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ABSTRACT 

 The Weibull failure distribution is one of the most used and effective approaches 

to describe and model the particular behavior of Fiber Reinforced Composites (FRC). By 

using specific elements of orthotropic elastic materials (lamina or cell elements), where 

the constitutive behavior was based on the laminate theory for plane stress, several 

analytical models were developed for unidirectional and multidirectional composite 

materials. The unidirectional models were based on the Weibull Strength failure 

distribution, with the addition of a Simplified Load Sharing Rule. The multidirectional 

models used a modified Weibull failure distribution using the Tsai-Hill interactive failure 

criterion instead of the typical strength based criterion. The models were validated using 

several experimental data available in publications or experimental tests conducted in the 

structural laboratory at ASU. The results were shown to match closely with the 

experimental data, specially mimicking the characteristic pre-peak and post-peak non-

linear behavior that characterizes FRC materials.  

 FRCs are starting to get widely used around the world as reinforcement for new 

concrete structural members or as a retrofit for old ones. A model, using elemental 

compression and tension tests data of both composites and plain concrete, was used to 

predict the moment-curvature curve of the retrofitted system for the three-point bending 

test. Finally, a simplified bilinear model developed on data of the moment-curvature 

curve is used to predict the load-deflection curves. Those curves were validated 

successfully using experimental data on three-point bending tests on plain concrete 

retrofitted with layers of Carbon Fiber – Epoxy composites.    
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1. INTRODUCTION 

1.1. Motivation for research and Overview  

High strength and stiffness composites are ideal for use in structural elements 

where these characteristics are required for the most exigent conditions.  

As the term indicates, composite material reveals a material that is different from 

common heterogeneous materials. Currently composite materials refer to materials 

having strong fibers – continuous or noncontinuous – surrounded by a weaker matrix 

material. The matrix serves to distribute the fibers and also to transmit the load to the 

fibers.  

Composite materials are not new; they have been used since antiquity. Wood and 

cob have been everyday composites. Most notoriously Composites have also been used to 

optimize the performance of some conventional weapons. For example: 

• In the Mongolian bows, the compressed parts are made of corn, and the stretched 

parts (tension) are made of wood and cow tendons glued together. 

• Japanese swords have their blades made of steel and soft iron: the steel part is 

stratified like a sheet of paste, with orientation of defects and impurities in the 

long direction, then formed into a U shape into which the soft iron is placed. The 

sword then has good resistance for flexure and impact. 

 

Nowadays, in structural engineering, bonding of steel plates to reinforced 

concrete (RC) structures has been a popular method for strengthening them. FRP 

composites have been used in other areas such as the aerospace industry for many years 
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and their superior properties are well known. The limited use of these materials in civil 

engineering applications has been due to their high cost. Their prices have, however, been 

coming down rapidly, enabling their wider applications in civil engineering. For 

application in the strengthening of structures, where the material cost is but one 

consideration and may be only a small portion of the total cost including labor cost and 

loss due to interruptions to services, FRP composites often provide the most cost 

effective solution overall [Hollaway and Leeming, 1999].  

In recent years, there has been extensive research on the use of fiber-reinforced 

polymer (FRP) plates/laminates to replace steel plates in plate bonding. FRPs have also 

been used widely for column strengthening by external wrapping. One of the most 

effective FRPs, for structural reinforcing purposes, is the Carbon Fiber – Epoxy 

composites. 

The origin of the Carbon Fibers (CF) was in the early 1960s at the Royal Aircraft 

Establishment at Farnborough, Hampshire (UK). There are manufactured in many forms, 

but the most popular form used in plate bonding is a cloth of woven (knitted) carbon 

filaments. Each carbon filament thread is a bundle of many thousand carbon filaments. A 

single such filament is a thin tube with a diameter of 5–8 micrometers and consists 

almost exclusively of carbon. The density of carbon fiber is 1750 kg/m3. It has high 

electrical and low thermal conductivity. When heated, a carbon filament becomes thicker 

and shorter. Carbon fiber thread or yarn is rated by the linear density (mass per unit 

length, with the unit 1 tex = 1 g/1000 m) or by number of filaments per yarn count, in 

thousands. 
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In this research, the CF knitted cloth that is used is shown in Figure 1.1. The main 

longitudinal direction contains 75% of all the fibers in the cloth, while the perpendicular 

direction will be taking the remaining 25%. There is no interaction between the 

perpendicular yarns, in the cloth configuration, because the joint is made by stitching the 

yarns together. That interaction will occur in Composite form, where the matrix, Epoxy 

Resin Polymer in our case, will transmit the load to all the yarns imbedded in it. 

 

Figure 1.1.  Carbon Fiber Knitted Cloth 

 The Composite material made of CF cloth and Epoxy resin, works well as a 

structural reinforcement not only because of its high strength and stiffness to weight ratio 

and corrosion resistance, but also for its long term and fatigue behavior. Rapid growth in 

recent years in both field application of and research on FRP composites for 

strengthening RC structures is testimony to the importance and popularity of this new 

technology.   
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Regarding the contents of the thesis, Chapter 2 will detail the experimental 

characterization work done with these CFRP materials. Those experimental tests 

presented are uniaxial tension tests, +/-45° shear tests, and compression tests for several 

laminate configurations. With that data we can get elastic properties for those specific 

laminate configurations such as principal and transversal elastic modulus (E11, E22), 

major and minor Poisson ratios (v12, v21), shear modulus (G12), tensile strengths (S1T, 

S2T), shear strength (S12), and compressive strengths (S1C, S2C). 

 The problem of designing with FRP lies in the lack of experience of most 

engineers to deal with non isotropic materials, where the engineer’s job is more like a 

material selector than a true material designer. Orthotropic materials and its complex 

behavior, including its stress analysis, will be detailed later in Chapter 3. While in 

Chapter 4, the theory explained in Chapter 3 will be used to create the macroscopic 

stress-strain behavior models of these CFRP, and generally FRP, laminates. The 

modeling will deal, initially, with in simple and known engineering approaches and 

criteria, such as the Tsai-Hill and maximum stress criterion; and later it will include 

additional behaviors to explain the failure mechanisms, such as load sharing rules, 

Weibull statistical failure distribution, etc. 

 Chapter 5 will deal with the application of a simplified CFRP laminate model, 

based on the experimental work of Chapter 2, to model the behavior of a concrete beam 

retrofitted with this CFRP laminate. Experimental results, with one and two layers of the 

CFRP fabric, will be used to validate the analysis of the beam behavior. 
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1.2. Literature Review 

1.2.1. Failure Criteria 

The results from a coordinated study known as the World-Wide Failure exercise 

[Hinton, Kaddour, Soden, 2002], where 12 of the leading theories for predicting failure in 

composite laminates have been tested against experimental evidence, was conducted. The 

comparison has been effectuated through 14 carefully selected test cases, which include 

biaxial strength envelopes for a range of unidirectional and multi-directional laminates, 

and stress–strain curves for a range of multi-directional laminates, loaded under uniaxial 

or biaxial conditions. The exercise used the predictions and experimental data to identify 

the strengths and weaknesses of each theory, together with a ranking of the overall 

effectiveness of each theory, therefore giving the reader a good overview when selecting 

an appropriate failure theory for use in a given design situation. 

From those results involving Tsai contributions to this ‘exercise’ [Hinton, 

Kaddour, Soden, 2002] utilizing his well known theory which has been made widely 

available. It employs the interactive Tsai–Wu failure criterion, which is arguably one of 

the best known and mathematically satisfying theories available. Tsai has advocated the 

theory for its simplicity and as a tool that can be applied under a wide range of 

conditions. It is not intended to capture the detailed physics associated with the various 

failure mechanisms. Starting with the failure envelopes for unidirectional laminate, in this 

exercise the Tsai theory has described the available experimental results better than any 

other theory. However it has been noted that the theory predicts enhancement of strength 

under compression-compression biaxial loading, which is not tested by the experimental 
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data. Also the predicted initial failure envelopes for the multidirectional laminates were 

in poor agreement with the experiments, while the predicted shapes of the final failure 

envelopes for the multi-directional laminates agreed quite well with the available 

experimental results. Like many of the theories featured in the ‘exercise’, the Tsai theory 

is linear-elastic and it could not predict the large non-linear strains observed in those test 

cases where high lamina shear was involved. Tsai’s theories have been recommended for 

predicting the response of a lamina, according to Hinton, Kaddour, and Soden, ensuring 

reasonably conservative predictions of all lamina failure envelopes. 

It is difficult to reach definitive conclusions on the applicability of the various 

theories based in comparison with the limited experimental data available, especially in 

the cases of FPF and under biaxial compression and compression and shear. Theories 

based on the maximum stress criterion, a partly interactive approach, or a totally 

interactive criterion (Tsai-Wu/Tsai-Hill), give reasonable predictions of ultimate failure 

in fiber dominated laminates if the First Fiber Failure (FFF) is used as a definition of 

Ultimate Laminate Failure (ULF) [Daniel, 2007].  

 In order to derive this linear-elastic theories to a non-linear constitutive behavior, 

the Monte Carlo simulation technique coupled with a stress analysis method was used as 

one of the most effective tools for understanding the tensile failure process [Zhou, 

Baseer, Mahfuz and Jeelani, 2006]. 
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1.2.2. Statistical Analysis 

 Monte Carlo simulation techniques use primarily the Weibull failure distribution 

function to randomly generate the values of uncertain variables. Since fibers tend to be 

brittle solids and, due to flaws along their lengths, their strengths are statistical in nature. 

Fibers are customarily described using a Weibull distribution [Weibull, 1939; Weibull, 

1951], where the cumulative probability of fiber failure Pf(σ,L) in a length L at an applied 

tensile stress σ can be expressed using the Weibull distribution: 

 

 (1.2.1) 

Where σ0 is the characteristic fiber strength at gauge L0, and m is the Weibull 

modulus describing the variation in fiber strengths (high m indicates low variability in 

strength values). 

Scatter in the experimental strength distribution may be attributable, however, to 

external factors such as overall composite homogeneity or volume fraction variations, 

and hence comparison of predicted and measured strength distributions must be 

approached cautiously [Curtin, 2007]. 

A Micro-Mechanical analysis was utilized to represent the effects of statistical 

distributions of micro parameters on global failure [Gao, 1993]. The analysis is combined 

with the Tsai-Hill failure criterion and models of structural reliability to study the 

reliability optimization and the influence of micro level parameters on the reliability of 

the composites. It is shown that the influence of those micro parameters, which are 
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directly related to the manufacturing of composites, is critical in tailoring and optimizing 

the global reliability of composite materials. 

There is a considerably small body of literature that deals with the probability of 

failure or reliability of lamina under off-axis or general loadings. A proposed method 

[Miki, Murotsu, Tanaka, Shao, 1990], that deals with this issue, where the emphasis was 

placed on the fiber orientation angle, along where the maximum reliability is obtained, 

and it was found that the optimum angle varies with the variation of the applied stress  in 

some cases. 

The so called “chain of bundles” model has been a basis of most earlier statistical 

treatments of failure of unidirectional lamina under tension loads in fiber direction 

[Zweben, Rosen, 1970], [Harlow, Phoenix, 1981].  The recursion analysis proposed by 

Harlow and Phoenix gives the probability of the occurrence of a k-plet, the consecutive 

failure of k or more adjacent fibers in the material. The notion is that if k is chosen 

sufficiently large, the occurrence of a k-plet is equivalent to total failure. [Phoenix, 

Smith, 1983]. 

Various other numerical models of fiber damage accumulation have been 

developed, such as Global Load Sharing (GLS) [Curtin, 1991] and Local Load Sharing 

(LLS) [Curtin and Zhou, 1995].  The difference between the two models is in the way 

broken fibers transfer their load to the other fibers of the composite. Under GLS, broken 

fibers transfer the entire load to the remaining fibers of the cross section equally, while 

LLS transfer the bulk of the load to the fibers in a determined neighborhood around the 
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break. Stress concentrations are largely insensitive to the fiber and matrix constitutive 

properties [Xia and Curtin, 2000].  

The GLS rule over predicts the strength of the composite, therefore an attempt to 

decrease the tensile strength associated with increasing fiber/matrix interfacial sliding 

was investigated [Xia and Curtin, 2000], and high Weibull modulus (m) fiber reinforced 

composites are particularly sensitive to local stress concentrations, while fiber reinforced 

composites with a low Weibull modulus are not very sensitive to such stress 

concentrations, therefore it has no significant influence on the strength of the composite. 

Low Weibull modulus fibers composites are preferably used, from a design perspective, 

for decreasing the composite sensibility to highly localized stresses.  

 

1.2.3. Modeling of the Constitutive Behavior 

The association between a finite-size GLS problem and the LLS problem that 

forms the basis of some analytical models is valuable and conceptually intriguing, but has 

not been derived from fundamental considerations for any type of fibers. Thus, the 

accuracy of the analytical models to composite failure in systems with, for instance, very 

high Weibull modulus, where localized damage progression may be driven more strongly 

than envisioned within the analytical model, may be limited. The limited experimental 

data had precluded an assessment of the accuracy of the composite strength distributions 

(i.e., the composite Weibull modulus) [Curtin, 2007]. 

Most of the studies using the Weibull distribution have been developed for 

ceramic matrices materials. Several models for predicting the uniaxial stress-strain 
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behavior of a unidirectional ceramic matrix composite [Curtin, Ahn, Takeda, 1998] 

considered the ceramic reinforcing fibers as brittle materials that can be described 

statistically by a flaw distribution. These models used, successfully, the two-parameter 

Weibull form for the number of flaws which can fail in length L at stress σ. 

A physically based unit cell damage model, which incorporates two basic failure 

models, was developed to predict non-linear behavior of cross-ply ceramic matrix 

laminates due progressive failures [Yen and Jones, 1997].  

