Systems Tested
Ta (0 and 200 GPa, bcc), Na (30-120 GPa, bcc/fcc), NaCl, La2Zr2O7 (La2O3-2ZrO2), the Hf-Ta-C-N systems, Al, Si, HfO2, Fe (330 GPa), Ti (bcc) and many more…
m.p.: melting point calculated by SLUSCHI.
If not specified, PAW-PBE is employed in the calculations.
HSE: melting point after HSE correction. (important for semiconductors)
MD: total number of MD trajectories
CPU hours are measured as / converted to TACC Stampede.
days: the physical time it takes. SLUSCHI is currently optimized to lower the CPU cost, rather the physical time. In order to reduce the physical time, user may manually explore temperature of interest. However, this may increase CPU hours.
“early runs” are calculations performed at early stage of method development. Hence the efficiency is relatively low compared to “sluschi”.
poor results and reason | good results
systems | m.p./K | HSE/K | expt./K | DFT PP | rad / Å | kmesh | # MD | cpu hours | days | note |
Al | 1040±13 | 933 | Al | 12 | (1/2,1/2,1/2) | 19 | 5,400 | 7 | sluschi | |
Al | 999±21 | 1054 | 933 | Al | 10 | Auto 30 | 58 | 16,000 | 15 | sluschi |
Ti_v | 1811±47 | 1941 | Ti_v | 9 | Auto 20 | 49 | 15,500 | 21 | sluschi | |
Ti_v | 1750±25 | 1971 | 1941 | Ti_v | 10 | Auto 20 | 26 | 7,900 | 17 | sluschi |
Ti_pv | 1952±45 | 1941 | Ti_pv | 10 | (1/4,1/4,1/4) | 48 | 20,000 | 20 | sluschi | |
Ti_pv 60GPa | 2505±47 | ? | Ti_pv | 10 | (1/4,1/4,1/4) | 46 | 39,500 | 17 | sluschi | |
Si | 724±47 | 1687 | Si | 10 | Auto 10 | 25 | 1,000 | 2 | sluschi | |
Si | 1378±24 | 1785 | 1687 | Si | 10 | Auto 20 | 19 | 7,500 | 15 | el. DOS change, require HSE |
Si | 1364±37 | 1687 | Si | 12 | Auto 20 | 20 | 27,700 | 27 | sluschi | |
diamond,100GPa | 4307±8 | 4250 | C | 10 | gamma | 45 | 313,000 | 168 | sluschi | |
Ru_v | 2435±32 | 2607 | Ru_v | 10 | Auto 20 | 30 | 88,000 | 37 | sluschi | |
Ru_pv | 2550±34 | 2607 | Ru_pv | 10 | (1/4,1/4,1/4) | 33 | 139,000 | 51 | sluschi | |
Ru ternary alloys | 2564±40 | n/a | pv | 10 | (1/4,1/4,1/4) | 23 | 247,000 | 80 | sluschi | |
Hf,bcc | 2562±31 | 2506 | Hf | 10 | (1/2,1/2,1/2) | 115 | 14,900 | 12 | sluschi | |
Hf,hcp | 2122±50 | n/a | Hf | 10 | (1/2,1/2,1/2) | 50 | 25,800 | 21 | sluschi, hcp not stable at MT | |
HfO2 | 2327±47 | – | 3031 | valence | 10 | gamma | 33 | 79,000 | sluschi | |
HfO2 PBE+U | 3486±91 | – | 3031 | Hf_pv | 10 | gamma | 34 | 99,600 | sluschi | |
HfO2 PBE+U | 3313±81 | – | 3031 | Hf_pv | 12 | gamma | 25 | running | ionic, use large $rad | |
ZrO2 | 2988 | valence | 10 | Auto 20 | running | |||||
Ta_v | 2986±41 | 3290 | Ta_v | 10 | (0,1/4,1/4) | 38 | 32,000 | 23 | early runs, low efficiency | |
Ta_pv | 3194±40 | 3290 | Ta_pv | 10 | (0,1/4,1/4) | 38 | 54,000 | 24 | early runs, low efficiency | |
Ta_pv_PW91 | 3066±51 | 3290 | Ta_pv | 10 | (0,1/4,1/4) | 38 | 38,000 | 68 | PW91 [1] | |
Ta_pv,200GPa | 7953±69 | n/a | Ta_pv | 10 | (1/4,1/4,1/4) | 80 | 150,000 | 48 | sluschi, high efficiency [4] | |
W | 3497±54 | 3695 | W | 10 | A20 | 22 | 35,900 | 49 | sluschi | |
W_pv | 3470±45 | 3695 | W_pv | 10 | (1/4,1/4,1/4) | 30 | 38,500 | 18 | sluschi | |
Na 15 GPa | 657±8 | 810, 698 ? | Na_pv | 10.4 | (0,1/4,1/4) | 55 | 47,000 | 24 | bcc, expt under dispute, e.g., | |
Na 26 GPa | 750±16 | 706 | 970 ? | Na_pv | 9.8 | (0,1/4,1/4) | 52 | 26,000 | 17 | Zha, Boehler vs. Gregoryanz |
Na 40 GPa | 742±17 | 950 ? | Na_pv | 9.4 | (0,1/4,1/4) | 74 | 54,000 | 37 | SLUSCHI results agree with | |
Na 55 GPa | 716±12 | 810 ? | Na_pv | 9.0 | (0,1/4,1/4) | 56 | 64,000 | 31 | Eshet and Desjarlais (theory). | |
Na 80 GPa | 674±20 | 700 ? | Na_pv | 10.9 | (0,1/4,1/4) | 55 | 170,000 | 67 | fcc, expt under dispute | |
Na 100 GPa | 662±14 | 450 ? | Na_pv | 10.6 | (0,1/4,1/4) | 48 | 57,000 | 28 | fcc, expt under dispute | |
Na 120 GPa | 579±27 | ? | Na_pv | 10.4 | (0,1/4,1/4) | 88 | 150,000 | 77 | fcc, expt under dispute | |
NaCl | 1014±18 | 1074 | valence | 11 | gamma | 59 | 24,000 | 50 | early runs, low efficiency | |
La2Zr2O7 | 2420±27 | 2630 | 2530 | Zr_v, La_sv | 10 | gamma | 64 | 575,000 | 210 | [2] |
Hf-Ta-C-N | – | – | valence | 10 | – | – | – | [3] | ||
⋮ |
1. Qi-Jun Hong and Axel van de Walle, Solid-liquid coexistence in small systems: A statistical method to calculate melting temperatures. Journal of Chemical Physics 139 (9), 094114 (2013). [DOI]
2. Qi-Jun Hong, Sergey V. Ushakov, Alexandra Navrotsky, Axel van de Walle, Combined computational and experimental investigation of the refractory properties of La2Zr2O7. Acta Materialia 84, 275-282 (2015). [DOI]
- Qi-Jun Hong and Axel van de Walle, Prediction of the material with highest melting temperature from quantum mechanics. Physical Review B Rapid Communications, 92, 020104(R) (2015). [DOI]
- Ljubomir Miljacic, Steven Demers, Qi-Jun Hong and Axel van de Walle, Equation of state of solid, liquid and gaseous tantalum from first principles. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 51, 133-143 (2015). [DOI (open access)].