
1

W
c
s
t
W
i
t
s
e
t
m
I
t

b
o
a
h
i
k
m
s
p
a
z
h
m

J
s
t
A
U
a
J

J

Downlo
Jagannathan Rajagopalan
e-mail: jrajago2@uiuc.edu

M. Taher A. Saif1

e-mail: saif@uiuc.edu

Department of Mechanical Science and
Engineering,

University of Illinois Urbana-Champaign,
Urbana, IL 61801

Single Degree of Freedom Model
for Thermoelastic Damping
Finding the thermoelastic damping in a vibrating body, for the most general case, in-
volves the simultaneous solving of the three equations for displacements and one equa-
tion for temperature (called the heat equation). Since these are a set of coupled nonlinear
partial differential equations there is considerable difficulty in solving them, especially
for finite geometries. This paper presents a single degree of freedom (SDOF) model that
explores the possibility of estimating thermoelastic damping in a body, vibrating in a
particular mode, using only its geometry and material properties, without solving the
heat equation. In doing so, the model incorporates the notion of “modal temperatures,”
akin to modal displacements and modal frequencies. The procedure for deriving the
equations that determine the thermoelastic damping for an arbitrary system, based on the
model, is presented. The procedure is implemented for the specific case of a rectangular
cantilever beam vibrating in its first mode and the resulting equations solved to obtain
the damping behavior. The damping characteristics obtained for the rectangular cantile-
ver beam, using the model, is compared with results previously published in the litera-
ture. The results show good qualitative agreement with Zener’s well known approxima-
tion. The good qualitative agreement between the predictions of the model and Zener’s
approximation suggests that the model captures the essence of thermoelastic damping in
vibrating bodies. The ability of this model to provide a good qualitative picture of ther-
moelastic damping suggests that other forms of dissipation might also be amenable for
description using such simple models. �DOI: 10.1115/1.2338054�
Introduction
In most solids, the strain and temperature fields are coupled.
hen temperature is changed, volume changes, when volume is

hanged by elastic deformation, temperature changes. The con-
tant that relates the change of length �strain� with the change in
emperature of a material is its thermal expansion coefficient �.

hen a body is elastically deformed �with volume change�, thus
ncreasing its potential energy, and is allowed to oscillate freely,
he body gradually loses its potential energy and returns to its
table equilibrium even if it does not exchange energy with the
nvironment, for example, by air drag or friction. One fundamen-
al mechanism responsible for this dissipation is known as ther-

oelastic damping, wherein potential energy is converted to heat.
f the body is thermally isolated from its surroundings thermoelas-
ic damping leads to an increase in its temperature.

Thermoelastic damping can be understood from two different,
ut equivalent standpoints. One method is to view it as a process
f dissipation of mechanical energy. In general, the stress field in
vibrating body is nonuniform and hence some regions become

otter relative to others due to thermoelastic coupling. This results
n heat flow within the body, if it has finite thermal conductivity,
. Due to this heat flow, the temperature field created by ther-
oelastic effect in a vibrating body becomes out of phase with the

tress field. Thus the temperature induced strain field is out of
hase with the stress field. This phase difference between stress
nd strain fields leads to dissipation of mechanical energy. If k is
ero, the stress and temperature fields are always in phase and
ence no dissipation takes place. If k is very large, the body re-
ains isothermal and again there is no dissipation. The second
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way is to visualize thermoelastic damping is in terms of genera-
tion of entropy. Due to inhomogeneities in the stress field, local
temperature gradients are created in the body. This leads to irre-
versible heat flow until the temperature, T, becomes uniform
throughout the body, i.e., the attainment of thermal equilibrium.
Since thermal equilibrium corresponds to the state of maximum
entropy, there has to be a net increase in the entropy, S, of the
body during this process. This increase in entropy has to come at
the cost of the potential �strain�/kinetic energy of the system, since
the total energy, U, of the system remains constant. The entropy
increase can also be considered as an increase in heat content of
the body.

The thermoelastic damping in a vibrating body can be obtained,
for the most general case, by simultaneously solving the three
equations for displacements and one equation for temperature �the
heat equation� which comprise the equations of thermoelasticty
�1�. Since these are a set of coupled nonlinear partial differential
equations there is considerable difficulty in solving them, espe-
cially for finite geometries. Over the years, analytical solutions to
thermoelastic damping have been obtained for certain simple ge-
ometries. Zener first studied thermoelastic relaxation as a source
of damping in mechanical systems using the “standard model” of
an anelastic solid �2� and developed a general theory of ther-
moelastic damping in a series of papers �3–5� in the 1930s. He
showed that the damping behavior of transversely vibrating can-
tilever beam can be well approximated by a single relaxation peak
with a characteristic relaxation time �. He further showed that �,
which gives a measure of the time needed for temperature equal-
ization through diffusion, is proportional to b2 /�, where b is the
thickness of the beam and � is the thermal diffusivity.