The performance of those uniaxial fiber-reinforced ceramics and metals 

containing initial fiber damage or discontinuous reinforcements has been addressed 

within the context of a theory which has previously been successful in predicting the 

strength and toughness of undamaged fiber-reinforced materials. That theory is a general 

constitutive law relating stress and strain in terms of the number of breaks per unit length 

of fiber [Curtin, Zhou, 1995]. The specification of a damage evolution law, which can 

include both initial fiber breaks, the usual in situ Weibull flaw population of the fibers, 

and also residual stress distributions, then completes the model for the tensile constitutive 

behavior up to failure.  

Specific predictions show that initial fiber damage is found to modify the entire 

stress-strain response of the composite [Curtin, Zhou, 1995], resulting in smaller elastic 

modulus, lower tensile strengths and smaller strains to failure. However, the strength 

reduction is shown to be small even at moderate levels of damage while the failure strains 

are essentially unchanged. The scale at which damage begins to have a substantial 

influence on strength is when the fiber break spacing is comparable to the relevant slip 
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length. The analytic results have also been confirmed by detailed numerical studies of 

composite failure in the presence of damage. A specific application of the analysis to the 

case of Nicalon-CAS suggests that premature fiber damage is responsible for the detailed 

stress-strain behavior and UTS observed in this system. 

The possibility of decreasing ultimate tensile strength associated with increasing 

fiber/matrix interfacial sliding was investigated in ceramic-matrix composites [Xia, 

Curtin, 2000]. An axisymmetric finite-element model was used to calculate axial fiber 

stresses versus radial position within the slipping region around an impinging matrix 

crack as a function of applied stress and interfacial sliding stress. 

According to Xia and Curtin, constitutive damage models for fiber-reinforced 

composite materials should take into account the occurrence of the different damage 

mechanisms, their interaction and their influence on the resulting mechanical properties. 

Fiber breakage has usually been considered in damage models by means of deterministic 

failure criteria which thus lead to non-progressive behavior or to a complete material 

collapse which is not realistic. Xia and Curtis work presents a progressive damage model 

for fiber-reinforced composites based on the fragmentation analysis of the fibers. The 

stiffness loss of a unidirectional composite comes from the parameters of the Weibull 

distribution of the fiber strength and the mechanical properties of the fiber, matrix and the 

interface. The model has been developed for the initial stages of damage and is 

formulated in the framework of the mechanics of the continuous media. The constitutive 

model can be employed to simulate the contribution of fibers in damage models based on 

the rule of mixtures.  
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Another model [Turon, Costa, Maimi, Trias, Mayugo, 2005], that does not 

include local load sharing effects, but it is able to account for the stiffness loss of 

unidirectional composites, is based on the consideration that the fibers are not a pure 

elastic constituent until a nominal strength is reached. Therefore, the non-linear behavior 

of fiber-dominated composites can be reproduced with the proposed model. 

The formulation may be refined in several ways. For instance, stiffness loss due to 

the debonding near the fiber break could improve the accuracy of the model. However, 

the formulation presented is flexible enough to permit the introduction of other 

degradation processes such as the static fatigue of glass fibers in moist environments.  

Other model that uses a specific interface elements of orthotropic elastic–perfect 

plastic materials incorporating the interfacial friction, a meso-Monte Carlo 2D finite 

element model with large-fine mesh, was built to simulate the deformation, damage, and 

failure process of unidirectional fiber reinforced ceramic matrix composites (FCRMC) 

under tensile loading [Cheng, Qiao, Xia, 2004]. The numerical simulation by 

ABAQUS/Standard can provide stress–strain curve and the meso-crack evolution process 

from deformation, damage to the ultimate failure of FRCMCs accompanied with damage 

mode of matrix crack saturation. The damage evolution process begins with the failure of 

low strength fiber or matrix elements, which is called ‘‘crack source’’, and then the 

‘‘crack sources’’ extend to become the ‘‘matrix cracks’’ or ‘‘through matrix cracks’’. 

Because of interface sliding, there forms an exclusion zone in the vicinity of each matrix 

crack. When all these exclusion zones overlap, matrix crack saturation occurs. Then the 

fiber elements bear the subsequent loads. Catastrophic composite failure occurs when 
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there are enough failed fiber elements. Similar to the mechanical behavior of elastic–

plastic materials, yielding segment, hardening segment can be found in the macro-stress–

strain curve, which is in agreement with experiments qualitatively. The model can give 

stress–strain curve with small fluctuation error within the scale of model size and meso-

crack evolution process of deformation, damage and ultimate failure of FRCMCs and 

simulate the damage mode of matrix crack saturation. 

Another model based on CFRPs [Zhou, Baseer, Mahfuz, Jeelani, 2006], presents 

an analytical approach which combines the modified shear-lag model and Monte Carlo 

simulation technique to simulate the tensile failure process of unidirectional T700 carbon 

reinforced composite. Two kinds of matrix were investigated in the present paper, one is 

neat epoxy and the other one is SiC nano-particle filled epoxy. In the model, the strength 

of the fiber elements is randomly allocated by the Monte Carlo method; the elastic 

properties of the matrix elements and the friction after the interfaces breakage are 

definitely allocated. Using this model, the deformation, damage and failure process of the 

composite are simulated on the microscopic level, the tensile stress–strain relationship is 

well predicted.  

 

1.2.4. Beam Modeling 

The use of fiber-reinforced polymer (FRP) composites for the rehabilitation of 

beams and slabs started about 15 years ago with the pioneering research performed at the 

Swiss Federal Laboratories for Materials Testing and Research, or EMPA [Meier, 1987].  
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 Most of the work since then has focused on timber and reinforced concrete 

structures, although some steel structures have been renovated with FRP as well. The 

high material cost of FRP might be a deterrent to its use, but upon a closer look, FRP can 

be quite competitive. In addition to their resistance to corrosion, FRP have high ratios of 

strength and stiffness to density. The light weight of FRP provides considerable cost 

savings in terms of labor: a worker can handle the FRP material, whereas a crane would 

be required for its steel equivalent. FRP laminates and fabric come in great lengths, 

which can be cut to size in the field, as compared with welding of steel plates. FRP 

laminates or fabric are thin, light and flexible enough to be inserted behind pipes, 

electrical cables, etc., further facilitating installation. With heat curing, epoxy can reach 

its design strength in a matter of hours, resulting in rapid bonding of FRP to the structure 

and consequently, minimum disruption to its use. The tensile strength of FRP can exceed 

3000 MPa (compared to 400 MPa for reinforcing steel), and their stiffness ranges from 

slightly greater than that of steel for high-modulus carbon to about 1/3 that of steel for S-

glass. FRP do not exhibit plastic yielding as steel does, however, and behave elastically 

up to an ultimate strain in the range of 1.5 % to 5 % (compared with a range of 15 % to 

20 % for reinforcing steel). This brittle behavior must be accounted for in structural 

design. 

Where FRP composites are used as external reinforcement in the rehabilitation of 

reinforced concrete (RC) beams and slabs, they increase the strength (ultimate limit state) 

and the stiffness (serviceability limit state) of the structure. Structural rehabilitation with 

FRP is thus motivated by requirements for earthquake strengthening, higher service 
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loads, smaller deflections or simply the need to complement deficient steel 

reinforcement. Care must be used to ensure that the concrete surface to which the 

strengthening is applied is sound, and the bonding between FRP and concrete is good.  

The increase in strength and stiffness is sometimes realized at the expense of a 

loss in ductility, or capacity of the structure to deflect inelastically while sustaining a load 

close to its capacity. A number of issues still impede the routine use of FRP as a 

structural strengthening material. Chief among them is the absence of a long record of 

use, causing concern about durability with potential users. Another concern is fire 

resistance, especially as rehabilitation with FRP expands from highway bridges to 

buildings. The absence of standards is also an impediment, but this is being remedied 

through the efforts of various individuals and organizations such as the American 

Concrete Institute. At the time of this writing, ACI Committee 440 has produced a draft 

“Guide for the Design and Construction of Externally Bonded FRP Systems for 

Strengthening Concrete Structures”. The Canadian Standards Association (2000), the 

(European) Federation Internationale du Beton (200l), the (British) Concrete Society 

(200l), and the Japan Building Disaster Prevention Association (1999) have published 

similar documents. 

Naaman et al. [Naaman, Park, Lopez, Till, 2001, 1999] reported on a series of 

tests of RC beams strengthened in flexure or shear with carbon FRP and loaded under 

static or cyclic loads, at room or low temperatures. The test parameters included the 

amounts of reinforcing steel and FRP, concrete cover thickness and condition (with repair 

mortar used to simulate damaged concrete), and anchorage configurations. The work 
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includes a Substantial review of the literature, which is updated here. The authors found 

that, for a given reinforcement ratio, the ultimate load capacity increased but the ultimate 

deflection, and therefore ductility, decreased with the strengthening level. The three 

beams with various anchorage conditions (extended length, perpendicular wrap or normal 

condition, i.e., with no extra effort to enhance anchorage) had the same ultimate load and 

deflection. Naaman et al. recommended limiting the increase in strength due to FRP to 

20% of the nominal flexural strength of the beam with the maximum steel reinforcement 

ratio allowed by the ACI 3 18 Code [American Concrete Institute, 1999]. 

 The performance of fiber-reinforced cementitious composites are characterized by 

a high elastic limit, strain hardening, and toughness associated with multiple cracking 

mechanism [Mobasher, Shah, 1989; Mobasher, Li, 1996].   

Soranakom and Mobasher developed a procedure to obtain closed-form solutions 

to generate moment-curvature diagrams for FRC [Soranakom and Mobasher, 2007]. The 

procedure uses two intrinsic material parameters at cracking and four nondimensional 

parameters yield moment-curvature responses which are a product of a nondimensional 

function and its geometrical dependant dimensioning scale. The moment-curvature 

relationship, further simplified to two bilinear models, may be used to represent 

deflection softening and deflection hardening for low and high post-peak tensile strength. 

 By applying the moment-area method, the curvature distribution along a beam 

was integrated up to the midspan of the beam to yield closed-form solutions for the 

midspan deflections of three- or four-point bending tests. 
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Use of uniaxial tensile response to generate moment-curvature diagram generally 

underpredicts the flexural response [Soranakom and Mobasher, 2007]. This discrepancy 

was explained by the nature of tensile stress distribution in the uniaxial and flexural test. 

The uniform stress in the uniaxial tension test has a higher probability of localizing at a 

defect to initiate cracks than the triangular stress in bending. The higher the post-peak 

tensile strength, the less pronounced of size effect between tension and flexure. It is also 

observed that the four-point bending test is more comparable to the uniaxial tension test 

than the three-point bending. 
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2. EXPERIMENTAL DATA 

To determine the composite’s stress-strain behavior in the principal material 

direction, experimental tests at Arizona State University (ASU) Structures laboratory 

were conducted.  

We present a summary of tensile tests conducted in order to document the 

mechanical properties of carbon fiber-epoxy composites manufactured by KPFF 

Consulting Engineers during the field installation of the Carbon Fiber-Epoxy retrofit 

system. Also, laboratory manufactured samples were made using CF fabrics and epoxy 

provided by KPFF and tested later. The samples were cut from 17” by 13” sheets 

delivered to the Structural Engineering Laboratory of Arizona State University.  Testing 

was conducted in accordance to the ASTM test guidelines.  These test methods determine 

the in-plane properties of polymer matrix composite materials reinforced by high-

modulus fibers. The test methods are applicable to composite materials with continuous 

fiber or discontinuous fiber-reinforced composites in which the laminate is balanced and 

symmetric with respect to the test direction. Different configurations were tested, each 

having 2 layers of carbon fibers cross ply fabrics. 

 

2.1. Laminate Configurations 

As defined in Chapter 1, the CF single fabric cloth contains 2 yarn directions. The 

main longitudinal direction contains 75% of all the fibers in the cloth, while the 

perpendicular direction takes the remaining 25%. There is no interaction between the 

perpendicular yarns, in the cloth configuration alone, because the joint is made by 
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stitching the yarns together. Therefore a 2 layer fabric cloth configuration contains 2 yarn 

directions in the 0° orientation and 2 in the 90° orientation (respect to the test direction). 

Because of the difference in the amount of fibers for each direction in the fabric, and for 

sake of simplicity, the configurations will have a subscript (p for the 75% contain fibers 

and t for the 25% contain fibers) denoting the type of yarns involved. For example, a 

0p/90t-90t/0p configuration means that the first layer is in the 0° direction and contains 

75% of the fibers of the cloth layer; the second layer is at 90° oriented with 25% of the 

fibers of the cloth layer, and so on. The detailed example is shown on Figure 2.1.1.  

 

Figure 2.1.1.  Schematic of the 0p/90t-90t/0p laminate configuration 

 

Four different configurations were tested with at least three replicate samples for 

each series.  The code for specimen identification of the samples in this series is as 

follows:  #1#2 - #3  

Where #1 is the Test code: 

• T : Uniaxial Tension tests 

• C : Uniaxial Compression tests 
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• S : +/- 45 Shear tests 

Where #2 is the laminate configuration: 

• A : 90t / 0p – 90t / 0p 

• B : 90t / 0p – 0p / 90t 

• C : 0p / 90t – 90t / 0p  

• D : 0p / 90t – 90p / 0t 

#3 is the identification number of the replicate sample.   

 

2.2. Equipment 

• A micrometer with a 4 to 5 mm [0.16 to 0.20 in] nominal diameter double ball 

interface was used to measure the thickness (Accuracy of +/-2.5um [+/-

0.0001in]). Another micrometer with flat anvil interface was used to measure the 

width of the sample (Accuracy of +/-25um [+/-0.001in]). 

• In accordance to ASTM E 4, an MTS servohydraulic testing machine with a 

capacity of 55 kips was used.  All the testing procedures were developed using 

state of the art computer software.   The test machine had the following 

characteristics: 

• Testing machine heads: one stationary and one movable head. 

• Drive mechanism: capable of imparting a controllable velocity with respect to the 

stationary head.  The equipment was calibrated to 0.1% of the specifications by 

qualified and certified MTS technicians.  All calibration files are on file in the 

Structural engineering laboratory. 
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• Load indicator: load range of interest of within +/- 0.1% of the indicated value. 

• Grips: hydraulically controlled frictional grips which are rotationally self-aligning 

to minimize bending stresses in the coupon. 

