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Toward a Fundamental Understanding of Worked
Example Instruction: Impact of Means-Ends

Practice, Backward/Forward Fading, and Adaptivity
Roxana Moreno Martin Reisslein Geethani Mayanthi Delgoda

Abstract— Recent research has demonstrated that worked ex-
ample based instructional designs can effectively foster learning
of engineering concepts and are supported by contemporary
educational theories, including cognitive load theory. However,
a number of interrelated fundamental questions, which have
neither been addressed in the educational psychology nor in the
engineering education literature, remain open including: (A) What
is the impact of means-ends practice? (B) What is the effect of
backward vs. forward fading of worked example steps? and (C)
What is the effect of adaptivity to learner performance? The goal
of the present study was to answer these questions by comparing
the learning and perceptions about learning of engineering college
freshman who learned how to solve electrical circuit problems in
five different computer-based learning conditions: (1) problem
solving with step-by-step feedback, (2) means-ends problem solv-
ing with total feedback, (3) backward fading, (4) forward fading,
and (5) adaptive feedback. Forward fading and adaptive feedback
practice promoted more students’ near problem solving transfer
ability than backward fading practice. Furthermore, the adaptive
feedback practice group outperformed students in the backward
fading practice group on measures of far problem solving transfer.

Index Terms— Adaptivity, cognitive load, electrical circuit anal-
ysis, fading, problem solving, worked examples.

I. INTRODUCTION

Instructional designs based on worked examples, which
consist of the problem statement, the individual solution steps,
and the statement of the final solution, can be effective in
initial cognitive skill acquisition [1], [2]. One main challenge
in these instructional designs is to foster the acquisition of
problem solving skills so that the learners can efficiently
advance from studying worked examples to solving problems
independently [3]. Recent cognitive load research has found
evidence that fading the solution steps of worked examples
(as described in Sec. II.B.c) during practice helps students
transition from studying whole worked examples to solving
problems on their own. A smooth transition from studying
worked examples to problem solving through fading of worked
solution steps has been recently proposed as an effective
method to reduce cognitive load during learning [4].

While the fading instructional design has started to demon-
strate its potential in efficiently fostering skill acquisition, a
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number of fundamental, interrelated questions about worked-
example instructional designs have has not yet been addressed,
especially in the engineering education literature. These open
questions include: (A) What is the effect of means-ends prac-
tice, where students attempt to solve an entire problem and later
receive summative feedback at the end, compared to step-by-
step practice, where students are asked solve one step at a time
and receive feedback after each individual attempted solution
step? And, how do these practices compare to fading? (B) What
is the effect of backward fading, where the last solution steps
are faded first (and attempted by the learner first), compared to
forward fading, where the first solution steps are faded first?
(C) Does feedback adaptivity increase learning performance?

We answer these research questions with a rigorous experi-
mental study with five conditions that represent each one of the
practice methods of interest: problem solving with total feed-
back (PS-T), problem solving with step-by-step feedback (PS-
S), backward fading (BF), forward fading (FF), and adaptive
feedback (A). While much of the existing research on worked-
example based instructional designs has been conducted with
social science students learning probability or mathematics,
we conducted our study with engineering students learning
electrical circuit analysis.

A. Related Work
In this section we briefly review the existing research that is

closely related to our study. A significant amount of cognitive
load research has examined the benefits of using worked-out
examples to promote students problem-solving transfer ability.
For example, Sweller and colleagues found that, compared to
learning by solving problems with a means-ends method, learn-
ing with example-problem pairs–where a worked-out example
is followed by an isomorphic problem to-be-solved, increased
near transfer [1], [5]–[7]. This finding has been called in the
cognitive load literature the worked example effect [8]. The
goal of more recent research, such as the present study, is to
extend research on worked example effects by focusing on the
optimal conditions for learning from examples [9]. Some of the
existing studies include examining practice methods that either
present more or less information in the solution steps, one or
multiple solutions, subgoal highlighting, more or less integrated
verbal and visual representations of the problem solutions,
and mixed modality representations of problem solutions [10].
Additional research has also been conducted to examine the
role of presenting more or less worked examples during a
practice session, more or less variability of surface and structure
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features, and different sequencing of worked example and
practice problems [11]–[13].