Alblas �6� developed a generalised theory for thermoelastic dis-
sipation in vibrating bodies using the three dimensional ther-
moelastic equations and derived the solution for the coupled ther-
moelastic equations in terms of normalized orthogonal eigen
functions. In a later publication �7�, Alblas generalized the results
and obtained explicit expressions for thermoelastic damping in
vibrating elastic beams, including the circular rod and the rectan-

gular beam. Chadwick �8� derived the coupled equations govern-
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ng the thermoelastic behavior of thin plates and beams, and dem-
nstrated that these reduce to the classical equation of motion and
f heat conduction in the limit of zero coupling. Lord and Shul-
an �9� derived a generalized theory of thermoelasticity by con-

idering a modified form of the Fourier heat conduction equation
hat took into account the time lag needed to establish steady state
onduction.

In recent times, there has been renewed interest in thermoelastic
amping, especially due to its contribution to energy dissipation in
icromechanical resonators. High frequency micromechanical

esonators, with potential applications as RF filters �10�, charge
etectors �11�, and sensors �12,13�, need to have very little energy
issipation or very high quality factor, Q. Since thermoelastic
amping is a fundamental damping mechanism, it imposes an
pper limit on the quality factor that can be obtained in any os-
illator. Lifshitz et al. �14� evaluated the importance of ther-
oelastic damping at micro and nano scales and concluded that it

emains relevant at these scales. Further, they derived an exact
xpression for thermoelastic damping in thin rectangular beams
hich compared favorably with Zener’s well known approxima-

ion �2�. Photiadis et al. �15� proposed a simple model of ther-
oelastic dissipation assuming that the energy loss occurred only

ue to dissipation of the flexural component of motion. Houston
t al. �16,17� used this model to predict thermoelastic dissipation
n a single-crystal double paddle oscillator and found that the
redictions agreed well with experimental observations at high
emperatures �above 150 K�. Nayfeh et al. �18� derived analytical
xpressions for quality factors in microplates, using perturbation
ethod, by decoupling the heat equation from the equation of
otion. In a recent work, Norris et al. �19� presented a general
ethod of calculating thermoelastic damping in vibrating elastic

olids, by treating elasticity as an uncoupled forcing term in the
eat equation. Using this method the authors obtained a new equa-
ion of motion for flexural vibration of thin plates incorporating a
hermoelastic damping term.

As mentioned earlier, the difficulty in solving thermoelastic
quations, and hence finding the damping, arises because of the
eed to solve the displacements and heat equation simultaneously.
n this paper, we explore the possibility whether thermoelastic
amping in a vibrating body can be estimated based on its mate-
ial properties and geometry only and without solving the heat
quation. Towards the end, we introduce the notion of a modal
emperature, similar to modal displacements that are often used to
tudy vibrations of continuous systems. The rationale for introduc-
ng a modal temperature is as follows. The local strain and its rate
f change, in the presence of thermoelastic coupling, determine
he local temperature gradients and the rate of temperature
hange. Since the strain field and its rate of change can be cap-
ured using a modal displacement and the corresponding modal
requency, it might be possible to find a modal temperature that
escribes the temperature field in the body. This model assumes
o heat flow in or out of the body and that the thermal gradients
reated by the strain field in one direction are much larger com-
ared to the other two. While these assumptions may seem quite
estrictive, most practical structures used in micromechanical thin
eams and plates obey these assumptions �14,18�.

In Sec. 2, we outline a simple spring-mass model for ther-
oelastic damping, and show that it exhibits damping character-

stics similar to those observed in real systems. We then describe
more generalized SDOF model for thermoelastic damping and

utline a procedure to derive its governing equations in Sec. 3. In
ec. 4 we use this model to find the thermoelastic damping in a
ibrating cantilever beam. In Sec. 5 we compare the results ob-
ained from the model with those previously obtained in the lit-
rature and discuss the reasons for differences between them. In
he final section we discuss as to how this SDOF model can be
dapted to other geometries and potentially to model other forms

f dissipation.
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2 Idealized Spring-Mass Model for Thermoelasticity
The spring-mass model �Fig. 1� comprises of a single mass M

attached to two identical springs. The springs, labeled S1 and S2,
are attached to rigid supports at their other ends. The springs are
simply two elastic bars of length L, with elastic modulus E and
cross-sectional area A and hence are of stiffness K=AE /L. The
supports are assumed to be nonconducting and there is no heat
transfer from the springs to the surroundings and vice versa. The
springs are assumed to have very large thermal conductivity due
to which the temperature within them is uniform at all times. In all
the analyses below, the following initial conditions are imposed,
i.e., at t=0:

�1� The displacement, u, of the mass satisfies, u�0�=u0 and
�du /dt�t=0=0;

�2� the entire system is at a uniform temperature T0.

2.1 Spring-Mass Model with Nonconducting Mass. When
the mass is displaced by a distance u �u�L�, the strain in S1, �1,
is −u /L, and the strain in S2, �2, is u /L. These strains induce a
change in the temperature of the two springs because of ther-
moelastic coupling. It is assumed that the strains are uniform in
each of the springs and that there is no thermal contact between
the two springs, i.e., the mass M has zero thermal conductivity.