• Strain indicating device: An electronic extensometer calibrated by certified 

technicians were used. The extensometer gage length had a range of 10 to 50 mm 

[0.5 to 2.0 in]. Extensometer used satisfied Practice E83, class B-1 requirements 

for the strain range and should be calibrated in accordance to the practice E83.  

• All tests were conducted in nominal room temperature of 73°F.  The temperature 

was maintained within +/-3˚C [+/-5˚F]. 

 

2.3. Testing Procedures and Calculations 

• Sampling: All the sampling methods, including dimensions and tabs, were in 

accordance with the proper documentation. The geometry and the sample type 

were recorded. 

• The number of samples should be a minimum of 5. For statistically significant 

data the procedures outlined in Practice E122. 

• Area measurement, A=w x h, where w is the average width, and h is the average 

thickness (both measured in 3 different places in the gage length). 

• Speed of testing: nearly constant strain rate in the gage section, the strain rate was 

selected so as to produce failure within 1 to 10 min. For the constant head speed 

tests, the displacement rate was 2mm/min [0.05in/min]. 
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Sample insertion, preparation and test 

• The samples were stored in the conditioned environment (room temperature) until 

test time. 

• The specimens were placed in the grips of the testing machine, taking care to 

align the long axis of the gripped specimen with the test direction. After 

tightening the grips, the pressure in the pressure controllable grips were recorded. 

• Transducer was installed by attaching the strain indicator to the specimen, 

symmetrically about the mid-span, mid width location. 

• Throughout the duration of the test, the load versus strain (or transducer 

displacement) continuously at a frequency of 2 samples per second. During the 

test, any transition region or initial ply failures were noted and the load, strain and 

mode of damage at such points were recorded. 

Post Processing  

• Data were tabulated and statistical properties of the test results were reported. 

• Failure mode and location of failure of the sample was recorded. 

• Additional checks for grip/tab failures were conducted and the results were 

reexamined for the means of load introduction into the material if a significant 

fraction of failures in a sample population occurs within one specimen width of 

the tab or grip. 
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Calculations 

Tensile (compressive) stress/tensile (compressive) strength 

• The ultimate tensile (compressive) strength was calculated using equation 2.3.2 

and reported. The tensile stress at each required data point using equations listed 

below.  Tensile modulus was calculated using the linear portion of the stress strain 

response and: 

max
tu

PF =
A      (2.3.1) 

i
i

P=
A

σ
      (2.3.2) 

• The ultimate shear strength was calculated using equation 2.3.3  

A
PFSU 2

max=      (2.3.3) 

A
PI

sI 2
=σ

     (2.3.4) 

• Both tensile (compressive) modulus and ultimate tensile (compressive) strain 

were calculated using the response recorded by an extensometer.  The tensile 

(compressive) strain was computed from the indicated displacement at each 

required data point using the following equation: 

     

i
i

g

=
L
δε

      (2.3.5) 

• Both shear modulus and ultimate shear strain were calculated using the response 

recorded by the transducer (Strain gages).  The shear strain was computed from 
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the indicated displacement at each required data point using the following 

equation: 

yxI εεε +=      (2.3.6) 

• The tensile (compressive) chord modulus was calculated from the following 

equation: 

     
chordE = σ

ε
Δ
Δ        (2.3.7) 

• The shear modulus was calculated from the following equation: 

  

ε
σ
Δ
Δ

=G
      (2.3.8) 

 

2.4. Test Data 

2.4.1. Uniaxial Tension Tests 

We prepared the samples in dumbbell shape following dimensions used in ASTM 

D638-03. They start with a basic rectangular shape of 9.5” by 1.5”, and an average of 

0.15” thickness. A typical sample is shown in Figure 2.4.1.1. 
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Figure 2.4.1.1.  Typical Dumbbell CF samples (2 cloth layers)   

 

The test conditions follow the ASTM D3039-00. We use a stroke control of 0.05 

in/min and we measured force and axial displacement using the stroke and an 

extensometer with 2” gage, as shown in Figure 2.4.1.2. Figures 2.4.1.3, 2.4.1.4, 2.4.1.5 

and 2.4.1.6 show the uniaxial stress-strain response for all 4 configurations. 

 

Figure 2.4.1.2.  Typical Tension Test Setup 
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Figure 2.4.1.3.  CFC uniaxial stress-strain response for configuration A 
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Figure 2.4.1.4.  CFC uniaxial stress-strain response for configuration B 
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Figure 2.4.1.5.  CFC uniaxial stress-strain response for configuration C 
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Figure 2.4.1.6.  CFC uniaxial stress-strain response for configuration D 
 

From the experimental tension tests it is clear that the CFC has three distinct 

regions during loading – an initial region of high stiffness where strain increases results 

in large stress increases (or elastic region), a second region of non-linear behavior where 
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the stiffness is constantly decreasing until it reaches the peak load/stress; this is due to the 

nature of the plies that compose the laminate, where their internal flaws will make them 

fail at different levels, I will speak of these particular behavior in chapter 3. Finally, the 

third region is governed by sudden drops of the load until the final failure of the CFC. 

The failure patterns of the samples under the uniaxial tension test are shown on 

Figure 2.4.1.7 and 2.4.1.8.   

 

Figure 2.4.1.7.  CFC failure pattern under uniaxial tension 
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Figure 2.4.1.8.  CFC failure pattern under uniaxial tension 

 

2.4.2. Uniaxial Compression Tests 

We prepared the samples in rectangular shape following partially the ASTM 

D6641/D6641-01 guidelines. They start with a basic rectangular shape of 2.5” by 0.5”, 

and an average of 0.15” thickness. A typical sample is shown in Figure 2.4.2.1. 

 

Figure 2.4.2.1.  Typical Uniaxial Compression CF sample (2 cloth layers)   
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We use a stroke control of 0.05 in/min and we measured force and axial 

displacement using the stroke with a calibrated gage, as shown in Figure 2.4.2.2. Figures 

2.4.2.3, 2.4.2.4, 2.4.2.5 and 2.4.2.6 show the uniaxial compression stress-strain response 

for all 4 configurations. 

 

Figure 2.4.2.2.  Typical Compression Test Setup 
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Figure 2.4.2.3.  CFC compression stress-strain response for configuration A 
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Figure 2.4.2.4.  CFC compression stress-strain response for configuration B 
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Figure 2.4.2.5.  CFC compression stress-strain response for configuration C 
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Figure 2.4.2.6.  CFC compression stress-strain response for configuration D 

 

From the experimental compression tests it is clear that the CFC has three distinct 

regions during loading – an initial low stiffness region, not always, where the contact on 

the sample is not uniform. The second region has high stiffness where strain increases 

results in large stress increases (or elastic region), the third region is defined by one or 

many load drops (final failure of the CFC). 

The failure patterns of the samples under the uniaxial compression test are shown 

on Figure 2.4.2.7, 2.4.2.8 and 2.4.2.9.  We can see the mechanism of kink zone formation 

on one, shear failure and the unexpected crushing. 
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Figure 2.4.2.7.  Shear failure under uniaxial compression 

 

Figure 2.4.2.8.  Kink zone formation under uniaxial compression 
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Figure 2.4.2.9.  Crushing of the lower part under uniaxial compression 

 

2.4.3. +/-45 Shear Tests 

We prepared the rectangular samples according to the standard ASTM D 3039. 

They have basically a rectangular shape of 9” by 1.5”. The typical test setup is shown in 

Figure 2.4.3.2. Another condition in the preparation of the sample, specified in the ASTM 

standard D 3518/D 3518M-01, is the orientation of the sample (as the name of the test 

states) where the composite material form is limited to a continuous-fiber-reinforced 

composite +/-45° laminate capable of being tension tested in the laminate x direction. 

 

Figure 2.4.3.1.  Typical rectangular CF sample Rosette arrangement (2 cloth layers)   
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We use a stroke control of 0.05 in/min (following ASTM D 3039) and we 

measured force, axial displacement using the load cell and stroke (LVDT). Also we 

measured the strains (X and Y directions) using a 90 degree rosette strain gage 

arrangement shown if Figure 2.4.3.2 and an alternative solution is also shown in Figure 

2.4.3.3. Figures 2.4.2.3, 2.4.2.4, 2.4.2.5 and 2.4.2.6 show the uniaxial compression stress-

strain response for all 4 configurations. 

 

Figure 2.4.3.2.  Typical Shear Test Setup 

 

Figure 2.4.3.3.  Alternative strain gage rosette 
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Figure 2.4.3.4.  CFC shear stress- shear strain response for configuration A 
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Figure 2.4.3.5.  CFC shear stress- shear strain response for configuration B 
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Figure 2.4.3.6.  CFC shear stress- shear strain response for configuration C 
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Figure 2.4.3.7.  CFC shear stress- shear strain response for configuration D 
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It can be shown from laminate theory [Whitney and Daniel, 1984] that the state of 

shear stress and strain in the lamina coordinate system can be expressed in terms of the 

laminate axial stress σx, and the axial and transverse strain, εx and εy, respectively.  

 From the experimental shear tests it is clear that the CFC has two distinct regions 

during loading – an initial linear elastic region dies very quickly and is followed by a 

second region of non-linear behavior where the stiffness is constantly decreasing until it 

reaches the peak load/stress and fails.  

The failure patterns of the samples under the +/-45 shear test are shown on Figure 

2.4.3.8. 

 

Figure 2.4.3.8.  CFC failure pattern under +/-45 shear test 

 

 Finally, in Table 2.4.1 there is a summary of the properties for the four different 

configurations of CFE laminate.  
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Table 2.2.1. Summary of all CFE Test 
 

90/0-
90/0  

90/0-
0/90  

0/90-
90/0  

0/90-
90/0 Property\Configuration Units (Conf. 

A) 
(Conf. 

B) 
(Conf. 

C) 
 (Conf. 

D) 
Tensile elastic Modulus (GPa) 44 43 49 40 

Tensile elastic Modulus (ksi) 6383 6199 7046 5798 

Tensile strength (MPa) 780 758 820 592 

Tensile strength (ksi) 113 110 119 86 

Tensile strain at max stress (%) 2.08 2.14 1.98 1.8 

Shear Modulus (MPa) 1766 1628 1768 1485 

Shear Modulus (ksi) 256 236 256 215 

Shear strength (MPa) 33 27 30 24 

Shear strength (psi) 4713 3902 4289 3493 

Shear strain at max stress (%) 3.91 2.78 2.73 2.4 

Compressive elastic Modulus (MPa) 7495 7519 7614 6234 

Compressive elastic Modulus (ksi) 1087 1091 1104 904 

Compressive strength (MPa) 291 319 303 203 

Compressive strength (ksi) 42 46 44 29 
Compressive strain at max 

stress 
(%) 5.1 5.01 4.7 4.6 
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3. ORTHOTROPIC ELASTICITY AND LAMINATE THEORY 

3.1. Introduction 

An isotropic material is one that has identical mechanical, physical, thermal and 

electrical properties in every direction. Isotropic materials involve only four elastic 

constants, the modulus of elasticity, E, the shear modulus, G, the bulk modulus, K and 

the Poisson’s ratio, v. However, only two are independent. 

Most engineers and material scientists are well schooled in the behavior and 

design of isotropic materials, which include the family of most metals and pure polymers. 

The rapidly increasing use of anisotropic materials such as composite materials has 

resulted in a materials revolution and requires the knowledge base of anisotropic material 

behavior. 

Fiber reinforced composite materials are unique in application because the use of 

long fibers results in a material which has a higher strength-to-density ratio and/or 

stiffness-to-density ratio than any other material system at moderate temperature, and 

there exists the opportunity to uniquely tailor the fiber orientations to a given geometry, 

applied load and environment. Therefore through the use of composite materials, the 

engineer is not only a material selector, but also a materials designer. 

For small deflections, the linear elastic analysis of anisotropic composite material 

structures requires the use of the equilibrium equations, strain-displacement relations, and 

compatibility equations, which remain the same whether the structure is composed of an 

isotropic material or an anisotropic composite material. However, it is very necessary to 
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drastically alter the stress-strain relations, also called the constitutive relations, to account 

for the anisotropy of the composite material structure. 

In section 3.2 we will discuss about the methods to obtain the composite 

properties from the matrix and fiber properties, while in section 3.3 we will discussed 

about the analysis of the lamina or ply of the composite, an orthotropic material, which 

includes the background theory of stress-strain relations of the anisotropic to isotropic 

materials. Section 3.4 discuss the specific analysis of the orthotropic analysis of the 

laminate, and finally section 3.5 speaks about the failure criteria used for the modeling 

part, including, section 3.6, the Weibull statistics approach.   

 

3.2. Methods to obtain Composite Elastic Properties from Fiber and Matrix Properties 

 There are several sets of equations that obtain the composite elastic properties 

from those of the fiber and matrix materials. These include those of Halpin-Tsai, Hashin, 

and Christensen. In 1980, Hahn codified certain results for fibers of circular cross section 

which are randomly distributed in a plane normal to the unidirectionally oriented fibers. 

For that case the composite is macroscopically, transversally isotropic, that is ( )12 = ( )13,  

( )22 = ( )33 and ( )55 = ( )66, where in the parentheses the quantity could be E, G, or v; 

hence, the elastic properties involve only five independent constants, namely ( )11, ( )22,    

( )12, ( )23 and ( )66. 

 For several of the elastic constants, Hahn states that they all have the same 

functional form: 
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η                 (3.2.1) 

 Where for the elastic constant P, the Pf, Pm and η are given in Table 3.2.1 below, 

and where Vf and Vm are the volume fractions of the fibers and matrix respectively (and 

whose sum equal unity-no voids). 

Table 3.2.1. Determination of Composite Properties from Fiber and Matrix Properties  
 

Elastic 
Constant P Pf Pm n 

E11 E11 E11f Em 1 
v12 v12 v12f vm 1 
G12 1/G12 1/G12f 1/Gm η6 

 

The expressions for E11 and v12 are called the Rule of Mixtures. The definition 

for η6 is given as follows: 

            (3.2.2) 

 The transverse moduli of the composite, E22 = E33, are found from the 

following equation: 

(3.2.3) 

 

      (3.2.4) 

 

 Hahn notes that for most polymeric matrix structural composites, Gm/Gf<0.05. If 

that is the case then the η6 parameter is approximately 0.5. 
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 In a few instances only the weight fraction of the fiber, Wf, is known. In that case 

the volume fraction is obtained from the following equation, where Wm is the weight 

fraction of the matrix, and ρm and ρf are the respective densities. 

