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Abstract—In a recent article [J. Rajagopalan, J.H. Han, M.T.A. Saif, Science 315 (2007) 1831–1834], we have reported substantial
(50–100%) plastic strain recovery in freestanding nanocrystalline metal films (grain size 50–65 nm) after unloading. The strain recov-
ery was time dependent and thermally activated. Here we model the time evolution of this strain recovery in terms of a thermally
activated dislocation propagation mechanism. The model predicts an activation volume of �42b3 for the strain recovery process in
aluminum.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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In coarse-grained polycrystalline metals, plastic
deformation proceeds through the propagation of dislo-
cations generated by intragranular dislocation sources.
During their propagation, these dislocations interact
with pre-existing features such as grain boundaries as
well as each other, in the process being annihilated or
forming new dislocations [1]. These interactions deter-
mine the onset of macroscopic yielding and the subse-
quent strain hardening, and in effect control the plastic
behavior of these metals [2].

In nanocrystalline metals, where the grain size is typi-
cally less than 100 nm, intragranular dislocation sources
such as the Frank–Read source cease to operate [3,4]
since the stress needed to bow out the dislocation be-
comes very large [5]. This lack of conventional disloca-
tion sources in nanocrystalline metals results in high
strength, often an order of magnitude larger than
coarse-grained metals, and limited ductility [6,7]. The
inability of nanocrystalline metals to deform by conven-
tional means results in unusual deformation mechanisms.
Molecular dynamics (MD) simulations [8–10] suggest
that plastic deformation in nanocrystalline metals is car-
ried out by dislocations nucleated at the grain bound-
aries; once nucleated, these dislocations travel across
the grains and eventually get absorbed in the opposite
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grain boundary. MD simulations and some experiments
further suggest that at very small grain sizes (�10 nm),
grain boundary sliding and migration become increas-
ingly important and cause a reduction in strength [11–14].

However, irrespective of the grain size or the defor-
mation mechanisms involved, plastic deformation is
considered irrecoverable. In a recent article [15], we have
shown that freestanding aluminum and gold nanocrys-
talline thin films, with an average grain size of 65 and
50 nm, respectively, recover a substantial fraction (50–
100%) of plastic deformation after unloading, i.e. under
a macroscopically stress-free condition. This strain
recovery was time dependent and thermally activated.
Both the aluminum and gold films were 200 nm thick
and were deformed under uniaxial tension. Here, we first
discuss the deformation behavior of these films in the
context of this unexpected strain recovery. We then
interpret and model the time evolution of strain recovery
in terms of a thermally activated dislocation propaga-
tion mechanism suggested by MD simulations [16].

We begin by summarizing the main observations re-
ported in Ref. [15].

1. Nanocrystalline aluminum and gold thin film speci-
mens (grain size 50–65 nm) recover a substantial frac-
tion of plastic deformation after unloading.

2. After strain recovery, the specimens show no residual
hardening during the next loading, i.e. the stress–
strain behavior is almost unchanged (Fig. 1a).
sevier Ltd. All rights reserved.
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Figure 1. (a) Stress–strain curves for an aluminum specimen showing plastic strain recovery and the absence of residual hardening during the next
loading [15]. The dashed arrows indicate strain recovery at different annealing temperatures. (b) Time evolution of strain recovery at different
annealing temperatures in an aluminum specimen [15]. About 40% of strain recovery at room temperature (RT) happens within 400 s, whereas the
rest of the recovery takes much longer time. The spurts in recovery after increasing the temperature saturate in a short period of time. This specimen
was deformed to �1.25% strain (green dot in (a)) during loading. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Figure 2. The stresses in a large and two surrounding smaller grains
during loading and strain recovery. Grey and yellow colors indicate
tensile and compressive stress and darker shades represent higher
magnitude. At the end of loading, the large grain has lower stress as it
has deformed plastically. As a result, the large grain is under
compression whereas the smaller grains are under tension after
unloading. Reverse plastic flow in the larger grain leads to strain
recovery and a reduction in the internal stresses. (For interpretation of
the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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3. The strain recovery occurs under a macroscopically
stress-free condition and is time dependent and ther-
mally activated (Fig. 1b).

First, we consider the large strain hardening exhibited
by the films (Fig. 1a) immediately after yielding during
loading. In coarse-grained face-centered cubic metals,
strain hardening occurs due to formation of permanent
dislocation networks. Dislocations, generated by
Frank–Read sources, that propagate in intersecting slip
planes interact and form immobile dislocations, which
obstruct the propagation of other dislocations and hence
harden the crystal. But such a mechanism cannot be
responsible for the strain hardening observed in these
films because of the paucity of intragranular dislocation
sources in nanocrystalline metals. However, this apparent
strain hardening can be understood as the consequence of
inhomogeneous deformation as explained below.