The generalized heat equation in the presence of thermoelastic
coupling for an isotropic solid is given by �20�

�T

�t
=

k

�cv
�2T −

E�T

�1 − 2���cv

�

�t � �kk �1�

where k is the thermal conductivity, � is the density, cv is the
specific heat capacity at constant volume, E is the Young’s modu-
lus, � is the linear thermal expansion coefficient, � is the Pois-
son’s ratio, and �kk are the normal components of strain.

When a body is subject to uniaxial stress ��xx�, the equation
reduces to

�T

�t
=

k

�cv
�2T −

E�T

�cv

��xx

�t
�2�

If the thermal conductivity, k, is zero, the equation further reduces
to

�T

�t
= −

E�T

�cv

��

�t
�3�

Here, �xx has been replaced by �. Equation �3� can be viewed as a
relation connecting heat generation �or absorption� rate with the
strain rate for the case of uniaxial stress.

If the strain � has no spatial variation, as is assumed for the
springs in the spring-mass model, the partial time derivatives in
Eq. �3�, can be replaced by total derivatives. Hence Eq. �3� re-

Fig. 1 Schematic of spring-mass model for thermoelasticity
duces to
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dT

dt
= −

E�T

�cv

d�

dt
�4�

ince the change in temperature due to thermoelastic effect is very
mall compared to the initial temperature T0, T on the right hand
ide of Eq. �4� can be replaced by T0. Integrating Eq. �4�, after this
odification, we get

	 = −
E�T0

�cv
� + N �5�

here 	=T−T0, is the change in temperature from the initial tem-
erature T0 at the current strain �, N= �E�T0 /�cv��0 is the con-
tant of integration and �0 is the strain at t=0.

When S1 is subjected to a strain −u /L, its temperature increases
y 	1=E�T0u /�cvL+N1. Due to thermal expansion, the length of
he spring increases by 
L1=�	1L=E�2T0u /�cv+�N1L. In ef-
ect, the net compression experienced by S1 is u�1+E�2T0 /�cv�
�N1L. Hence, the force exerted by S1 on the mass M is given by
1=−K�u�1+E�2T0 /�cv�+�N1L�. Similarly, the force exerted by

2 is F2=−K�u�1+E�2T0 /�cv�−�N2L�. The initial conditions,

1=	2=0 and u=u0 at t=0 can be used to find N1 and N2.
Hence, the equation of motion of the spring-mass system is

iven by

M
d2u

dt2 + 2K�1 +
E�2T0

�cv
�u + K��N1L − �N2L� = 0 �6�

hich is of the form

a�
d2u

dt2 + b�u + c� = 0 �7�

nd has the general solution u=−c� /b�+ P1 cos��t�+ P2 sin��t�
here �=	b� /a�. On imposing the initial conditions the solution

educes to u=−c� /b�+ P cos��t� where P is determined by the
ondition u=u0 at t=0.

The solution to the equation of motion of the discrete spring-
ass system with zero thermal conductivity leads to the following

onclusions:

�1� The motion is harmonic with no decay in amplitude, i.e.,
with no damping, as is the case with any continuous system
that has zero thermal conductivity;

�2� the natural frequency, 	2K�1+E�2T0 /�cv� /M of the ther-
moelastically coupled system is higher than 	2K /M, the
frequency of the uncoupled system ��=0�, again a charac-
teristic of any continuous system;

�3� the point at which the mass experiences zero force is
shifted from u=0, of the uncoupled system, to u=c� /b�
�0.

2.2 Spring-Mass Model with Conducting Mass. In this
nalysis, the mass M is assumed to have a finite thermal conduc-
ivity which leads to heat flow between the springs when there is

finite temperature difference between them. The rate of heat
ow between the springs is assumed to be proportional to the
ifference in temperature between the springs, i.e., q̇=kLc�T1
T2�=kLc�	1−	2� �since T1=T0+	1 and T2=T0+	2�. Here k is

he thermal conductivity of the mass and Lc is a parameter that
etermines the heat transfer across it.

In a small time interval dt, let du be the displacement of the
ass and d	1 and d	2 be the change in temperature in S1 and S2

Fig. 1�. The change in force exerted by S1 and S2 on the mass is
iven by

dF1 = − K�du + L� d	1� �8�

dF2 = − K�du − L� d	2� �9�

ividing by dt throughout, and using dF /dt=Md3u /dt3 the equa-

ion of motion of the spring-mass system becomes

ournal of Applied Mechanics
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M
d3u

dt3 + 2K
du

dt
+ KL��d	1

dt
−

d	2

dt
� = 0 �10�

In Eq. �10�, the masses of the springs �Ms� have been neglected
since they are very small compared to M. To obtain the expres-
sions for 	1 and 	2, the heat balance equation needs to be used. In
the absence of thermal conductivity the relation governing the rate
of temperature change as a function of the strain rate is given by
Eq. �4�. Since, in the spring-mass system K is analogous to E,
Ms /L is analogous to � and u is analogous to �, Eq. �4� for the
mass-spring system becomes

dT

dt
=

d	

dt
= −

K�LT

Mscv

du

dt
�11�

If there is heat transfer, the heat transfer rate given by q̇=kLc�	1
−	2� has to be added to Eq. �11�. Hence, the heat balance equa-
tions for S1 and S2 are given by