    (3.2.5) 

 

 

3.3. Analysis of an Orthotropic Lamina 

Laminae (or plies) are combined with their fibers oriented in more than one 

direction to form a laminate. The plies are oriented according to the nature of the loads to 

be supported by the laminate. In order to determine the properties of the laminate, it is 

necessary to express the properties of individual plies in terms of a common coordinate 

system, which, for design purposes, is generally oriented along structural axes or 

boundaries.  

Before discussing transformation of properties, the directional nature of the 

properties of a fiber composite will be examined further. From the standpoint of 

mechanics, unidirectional composites fit in the class of materials referred to as 

orthotropic. This section will develop an understanding of the behavior of orthotropic 

materials as compared with isotropic and generally anisotropic materials.  

To begin, consider the definitions of isotropic and anisotropic:  

• Isotropic: At a given point in a body the properties are independent of direction.  

• Anisotropic: At a point, properties depend on direction.  

mffm
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f WW

W
V

×+×
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Isotropic and anisotropic have very different meanings from homogeneous and 

inhomogeneous, which are defined as follows:  

• Homogeneous: properties are uniformly distributed throughout a body; properties are 

not a function of position.  

• Inhomogeneous: properties depend on position, e.g., (x, y, z).  

Whether a fiber composite is considered homogeneous or inhomogeneous 

depends on whether it is being considered from a macroscopic or microscopic level. A 

macroscopic treatment considers properties of the composite, rather than its individual 

constituents. The composite properties are averaged over distances that are much greater 

than the separation between fibers. A microscopic point of view distinguishes between 

fiber and matrix and the interface between them. Whereas the macroscopic, mechanics of 

materials approach is generally sufficient for structural design, an understanding of 

microscopic effects is useful and often necessary.  

 

3.3.1. Hooke’s Law (Stress vs. Strain) for Materials – Anisotropic to Isotropic  

If a uniaxial tensile load is applied to a specimen of isotropic material, an 

elongation will be produced in the loading direction. A reduction in specimen dimensions 

perpendicular to the loading direction will also be produced, and the relationship between 

axial and transverse deformations depends on Poisson’s ratio. For the case of tensile 

loading, no shear distortion will be produced in an isotropic material. Likewise, for the 

isotropic material, a shear load will produce angular distortion but no changes in length 

of the sides. An anisotropic material behaves differently. Application of a tensile load to a 
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specimen of anisotropic material will produce angular distortions as well as length 

changes; a shear load also results in both length and angle changes. To understand the 

relationships between stress and strain for a fiber composite material, it is useful to begin 

with the general anisotropic material.  

The stress-strain relation (Hooke's law) for a general anisotropic material:  

 

 

   (3.3.1.1)  

 

 

 

where [Q] is the stiffness matrix for the material. The coefficients Qij of the stiffness 

matrix are functions of the elastic constants of the material. An isotropic material has two 

independent elastic constants, Young’s modulus E and Poisson’s ratio ν. A third elastic 

constant, the shear modulus G can be uniquely determined for the other two.  

In tensor notation  σi = Cij εj  i, j = 1, … 6  

As seen in Equation (3.4.1.1), a general anisotropic material has 36 material 

constants, in this case written as stiffness coefficients Cij.  

Inverting Equation (3.4.1.1) gives the strain-stress relation is εi = Sij σj i, j = 1, ..6  

where Sij are compliance coefficients, and [S] = [Q]
-1

.  
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Because of symmetry of the stiffness matrix, the indices are interchangeable:  

Cij = Cji and Sij = Sji  

The number of independent coefficients is then reduced from 36 to 21.  

Many materials exhibit symmetry in their elastic properties with respect to certain 

planes; that is, the elastic constants do not change when the direction of the axis 

perpendicular to the plane of symmetry is reversed. A single plane of symmetry reduces 

the number of independent elastic constants to 13. For example, suppose a material has 

some special direction aligned in (x1-x2-x3) coordinates. If there exists another 

coordinate system (x1′-x2′-x3) such that the difference cannot be distinguished by 

mechanical means, the x3 axis is called a material symmetry axis.  

An orthotropic material exhibits symmetry of its elastic properties with respect to 

three orthogonal planes. The number of independent elastic constants is reduced to nine. 

If a uniaxial tensile force is applied to an orthotropic material along one of its orthotropic 

symmetry axes, no angular distortion will result. In other words normal stresses produce 

only normal strains and no shear strains. Application of a tensile force along an axis that 

is not one of the material’s special orthotropic axes produces angular distortions, as 

illustrated in Figure 3.3.1.1. In other words, the material no longer behaves in an 

orthotropic manner. 
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Figure 3.3.1.1 Application of tensile force along an orthotropic axis and a general axis in 
an orthotropic material.  

 
 
 
 

The stress-strain law for an orthotropic material is    

 

 

(3.3.1.2) 

 

 

 
Which has 9 independent material constants. No interaction exists between shear 

stresses and normal strains or between normal stresses and shear strains. Remember that 

Equation (3.3.1.2) applies only for loads applied in direction parallel to the material’s 

orthotropic axes. For loads applied along general directions, the zeros in Equation 

(3.3.1.2) will be replaced by nonzero coefficients that couple normal stresses and shear 

strains.  
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A unidirectional composite is a special type of orthotropic material, for it appears 

isotropic in planes perpendicular to the fiber direction. If the fibers are parallel to the 1-

axis, then the material is isotropic in a 2-3 plane. Such a material is called transversely 

isotropic. Beginning with the orthotropic material whose stiffness coefficients are shown 

in Equation (3.3.1.2), the additional symmetry results in  

Q33 = Q22  

Q13 = Q12  

Q55 = Q66  

The stress-strain relationship for a transversely isotropic material is given by  

 

 

 (3.3.1.3) 

 

 

 

Furthermore Q55 = 1/2 (C22 – C23), so that only five independent constants remain.  

Now, for many problems involving fiber composites, especially those where the 

component thickness is small compared with other dimensions, the state of stress can be 

treated as two dimensional. For the state of plane stress, ignoring components in the 3-

direction, the stress-strain relationship for an orthotropic material given by Equation 

(3.3.1.2) becomes  
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            (3.3.1.4) 

Replacing σ6, the shear stress in the 2-direction acting on a 1-plane (a plane with 

outward normal parallel to the 1-axis), with τ12, and ε6 by γ12 yields the form that is 

generally used.  

             

(3.3.1.5) 

 

 

3.3.2. Stress-Strain Relations for a Unidirectional Composite  

The significance of the stiffness coefficients in Equation (3.3.1.5) and their 

relationship to the elastic constants can be most easily understood by considering how the 

engineering constants are determined in simple tests.  

Beginning with a uniaxial tensile test, as in Figure 3.3.2.1, assuming that the load 

is applied in the 1-direction. Measurement of load and elongation allow calculation of 

Young’s modulus E1.  

 

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

12

2

1

66

2212

1211

12

2

1

00
0
0

γ
ε
ε

τ
σ
σ

Q
QQ
QQ



 

 

50

 

Figure 3.3.2.1 uniaxial tensile test 

Transverse strain ε2 is measured in order to determine Poisson’s ratio ν12.  

and the transverse strain is                     (3.3.2.1)  

 

A uniaxial tension test in the transverse direction permits determination of the 

transverse Young’s modulus E2.  

      (3.3.2.2) 

Measurement of strain in the 1-direction (90 degrees from the loading direction) 

allows calculation of the Poisson’s ratio for transverse loading ν21, also called the minor 

Poisson’s ratio because it is less than ν12.  

(3.3.2.3) 

 

From a longitudinal shear test, as illustrated in Figure 3.4.2.2:  

 

 

 

 

Figure 3.3.2.2 In-plane shear test. 
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In pure shear                                  

(3.3.2.4) 

 

Superposition allows us to sum the effects for a general stress state (σ1, σ2, τ12):  

 

  

 (3.3.2.5) 

 

 

 

Expressing Equations (3.3.2.5) in matrix form, the strain-stress relation for a 

unidirectional composite is: 

                

(3.3.2.6) 

 

Finally, inverting the matrix equation (3.3.2.6) we will get the strain-stress 

relation: 

                  

(3.3.2.7) 
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Where the stiffness components: 

           

      

 

 (3.3.2.8) 

 

 

 

 

Also, we know because of symmetry in material behavior: 

      (3.3.2.9) 

 

Therefore, a unidirectional composite, which is isotropic in the 2-3 plane, has four 

independent elastic constants and four independent stiffness coefficients.  

 

3.3.3. Transformation of Stiffness 

 Knowing the stiffness of a unidirectional composite ply from measurable 

engineering constants, the next step is to determine how that stiffness varies with 

orientation.  

The transformation of the stiffness of a lamina between an arbitrary orientation 

(x-y) and material coordinates (1-2) is illustrated in Figure 3.3.3.1. 
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Figure 3.3.3.1. Material axes (1-2) oriented an angle θ from the global axes (x-y) 

 

 It is important to notice that the stress-strain relationships apply in material 

coordinates. Therefore, stress and strain can be transformed using equation (3.3.3.1), and 

the transformation matrix T shown on equation (3.3.3.2) in terms of θ (positive if it is 

going CCW from the x-axis to the 1-axis). 

 

(3.3.3.1) 

 

 

(3.3.3.2) 

 

 

Now for strain the relation changes to equation (3.3.3.3). 
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In transformation of strain, the strain tensor is to be used, instead of the 

engineering strain. Therefore, γxy and γ12 are divided by 2 in equation (3.3.3.3). Now 

using the Reuter matrix, equation (3.3.3.4), those ½ factors will go away. 

 

 (3.3.3.4) 

 

Now, the strain can be transformed from global to material coordinates for 

subsequent calculations from strain using equation (3.3.3.5). 

 

(3.3.3.5) 

 

 Multiplying equation (3.3.3.5) by the stiffness matrix gives us the stress in 

material coordinates. Since we are interested in stresses and strains in the global system, 

the global stress-strain law is: 

 

(3.3.3.6) 

 

 The global stress-strain relationship is written in terms of the transformed 

stiffness matrix as: 

 

(3.3.3.7) 
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The coefficients of the transformed stiffness matrix are calculated using the 

transformation and the Reuter matrices. The equations derived from the matrices are the 

following: 

θθθθ 22
6612

4
22

4
1111 cossin)2(2sincos QQQQQT +++=  

θθθθ 22
6612

4
22

4
1122 cossin)2(2cossin QQQQQT +++=  

)sin(coscossin)4( 44
12

22
66221112 θθθθ ++−+= QQQQQT  

)sin(coscossin)22( 44
66

22
6612221166 θθθθ ++−−+= QQQQQQT            (3.3.3.8) 
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661222
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66121116 sincos)2(cossin)2( QQQQQQQT −−−−−=  

θθθθ sincos)2(cossin)2( 3
661222

3
66121126 QQQQQQQT −−−−−=  

 

Calculation of the transformed stiffness matrix using equations (3.3.3.8) will be a 

very important step in the laminate analysis that is presented in the next part, where the 

stiffness of all plies, expressed in a common coordinate system, will be combined to form 

the overall stiffness matrix of the laminate.     

 

3.4. Laminate Analysis 

A laminate consists of a number of layers (or plies) bonded together to act as an 

integral structural element. Made with fiber composites, each ply can contain 

unidirectional fibers or a bidimensional weave. The sequence of fiber orientations from 

layer to layer through the laminate is called ply orientation or stacking sequence. 
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A laminate is symmetric if the ply orientation and material stiffness are symmetric 

about the middle surface as the following example: 

 

 

 

 

 

 

Figure 3.4.1. Symmetric laminate 

Another consideration is that we need first to assume the following for the lamina: 

• Each lamina of a laminate is a unidirectional composite. 

• Each lamina is a homogenous orthotropic material (usually transversally 

isotropic). 

• Because each lamina is very thin (typically less than 1mm), the analysis can be 

reduced to a plane-stress (two dimensional) problem. 

 

3.4.1. Strain and Stress in a Laminate 

Classical laminate theory assumes that all layers are perfectly bonded together, 

and the strains are continuous through the laminate thickness. In the absence of a moment 

(for a symmetric laminate) the strains in any given direction are equal, e.g., (εx)k = 

(εx)k+1. With applied moment, strains through the thickness can be related by the 

curvature, as in engineering beam theory.  
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Thin plate theory assumes that any line initially straight and normal to the mid-

plane of the plate remains straight and normal to the mid-plane after extension and 

flexure, as shown in Figure 3.5.1.1 (This is equivalent to ignoring γxz and γyx.). 

 

 

Figure 3.4.1.1. Bending of a laminate illustrating curvature of middle surface and 
displacement of point C 

 

 

 In figure 3.4.1.1, the line AD is trough the plate, normal to the middle surface, 

and intersecting the middle surface at B.  