Despite this prolific work, relatively little research on
worked-example design has been conducted in the area of
engineering education. For example, Reisslein and colleagues
only recently started extending this line of research to the
area of electrical circuit analysis learning. In one study, they
examined the effect of the format (textual or graphical) and pre-
sentation (automatically provided by the learning environment
or requested by the learner) of worked examples for high school
students [14]. The findings showed that the textual format and
automatic presentation are more effective. In a second study,
backward fading practice was compared to example-problem
pair practice, where students were given a worked-out problem
example followed by a practice problem [15]. Finally, a third
study examined different speeds of backward fading the worked
solution steps [16].

The present study, therefore, extends the existing research
on worked-example effects in three ways: (a) By examining
how the traditional means-ends practice method (where stu-
dents are given summative feedback after completing an entire
problem), affects engineering students learning and perceptions
about learning. Although means-ends practice is commonly
used in engineering education, to our knowledge, there is no
research that examined its effectiveness as compared to other
practice methods. (b) By examining how backward and forward
fading practice methods affect engineering students learning
and perceptions about learning. The effectiveness of these
methods was only tested with freshman psychology students
learning probability theory [4], [9]. (c) By examining how
an adaptive feedback method combined with fading practice
affects engineering students learning and perceptions about
learning. Although recent research in engineering education
examined the role of adaptivity of the fading speed [17], the
effects of adapting the type of feedback provided to students,
based on their errors, is still unknown.

II. METHOD
A. Participants and design

The participants were 99 undergraduate freshman students
enrolled in an introductory engineering course at a southwest-
ern university (17 females and 82 males).

B. Materials and apparatus
1) Computer-Based Learning Environment: A computer-

based learning environment served as a platform for the deliv-
ery of the instructional content on the principles of calculating
the total resistance in parallel electrical circuits and for allowing
the participants to practice their newly acquired electrical
circuit analysis skills. The program had four main sections,
(1) an Introductory Overview, (2) a Pretest, (3) Practice, and
(4) Attitude Survey.

The introductory overview contained basic instruction on the
fundamental concepts of electrical circuits, such as electrical
current, voltage, and resistance. This instructional material also
presented the participants with steps for calculating the electri-
cal current, voltage, and resistance in parallel electrical circuits.

The information contained in this material was concise and
was presented on four screens. It introduced the participants
to (a) the physical meaning and units of electrical current,
voltage, and resistance, (b) electrical circuit elements, such
as light bulbs and batteries, and the way circuit elements are
connected with wires in parallel electrical circuits, (c) the
physical meaning and units of resistance as well as Ohm’s
Law, and (d) the calculation of the total resistance in a parallel
circuit.

The program explained how to calculate the total resistance
for the parallel circuits from basic principles, namely Ohm’s
Law and the properties of currents and voltages in the electrical
circuits. The program presented the resistance values of the
individual circuit elements (resistors) in the electrical circuit
and the value of the voltage provided by the battery into
the circuit. It also instructed the participants to abide by the
following three steps in the calculation of the total resistance
of the parallel circuit. First, it showed that the voltage is the
same over each individual resistor and that the calculation
of the value of the current flowing through each individual
resistor is done using Ohm’s Law. Second, it showed that the
calculation of the total current flowing in the circuit is carried
out by summing up the currents flowing through the individual
resistors. Third, the total resistance of the parallel circuit is
calculated using Ohm’s Law as the voltage provided by the
battery divided by the sum of the currents determined in step
two.

After the Introductory Overview section, the participants
completed the pretest, see Section II-B.2.a. After completing
the pretest, the participants proceeded to practice the steps
in solving parallel electrical circuit analysis. The computer-
based instructional environment presented a set of instructional
examples/problems, with three distinct solution steps each, on
computing the total resistance in parallel circuits. Each step
was clearly labeled and visually distinguished from the other
steps. The program allowed the participants to linearly navigate
through the individual examples/problems, revealing one step at
a time. This navigation permitted the participants to control the
pace of their learning. The program allowed the participants to
proceed through the module by clicking on the ”Next Problem”
buttons after all three steps in each problem had been displayed.
The participants were not allowed to return to previous steps
and problems once they had finalized their answers.