Mscv
d	1

dt
= K�LT1

du

dt
− kLc�	1 − 	2� �12�

Mscv
d	2

dt
= − K�LT2

du

dt
+ kLc�	1 − 	2� �13�

The first term on the RHS of these two equations can be consid-
ered as the rate at which heat is generated/absorbed due to change
in displacement with respect to time. Equation �10� along with
Eqs. �12� and �13� describe the dynamics of the spring-mass sys-
tem in the presence of thermoelastic coupling. These are a set of
nonlinear differential equations and have to be solved numerically
since there is no straightforward method for obtaining an analyti-
cal solution. But, since the change in temperatures, 	1 and 	2,
induced by thermoelastic effect is very small compared to the
initial temperature T0, we can replace T1 and T2 in the first term
on the RHS of Eqs. �12� and �13� by T0, i.e., linearize Eqs. �12�
and �13� about T0 and consider only the zeroth order term. There-
fore, we get

Mscv
d	1

dt
= − Mscv

d	2

dt
= K�LT0

du

dt
− kLc�	1 − 	2� �14�

One consequence of linearization is that there will be no net in-
crease in the temperature of the body, i.e., the net heat generated
in the body will be zero, even though there is a reduction in
potential energy. The linearized equations can easily be solved
analytically as will be shown below.

Defining a new variable 	*=	1−	2, Eqs. �10� and �14� can be
reduced to

M
d3u

dt3 + 2K
du

dt
+ KL�

d	*

dt
= 0 �15�

Mscv
d	*

dt
= 2K�LT0

du

dt
− 2kLc	

* �16�

Integrating Eq. �15� with respect to time and using the initial
condition, Md2u /dt2=−2Ku and 	*�0�=0, we get

M
d2u

dt2 + 2Ku + KL�	* = 0 �17�

Substituting for 	* in Eq. �16� from Eq. �17�, we get

G1
d3u

dt3 + G2
d2u

dt2 + G3
du

dt
+ G4u = 0 �18�

where G1=MsMcv /KL�, G2=2kLcM /KL�, G3=2�KL�T0
+Mscv /L�� and G4=4kLc /L� are positive constants. Since Eq.
�18� is a third order ordinary differential equation with constant
coefficients, we can look for solutions of the form u=Aept. Sub-

stituting this in Eq. �18�, we get

MAY 2007, Vol. 74 / 463
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G1p3 + G2p2 + G3p + G4 = 0 �19�

f p1, p2, and p3 are the roots of Eq. �19�, the solution for u is
iven by

u = U1ep1t + U2ep2t + U3ep3t �20�

here U1, U2, and U3 are determined by the initial conditions.
Since, all the coefficients in Eq. �19� are positive, p can either

e real and negative or complex with negative real part. Unless
he system is over damped, p1 and p2 will be complex with nega-
ive real parts and p3 will be real and negative. Let p1=r+ is and
2=r− is, where r is negative and hence represents the decaying
omponent of the solution in steady state while s represents the
armonic component. Since the damping due to thermoelastic ef-
ect is small, in general r will be much smaller in magnitude
ompared to s. If p3 is comparable in magnitude to s, the transient
art �the third term in the RHS of Eq. �20�� goes to zero in a small
ime and the system achieves steady state quickly. Using the ini-
ial conditions, u�0�=0 and u̇�0�=0 it can be shown that U1=U2
P, where P is a constant, and hence the solution in steady state

educes to u=2Pert cos�st�.
The parameter Lc, as mentioned earlier, determines the heat

ow in the system and hence the damping due to thermoelastic
ffect. Lc=0 corresponds to the adiabatic case while Lc=� corre-
ponds to the isothermal case, both of which lead to zero damp-
ng. For any other finite value of Lc there will be finite dissipation
ue to thermoelastic effect with the damping peaking at an unique
alue of Lc. In effect, one needs to determine Lc for the system of
nterest before the model can be used to predict its thermoelastic
ehavior. The equation of motion obtained for the case of noncon-
ucting mass in the previous section can also be obtained from
qs. �16� and �17� by making Lc=0.
In the spring-mass model, the amplitude exhibits an exponential

ecay in steady state as is expected in real systems. The model
mplicitly incorporates the notion of a modal temperature as it

odels the heat flow in terms of the difference of two lumped
emperatures T1 and T2 which represent two parts of the system
hat have opposite states of strain. This indicates that it might be
ossible to find a modal temperature for real systems.

Generalized Model for Thermoelastic Damping
The generalized model provides a framework for estimating the

hermoelastic damping in a thermoelastically coupled system vi-
rating in a particular mode. In estimating the damping using this
odel, we make the following assumptions:

�1� The dynamics of the vibrating system can be captured by a
single modal displacement and frequency;

�2� the stress and strain fields in the system and their rate of
change, in the absence of thermoelastic coupling, are com-
pletely known for the mode of vibration we are interested
in;

�3� the stress field remains unaltered even in the presence of
thermoelastic coupling;

�4� the temperature change induced is determined by the un-
coupled strain;

�5� there is no heat flow from the surroundings to the system or
vice versa.

n effect, we try to incorporate the effect of thermoelastic coupling
y treating it as a perturbation from the uncoupled state.