During the initial stages of deformation, all grains de-
form elastically. After the macroscopic yield point is
reached, dislocation activity (e.g. dislocation nucleation
from grain boundaries) starts in relatively larger grains
with favorable local stress conditions/grain boundary
orientations, whereas smaller or unfavorably oriented
grains accommodate the strain elastically. This inhomo-
geneous deformation leads to a reduced stress–strain
slope and manifests as apparent strain hardening. Fur-
thermore, the stress distribution becomes nonuniform
with lower stresses in larger grains and higher stresses
in smaller grains, which results in residual internal stres-
ses upon unloading. These internal stresses provide the
driving force for reverse plastic flow and hence strain
recovery (Fig. 2). Note that because of the small grain
size, intragranular dislocation sources are scarce and
grain boundaries are likely to act as dislocation sources.
As these dislocations nucleated at the grain boundaries
propagate, they could be pinned by obstacles at the
grain boundaries with further propagation through ther-
mally activated depinning [16]. This process leads to the
time and temperature dependence of strain recovery.

Next, we consider the lack of residual hardening in
the films after strain recovery. Mobile dislocations in
polycrystalline metals experience resistance due to forces
arising from their long-range elastic interactions with
the substructure as well as short-range interactions with
obstacles such as impurities, solute atoms, forest dislo-
cations and grain boundary structures. In a simplified
picture, the stress experienced by a dislocation due to
its interactions with other dislocations and the grain
boundaries can be denoted by an internal stress si. The
difference between the applied shear stress (s) and si is
the effective shear stress, s*, acting on the dislocation
[17]

s ¼ si þ s� ð1Þ
s* in combination with thermal fluctuations assists the
dislocations to overcome local obstacles. Therefore,
the effective shear stress required by dislocations to over-
come local barriers is temperature dependent. si, on the
other hand, is athermal and depends only on strain.
Suppose a critical effective shear stress ðs�cÞ is needed
for dislocations to propagate at a given temperature,
then the macroscopic stress (sy) corresponding to s�c
would be the yield stress.

When strain recovery is complete there are no resid-
ual stresses arising from deformation, and therefore
the internal stresses acting on dislocations (si) remains
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unaltered. Hence, the applied stress required to propa-
gate dislocations during the next loading remains un-
changed, i.e. sy remains constant. On the other hand,
if strain recovery is incomplete, the grains that have
undergone large plastic deformation still experience
the residual stress fields arising from the elastically de-
formed neighboring grains. Because of these residual
stresses a larger applied stress is required to reach s�c
during the next loading, resulting in an increase in sy

[15].
In the above discussion it is assumed that there are no

major changes in the substructure during deformation
that would substantially alter the internal stress fields.
The rationale for such an assumption is as follows. As
mentioned earlier, MD simulations show that during
plastic deformation of nanocrystalline metals disloca-
tions nucleate at the grain boundaries, travel across
the grains and get absorbed in the opposite grain bound-
aries without forming any permanent dislocation net-
works. These simulation results are consistent with
experiments [18,19], which have revealed that X-ray
peak broadening during deformation of nanocrystalline
nickel is completely reversible upon unloading, i.e. no
residual dislocation network is accumulated during
deformation.

We now consider the time evolution of strain recov-
ery. As mentioned earlier, MD simulations have shown
that dislocation propagation in nanocrystalline metals is
hindered by grain boundary structures such as ledges
that act as pinning points and that further propagation
takes place through thermally assisted depinning. This
picture of dislocation propagation has been found to
be consistent with stress reduction experiments [20]
and activation volume measurements [21,22] on nano-
crystalline nickel. Therefore, it is reasonable to assume
that such a process is active in our samples, where apart
from grain boundary structures, impurity clusters at
boundaries could also hinder dislocation propagation.
For simplicity, we assume that there are just two types
of obstacles (Fig. 3), which require activation energies
Ea1 and Ea2(>Ea1), respectively, to be overcome. Since
the strain recovery is a thermally activated process, the
strain recovery rate when passing over obstacles of types
I and II can be expressed as
Thermal
fluctuation 

kTEa1

Ea2

Force
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Figure 3. Two dislocations pinned by two different sets of obstacles
during strain recovery. The force for the reverse glide of the
dislocations arises from the residual stresses that result from inhomo-
geneous deformation.
_ci ¼ _c0i expðð�Eai þ s�viÞ=kT Þ i ¼ 1; 2 ð2Þ
Here, _c0i are constants, vi are activation volumes, k is the
Boltzmann constant and T is the temperature. During
strain recovery, since s is zero (the specimens are macro-
scopically stress free), s* = �si from Eq. (1). The resid-
ual stress fields that contribute to si decrease with
strain recovery. Hence the recovery rate also decreases
with strain recovery. However, at any point in time dur-
ing strain recovery there are large number of disloca-
tions that are passing though both types of obstacles
and hence the macroscopic recovery rate