• uo is the displacement of point B on the middle surface  in the x-direction  

• β is the slope of the middle surface 

• zc is the distance from B on the middle surface to C in the z-direction 

• uc is uo-zcβ, displacement of C in the x-direction 

Based on the assumptions of thin plate theory: 

(3.4.1.1) 

 

(3.4.1.2) 
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If v is the displacement in the y-direction: 

 

  

 

(3.4.1.3) 

 

 

 

 

Defining εx
0, εy

0, γxy
0 as the in-plane strain at the midplane: 

 

 

(3.4.1.4) 

 

  

Now, the strain at a point can be written as: 

 

(3.4.1.5) 

 

 

 

 

y
wzvv
∂
∂

−= 0
0

2
0

2
0

x
wz

x
u

x
u

x ∂
∂

−
∂
∂

=
∂
∂=ε

2
0

2
0

y
wz

y
v

y
v

y ∂
∂

−
∂
∂

=
∂
∂

=ε

yx
wz

x
v

y
u

x
v

y
u

xy ∂∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

= 0
2

00γ

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∂
∂

+
∂
∂

∂
∂
∂
∂

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

x
v

y
u

y
v
x
u

xy

y

x

00

0

0

0

0

0

γ
ε
ε

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

xy

y

x

xy

y

x

xy

y

x

k
k
k

0

0

0

γ
ε
ε

γ
ε
ε



 

 

59

 Where kx, ky and kxy are the plate curvatures of the midplane surface, defined as: 

 

 

(3.4.1.6) 

 

  

Therefore, stress at a point in the kth layer of laminate can be found from the 

stress-strain relation: 

 

(3.4.1.7) 

 

  

The strains in any direction vary linearly through the laminate, as shown in Figure 

3.4.1.2. Stresses vary linearly through each ply but may be discontinuous at ply 

boundaries because of varying stiffness.  

 

Figure 3.4.1.2. Variation of stress and strain through the thickness of a laminate 
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The stiffness matrix for the kth layer is simply the off-axis stiffness obtained by 

transformation of unidirectional composite stiffness due to rotation (in plane) to 

orientation θ. The analysis of the off-axis stiffness for the plies was presented early in the 

chapter. 

 

3.5. Failure Analysis 

 Failure criteria are needed to compare the actual state of stress with the failure 

stresses measured in the tests. Failure criteria can be developed for a unidirectional 

composite, considered from a macro mechanical point of view. Once failure criteria have 

been developed for individual plies, those criteria can be incorporated into a failure 

analysis procedure for a laminate. 

 Among the many failure criteria that have been developed for orthotropic 

materials, several have found application to continuous-fiber composites. Some are 

applicable only to specific loading conditions. We will only show in this section two 

simple and one interactive method. 

 

3.5.1. Maximum Stress Criterion 

 Because of research in the forest products area, the Maximum Stress Theory was 

extended to orthotropic materials. It assumes that failure of a ply occurs when any of the 

stress components in the principal material directions (1-2) reaches its corresponding 

strength property. In other words, failure happens under any of the following conditions: 
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σ1 ≥S1T  ׀σ1׀ ≥S1C 

σ2 ≥S2T  ׀σ2׀ ≥S2C 

τ12 ≥S12 

 

3.5.2. Maximum Strain Criterion 

 This theory states that failure occurs when the strain obtained along the principal 

material axes exceed their limiting values. In other words, failure happens under any of 

the following conditions: 

ε1 ≥S1T /E1 ׀ ε 1׀ ≥S1C/E1 

ε 2 ≥S2T/E2 ׀ ε 2׀ ≥S2C/E2 

γ12 ≥S12/G12 

 Both theories consider each component independently, ignoring any interaction. 

Each criterion must also be applied in the appropriate principal material direction. Actual 

failure stress measured in uniaxial tensile testing of off-axis specimens differ from the 

predictions of the criteria.  Therefore, a more comprehensive failure criterion, which 

considers the interactions among stress component, is frequently used. 

 

3.5.3. Interactive Failure Criterion – Tsai-Hill 

 Because rolled metals have slightly different properties in the roll direction than 

in the other two directions, R. Hill developed an extension of Von Mises-Hencky 

distortion energy theory as a yield criterion for orthotropic materials of the form: 

F(σ1- σ2)2+G(σ2- σ3)2+H(σ3- σ1)2+2L(τ12)2+2M(τ23)2+2N(τ31)2=1  (3.5.3.1) 
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Where F, G, H, L, M, and N are functions of the yield strengths of the material. 

 S.W. Tsai related these constants to the failure strengths for a unidirectional 

composite. In his procedure, it is assumed that individual stresses are applied one at a 

time along principal material directions, as in the tests to measure strengths. 

 If only σ1 acts on a body and the allowable stress in the 1-direction is S1,  

(F+H) S1
2=1    F+H=1/ S1

2              (3.5.3.2) 

If only σ2 acts on a body and the strength is S2,  

(F+G) S2
2=1    F+G=1/ S2

2                                        (3.5.3.3) 

If only σ3 acts on a body and the strength is S3, 

(G+H) S3
2=1    G+H=1/ S3

2                                       (3.5.3.4) 

Solving for F, G, H, 

2F=1/ S1
2+1/ S2

2-1/ S3
2 

   2G=1/ S3
2+1/ S2

2-1/ S1
2                                      (3.5.3.5) 

2H=1/ S1
2+1/ S1

2-1/ S2
2 

  Following a similar procedure we can find L, M and N in the terms of the shear 

strengths: 

2L=1/ S12
2    2M=1/ S23

2     2N=1/ S31
2                         (3.5.3.6) 

 Now, in our case we can include the plane stress condition, in which 

unidirectional composites are normally characterized, where the only stress components 

are σ1, σ2, and τ12. Setting the other components to zero we have the following equation, 

the Tsai-Hill criterion: 

     (3.5.3.7) 12
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3.6. Weibull Statistics 

The classical way to view the strength of the materials or structures is a 

deterministic one. That is, a true strength, a single value that is characteristic of the 

material or structure, is supposed to exist. In experiments to determine this true strength, 

considerable scatter in the results is usually observed. As this is not considered to be a 

feature of the material or object itself, it is usually attributed to uncontrollable 

experimental variables. As a consequence, the second central moment of the 

experimental data, the standard deviation, is interpreted as indicating the success of 

standardizing the experimental set-up and procedures. Therefore, standard deviation can 

be considered to be an indicator of the quality of an experiment or testing method. The 

deterministic view has become much less popular in the technical sciences. If the 

deterministic view is valid, identical experiments performed on material specimens of 

different sizes should yield the same results for failure stress. 

However, is been shown that fiber strength is a statistical quantity since it is 

governed by the propagation of pre-existing flaws or cracks in the fiber. Typically, 

statistical fiber strength distributions are measured directly by performing single-fiber 

tension tests on a collection of fibers at a common gage length L. In such a test, the fiber 

stress is uniform across the fiber cross-section and uniform along the length of the fiber 

within the gage section. The strength data obtained from such a test are usually 

characterized in terms of a Weibull probability distribution, wherein the cumulative 

probability of failure of a fiber of length L at stress σ is given by: 

    (3.6.1) 
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Where σ0 is the characteristic fiber strength at gage length L0 and m is the Weibull 

modulus characterizing the spread in the distribution of strengths at any gage length. 

 Furthermore, in the case of having an interactive failure criterion, such as Tsai-

Hill where the lamina could be oriented at a different position, as shown in Figure 3.6.1, 

the Weibull equation will change to the following: 

 
    (3.6.2) 

Where TH0 is the characteristic Tsai-Hill value at gage length L0 and m is the 

Weibull modulus characterizing the spread in the distribution of Tsai-Hill numbers at any 

gage length. 

                               

Figure 3.6.1. 90 degree lamina failure of a crossply CFE composite 

 

 Using this approach we can apply the Weibull statistics to a single analysis of the 

interactive failure, therefore increasing the accuracy of the model for multiple oriented 

laminates. 

 To calculate the Weibull modulus, two additional values must be computed, the 

natural logarithm of the stress and the natural logarithm of the natural logarithm of the 

following equation: 
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(3.6.3) 

 

Where N is the total number of tests and i is the current test specimen. Therefore, 

there will be a corresponding relation for each test. The slope of the plot of the LN(stress) 

against the LN(LN(N+1/N+1+i)) will give us the Weibull modulus of the tests, as seen in 

Figure 3.6.2. 
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Figure 3.6.2. Weibull modulus determination 
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4. VALIDATION OF THE MATERIAL MODEL 

4.1. Analytical Analysis and Algorithm for the Composite Model 

 Based on the orthotropic material behavior and the laminate theory, a 

computational analytical model was developed in several complexity phases.  We can 

separate these phases in two types of laminate analysis: Unidirectional Laminates and 

Multidirectional Laminates. Under each category there are several assumptions and 

parameters involved (which will be explained in detail later in the section) that will 

govern the failure strength and the constitutive behavior of the laminate. 

 There are some assumptions taken in the algorithm such as: 

1. Plane stress is assumed due to the thickness of the laminate in analysis, therefore 

σ3, τ13, and τ23 are zero and the stress-strain relation (constitutive behavior)  will 

be reduced to: 

 

(4.1.1) 

 

2. Strain will be applied uniformly in the x-direction (εx global coordinates), and all 

layers or cells in the laminate will have the same amount of strain during the 

whole simulation, unless specified. 

3. Strain in the y-direction (εy) and in-plane shear strain (γxy) will be minimized or 

ignored if necessary, by applying strain compensation or restrictions in the failure 

analysis. 
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4. Perfect bonding is assumed between the layers or cells, in other words there are 

no debonding or interlaminar shear defects or failures. 

5. Any line straight and normal to the midplane of the laminate will remain straight 

and normal to the midplane after extension and flexure. 

 

 The simulation procedure, the common ground for both unidirectional and 

multidirectional approaches, is illustrated as following: (note: steps that need further 

explanation or are very different from one approach to the other will be explained in their 

respective sections) 

1. Definition of the geometry (number of layers, cells, thickness, orientation of the 

lamina (if necessary), etc) for the composite laminate. 

2. Definition of the composite material elastic properties (E1, E2, v12, v21, G12) using 

any convenient method of section 3.2, where those properties are a function of the 

fiber and matrix properties. 

3. Definition of the strength values for the specific failure criteria (S1T, S2T, S12, 

etc.). 

4. Calculation of the orthotropic stiffness matrix components according to the 

following equations: 

2112
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11 1 vv
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1266 GQ =      (4.1.2) 
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5. Transformation or reorientation of the stiffness matrix for each lamina, if 

necessary, using the angle given in step 1. 

6. Assignation of the randomly statistical strength, or other related value, to each 

layer or cell; this step depends on the failure criteria. This statistical approach is 

based on the Weibull model for probability of failure detailed in section 3.6. 

7. Incremental strain is applied, and the constitutive behavior of each lamina will 

calculate its respective stress level in global (x-y) coordinates. 

8. If necessary, rotation of the stress tensor to the material (1-2) coordinates will be 

solved using the following transformation matrix: 

 

(4.1.3) 

 

9. According to the corresponding failure criteria and/or statistical criteria, the 

strength or failure value will be check and if failure occurs the layer or cell 

stiffness will be significantly reduced for the next step. 

10. Depending on the complexity of the model, a load sharing rule will be applied on 

the neighbor lamina or cells. Equilibrium on the section will be maintained. 

11. Border effects are related to the load sharing rule and will be taken into account 

only in the y-direction. 

12. If failure occurs in the lamina or cells affected by the load sharing rule, they will 

follow the same procedure shown on step 10. 
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13. Accumulation of the stress for each lamina or cell, then we will return to step 7, 

adding the incremental strain and evaluate the laminate with the updated stiffness.  

 

The following section will work on the specifics of each approach and the details 

of each of their models, going from the simplest to the more complex. Details of some of 

the steps in the algorithm will be further explained and some examples of the behavior 

will be shown. 

 

4.1.1. Unidirectional Analysis Specific Considerations 

 Using the unidirectional approach we have three developed models, where each 

one is a sophistication of the previous model with an increase in the accuracy and the 

description of the experimental tests. As its name implies, since they are unidirectional 

laminates, steps 5 and 8 of the algorithm are not needed. 

 The first model is based on the Strength failure criterion mixed with the Weibull 

Statistics. It uses the Weibull failure probability function (equation (3.6.1)) to calculate 

the corresponding distribution of failure stresses, and a random distribution function to 

assign those stresses among the plies that compose the laminate. Failure of a layer will 

follow step 9 of the algorithm. No further considerations in the laminate were taken; 

therefore steps 10, 11 and 12 will not be used. As an example of the model behavior, a 

stress-strain plot is shown in Figure 4.1.1.1 and the corresponding Weibull function is 

plotted in Figure 4.1.1.2. 
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Figure 4.1.1.1. Stress-Strain plot for the Strength-Weibull model, material CF/E, Weibull 
values S0 = 1800 MPa, m = 6.0 

 
 

 

Figure 4.1.1.2. Weibull Distribution plot, Weibull values S0 = 1800 MPa, m = 6.0 
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 The second model additionally uses a simplified load sharing rule applied on steps 

10, 11 and 12 of the algorithm. This rule specifies that once a failure happens, two layers 

above and two layers below will suffer an increase of the load, which will increase the 

chance of failure and the possibility of and accumulated failure region in the laminate. 

Border conditions were taken into account, if the failure happens near and/or at the edges 

(y-direction) the neighbor plies will have an additional increment in the load. 

 The typical laminate stress profile, where a load concentration happened, is 

shown on Figure 4.1.1.3. Also it can be seen in Figure 4.1.1.4 the effect of a load 

concentration failure on the stress-strain plot of CFE. 
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Figure 4.1.1.3. Detail of the laminate Stress profile with stress concentration effects, 
material CFE, Weibull values S0 = 1800 MPa, m = 6.0   
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Figure 4.1.1.4. Stress-Strain plot for the Strength-Weibull-Load Sharing model, material 
CF/E, Weibull values S0 = 1800 MPa, m = 6.0, note the accumulated load drops 

  

The third model, most complex of all presented, is based on the same premises of 

the previous models, but with a different geometry concept. Instead of layers, this model 

uses cells, which together encompassed the whole laminate, making it a 2-D model. The 

unit cells are composed of matrix and fiber as shown on Figure 4.1.1.5. Additional 

assumptions were taken in order to simplify the model, these are as follows: 

• Strain is the same for all the cells, there will not be an effect due to clamping in 

one side and the imposed displacement in the other. 

• Each cell will have its own strength, that will be randomized and assign using the 

Weibull distribution. 
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• After failure, the load sharing rule will be only in the y direction (equilibrium), 

and the two x-direction cell neighbors’ (1 to the left and 1 to the right) will suffer 

a load reduction that will be equilibrated in their respective y-direction cells. 

• Border conditions in the x-direction borders, clamped and mobile side, will be 

reinforced to simplify the model; assuming a tri-axial state of stress will increase 

its strength significantly to avoid failue. 