To obtain the thermoelastic damping using this model we adopt
he following procedure:

�1� We partition the vibrating system into two regions, 1 and 2,
that are anti-phase with respect to strain �i.e., the strains of
these two regions are of opposite nature at all times� and
choose one point in each of these regions to be their respec-
tive “modal points;”
�2� we take the temperature changes at these modal points

64 / Vol. 74, MAY 2007
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�from now on referred to as “modal temperatures”� to rep-
resent the temperature fields of the two regions. This is the
crucial approximation underlying this model as it reduces
the temperature field of the distributed system to two
lumped modal temperatures.

�3� we use the heat balance for the two regions and the energy
conservation in the system to obtain the three governing
equations necessary to solve for the three independent vari-
ables, namely the two modal temperatures and the modal
displacement;

�4� finally, we use the time evolution of the modal displace-
ment, obtained by solving the governing equations, to com-
pute the damping in the system.

We will show that the damping characteristics obtained from the
model is insensitive to the choice of the modal points. In other
words, we get the same damping characteristics irrespective of
the choice of modal points as long as we follow the definitions
consistently.

3.1 Derivation of Governing Equations. We start by consid-
ering the the energy conservation equation, which for a general
system vibrating in a particular mode, in the absence of ther-
moelastic coupling, is given by

1

2
Meff�du

dt
�2

+
1

2
Keffu

2 = E0 �21�

where, Meff is the effective mass and Keff is the effective stiffness
with respect to the modal displacement, u, while E0 is the initial
energy of the system. In the presence of coupling this equation
modifies to

1

2
Meff�du

dt
�2

+
1

2
Keffu

2 −
1

2

V

�ii�	 dV + �cv

V

	 dV = E0

�22�

where 	 is the change in temperature from the initial temperature
T0 and V is the volume of the system. The third term on the LHS
of Eq. �22� accounts for the strain energy due to thermal strain
while the last term accounts for the change in heat content of the
system. Equation �22� can be expanded as

1

2
Meff�du

dt
�2

+
1

2
Keffu

2 −
1

2�

V1

�ii�	 dV +

V2

�ii�	 dV�
+ �cv�


V1

	 dV +

V2

	 dV� = E0 �23�

where V1 and V2 are the volumes of the two regions, 1 and 2, and
hence V1+V2=V.

To proceed further, we consider a mode where only one stress
component, �, contributes most of the strain energy. As we are
interested in solving for the modal displacement, u, and the modal
temperatures, 	1 and 	2, we need to formulate the governing equa-
tions in terms of u, 	1, and 	2. Towards this end, we replace the
integrals in Eq. �23� in terms of 	1, 	2 and �1, �2, the stresses at
the modal points, by defining

�cv

Vi

	 dV = Ai	i i = 1,2 �24�

1

2

Vi

��	 dV = Bi�i�	i i = 1,2 �25�
where Ai and Bi are constants. Equation �23�, hence, becomes
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1

2
Meff�du

dt
�2

+
1

2
Keffu

2 − �B1�1�	1 + B2�2�	2� + A1	1 + A2	2 = E0

�26�
ext, we consider the heat balance for the two regions represented
y 	1 and 	2. The heat balance equations, assuming that at any
ime both 	1 and 	2 are much smaller than T0, will be be similar to
q. �14� and are given by

A1
d	1

dt
= − A2

d	2

dt
= H

du

dt
− kLc�	1 − 	2� �27�

here H is the constant relating the rate of heat generation/
bsorption in the two regions to the modal displacement �strain�
ate. Equation �27� implies that the net heat generated in the sys-
em is zero which, as mentioned earlier, is a consequence of con-
idering the linearized heat equation. Differentiating Eq. �26� with
espect to time and noting that both �1, �2 are proportional to u,
.e., �i=Ciu, i=1,2 �Ci are constants�, we get, using Eq. �27�

Meff�d2u

dt2 ��du

dt
� + Keffu

du

dt
− D1��du

dt
	1 +

d	1

dt
u� − D2��du

dt
	2

+
d	2

dt
u� = 0 �28�

here Di=BiCi.
Equations �27� and �28� define the dynamics of the system in

he presence of thermoelastic coupling. We can find the solution to
hese equations in the steady state by assuming, u=u0ei�t and 	1
	10ei�t, 	2=	20ei�t. In general, � will be complex with Re���
iving the new eigen frequency in the presence of thermoelastic
amping and �Im���� giving the attenuation of vibration. A mea-
ure of thermoelastic damping is then be given by �14�

Q−1 = 2� Im���
Re���

� �29�

here Q−1 is the inverse of the quality factor.
Equation �27� involves a system parameter Lc which governs

he heat flow within the system. Lc, which in general will depend
n the geometry of the system, determines the lag between the
emperature and stress fields and hence the dissipation. For certain
imple cases we can get a good estimate of Lc by considering the
eat flow in the system. But for more complicated geometries, it
ight have to be deduced from experiments. In Sec. 5, we provide

n intuitive picture of Lc and outline a method for estimating it.