The module had been programmed to operate in one of five
modes that corresponded to the five experimental conditions,
which are illustrated in Table I. In all conditions the participants
first had the opportunity to study one worked example (WE).
They then worked through three problems (P1, P2, and P3) with
a varying number of worked solution steps (denoted by the step
number) or steps to be solved (denoted by an ”S” followed
by the step number) according to the different experimental
conditions. The number of problems was held constant across
the five treatment conditions, while the number of steps that the
participants solved independently varied: nine in the problem
solving conditions, six in the fading conditions, and six or
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TABLE I

INSTRUCTIONAL SEQUENCE OF EXAMPLES/PROBLEMS

Problem number
Condition WE P1 P2 P3
Problem Solving Step 1 S1-ef S1-ef S1-ef
with step-by-step Step 2 S2-ef S2-ef S2-ef
feedback (PS-S) Step 3 S3-ef S3-ef S3-ef

Problem number
Condition WE P1 P2 P3
Problem Solving Step 1 S1 S1 S1
with total Step 2 S2 S2 S2
feedback (PS-T) Step 3 S3 S3 S3

ef ef ef

Problem number
Condition WE P1 P2 P3
Backward Step 1 1 1 S1-ef
Fading (BF) Step 2 2 S2-ef S2-ef

Step 3 S3-ef S3-ef S3-ef

Problem number
Condition WE P1 P2 P3
Forward Step 1 S1-ef S1-ef S1-ef
Fading (FF) Step 2 2 S2-ef S2-ef

Step 3 3 3 S3-ef

Problem number
Condition WE P1 P2 P3
Adaptive Step 1 1 1 S1-af-ef
Feedback (A) Step 2 2 S2-af-ef S2-ef

Step 3 S3-af-ef S3-ef S3-ef

Note: The steps denoted by the numerals 1, 2, or 3 were
provided worked out. The steps denoted by S1, S2, and S3
required a solution attempt by the learner. Feedback was in the
form of explanatory feedback (ef) or adaptive feedback (af).

more according to correctness of solution steps in the adaptive
feedback condition. The feedback was generally in the form of
explanatory feedback (ef), except for the adaptive transitioning
condition, which employed both corrective and explanatory
feedback as detailed shortly.

a) Problem solving with step-by-step feedback (PS-S):
The learner was only presented with one instructional example
(WE) in the practice section of the program. All subsequent
three problems required the learner to attempt an indepen-
dent solution of all three problem steps. The learner received
explanatory feedback after each entered solution step. More
specifically, the learner typed in the solution for the first
solution step and clicked ”Enter”. In case the entered solution
was correct, the learning environment confirmed the correctness
of the entered solution. If the entered solution was incorrect,
the learning environment explained how to solve the step
correctly and provided the correct solution. The learner then
was given an opportunity to study the explanatory feedback
and the correct solution and clicked on ”Continue” to proceed
to the next solution step. The correct solution for the preceding
step remained on the screen.

b) Problem solving with total feedback (PS-T): In the
PS-T condition the learner received feedback after attempting
all three solution steps (means-ends solution attempt). In par-

ticular, after entering all three solution steps the learner was
provided with corrective feedback on all correctly solved steps
and explanatory feedback on all incorrectly solved steps.

c) Backward Fading (BF) and Forward Fading (FF):
With backward fading, the learners first studied a worked
out example, i.e., the learners only viewed the three solved
problem steps/subgoals. As illustrated in Figure 1, in the first
problem (P1), the first two steps/subgoals were solved and the
learners had to attempt solving the third step/subgoal. In the
second problem (P2), only the first solution step/subgoal was
worked out and the learners had to attempt solving the second
and third solution step/subgoal. In the third problem (P3), the
learners had to attempt solving all three solution steps/subgoals
independently.

Forward fading was analogous but required the learners to
attempt the first solution step in problem 1, the first two steps
in problem 2, and all three steps in problem 3. Throughout,
the learners received feedback after each individual attempted
solution step, analogous to the PS-S condition. If a solution
attempt was correct, the correctness was confirmed. If a solu-
tion attempt was incorrect, the learning environment provided
explanatory feedback and the correct solution.

d) Adaptive Feedback (A): This condition was similar to
the backward fading condition in that the learners were required
to attempt the last solution step in problem 1, the last two
solution steps in problem 2, and all three steps in problem
3. In contrast to the backward fading condition, however, the
navigation through the worked example and the three problems
adapted to the correctness of the solution attempts of the
leaner. In particular, if a solution attempt was correct, the
learning environment confirmed the correctness of the attempt
and proceeded as in the static backward transitioning condition.