• Matrix will not fail until it reaches a maximum of 2.5% elongation according to 

experimental results, the entire load will be redistributed.   

• The layer stress is the average of the stresses of the cells that composed it. 

Length

FIBER

LAMINATE

Thickness

MATRIX

 

Figure 4.1.1.5. Unit Cell and Laminate Diagram for the Strength-Weibull-Load Sharing-
2D Model. 

 
 Additionally, the stress-strain curve will be monitored at every important step 

with a graphic damage representation, as shown in Figure 4.1.1.6 for the whole stress-

strain curve and on Figure 4.1.1.7 for several strain measures.  
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Figure 4.1.1.6. Stress-Strain Plot for the Strength-Weibull-Load Sharing-2D Model, 
material CFE, Weibull values S0 = 1800 MPa, m = 6.0 
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   0.12% strain   0.14% strain          0.17% strain 

Figure 4.1.1.7. Cell failure for several strain levels, Strength-Weibull-Load Sharing-2D 
Model 
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4.1.2. Multidirectional Analysis Specific Considerations 

 Using the multidirectional approach was more useful for the specific case of 

multiple orientation lamina or fabric composites. The approach we have three developed 

models, where each one is a sophistication of the previous model with an increase in the 

accuracy and the description of the experimental tests. As its name implies, since they are 

multidirectional laminates, steps 5 and 8 of the algorithm will be needed. All models will 

be using the Tsai-Hill interactive criterion, due to its accuracy and still simplicity in the 

tension test cases in comparison with the Tsai-Wu. Maximum Stress and Maximum 

Strain criteria were discarded for the complexity and inaccuracy that those criteria will 

pose for the multiple oriented plies. 

 The first model is based on the Tsai-Hill failure criterion alone, giving us a linear 

approach and an idea of the material strength when using multiple oriented layers. The 

model uses the Tsai-Hill interactive equation, displayed on (3.5.3.7), to calculate the 

laminate failure strength. There is no difference in the failure “Tsai-Hill value”, therefore 

all plies will fail at the same time. Different orientation laminates Stress-Strain curves are 

shown in Figure 4.1.2.1.  
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Figure 4.1.2.1. Stress--Strain Curves for Multiple Oriented Laminates in the Tsai-Hill 
model, Material CFE 

 
 The second model additionally uses a mix of the Tsai-Hill failure criterion and the 

Weibull failure probability function, similar to the unidirectional model with the 

difference that it uses the “Tsai-Hill value” instead of the lamina strength, as shown in 

equation (3.6.2). The model uses that equation to calculate the corresponding distribution 

of “Tsai-Hill values” and a random distribution of those values among the plies that 

compose the laminate. Failure of any ply will follow step 9 of the general algorithm. No 

further considerations were taken; therefore steps 10, 11 and 12 will not be used. As an 

example of the model behavior, several stress-strain curves for different laminate 

orientations are shown in Figure 4.1.2.2 and the corresponding Weibull function is 

plotted in Figure 4.1.2.3. 
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Figure 4.1.2.2. Stress-Strain Curves for Multiple Oriented Laminates in the Tsai-Hill-
Weibull model, Material CFE, Weibull parameters TH0= 0.75, m=5.0 

 

 

Figure 4.1.2.3. Weibull distribution plot, Weibull values TH0= 0.75, m=5.0 
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The third model is based on the same premises of the previous two, but with the 

addition of a simplified load sharing rule, applied on steps 10, 11 and 12 of the general 

algorithm. The simplified rule specifies that when failure happens, two layers above and 

two layers below will suffer an increase of the load, which will increase the chance of 

failure and the possibility of an accumulated failure region in the laminate. The increased 

load will only be in the x-direction and its effect will be transformed to the material 

coordinates (1-2), if necessary, in order to find the Tsai-Hill value and evaluate the 

possible failure. Border conditions are also accounted, if the failures happen near or in the 

top or bottom border (y-direction) the involved plies will have an additional increase in 

the load. In the case of failure that are close to other failures the concentration effect will 

stack and increase the chance furthermore.    

 The random effect of the failures will be reflected in the stress-strain curve as 

shown in Figure 4.1.2.4. Multiple oriented laminates stress-strain curves are shown in 

Figure 4.1.2.5. 
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Figure 4.1.2.4. Two simulated 0 layer laminate tests with the same parameters, its 

differences due to the random failure value and the load concentration 
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Figure 4.1.2.5. Stress-Strain Curves for Multiple Oriented Laminates in the Tsai-Hill-
Weibull-Load Sharing model, Material CFE, Weibull parameters TH0= 0.75, m=5.0 
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4.2. Weibull Parameters  

 An important part of the models was the Weibull function parameters. Those 

parameters are a statistical failure distribution that comes from the fundamental tests done 

on specific samples. For example, if we want to model the yarn behavior we need to use 

the failure distribution found on several tests done on single fibers, or smaller yarns. In 

the same fashion, if we want a fabric behavior we use the yarn test results in the 

distribution. Other options include using the same distribution of the tests to infer a 

Weibull distribution, in other words to get the Weibull parameters for a composite 

laminate, the use of a specific number of tests of the same composite laminate will be 

needed. 

  

4.2.1. Weibull Parameters and Curve Fitting, Strength Criterion 

 The two parameter version of equation (3.6.1) is used to model the composite 

behavior. Those two parameters involved are the characteristic stress σ0 (63.2% 

probability level) and the Weibull modulus m, both are shown in equation (4.2.1.1). 

       

(4.2.1.1)   

 

Another set of tests evaluated at Arizona State University Structural Laboratory 

were the Kevlar® 49 fabric and yarn tensile tests. The yarn tests will be used to evaluate 

the Weibull parameters in order to evaluate the unidirectional model. The yarn tensile test 

results are shown in Table 4.2.1.1, but only the 17” length samples. 
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Table 4.2.1.1. Yarn tensile Tests for the 17” length Kevlar® 49 samples 
 

Number E (MPa) Strength 
(MPa) Strain 

1 73006.46 1236.16 0.02 
2 74120.05 1455.55 0.03 
3 74790.52 1471.39 0.03 
4 76422.67 1526 0.02 
5 76827.5 1479.73 0.03 
6 77162.63 1597.31 0.03 
7 77380.4 1784.79 0.03 
8 80878.48 1769.03 0.03 
9 81335.05 1802.89 0.03 
10 82475.12 1744.85 0.03 

  

 The Weibull analysis was made following the procedure on Section 3.6 (Chapter 

3); being N = 10 the respective values were calculated and shown in Table 4.2.1.2. 

Table 4.2.1.2. Weibull values for the determination of the parameter m 
 

Number ln(ln(N+1/N+1-i) ln(stress)
1 -2.350618656 7.119765
2 -1.606090045 7.283139
3 -1.144278086 7.293963
4 -0.794106012 7.330405
5 -0.50065122 7.299615
6 -0.237676951 7.376076
7 0.011534137 7.487056
8 0.261812562 7.478187
9 0.533417353 7.497146
10 0.874591383 7.464424

 

 The plot of ln(ln(N+1/N+1+i)) vs ln(stress) is plotted in Figure 4.2.1.1 and its 

slope is calculated to give the Weibull modulus (m) of  7.74. 
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Figure 4.2.1.1. Weibull parameters plot to determine the modulus m 

 

 A developed Matlab code that employs the least squares approach to get the 

Weibull characteristic stress, found the value to be 1900 MPa; and with that characteristic 

stress calculated and the Weibull modulus of 7.74 the plot of the Weibull failure 

distribution is shown on Figure 4.2.1.2. 
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Figure 4.2.1.2. Weibull Failure Distribution for Kevlar® 49 yarn tensile tests 

 

4.2.2. Weibull Parameters and Curve Fitting, Tsai-Hill Criterion 

Several tests were effectuated on CFE composite laminates to determine its 

properties (Chapter 2) and those are used to determine the Weibull parameters in order to 

model the CFE composite behavior.  

 The two parameter version of equation (3.6.2) is used to model the composite 

behavior. The two parameters involved are the characteristic stress TH0 and the Weibull 

modulus m, both are shown in equation (4.2.2.1). 

 

     (4.2.2.1) 
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Using the data from chapter 2, 0p / 90t – 90t / 0p laminate (configuration C), a 

rough approximation was calculated to get the value of the average material direction’s 

failure stresses (S1, S2) from the strength of the multiple oriented laminate. With those 

average values, an extrapolated distribution was created in order to define the Tsai-Hill 

failure value, giving it the value of 1 at the maximum failure stresses of all tests.  

The S12 shear strength value was determined directly from the shear tests and for 

the sake of simplicity it was kept as a constant during the Tsai-Hill value calculation. 

Figure 4.2.2.1 shows the Tsai-Hill Failure plot for the fixed S12 value.  

A detail of the extrapolated data is plotted in Table 4.2.2.1 showing the respective 

failure values and the Tsai-Hill value. 

 

Figure 4.2.2.1. Tsai-Hill Failure Surfaces for several values of S12 
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Table 4.2.2.1.  Tsai-Hill values with their respective failure components 
 

Strength S1 S2 F1 F2 F12 TH 
400 472 184 5.917E-07 5.165E-06 1.372E-03 0.26 
420 495 193 5.917E-07 5.165E-06 1.372E-03 0.28 
450 530 207 5.917E-07 5.165E-06 1.372E-03 0.32 
500 590 230 5.917E-07 5.165E-06 1.372E-03 0.40 
728 860 335 5.917E-07 5.165E-06 1.372E-03 0.85 
735 868 338 5.917E-07 5.165E-06 1.372E-03 0.86 
745 880 343 5.917E-07 5.165E-06 1.372E-03 0.89 
760 897 350 5.917E-07 5.165E-06 1.372E-03 0.92 
787 930 362 5.917E-07 5.165E-06 1.372E-03 0.99 
792 935 365 5.917E-07 5.165E-06 1.372E-03 1.00 

 

 Using the data from Table 4.2.2.1 a linear failure probability was assembled, and 

with the data a Weibull fitting routine was applied to get the Weibull parameters. Those 

preliminary parameters are TH0 = 0.75 and m = 4.0. With them as a starting point, the 

model will try to approach to the real stress-strain curve. 

 

4.3. Simulation of Experimental Data 

For the validation of the models, we selected several experimental cases that will 

apply to the specific model type or geometry. Such cases will include fabric experimental 

tests, multiple oriented composite laminate tests, and unidirectional composite laminate 

tests. One of these tests was taken from the literature, while the other two from actual 

tests done in the structural laboratory in Arizona State University.  
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4.3.1. Unidirectional Simplified Analytical Model Validation 

Another set of tests evaluated at Arizona State University Structural Laboratory 

were the Kevlar® 49 fabrics tensile tests. A total of six tests were conducted in the warp 

direction. This warp direction test setup is shown in Figure 4.3.1.1. 

 

Figure 4.3.1.1. Uniaxial Tension test Setup for the warp direction of the fabric 

 

Only the warp tensile test data was used to validate the model. Additional 

considerations in the model were taken: 

• The low transversal interaction of the yarns made the Load Sharing rule 

avoidable. 

• Poisson ratio effect could be denied, because the void space between the yarns 

allows the contraction without resistance or interaction between the yarns. 

• The transversal young modulus (E2) was denied since the lack of resistance in the 

transversal direction could cause sudden failure on the warp direction. 
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• The width will be considered as 2” and the thickness as 0.011” (equivalent 

values). 

After all this considerations, the selected model was the Strength-Weibull model 

which has a similar behavior as the presented tests, Figure 4.3.1.2. 
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Figure 4.3.1.2. Kevlar® 49 warp direction uniaxial tensile stress-strain plots 

  

The crimp region was ignored and the model was shifted closely to the initial 

elastic region. The Weibull parameters calculated before were used for the model and 

those values were: σ0 = 1900 MPa and m = 7.74. In figure 4.3.1.3 the comparison, 

between these experimental tests and the simulation, is shown. 
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Figure 4.3.1.3. Kevlar® 49 warp direction uniaxial tensile tests and the simulation data 

  

From the graph, there is an underestimation of the maximum stress value 

probably due the fact that we are neglecting any interaction of the warp yarns with the fill 

yarns and/or the crimp region effect. The elastic modulus was taken from the yarn tensile 

test data, as an average of the yarns that have 17” length. Therefore, the pre-peak 

behavior acted according to the experimental data. Post-peak behavior follows the 

tendency of progressive fiber damage and has the same slope as the experimental results. 

Several properties are shown, in Table 4.3.1.1, for the three experimental tests and the 

simulation, such as the strain at the peak stress, the strength, crimp strain, and respective 

errors. The error shown on the table is less than 10% of the experimental average for 

strength and strain at peak, the strength value is 2.375 standard deviation units below the 

average. 
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Table 4.3.1.1. Properties of the experimental and simulated Kevlar® 49 tests 
 

Test Strength Strain at 
peak Crimp strain Shifted 

Number MPa mm/mm mm/mm strain peak 
Sample 1 1668 0.027 0.007 0.02 
Sample 2 1543 0.028 0.007 0.021 
Sample 3 1626 0.029 0.007 0.022 
Average 1612 0.028 0.007 0.021 
St. Dv. 64 0 0 0 

Simulation 1460 0.019 0 0.019 
Error 9.45 32.14 NA 9.52 

 

 

4.3.2. Unidirectional  2-D Analytical Model Validation 

There is some publish experimental data on unidirectional tests on CFE 

composites and CF fiber bundles [Zhou Y. et al., 2006] that will be used to validate the 

Strength-Weibull-Load Sharing-2D model. 

One type of carbon fibers (T700) with two types of matrices was investigated in 

the paper. The matrices used on the composite: neat epoxy and SiC nano-particle filled 

epoxy. The paper also evaluates the properties of the T700 CF bundles and finds the 

Weibull parameters for those bundles.   