_c ¼ aðcÞ _c1 þ bðcÞ _c2 ð3Þ
Here, a and b are the fractions of dislocations pinned by
type I and type II obstacles, respectively. Note that a
and b change with c as explained below.

Since Ea2 > Ea1 the dislocations pinned by type II
obstacles take much more time to depin compared to
those pinned by type I obstacles. If t1 ¼ 1= _c1 and
t2 ¼ 1=_c2, dislocations pinned by type II obstacles re-
main stationary at time scales of the order of t1. Hence,
at the initial stages of strain recovery _c is proportional to
_c1. However, as strain recovery progresses, even disloca-
tions that are initially pinned by type I obstacles start
encountering type II obstacles as they propagate and be-
come stationary. Hence, b increases as strain recovery
increases. When b approaches 1, the strain recovery rate
approaches _c2 and remains proportional to it until the
end of the recovery. The strain recovery can hence be
classified into two distinct regimes, where the recovery
rate is characterized by _c1 and _c2, respectively.

If crt is the total recoverable strain, we can obtain an
estimate of the crossover strain, crc, at which the strain
recovery rate becomes proportional to _c2, as follows.
Suppose there are, on average, n obstacles per unit
length of the grain boundary in a material with grain
size d. The dislocations encounter nd = N obstacles as
they travel across the grains, of which we assume N1

to be type I obstacles and N2 to be type II obstacles
(N1 + N2 = N). Further, we assume these obstacles to
be randomly distributed and equally spaced, so that
the strain (recovery) increment for each successful jump
across an obstacle is the same. When all the dislocations
cross these N obstacles, we get complete recovery.

The strain recovery rate becomes proportional to _c2

when all the dislocations get pinned by type II obstacles.
However, each dislocation can encounter its first type II
obstacle at a different stage. If NIA is the average num-
ber of type I obstacles encountered by the dislocations
before a type II obstacle, the ratio NIA/N provides a
measure of crc/crt. NIA is given by

N IA ¼
XN1

i¼1

iPðiÞ ð4Þ

Here, P(i) is the probability of encountering exactly i
type I obstacles before a type II obstacle. P(i) can be cal-
culated as follows. Since there are totally N obstacles
and N1 are type I obstacles, the probability of the first
obstacle being type I is N1/N. The probability of the sec-
ond obstacle being type I, given that the first obstacle is
type I is (N1 � 1)/(N � 1). Therefore, the probability of
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encountering two consecutive type I obstacles is N1

N
N1�1
N�1

.
The probability of encountering exactly two type I
obstacles before a type II obstacle is N1

N
N1�1
N�1

N2

N�2
. The

third term is the probability that the third obstacle is
of type II. Extending this, we get

P ðiÞ ¼ N 1

N
N 1 � 1

N � 1

N 1 � 2

N � 2
� � �N 1 � iþ 1

N � iþ 1

N 2

N � i
ð5Þ

Beyond crc, the dislocations still encounter type I obsta-
cles, but the recovery rate is controlled by type II obsta-
cles. This is because the time required to cross type II
obstacles (/t2) is much larger than that for type I obsta-
cles (/t1). In other words, dislocation jumps across type
II obstacles is the rate-limiting process. The above anal-
ysis can be extended to scenarios where there are more
than two types of obstacles, in which case there will be
corresponding number of stages in strain recovery, the
later stages characterized by increasingly larger activa-
tion energies. It is also worth noting that NIA/N (Eqs.
(4) and (5)) decreases with increasing N even when the
proportion of type I and type II obstacles, i.e. N1:N2, re-
mains constant (Fig. 4). Therefore crc/crt, i.e. the frac-
tion of strain that recovers quickly, decreases with
increasing N. Hence, if two specimens have the same dis-
tribution and density (n) of pinning points, the specimen
with a smaller grain size, and hence a smaller N (=nd),
will show a more pronounced recovery immediately
after unloading.