If the learner was asked to solve a solution step for the
first time, i.e., step 3 in problem 1, step 2 in problem 2, and
step 1 in problem 3, and the attempt was incorrect, then the
learning environment proceeded as follows. The learner was
first provided with corrective feedback, i.e., only a note that the
solution attempt was incorrect, but neither the correct solution,
nor an explanation how to obtain the correct solution. Then, the
learning environment showed the worked example (WE) once
more to the learner, this time with the incorrectly attempted step
highlighted and with a note instructing the learner to study how
to solve the step correctly. Then, the learner was taken back
to the incorrectly attempted solution step and given another
chance at solving the step. If this second attempt was correct,
then the learning environment provided corrective feedback.
If the attempt was incorrect, then the learning environment
provided explanatory feedback and proceeded as in the static
backward transitioning condition to the next solution step or
problem.

If the learner attempted a solution step that s/he had had
the opportunity to attempt independently before, i.e., step 3 in
problem 2, and steps 2 and 3 in problem 3, and the attempt
was incorrect, then the learning environment proceeded as in
the static backward fading condition. That is, if the solution
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attempt was correct, then the learning environment provided
corrective feedback, whereas it provided explanatory feedback
if the attempt was incorrect.

2) Criterion Measures:
a) Pretest: The pretest contained 6 problems (internal

reliability of .73) and was designed to measure the participant’s
knowledge of the topic.

b) Near transfer posttest: The near transfer test was
designed to assess students’ ability to transfer their problem
solving skills to solve an isomorphic set of problems. In partic-
ular, the near transfer test consisted of four items that required
the participants to engage in the same problem-solving tasks as
in the learning (computer) phase. Two engineering instructors
scored the transfer test questions (inter-rater reliability 98.5 %).

c) Far transfer posttest: The far transfer test was designed
to assess students’ ability to transfer their problem solving
skills to solve a novel set of problems. Four far-transfer prob-
lems were included which had different underlying structure
and different surface features than the practice problems within
the computer-based learning environment. The far transfer
problems contained only the individual resistance values and
the current flowing through one of the resistors. The partici-
pants were required to calculate the current provided by the
battery. In order to solve the transfer problems the participants
had to apply the same basic principles (Ohm’s law, basic
properties of voltages and currents in parallel circuits) as in the
practice problems, but the sequence in which these principles
were deployed and the circuit element to which Ohm’s Law was
applied varied from the practice problems and from the solution
steps presented in the introductory overview. Two engineering
instructors (inter-rater reliability 99.8 %) scored the far transfer
test questions.

d) Attitude Survey: The program rating questionnaire was
a 16-item instrument asking participants to rate their learning
perceptions on a 5-point scale which ranged from 0 (Strongly
disagree) to 4 (Strongly agree) and had an internal reliability
of .94. Using principal axis estimation, a factor analysis was
conducted to reduce and validate the ratings for the 16 question-
naire items into an aggregated factor-based scale. Three factors
were extracted using Kaiser’s criterion accounting for 73% of
the variance of students’ ratings. The first factor consisted of
three items about the interest in the engineering domain (factor
coefficients .77, .92, and .89). The second factor consisted of
two items (factor coefficients .92 for both) about the perceived
difficulty of the instructional program, an indirect measure
of cognitive load. The third factor assessed students’ general
perceptions about the helpfulness of the instructional program
(factor coefficients ranging from .57 to .89). The internal
reliability of the interest, cognitive-load, and helpfulness scales
was .88, .83, and .80, respectively.

III. PROCEDURE
The participants were randomly assigned into one of the

five different conditions. Each participant was seated in front
of a Windows-based desktop computer and instructed to work
independently of her/his peers. First, the participants studied

the initial training materials within the computer-based learning
environment, and then completed the pretest. Subsequently
the participants studied one worked-out example and worked
through three problems in the computer module. During this
phase the experimental variation took place. After finishing the
practice problems, the participants were administered an atti-
tude survey by the computer-based learning environment. The
paper-based posttest requiring independent problem solving of
eight problems was handed out last.

IV. RESULTS
Statistical assumptions were evaluated using graphical plots

and statistical tests. Only minor and statistically non-significant
departures from the assumptions of normality and homogeneity
of variances were noted. Alpha was set at .05 for all statistical
tests and an appropriate adjustment was made (i.e., Bonferonni)
when conducting multiple tests. Table II shows the mean
scores M and corresponding standard deviations SD for the
five groups (each consisting of around N = 20 subjects) on
measures of pretest, near and far transfer tests, and interest,
cognitive-load and helpfulness ratings.