The statistical parameters of the fiber were obtained from tension tests of T700 

fiber bundles. Three parameters were determined from the stress-strain experimental 

curves: Elastic modulus (E1), tensile strength (σf), and failure strain (εf) and their average 

values are in Table 4.3.2.1 along with the epoxy matrices properties. The Weibull 

parameters for tensile strength of the carbon fibers were calculated and can also be seen 

in Table 4.3.2.1. 
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Table 4.3.2.1. T700 and matrices properties 
 

Material T700 CF Neat Epoxy Nano-phased 
epoxy 

E1(GPa) 210 2.45 3.32 
G(GPa) 87.5 1.02 1.38 
D(µm) 5 NA NA 

Vf(or Vm)(%) 49 51 51 
m 9.03 NA NA 

σo(GPa) 2.7 NA NA 
σf(GPa) NA 89 110 
T(GPa) NA 45 55 

 

Figure 4.3.2.1 shows the experimental results of T700 CF and the simulation that 

used the Weibull modulus and the average properties previously mentioned. The 

characteristic strength was increased a small amount (σo=2.9 GPa) to compensate the 

length effect that is not included in the Weibull analysis subroutine of the model. The 

tensile stress-strain curve shows considerable amount of non-linearity. The specimen 

failed gradually after reaching the maximum stress due to the tensile strength distribution 

of fibers. The errors are tabulated in Table 4.3.2.2. 
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Figure 4.3.2.1. T700 CF bundles uniaxial tensile test and the simulation data 

 

Table 4.3.2.2. Properties of the experimental and simulated CF bundles  
 

Test Strength Strain at 
peak 

Number MPa mm/mm 
Experimental 1914 0.0105 

Simulation  1889 0.0106 
Error (%) 1.31 0.95 

 

 Regarding the experimental tests on CF-epoxy matrices, no properties were given 

on the composite; therefore the model was implemented with a simple subroutine to get 

the composite properties from the components using the rule of mixtures to determine the 

values of E and G. Corrections on those values were made to adjust them to the 

experimental data. The analysis made on both composites is shown on Figure 4.3.2.2 and 

the errors and properties are shown in Table 4.3.2.3. 
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Figure 4.3.2.2. T700 CF composites uniaxial tensile tests and the simulated data 

 

Table 4.3.2.3. Properties of the experimental and simulated CF composites 
 

Test Strength Strain at 
peak 

Number MPa mm/mm 
Experimental CF-Epoxy 1396 0.0185 

Simulation CF-Epoxy 1390 0.0191 
Error (%) 0.43 -3.24 

Experimental CF-nano 1507 0.0201 
Simulation CF-nano 1476 0.0198 

Error (%) 2.06 1.50 
 

From the graphs and tables, the model made a good approach to the real values, 

with the necessary adjustments to the Weibull characteristic strength. The elastic modulus 

calculated using the rule of mixtures was slightly higher than the experimental value 

probably due to the void content assumed in the rule of mixtures (initially zero), but after 

the correct adjustments the value was close to the experimental counterparts.  
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Pre-peak behavior acted according to the experimental data, but no information on 

the experimental post-peak behavior made the model unchecked in this region. The error 

levels shown on the table are less than 5% of the experimental data for strength and strain 

at peak, making the model trustworthy. 

 

4.3.3. Multidirectional Simplified Analytical Model Validation 

For the case of cross plied CFE laminate (tested and shown on Chapter 2), Figures 

4.3.3.1 and 4.3.3.2 show the stress-strain response of the 0p / 90t – 90t / 0p (75% of the 

fibers/yarns are aligned in the 0˚ direction while the remaining are aligned in the 90˚ 

direction) and 0t / 90p – 90p / 0t (75% of the fibers/yarns are aligned in the 90˚ direction 

and the remaining 25% in the 0˚ direction) symmetrical laminates. The curves represent 

tensile stress-strain response in those laminates.  

The final values used in the material model for the Weibull failure distribution 

were a characteristic Tsai- Hill value (TH0) of 0.75 and a modulus (m) of 4.0. Regarding 

the material elastic properties, the value of the principal direction elastic modulus (E1) 

was 85000 MPa, the major Poisson ratio (v12) was 0.25, the transversal elastic modulus 

(E2) was 6000 MPa, and the shear modulus (G12) was 1800 MPa. 
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Figure 4.3.3.1. Two 0p / 90t – 90t / 0p  laminate simulations with 320 plies compared to 
the experimental result of the same laminate configuration. 
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Figure 4.3.3.2. Two 0t / 90p – 90p / 0t laminate simulations with 320 plies compared to the 
experimental result of the same laminate configuration 
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From the graph, there is a small overestimation of the maximum stress value of 

the 0p / 90t – 90t / 0p, also the stiffness degradation is not as quickly as it is in the 

experiments, probably due the fact that we are using a wrong Weibull modulus and the 

data dispersion is greater than expected. The post-peak region behaves similarly to the 

experimental tests, with an accumulation of flaws that gives bigger load drops after the 

peak and a stress recovery after that. This behavior, due load sharing rules, simulates well 

the laminate configurations. The other laminate configuration simulation, 0t / 90p – 90p / 

0t, shows a slightly lower strength value, while the pre-peak behavior followed the 

stiffness degradation quite well. Post-peak behavior is, for the experimental tests, a 

sudden failure, while the simulation still holds the stiffness degradation, but quicker 

compared to the other laminate configuration.  

 Several properties are shown, in Table 4.3.3.1, for the experimental tests and the 

simulations, such as the strain at the peak stress, the strength, initial stiffness degradation 

stress level, and respective errors. 

Table 4.3.3.1. Properties of the experimental and simulated CFRP tests 
 

Test Strength Strain at 
peak Stress level at 

Number MPa mm/mm initial 
degradation 

Laminate: 0p / 90t – 90t / 0p 
Experimental 902 0.018 400 
Simulation 1 938 0.015 450 
Simulation 2 954 0.016 480 

Error (%) 4.65 -16.13 13.98 
Laminate: 0t / 90p – 90p / 0t 

Experimental 458 0.029 380 
Simulation 1 443 0.027 330 
Simulation 2 409 0.025 315 

Error (%) -7.51 -11.54 -17.83 
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The error shown on the table for the 0p / 90t – 90t / 0p  laminate is less than 5% of 

the experimental for strength (overestimation), while strain at the peak (underestimation) 

and the initial degradation stress (overestimation) have greater errors, probably due errors 

to determine the Weibull modulus or insufficient data for weaker tests. 

For the 0t / 90p – 90p / 0t laminate the error in the strength is less than 10% of the 

experimental result (underestimation), while strain at the peak (underestimation) and the 

initial degradation stress (underestimation) have greater errors, especially the last one, 

probably due errors to determine the Weibull modulus or the underestimation of the 90˚ 

oriented plies strength. 
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5. FLEXURAL ANALYSIS OF A BEAM REINFORCED WITH CARBON 

FIBER-EPOXY LAMINATE 

5.1. Introduction 

The bonding of steel plates to reinforced concrete (RC) structures has been a 

popular method for strengthening deficient RC structures. But in recent years, there has 

been extensive research on the use of fiber-reinforced polymers (FRP) plates and/or 

sheets to replace steel plates in plate bonding. Also FRPs have also been used for column 

strengthening by external wrapping. 

The common fibers used are carbon fibers, glass fibers and aramid fibers, whilst 

epoxy resins, polyester resins and vinylester resins are the common resins. Depending on 

the type of fibers used, FRP composites are classified as following: Carbon-Fiber-

Reinforced-Polymer (CFRP); Glass-Fiber-Reinforced-Polymer (GFRP); and Aramid-

Fiber-Reinforced-Polymer (AFRP). A useful general background on the composition of 

these materials and their mechanical properties can be found in ACI 440R. 

 The CFRP plate bonding was investigated at the Swiss Federal Laboratory for 

Material Testing and Research (EMPA) [Meier et al. 1993] where tests on RC beams 

strengthened with CFRP plates started in 1984. Being their main advantages the high 

strength-to-weight ratio and their high corrosion resistance. The former property leads to 

great ease in site handling, reducing labor cost and interruptions to existing services, 

while the latter ensures durable performance. 

Pure uniform tension, compression and shear loadings must be individually 

applied to establish the fundamental strength and stiffness properties of a composite 
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material. A flexure test, bending of a beam, typically induces tensile, compressive and 

shear stresses simultaneously. Thus is not usually as a practical mean of determining the 

fundamental properties of a composite material. Nevertheless, flexure tests are popular, 

because of the simplicity of both specimen preparation and testing. Gripping of the 

specimen, the need of tabs, obtaining pure stress state, avoiding buckling, and most other 

concerns are out of question here. 

 

5.2. Experimental Data 

 To determine the behavior of FRP reinforced concrete, several reinforced and 

unreinforced beams were tested at the Structural Laboratory at Arizona State University. 

Only CFRP samples were studied, and from those tests one and two fabric layer 

configurations were simulated. Figure 5.2.1 shows the typical equipment setup used for 

the tests. The CF fabrics used for the CFRP retrofit were provided by KPFF in a cross-ply 

configuration of stitched fabrics. The elemental properties of the CFRP were defined in 

Chapter 2. 

CF 
Laminate

Concrete 
Beam

LVDT

 

Figure 5.2.1. Setup of a CFRP reinforced concrete beam 3-point bending test 
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5.2.1. Equipment 

• In accordance to ASTM E 4, an MTS servohydraulic testing machine with a 

capacity of 55 kips was used.  All the testing procedures were developed using 

state of the art computer software.   The test machine had the following 

characteristics: 

• Testing machine heads: one stationary and one movable head. 

• Drive mechanism: capable of imparting a controllable velocity with respect to the 

stationary head.  The equipment was calibrated to 0.1% of the specifications by 

qualified and certified MTS technicians.  All calibration files are on file in the 

Structural engineering laboratory. 

• Load indicator: load range of interest of within +/- 0.1% of the indicated value. 

• Three-point bending fixtures: Fixtures which are rotationally self-aligning to 

minimize unwanted stresses in the coupon. 

• Strain indicating device: An electronic extensometer calibrated by certified 

technicians were used. The extensometer gage length had a range of 10 to 50 mm 

[0.5 to 2.0 in]. Extensometer used satisfied Practice E83, class B-1 requirements 

for the strain range and should be calibrated in accordance to the practice E83.  

• All tests were conducted in nominal room temperature of 73°F.  The temperature 

was maintained within +/-3˚C [+/-5˚F]. 
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5.2.2. Testing Procedures 

• Sampling: Concrete Beams were casted with the following dimensions: 4” x 4” x 

18”, with a distance between supports of 12”and the tested was at 1 year. 

• Retrofit: The CFRP laminates were added 35 days before the test, and pressure 

was applied to the samples during the curing time to increase the behavior of the 

beam. 

• Speed of testing: nearly constant strain rate in the gage section, the strain rate was 

selected so as to produce failure within 1 to 10 min. For the constant head speed 

tests, the displacement rate was 2mm/min [0.05in/min]. 

• Transducer installation: A LVDT fixture was mounted on the sample to get an 

accurate measurement of the sample deflection.   

• Throughout the duration of the test, the load versus strain (or transducer 

displacement) continuously at a frequency of 2 samples per second. During the 

test, any transition region or initial cracks were noted and the load, strain and 

mode of damage at such points were recorded. 

 

5.2.3. Test Data 

 The three point bending tests results for the retrofitted beams are shown in Figure 

5.2.3.1. The results are exclusive for the CFRP retrofitted samples, where 1 and 2 layers 

of CFRP reinforcement tests are shown. 
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Figure 5.2.3.1. Load Deflection curves for 1 and 2 layers of CFRP retrofitted concrete 
beams 

 

From the data can be inferred, the predominant failure mode observed for the 

CFRP retrofitted concrete beams consisted of shear cracks and debonding at the edges of 

the beam. The shear cracks can be seen in Figure 5.2.3.3 and 5.2.3.2, while the debonding 

can be observed in Figure 5.2.3.4. 
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Figure 5.2.3.2. Failed CFRP 1 layer retrofitted sample 

 

 

Figure 5.2.3.3. Failed CFRP 2 layers retrofitted sample 
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Figure 5.2.3.4. Debonding at the edges of the 2 layer CFRP reinforced concrete beam 
sample 

 

5.3. Simulation and Validation 

 In this section the algorithm of the moment-curvature and load-deflection model 

is described. The validation is made using the pre-peak experimental data from the 

Concrete retrofitted with CFE laminates as shown in Figure 5.3.1. 
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Figure 5.3.1. Load Deflection curves reduced to the pre-peak part 

 

5.3.1. Algorithm of the Model 

 The simulation procedure is illustrated as following: (note: steps that need further 

explanation such as the material models will be explained in their respective section) 

1. For concrete: input material geometry, beam width and depth, additionally some 

parameters of the constitutive behavior of the simplified material model. 

2. For CFE composite: input material geometry (cross-sectional area), and 

parameters that will define the constitutive behavior of the simplified model. 

3. Decomposition of the beam as several layers of concrete and the reinforcement, 

initialization of all parameters and properties, setup of the initial neutral axis 

location in the middle of the beam (middle layer).  
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4. Application of the first strain level at the top, giving the first values of the 

curvature, and with both of them (using beam theory) calculation of the strain at 

each layer of concrete and reinforcement. 

5. Using the constitutive behavior of each material, the stress levels of each layer is 

calculated. 

6. Knowing the areas and the stress levels, forces at each layer are calculated. 

7. Equilibrium is measured, and if the equilibrium condition is not satisfied a 

relocation of the neutral axis is calculated according to the following conditions: 

If ∑Fc > ∑Ft the neutral axis is shifted one layer up. 

If ∑Fc < ∑Ft the neutral axis is shifted one layer down. 

8.  Repetition of steps 4 through 7 until equilibrium is close to be reached. Since the 

relocation of the neutral axis is discrete, when the equilibrium keep changing 

signs, at each iteration, that will mean that the neutral axis is located between 

those layers. Therefore, that situation will mark the position of the neutral axis. 

9. Once the neutral axis position is found, the neutral axis parameter k, and the 

curvature is defined for this value. 

10. The moment is calculated using the layer forces and their distances from the 

neutral axis. 