Application of Generalized Model to Vibrating Can-
ilever Beam

To estimate the thermoelastic damping in a thin cantilever beam
ibrating in its first mode using the model, we first consider the
mall flexural displacements of the cantilever beam in the absence
f thermoelastic coupling. The cantilever beam is taken to be of
ength L, thickness b��L� and width w��L� �Fig. 2�. The x axis is
efined to be parallel to the beam axis and y and z axes are
arallel to surfaces with dimensions b and w, respectively. Since

Fig. 2 Schematic of cantilever beam
�L and w�L, it can be assumed that any plane cross section,
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initially perpendicular to the beam axis, remains perpendicular to
the neutral plane during bending. If the surfaces of the beam are
assumed to be stress free, only the �xx component of stress will be
present. Since b is small �thin beam� this assumption holds good
in the interior as well. Under these assumptions it can be shown
that �20�

�xx = − y
�2v
�x2 �30�

and the equation of motion is given by �20�

�A
�2v
�t2 + EI

�4v
�x4 = 0. �31�

where A=bw is the area of its cross section, I=b3w /12 is the
moment of inertia about the z axis and v�x , t� is the displacement
of the beam along y direction at time t.

If the cantilever is given an initial displacement along y direc-
tion, such that its shape matches with its first mode shape and the
tip displacement is u0, and set into vibration, v�x , t� will take the
form v�x , t�=v0�x�cos��t�, where v0�x� is the mode shape and �
is the natural frequency of the cantilever. The general solution for
v0�x� is given by

v0�x� = B�sin�qx� − sin h�qx� + R�cos�qx� − cos h�qx��� �32�

where R= �cos�qL�+cos h�qL�� / �sin�qL�−sin h�qL�� and B is de-
termined by the initial displacement u0 and is approximately equal
to u0 /2.724. Since we are considering only the first mode, q=q1
�1.875/L and R�1.362. Hence v�x , t�, for the first mode, is
given by

v�x,t� =
u0 cos��t�

2.724
�sin�q1x� − sin h�q1x� + R�cos�q1x�

− cos h�q1x��� �33�

As u0 cos��t�
u�t�, where u�t� is the displacement of the canti-
lever tip, Eq. �33� can be written as

v�x,t� =
u�t�

2.724
�sin�q1x� − sin h�q1x� + R�cos�q1x� − cos h�q1x���

�34�

We can find Meff of the cantilever with respect to u by equating
the kinetic energy of the cantilever to Meff�du /dt�2 /2. Keff can
similarly be found by equating the potential energy to Keffu

2 /2.
Meff and Keff, the modal mass and stiffness thus found, are given
by Meff�0.25M and Keff�0.2575Eb3w /L3. M =�bLw is the total
mass of the cantilever.

To proceed further, we choose the points 1 and 2, as shown in
Fig. 2, to be the modal points and designate the temperature
changes at these points, 	1 and 	2, to be the modal temperatures.
The modal points have been chosen symmetrically merely for
convenience. From Eqs. �24� and �25� we get

�cv

0

L

0

b/2

−w/2

w/2

	 dz dy dx = A1	1 �35�

�cv

0

L

−b/2

0 

−w/2

w/2

	 dz dy dx = A2	2 �36�

1

2

L
b/2
w/2

��	 dz dy dx = B1�1�	1 �37�

0 0 −w/2
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1

2

0

L

−b/2

0 

−w/2

w/2

��	 dz dy dx = B2�2�	2 �38�

s H is the constant relating the rate of heat generation/absorption
n the two regions to the modal displacement rate, we have

�cv

0

L

0

b/2

−w/2

w/2
�	

�t
dz dy dx = H

du

dt
�39�

o calculate the constants Ai, Bi, and H exactly we need to know
he actual temperature profile, which can be obtained only by
olving the heat equation for the system under consideration with
ppropriate boundary conditions. Since the very purpose of the
odel is to get an estimate of damping without solving the heat

quation, we make the following approximation. We solve for the
emperature profile for the case of no heat flow �k→0�, so that the
emperature profile is solely determined by the strain, and use it to
etermine the constants. As the stress field is also known, we can
ompute the constants A1, A2, B1, B2, and H. The values of the
onstants are A1=A2=0.5 �cvbLw, B1=B2=0.5445 wbL, and H
0.172 E�T0wb2 /L.
Using the stress field, we find the constants C1 and C2 that

elate �1 and �2 with u to be C1=−C2=−0.344Eb /L2. With these
onstants, together with Meff and Keff we can obtain the equations
hat govern the dynamics of the cantilever in the presence of ther-