A. Near- and Far-Transfer Achievement
The achievement data were subjected to a multivariate

analysis of covariance (MANCOVA) using treatment condition
as the between-subjects factor, near and far transfer scores
as the dependent measures, and students’ pretest score as
a covariate. The analysis revealed significant differences on
the dependent variables between treatment conditions, Wilks’
λ = .81, F (8, 184) = 2.55, p = .01. Separate ANCOVAs using
treatment condition as between-subject factor and students’
pretest score as a covariate, were conducted on each dependent
variable as follow-up tests to the MANOVA.

A significant treatment effect was found on near transfer,
F (4, 93) = 2.82, MSE = 32.53, p < .05, partial η2 =
.11, and far transfer, F (4, 93) = 2.55, MSE = 48.31,
p < .05, partial η2 = .10. Post-hoc Tukey tests revealed
that students who learned with forward fading and adaptive
feedback outperformed students who learned with backward
fading on measures of near transfer and that students who
learned with adaptive feedback outperformed those who learned
with forward and backward fading on far transfer measures.

B. Attitudes
We compared students’ perceptions about learning in the

three scales with a MANOVA, using treatment condition as
the between subject factor and students’ scores on the three
program-rating scales (interest, cognitive load, and helpfulness)
as the dependent variables. The MANOVA revealed no signif-
icant difference between treatment groups on any of the three
scales, Wilks’ λ = .94, F (12, 241) = .51, p = ns.

V. DISCUSSION
A. Impact of Means-Ends Practice

This study did not find a significant difference between
step-by-step feedback (PS-S condition) and total feedback
(PS-T condition) during practice. This result is contrary to
what cognitive load theory would predict. From a cognitive
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TABLE II

MEAN SCORES AND CORRESPONDING STANDARD DEVIATIONS ON PRETEST, NEAR AND FAR TRANSFER TESTS, AND INTEREST, COGNITIVE LOAD, AND

HELPFULNESS RATINGS FOR FIVE GROUPS

Type of Measure
Pretest Near Transfer Far Transfer Interest Cogn. Load Helpfulness

Groups M SD M SD M SD M SD M SD M SD
PS-S (N = 21) 5.29 1.38 10.20 3.04 6.90 4.29 2.51 1.22 1.24 0.80 2.94 0.65
PS-T (N = 19) 4.58 1.84 9.11 3.53 6.42 4.63 2.39 1.21 1.22 0.88 2.90 0.88
BF (N = 20) 4.40 1.82 7.58 4.86 4.25 4.62 2.22 0.76 1.30 0.68 2.66 1.06
FF (N = 20) 5.05 0.95 11.05 2.78 5.05 5.08 2.58 0.84 1.35 0.81 2.79 0.55
A (N = 19) 4.74 1.56 10.84 2.74 8.44 4.34 2.09 0.98 1.18 0.75 2.86 0.47

Note: Scores ranged from 0 to 6 for the pretest, from 0 to 12 for the near and far transfer tests, and from 0 to 4 for the interest,
cognitive load, and helpfulness scores. PS-S stands for problem solving with step-by-step feedback, PS-T stands for problem
solving with total feedback, BF stands for backward fading, FF stands for forward fading, and A stands for adaptive feedback.

load perspective, the step-by-step feedback has the benefit of
allowing the learner to immediately verify the correctness of a
solution attempt while the corresponding problem step is still
in working memory. On the other hand, total feedback forces
the learner to hold the entire problem in working memory
at once. Consistent with this view, we expected that step-by-
step feedback would promote learning for two reasons. First,
it reduces cognitive load as compared to practicing with total
feedback. Second, it provides students with immediate rather
than delayed feedback, which is one of the identified charac-
teristics of effective feedback in educational research. More
specifically, in the total feedback condition, if a student makes
an error in an early step, then the subsequent solution steps—
and thus the final answer to the problem—will necessarily be
incorrect because the error will carry on to the subsequent
solution steps.

However, the alleged differences in either amount of cogni-
tive load and promptness of feedback did not have a significant
impact on students problem solving transfer in our study.
Although the near and far transfer scores were somewhat lower
in the PS-T condition than the PS-S condition, this difference
was not statistically significant.