11. Repetition of the steps 4 through 10 until the predetermined strain level. 

12. The Moment-Curvature final plot is shown and specific points of the curve are 

collected. 
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13. With those Moment-Curvature points, the Load-Deflection bilinear curve is 

plotted according to the following equations [Soranakom and Mobasher, 2007]:  

 

(5.3.1.1) 

 

(5.3.1.2) 

 

(5.3.1.3) 

 

 (5.3.1.4) 

  

Where δ means deflection, M means moment, and the suffixes bcr and u mean 

cracking and ultimate respectively. 

 

5.3.2. Materials Simplified Models 

 In this simulation two material models acting together as part of the beam were 

developed. The CFRP composite was developed using the experimental data gathered in 

Chapter 2 as a trilinear model, where each portion was well understood in Chapter 4. 

 The trilinear model is shown in Figure 5.3.2.1, there it can be seen the three parts 

of the model. In Chapter 4 the first part comprehends the linear elastic part and the initial 

cracks and failures that bring the decaying stiffness until the peak stress. This part was 

simplified and modeled as a perfectly elastic region with its stiffness reduced since it is a 
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linear fit of both elastic and initial failure regions. The second part, the strain-softening 

region, was introduced in Chapter 4 as a region were the failures were significantly 

numerous and the stiffness and capacity of the laminate were severely reduced, but not 

enough for total failure. The model also used a linear fit to approach the behavior. 

Finally, the third part, Chapter 4 described it as a quick decay of the remaining stiffness 

and capacity of the laminate, is modeled as the high slope failure of the laminate until it 

reaches a zero stress.  

 

Figure 5.3.2.1. Simplified trilinear tension model for the CF laminate 

 

 The stress-strain relation for the concrete model, in the compression region, is 

characterized by the Hognestad parabola whereas the tension region is characterized by a 

trilinear model, as shown in Figure 5.3.2.2. The Hognestad parabola is defined using the 

strength value, the strain value at the peak, and the ultimate strain. The trilinear tension 
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model is defined by the tensile strength, the strain at the peak, the tensile strain at the 

post-peak and the ultimate strain. 

 

Figure 5.3.2.2. Concrete tension/compression model 

 

5.3.3. Validation of the Model 

For the validation of the model we reduced the experimental data to the pre-peak 

part as shown in Figure 5.3.1. The model will use the following values for the concrete 

constitutive behavior: 

Number of concrete layers     = 1000 

Width (mm)             = 102            

Depth (mm)             = 102  

Ultimate Compressive Strain   = 0.003 

Strain at Peak Stress        = 0.002 
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Uniaxial Compressive Stress (MPa)   = 32 

Tensile Stress at first cracking         = 0.0001 

Uniaxial Tensile Strength (MPa)        = 8 

Tensile Strain at Post Peak        = 0.0002 

Residual Tensile Strain   = 0.35 

Ultimate Tensile Strain (strength=0) = 0.001 

 For the composite material the following values were applied to the constitutive 

behavior model (the values in parenthesis are for the 2 layer test): 

Number of layers of CFE  = 1 

Area of the layer (mm2)           = 180 (360)   

Location of the layer(s) (mm)           = 102          

Strain at peak Stress           = 0.018 

Strength (MPa)           = 900 

Post Peak Strain           = 0.0235 

Post peak Stress (MPa)  = 487 

Ultimate Strain (Stress=0)         = 0.024 

 

 The results of the 1 layer CFE laminate retrofit is shown in Figure 5.3.3.1, while 

the 2 layer retrofit is shown in Figure 5.3.3.2. One of the assumptions of the model for 

the 2 layer configuration was that the two layers acted as a single layer with twice the 

area. 
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Figure 5.3.3.1. Concrete beam retrofitted with CFE laminates (1 layer) 
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Figure 5.3.3.2. Concrete beam retrofitted with CFE laminates (2 layers) 
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 The result of the simulation for the one layer retrofitted beam simulation gave 

greater values than the ones shown on Figure 3.3.3.1. Being the maximum load 46,702 N 

at a strain of 1 mm. Therefore, the plot will show a reduced version of the graph. The 

experimental mode of failure, for this configuration, is characterized by shear and before 

any visible damage on the CFE laminate happened, debonding between the concrete and 

the laminate occurred. That is reflected, in the plot, as a lower load capacity.  

 For the two layers retrofitted beam bilinear simulation, the values are close to the 

experimental results as shown in Table 3.3.3.1. The debonding between the CFE laminate 

and the concrete happened at a later stage giving the sample a better behavior. 

 

Table 5.3.3.1. Properties of the experimental and simulated 3 point bending tests 
 

Test Load Deflection 
 N mm 

Retrofit: 1 CFE layer 
Experimental 26700 0.45 
Simulation 1 46702 1.00 

Error (%) 72 120 
Simulation 2 26850 0.45 

Error (%) 0.56 0.00 

Retrofit: 2 CFE layers 
Experimental 52730 0.94 

Simulation 58316 0.93 
Error (%) 10.10 1.06 

 

 For the two CFE layer retrofitted beam, the neutral axis factor (defined as the 

position of the neutral axis form the top divided by the depth of the beam) is shown in 

Figure 5.3.3.3 for several strain levels, while the displacement of it is shown on Figure 
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5.3.3.4. The constitutive behavior of the concrete is shown in the beam for several strain 

levels in Figure 5.3.3.5. 

 

Figure 5.3.3.3. Neutral axis factor k for several strain levels 

 



 

 

113

 

Figure 5.3.3.4. Neutral axis location in the 2 layer retrofitted beam 

 

 

Figure 5.3.3.5. Stress-Strain Concrete curve for several strain levels  
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 The moment curvature plot, shown in Figure 5.3.3.6, shows the deflection 

softening characteristic of samples with low post-peak tensile strength.  

 

 

Figure 5.3.3.6. Moment-Curvature plot for the 2 CFE layer retrofitted beam 
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6. SUMMARY AND CONCLUDING REMARKS 

 The development of a material model to predict the behavior of carbon fiber 

composites and its application for reinforcing/retrofitting concrete beams was 

accomplished in this thesis. As shown on Chapter 4, the different scales of the model can 

be applied to different types of fibers and composite tests subjected to tensile loads. 

 The simulation of the reinforced concrete beams subjected to three point bending 

were developed using a bilinear model (load deflection curve) for one and two layers of 

retrofitted carbon fiber composites (CF using a trilinear model). The simulation can be 

carried for several different composites acting as an additional reinforcement for the 

concrete beam; the principal restriction of the model is that the reinforcement must be 

continuous along the beam length. Those reinforcements can also be taken as internal 

steel rebars or layers of cement AR glass composites, commonly used to this type of 

retrofit. 

 

6.1. Experimental Results 

 The accuracy of the CFRP laminate tests, tension, compression and shear, 

depends mostly on the equality of the composite preparation, the damage on the fibers 

and the testing conditions.  

Damage of the fibers is made during the manufacturing process, the handling of 

the fibers and the stitching process, therefore is something out of our control. The 

composite preparation depends on the manufacturing procedure, including environmental 

conditions (temperature, humidity, etc.), applied pressure on the finished laminate, 
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volume fraction control, void content, etc. Most of the samples tested were given to us 

directly from the field conditions, therefore control of those factors were also out of our 

reach. Some samples were manufactured in the laboratory to make a comparison on 

applied pressure effects, alignment of the principal direction yarns, etc. The most 

important being the applied pressure on the laminate during consolidation, since it has a 

direct effect on the void volume and the volume fractions of the composite. The testing 

conditions were the only factor that we really could manage well. We tried to keep the 

environmental conditions, gripping and clamping conditions, and general procedure as 

close as possible between tests to minimize effects from that factor. 

All the samples came from very similar applied pressure conditions, lab errors 

also to the minimum; therefore the experimental characterization of those samples was 

with a medium to low variability. As seen on Chapter 2, the modulus errors were small, 

and the strength values were close, but their difference is better explained as part of the 

distribution of strength inherent in the fiber manufacturing conditions.  

Errors were found on the composite manufacturing conditions. Flaws such as lack 

of impregnation, high void contents were not common, and those made a big difference 

on the results and therefore were taken out of the experimental analysis.   

 

6.2. Validation Results 

 Depending on the specific conditions or the complexity several models were 

developed. The first division was to consider specific orientations, unidirectional or 
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multidirectional. Inside the unidirectional model classification, further classifications 

were taken such as the effects of load sharing and cell configuration for load distribution. 

The first model, based solely on the Weibull strength distribution, works better 

with yarn tests, which do not have load interaction between the fibers that compose the 

yarn filaments. This assumption taken to model the behavior of Kevlar® 49 warp 

direction uniaxial tensile tests gave results with errors of 10%, due the fact that the 

interaction between warp and fill yarns was ignored. The friction that the geometric 

arrangement gives to the fabric and the restriction in the z-direction during loading must 

not be ignored for future studies. The model was later used to model the T700 CF yarns 

with a respectable accuracy of 1% error. For both validations the model gave an accurate 

behavior of the stress-strain curves. 

The second model added the simplified load sharing rule, which means that 

applies better to composites, where the load can be transferred to other laminae. With 

proper considerations and a better understanding of the warp-fill yarn interaction this 

model can be used to predict with reasonable accuracy those tests. 

And finally, the third model used a 2-D cell geometry to give a better interaction 

between the laminae and the possibility of the creation of transversal cracks due stress 

concentrations and load sharing rules. From the data in Chapter 4, you can see clearly the 

stages of the transversal crack formations. The prediction, based on yarn test data, for 

T700 CF and epoxy matrices gave an accuracy of around 2%. Post peak behavior could 

not be analyzed due the lack of data. 
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On the other side, the multidirectional models, three subsequent models were 

developed based on the Tsai-Hill criterion. The first model used the Tsai-Hill criterion 

alone to give instant failure values. The second model couples the Weibull distribution 

with the Tsai-Hill criterion to evaluate failure at a distribution of those Tsai-Hill values 

(below 1). Even using the random generation of the Tsai-Hill failure value, the behavior 

of the curve is unaltered from the laminate point of view. That means that for the same 

Weibull parameters and material properties, the stress-strain curve follows the same path 

for the laminate analysis. The random behavior for the laminate was truly introduced in 

the model update, third model, using the load sharing rule allowing sudden failures of 

other laminae, and reducing the stiffness and strength overall. This model was tested with 

the experimental data of Chapter 2 for two specific configurations giving good results for 

strength and general behavior. The sudden drop on the stiffness, in the elastic part, could 

not be mimicked by the model probably due some uncounted variables such as void 

content or a slight change in orientation of certain laminae. Another possible variable is 

that Tsai-Hill method over predicts the compression strength of the laminae, therefore 

allowing the laminate to carry additional load without failure. 

 

6.3. Retrofitted Beam Results 

 Chapter 5 dealt with both experimental and analytical results of the retrofitted 

concrete beam tests. The experimental results failed under shear and debonding 

conditions. The simulation based on a very simplified composite model (trilinear model) 

based its failure criteria on material failure and the predictions were much higher 
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compared to the experimental data. The validation was adjusted later to the strain level 

were debonding occurred and the data was reasonable accurate. The behavior prediction, 

even if it was a bilinear load-deflection curve, was accurate. The model is prepared for 

using different materials, but the proper composite constitutive behavior must be used for 

each specific case. 

 

6.4. Future Work 

 Cement base composites, brittle matrix, can be used in the 2-D cell model with 

some additional features, such as matrix cracking, pullout and bridging effects added for 

the individual cells. 

 The CFRP laminate tests could not provide with accurate Weibull values, 

therefore yarn tests would be mandatory for future characterization of the CF fabrics.  

Pullout tests can be used as a base for getting the interaction values of the warp-

fill yarns. Coupled with a strong knowledge of the interaction the unidirectional models 

can be improved to make an increase in the accuracy of the predicted values.  

Experimental data for the three point bending retrofitted concrete beam tests is 

available for Cement-AR Glass and Cement-PE composites. Tensile modeling of those 

materials can be deduced and tested with available data in order to model the beam 

behavior and further the model validation and limitations. 
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Figure A.1. CFRP configuration A tension tests  
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Figure A.2. CFRP configuration B tension tests 
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Figure A.3. CFRP configuration C tension tests 
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Figure A.4. CFRP configuration A tension tests 
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Figure A.5. CFRP configuration D tension tests 
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Figure A.6. CFRP configuration A shear tests 
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Figure A.7. CFRP configuration B shear tests 
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Figure A.8. CFRP configuration C shear tests 
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Figure A.9. CFRP configuration A shear tests 
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Figure A.10. CFRP configuration D shear tests 
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Figure A.11. CFRP configuration A compression tests 
 



 

 

136

 

0 0.02 0.04 0.06
Axial strain, in/in

0

20000

40000

60000
S

tre
ss

, P
si

ISPC-CB01

0

100

200

300

400

St
re

ss
, M

Pa

0 0.01 0.02 0.03 0.04
Axial strain, in/in

0

10000

20000

30000

40000

50000

S
tre

ss
, P

si

ISPC-CB02

0

100

200

300

400

St
re

ss
, M

Pa

 
 

0 0.02 0.04 0.06
Axial strain, in/in

0

20000

40000

60000

S
tre

ss
, P

si

ISPC-CB03

0

100

200

300

400
St

re
ss

, M
Pa

0 0.02 0.04 0.06
Axial strain, in/in

0

20000

40000

60000

S
tre

ss
, P

si
ISPC-CB04

0

100

200

300

400

St
re

ss
, M

Pa

 
 

0 0.01 0.02 0.03 0.04 0.05
Axial strain, in/in

0

20000

40000

60000

S
tre

ss
, P

si

ISPC-CB05

0

100

200

300

400

St
re

ss
, M

Pa

0 0.02 0.04 0.06 0.08
Axial strain, in/in

0

20000

40000

60000

S
tre

ss
, P

si

ISPC-CB06

0

100

200

300

400

St
re

ss
, M

Pa

 
 

Figure A.12. CFRP configuration B compression tests 
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Figure A.13. CFRP configuration C compression tests 
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Figure A.14. CFRP configuration A compression tests 
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Figure A.15. CFRP configuration D compression tests 
 