oelastic coupling from Eqs. �27� and �28�. The equations are
iven by

0.5Mcv
d	1

dt
= − 0.5Mcv

d	2

dt
= 0.172

E�T0wb2

L

du

dt
− kLc�	1 − 	2�

�40�

Meff
du

dt
�d2u

dt2 � + Keffu
du

dt
+ 0.1873

E�b2w

L
�du

dt
�	1 − 	2�

+ u�d	1

dt
−

d	2

dt
�� = 0 �41�

sing 	*=	1−	2, Eqs. �40� and �41� reduce to

0.5Mcv
d	*

dt
= 0.344

E�T0wb2

L

du

dt
− 2kLc	

* �42�

Meff�d2u

dt2 ��du

dt
� + Keffu

du

dt
+ 0.1873

E�b2w

L
�	*du

dt
+ u

d	*

dt
� = 0

�43�

Results and Discussion
To examine the validity of the approach outlined above in mod-

ling thermoelastic dissipation in rectangular cantilever beams, we
olve Eqs. �42� and �43� and compare the results with those pre-
iously published in literature. For solving the equations we take
=2.616
10−6 / °C, cv=713 J /KgK, k=156 W/mK, E=1.68
1011 N/m2, �=2330 Kg/m3. Assuming a steady state solution

f the form u=u0ei�t and 	*=	0
*ei�t, we can solve Eqs. �42� and

43� for the complex valued frequency � and hence the damping.
Figure 3 gives the plots of the normalized attenuation, �

�Im���� / ��0
E� and normalized frequency shift, �= �Re���
�0� / ��0
E�, for a beam of dimensions L=4
10−4 m, b=4
10−5 m, and w=4
10−5 m, as a function of Lc, where 
E is the

elaxation strength �2� and �0 is the isothermal natural frequency.
he relaxation strength can be understood as follows. When a
eriodic stress of frequency � is applied to a body, the stress and
train amplitudes are related through the frequency dependent
omplex elastic modulus. The dissipation in the body, Q−1, if
mall, is then equal to the ratio of the imaginary and real parts of

−1 2 2
he complex modulus giving Q /
=�� / �1+� � �, where 
 is
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the relaxation strength and � is the relaxation time. For a ther-
moelastic solid the relevant relaxation strength is that of the
Young’s modulus giving 
E= �Ead−E� /E=E�2T0 /�cv, where Ead

and E are the adiabatic and isothermal values of the Young’s
modulus.

As can be seen from Fig. 3, the frequency shift attains a maxi-
mum when Lc→0 and goes to zero as Lc becomes larger. The
damping on the other hand attains a peak for an intermediary
value of Lc and tends to zero at both the extremes. Since Lc→0
represents an adiabatic system and large values of Lc represent a
nearly isothermal system, it can be seen that the damping behavior
and frequency shift predicted by the model agrees well with re-
sults obtained by Zener �3� and Lifshitz et al. �14�.

As mentioned in Sec. 3, we need to know the Lc of a system
before we can find its thermoelastic damping. One method to get
an estimate of Lc is as follows. Since, we take the heat flow
between the two regions to be equal to kLc�	1−	2�, we have

k

S

�	

�n
dS = kLc�	1 − 	2� �44�

where S is the surface through which heat flows between the re-
gions represented by 	1 and 	2. To calculate Lc exactly from Eq.
�44� we need to know the actual temperature profile. To circum-
vent this problem we make the same approximation that we made
for evaluating the constants in Eqs. �35�–�39�, i.e., solve for the
temperature profile for the case of no heat flow �k→0� and use it
to determine Lc. For the particular case of the vibrating cantilever
that we are considering here, Eq. �44� becomes

k

0

L

−w/2

w/2 � �	

�y
�

y=0
dz dx = kLc�	1 − 	2� �45�

On solving Eq. �45� we get Lc=2Lw /b. It is worth noting that for
the simple case of cantilever beam considered here we can get an
order of magnitude of Lc based on elementary physical consider-
ations. The heat flow rate, q̇, between two bodies at temperatures
T1 and T2 is given by q̇=kA�T1−T2� /d where k is the thermal
conductivity, A is the cross sectional area, and d is the length of
the heat conduction path. A comparison with q̇=kLc�	1−	2�, used
in the model, reveals that Lc is analogous to A /d. The appropriate
area and length for the cantilever beam are A=Lw and d=b, which
gives Lc�Lw /b.

Figure 4 shows the plots of Q−1 /
E as a function of b /L, with
L=4
10−4 m and w=4
10−5 m, as obtained from the model
�solving Eqs. �42� and �43� with Lc=2Lw /b� and from Zener’s
approximation �Eq. �46��. Zener’s approximation for Q−1 is given

Fig. 3 Plot of normalized attenuation, �, and normalized fre-
quency shift, �, as a function of Lc
by
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E
=

��

1 + �2�2 �46�

here �=b2 /�2�. Since ��b /L2, Q−1 /
E is just a function of
3 /L2. In other words, if b3 /L2 is kept constant, the damping
emains constant. If we solve Eqs. �42� and �43� keeping b3 /L2

onstant, the damping remains constant, irrespective of the value
f w. Further, if we choose Lc=2.466Lw /b, the damping predicted
y the model and Eq. �50� match exactly. These results imply that

�1� The damping predicted by the model is also just a function
of b3 /L2;

�2� the functional form of the relation between damping and
b3 /L2 predicted by the model is the same as that of Zener’s
approximation.

