacks,”
in 2019 IEEE Symposium on Security and Privacy (SP), pp. 55–71.

[11] X.-C. Wu, T. Sherwood, F. T. Chong, and Y. Li, “Protecting page tables
from rowhammer attacks using monotonic pointers in dram true-cells.”
in ASPLOS, 2019, pp. 645–657.

[12] J. Li, M. Mao, and C. Chakrabarti, “Improving reliability of reram-
based dnn implementation through novel weight distribution,” in 2019
IEEE International Workshop on Signal Processing Systems (SiPS), pp.
189–194.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[14] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[15] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
arXiv preprint arXiv:1802.00420, 2018.

[16] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[17] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:
http://www. cs. toronto. edu/kriz/cifar. html, vol. 55, 2014.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[21] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20170330081459
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