This analysis provides a possible explanation for the
time evolution of strain recovery shown in Figure 1b.
The initial fast recovery (�40% of total recovery) at
room temperature (RT) is due to the passage of disloca-
tions over low activation barriers. This phase of strain
recovery terminates quickly as the dislocations start
encountering larger barriers, and the following phase
of RT recovery takes much longer. When temperature
is increased to 50 �C, the dislocations overcome larger
energy barriers more quickly and hence there is a sharp
spurt in recovery. This spurt in recovery saturates in a
short period of time because the temperature increase
is not sufficient to overcome certain barriers, at least
within the experimental timescales. The same character-
istics are observed for annealing at 65 �C, with full
recovery obtained at 120 �C. In this context, it is worth
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Figure 4. Variation of NIA/N, which provides a measure of strain that
recovers quickly, where N is a constant ratio of type I to type II
obstacles (N1:N2 = 9:1).
noting that Auger electron spectroscopy [15] revealed
the presence of three impurities (oxygen, nitrogen and
carbon) in the aluminum films. The spurts in the recov-
ery rate at 50, 65 and 120 �C could be related to these
three impurities. However, since the form (interstitial,
substitutional or precipitate), spatial distribution and
local concentrations of these impurities are unknown,
a direct correlation is not possible.

Note that even if strain recovery is governed by a sin-
gle activation energy, the recovery rate will decrease
with increasing strain recovery since the effective stress
s* acting on the dislocations will also reduce. However,
a single activation barrier cannot account for the spurts
and subsequent saturation of strain recovery on increas-
ing the temperature, or the rapid fall in recovery rate at
the early stages of recovery.

We now use the model described above to interpret
the experimental data in Figure 1b and extract some
physically relevant parameters governing the strain
recovery. Note that in Figure 1b the recovered strain
is normalized with respect to the total recoverable strain
and in all our calculations below we use this normalized
strain. We denote this normalized recovered strain as cr.

Since the initial phase of fast recovery at room tem-
perature saturates at 42% (Fig. 1b), crc = 0.42. Hence,
until this point the recovery can be assumed to be gov-
erned by a single activation energy and activation vol-
ume. Therefore, combining with Eq. (2), Eq. (3)
reduces to

_cr ¼ aðcrÞ _c0 expðð�Ea þ s�vÞ=kT Þ cr 6 crc ¼ 0:42 ð6Þ
As the strain recovery proceeds, the residual stresses re-
duce and so does s*. Because this reduction is directly
proportional to the strain recovered and the residual
stresses vanish upon full recovery s� ¼ s�0ð1� crÞ, where
s�0 is the effective shear stress acting on the dislocations
at the beginning of strain recovery. Similarly a also re-
duces with cr as progressively more dislocations get pin-
ned by larger obstacles, with a ? 0 at c = crc. To
determine how a varies with cr one needs to know the
exact density and distribution of the obstacles. Since this
is unknown, we assume, for simplicity, a = a0(1 � cr/
crc). Using these relations and noting that _c0, Ea, v,
and T are constants and crc = 0.42, Eq. (6) can be sim-
plified to

_cr ¼ A expðBð1� crÞÞð1� cr=0:42Þ cr 6 0:42 ð7Þ
where A ¼ a0 _c0 expð�Ea=kT Þ and B ¼ s�0v=kT are un-
known constants.

Eq. (7) provides the time evolution for the initial
phase of strain recovery. Experimental data of cr as a
function of time (Fig. 1b) can be used to extract the con-
stants A and B. For example, we plot the experimental _cr

vs. cr (Fig. 5a) and use Eq. (7) to best fit the data by the
least-squares technique. The values of A and B, thus
estimated, are 3.97 � 10�5 s�1 and 6.153.

It is not possible to extract Ea from A since a0 and _c0

are unknown. However, since k and T are known, one
can obtain the activation volume v from B if s�0 is
known. We estimate s�0 as follows. At unloading (green
dot in Fig. 1a), r � 500 MPa, � � 1.25% and r–� slope
is �13 GPa. If we assume no strain hardening (ideal
plasticity) in the plastically deforming grains, only the
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elastically deforming grains, which have an elastic mod-
ulus of �70 GPa, would contribute to the stiffness of the
film. The fractional area, x, of such elastically deforming
grains on the cross-section of the specimen is thus 13/
70 = 0.186. The average stress in the plastically deform-
ing grains (rp) can be obtained by force balance:

x�E þ ð1� xÞrp ¼ r ð8Þ
rp is thus 415 MPa. Therefore, the average residual
stress in these plastically deforming grains upon unload-
ing will be 500–415 = 85 MPa. If one assumes a Schmid
factor of 0.3, the residual resolved shear stress would be
25.5 MPa. Since the applied shear stress is zero, this
would be the effective shear stress (Eq. (1)) acting on
the dislocations in these grains. In other words
s�0 ¼ 25:5 MPa. Using this value of s�0 and T = 298 K,
we obtain from B an activation volume v = 9.92 �
10�28 m3 � 42b3. Here, b = 0.286 nm is the Burgers vec-
tor of aluminum. This activation volume of 42b3, we
note, is fully consistent with other estimates of v for dis-
location mediated plasticity in nanocrystalline metals
[23,24].