hile the qualitative damping behavior predicted by the model
grees well with Zener’s result, the quantitative agreement is not
xact because of the approximation involved in evaluating the
onstants in Eqs. �35�–�39� as well as Lc. In estimating these
onstants and Lc, we implicitly assume that the temperature dis-
ribution within the cantilever remains similar irrespective of
hether there is heat flow or not. In other words, if 	A and 	B

epresent the temperature changes at two arbitrary points in steady
tate, we assume 	A /	B, with heat flow �k is finite� is equal to
A /	B when there is no heat flow �k=0�. But, solving the heat
quation explicitly gives a temperature distribution that depends
n k, as shown in for example �14�, leading to the discrepancy.
his k dependence of the temperature distribution, at first sight,
ould suggest that at larger values of k, the damping characteris-

ics obtained from the model will be substantially different from
hose obtained from Zener’s result. But, the closeness between the
amping characteristics obtained from the model and Zener’s re-
ult remains identical for all finite values of k. This suggests that
he degree of approximation is insensitive to the value of k, which
e think is a consequence of averaging the temperature distribu-

ion in evaluating the constants.
As mentioned earlier, the damping characteristics obtained from

he model is independent of the choice of modal points. For ex-
mple, if we choose the two modal points as the corners of the
pper and lower halves of the cantilever �points 3 and 4 in Fig. 2�,
e obtain

0.09785Mcv
d	*

dt
= 0.344

E�T0wb2

L

du

dt
− 2kLc	

* �47�

Meff�d2u

dt2 ��du

dt
� + Keffu

du

dt
+ 0.03665

E�b2w

L
�	*du

dt
+ u

d	*

dt
� = 0

�48�

here Meff and Keff are the same as in the previous case but Lc

ig. 4 Plot of Q−1 /�E versus b/L obtained from the model and
ener’s result
0.3914Lw /b instead of 2Lw /b. Solving Eqs. �47� and �48� leads
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to exactly the same damping behavior as shown in Fig. 4.
The functional dependence of Lc on the dimensions �like

length, radius, width, etc.� of the vibrating system remains the
same irrespective of the size. Once this functional relationship is
known, the damping in any similar system vibrating in the same
mode can be easily obtained. This will be especially useful for
estimating thermoelastic damping in systems with complex geom-
etries, as the model requires only the knowledge of the stress field.
For example if we need to find the thermoelastic damping of
beams with U-shaped cross section vibrating in a particular mode,
we need to determine the functional relationship only once, and
we can use the model to predict the damping at all size scales.
But, when applying the model to more complex geometries two
issues need to be taken into consideration:

�1� The functional dependence of Lc on the the dimensions of
the body may not be obvious, i.e., while it was easy to see
that Lc�L, w and Lc�1/b for the rectangular cantilever
beam, such dependence may not be apparent for more com-
plex geometries;

�2� Estimating Lc by solving Eq. �44� might be more difficult.

One way to overcome these problems would be to experimentally
obtain the damping for the system of interest at various size
scales, and determine the functional dependence of Lc on the di-
mensions using it. For this method to work, though, one would
have to make sure that energy dissipation due to other causes are
minimal. A second method would be to obtain the damping at
different size scales by numerically solving the equations of ther-
moelasticity and determine the relationship between Lc and the
dimensions of the system.

The simple model described in this work essentially depends on
finding one macroscopic system parameter, Lc, to determine the
thermoelastic damping in a vibrating solid. We have shown that
this model provides a reasonably good estimate of thermoelastic
damping at least for the case of a rectangular cantilever beam.
This raises the possibility that similar macroscopic parameters and
a corresponding damping model can be used to estimate dissipa-
tion due to other relaxation processes like dislocation dynamics or
grain boundary relaxation. For example, the average grain size
might turn out to be a macroscopic parameter on which grain
boundary relaxation depends. Finding a good damping model,
though, might prove to be more difficult, as many of these relax-
ation processes, unlike thermoelastic damping, do not have a well
developed theoretical framework or governing equations.

6 Concluding Remarks
A SDOF model for estimating thermoelastic damping in struc-

tures vibrating in specific modes is proposed in this work. The
model, incorporating the notion of modal temperatures, estimates
the thermoelastic damping in a structure without explicitly solving
the heat equation. The good qualitative agreement between the
predictions of the model and Zener’s well known approximation,
for the rectangular cantilever beam, suggests that the model cap-
tures the essence of thermoelastic damping in vibrating bodies.
The model can be used to estimate thermoelastic damping in
structures with more complicated geometries if their correspond-
ing characteristic length, Lc, can be obtained.

The simplicity of the model rests on several assumptions: �a�
The dynamics of the vibrating body can be captured by a single
modal displacement and frequency, �b� the stress and strain fields
are completely known for the uncoupled state, �c� the dynamic
response of the body in the presence of thermoelastic coupling
differs only slightly from the uncoupled state, and �d� there is no
thermal interaction between the body and the environment. Fi-
nally, the ability of this model to provide a good qualitative pic-
ture of thermoelastic damping suggests that other forms of dissi-
pation might also be amenable for description using such simple

models.
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