A possible interpretation of this finding is that the materials
were not challenging enough to show significant differences
between these two practice treatments. This hypothesis is
also supported by the lack of significant differences between
treatments on students perception about learning. As can be
seen from Table II, students reported very similar levels of
interest in the domain (with above average mean scores), very
similar levels of cognitive load (which had low mean values
for all conditions), and gave very similar ratings of program
helpfulness (which had high mean values for all conditions).
The easiness of materials can, at least, help explain the lack
of differences on the near transfer measure, where students
are presented with problems that have an identical underlying
structure and solution as the problems with which they practice.
In terms of far problem solving transfer, we can only observe
that the direction of the scores favors both groups who were
asked to produce a solution before being shown the correct
response (PS-T and PS-S) compared to the two groups that

were shown the correct response before attempting a solution
(FF and BF). This tendency is consistent with the interactivity
principle in instructional design, which supports the design of
instructional technologies that engage students in hypothesis
testing and manipulation of new information [18]. In sum, the
materials may not have been difficult enough to have taxed
students’ limited cognitive resources. Unless cognitive load is
high, methods aimed at reducing cognitive load, such as fading,
will be ineffective and methods aimed at increasing students
cognitive activity, such as problem solving, will be effective.

B. Impact of Backward and Forward Fading
The result that forward fading outperformed backward fading

may also be explained as due to the fact that the materials were
easy to learn. For example, according to the expertise reversal
effect [19], once a learner has acquired some basic skill, further
skill acquisition is more effectively fostered by engaging in
problem solving and receiving feedback rather than by studying
worked examples. In the context of this study, the learners
may have had sufficient initial knowledge after completing the
introductory overview and the worked example. Hence, they
benefited more from own practice and receiving feedback rather
than being presented with the worked solution. The fact that
forward fading engages learners in problem solving at the very
first step of each new problem may have been the cause of
their enhanced learning. Conversely, backward fading practice
presents the solution steps for the first steps of a problem and
only asks students to engage in problem solving for the final
steps. This delay in prompting students to engage in their own
problem solving may have limited the cognitive activity of
learners in the backward fading condition and therefore, hurt
learning.

C. Impact of Adaptive Feedback
One of the most interesting findings of this research is that

feedback adaptivity provided a significant learning advantage
that extended over both, near- and far-problem solving transfer.
The benefit of adaptivity may arise from seeing the problem
step that the learner just missed in the context of a different
example that is completely worked out. Switching back and
forward between problems that share structural characteristics
but differ in surface characteristics may have promoted a deeper
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understanding of the electrical engineering principles learned
in the computer lesson. The transfer of the correct worked
solution to the missed problem step apparently leads to a deeper
understanding of the underlying structure of the problems [12].
This deeper understanding in turn enabled the learners in the
adaptive feedback condition to perform significantly better on
the far-transfer posttest problems, which required the transfer
of the principles learned during the practice phase to entirely
different solution step sequences.

VI. CONCLUSION
This study has important theoretical and practical impli-

cations for engineering education. Theoretically, it supports
cognitive load theory by showing that forward fading, a practice
method that engages students in solving and mastering the ini-
tial steps of problems first, promotes near transfer. According to
cognitive load theory, when students are learning how to solve
problems of moderate to low difficulty, because the intrinsic
load of the materials is low, there is sufficient working memory
capacity to engage students in higher cognitive activity levels,
such as when they are asked to first attempt a solution before
receiving feedback [19]. In this regard, our study replicates the
findings of past research in botany science, where students who
were given the opportunity to attempt a solution before being
given principle-based feedback, outperformed those who were
given a model solution on problem solving transfer [18].

Likewise, cognitive load theory would explain the near and
far problem solving transfer benefits for the adaptive practice
condition as the result of the additional cognitive activity
that students engaged in during practice. More specifically,
cognitive load theory would argue that asking students to
compare their solution to a model solution to learn from their
mistakes, may have created ”germane” load, a type of load
that is necessary to promote deeper learning [20]. However, it
is important to note that more research with materials of low
and high difficulty levels is needed to confirm our conclusions
further.

The practical implications of this research are clear. First,
our results suggest that the total feedback method provided
in typical in-class practices, may be as effective as providing
feedback after each individual problem step is attempted by
the learner, especially if the problems to-be-learned are not
too complex. Second, the findings suggest that, when new
instructional materials have low intrinsic cognitive load, once
the principles to-be-learned and a worked out example are
presented, it is most efficient to ask students to attempt the
first steps of isomorphic problems to promote near transfer.
Third, our research also suggests that if the instructional
objective is to help students transfer the principles learned to
solve novel problems with different underlying structures (far
transfer), then, asking students to compare the solution of a
target problem to that of a given worked example may be
most effective. Future research in engineering education should
investigate further the promising method of adaptive feedback
by testing problem solving practice conditions for a variety of
topics and difficulty levels.
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