Next, we use these estimated values of A and B to
solve Eq. (7) numerically and obtain the time evolution
of cr (Fig. 5b). The excellent agreement between the cal-
culated and measured values of cr suggests that the mod-
el provides a realistic description of the strain recovery
process. We note that even if we use only the first
300 s of the strain recovery data to obtain A and B,
we still get a reasonably consistent value of v (�46b3)
and good agreement between the calculated and mea-
sured values of cr. On the other hand, if we assume that
the entire process is governed by a single activation en-
ergy, i.e. a = a0 in Eq. (6), Eq. (7) takes the form

_cr ¼ A� expðB�ð1� crÞÞ ð9Þ
If we use the experimentally obtained _cr vs. cr data to esti-
mate A* and B* (again using a least-squares fit) and use
these values to solve Eq. (9) numerically, then the calcu-
lations substantially overestimate cr even at t = 1000 s
(Fig. 5b). The difference between the calculated and mea-
sured values of cr becomes even more pronounced as t
increases. This suggests that the strain recovery cannot
be described by a single activation energy.

In this work, we have analyzed the plastic strain
recovery in nanocrystalline thin metal films. Specifically:

1. The deformation behavior of the these films, espe-
cially the apparent strain hardening during loading,
has been interpreted in the context of strain recovery.

2. The lack of residual hardening in the films after com-
plete strain recovery has been explained.

3. A semi-quantitative model based on thermally acti-
vated dislocation jumps over grain boundary obsta-
cles has been proposed to qualitatively explain the
time evolution of strain recovery.

4. Based on this model, the activation volume governing
the strain recovery has been estimated.

The key underlying idea is that deformation and hence
the stress distribution in these films could be highly inho-
mogeneous because of microstructural variations such as
size and orientation of individual grains. This inhomoge-
neous deformation results in storage of elastic energy dur-
ing deformation, which drives the strain recovery after
unloading. While the arguments based on inhomoge-
neous deformation adequately explain the macroscopic
deformation behavior and strain recovery, the micro-
scopic mechanism that governs the deformation and
strain recovery in not clear. The dislocation-based mech-
anism provides a reasonable explanation for the observed
behavior but other mechanisms are possible as well.

In fact, a deformation model based on heterogeneous
grain boundary diffusion and sliding [25] has been
shown to result in strain recovery as well. In this model,
during deformation the grain boundaries with higher
diffusivities relax their stresses through diffusion,
whereas low diffusivity boundaries do not. After unload-
ing, the elastic energy stored in low diffusivity bound-
aries causes reverse diffusion in high diffusivity
boundaries and hence strain recovery. While this model
qualitatively predicts several aspects of the strain recov-
ery, it deviates notably in some aspects. For example, in
Ref. [25] the predicted stress–strain slope during the
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initial phase of loading is substantially smaller compared
to the unloading slope, in contrast to the observations in
Ref. [15]. This difference in the loading and unloading
slopes seems to arise because of the continuous stress
relaxation in high diffusivity boundaries even at low
stresses during loading, a direct result of assuming diffu-
sion as the primary plastic deformation mechanism.

However, despite the differences in the assumed
microscopic mechanism, the macroscopic phenomena
underlying both the model presented here and in Ref.
[25] is the same, namely the heterogeneity of the stress
distribution. Deformation and annealing experiments
in situ in a transmission electron microscope would be
one way to obtain definitive information about the ac-
tual microscopic mechanism.

Finally, it is worth noting that there have been no
previous reports of substantial strain recovery in
coarse-grained metals even though there are inherent
variations in the microstructure (e.g. a distribution of
grain sizes) in these metals as well. This suggests that
inhomogeneities in the microstructure become impor-
tant only when the average grain size becomes suffi-
ciently small. In other words, the strain recovery seems
to result from the combined effect of a small mean grain
size and the variations in the microstructure. Hence, to
understand plasticity in nanocrystalline metals we might
need to consider both the microstructural size as well as
the variations in it.
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