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ABSTRACT Random linear network coding (RLNC) is a popular coding scheme for improving commu-
nication and content distribution over lossy channels. For packet streaming applications, such as video
streaming and general IP packet streams, recent research has shown that sliding window RLNC approaches
can reduce the in-order delay compared with block-based RLNC. However, existing sliding window
RLNC approaches have prohibitive computational complexity or require feedback from the receivers to
the sender. We introduce caterpillar RLNC (CRLNC), a practical finite sliding window RLNC approach that
does not require feedback. CRLNC requires only simple modifications of the encoded packet structure and
elementary pre-processing steps of the received coded packets before feeding the received coding coefficients
and symbols into a standard block-based RLNC decoder. We demonstrate through extensive simulations that
CRLNC achieves the reliability and low computational complexity of block-based RLNC, while achieving
the low in-order delays of sliding window RLNC.

INDEX TERMS Computational complexity, delay, random linear network coding (RLNC), sliding window.

I. INTRODUCTION
Random Linear Network Coding (RLNC) [2]–[4] is an
increasingly popular method for efficiently transferring data
in complex, chaotic, or lossy communication networks and
systems. RLNC is well suited for wireless networks [5]–[13],
data storage systems [14]–[17], and content distribution sys-
tems [18]–[22]. RLNC became practical through the intro-
duction of block based RLNC approaches, which are also
referred to as generation based RLNC approaches [23]–[25].
Block based RLNC partitions a large message or long
data stream into several blocks (generations), whereby each
block consists of g successive source symbols. The block
based RLNC encoder and decoder operate only on the sym-
bols within a given block at a time. This block-by-block
operation enables RLNC encoding and decoding with low
computational complexity compared to operating on the
entire message or data stream. Thus, block based RLNC
enables efficient, practical RLNC encoding and decoding
with currently available CPU capabilities and memory archi-
tectures. However, the block-by-block operation introduces
relatively large delay for coding all source symbols in the
generation together in so-called full vector block based

RLNC [4], [25] or for waiting for the coded packets at the end
of the generation for recovering dropped packets in so-called
systematic block based RLNC [26]–[28]. Alternatively, block
based RLNC strategies that reduce the introduced delay, e.g.,
through distributing the coded packets among the source
symbols for fast recovery of dropped symbols [29], incur
higher source symbol drop probabilities. The drop probabili-
ties increase because a given coded packet protects on average
fewer source symbols since the range of protected source
symbols is limited to within the current generation.

Recent RLNC research has developed sliding window
RLNC approaches to achieve low in-order delivery delay
for the source symbols without compromising the reliability
of source symbol delivery [30]. The in-order delay is an
important metric for all forms of streaming applications,
such as multimedia streams and regular IP packet streams.
Sliding window RLNC does not operate on distinct blocks of
source symbols; instead, sliding window RLNC operates on
source symbols within an encoding window that slides over
the sequence of source symbols. Existing sliding window
RLNC requires feedback for advancing the tail (closing)
end of the encoding window, see Section II-C for details.
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Without feedback, the window grows very large. Thus, slid-
ing window RLNC has prohibitive computational complexity
and memory requirements in networks without feedback.

In this paper, we introduce a new RLNC approach,
the Caterpillar RLNC (CRLNC) approach, that closes the gap
between block based RLNC and sliding window RLNC in
networks without feedback. Akin to the crawling locomotion
of a caterpillar [31], CRLNC slides a finite encoding win-
dow covering we successive source symbols across a stream
of source symbols. We introduce a novel CRLNC packet
structure that contains signalling information for the accu-
rate RLNC decoding at the receiver. The CRLNC receiver
operates with a decoding window that covers wd successive
source symbols. The decodingwindow is advanced according
to the signaling information in the arriving CRLNC packets.
The CRLNC decoder conducts pre-processing of the received
coding coefficient vectors and symbol vectors to maintain
a specific ‘‘shifted version’’ of the reduced row echelon
form of the receiver coding coefficient matrix. After the
pre-processing, the symbols can be decoded with a standard
block-based RLNC decoder.

Our extensive evaluations indicate that CRLNC achieves
essentially the same levels of reliability (packet loss prob-
ability) as block based RLNC. In contrast to block based
RLNC, which has relatively high in-order delivery delay,
CRLNC achieves essentially the same low in-order delivery
delays as sliding window RLNC. However, CRLNC does not
have the prohibitive computational complexity and memory
demands of sliding window approaches without feedback;
instead, CRLNC has essentially the same low computational
complexity and memory requirements as block based RLNC.

The remainder of this paper is structured as follows.
Section II provides background and a literature review on
related RLNC approaches. Section III gives an overview of
the proposed CRLNC approach and describes the CRLNC
encoding mechanism and packet format. Section IV intro-
duces the CRLNC decoding mechanisms. Section V evalu-
ates the performance of the proposed CRLNC in comparison
to existing RLNC approaches. Section VI summarizes
the conclusions from this study and outlines future work
directions.

II. BACKGROUND AND RELATED WORK ON RLNC
A. OVERVIEW
RLNC [4], [32] linearly combines source (original data) sym-
bols over a Galois field GF(q) to create coded (redundant)
symbols. Source symbols can be represented as row vectors
of elements of GF(q). In typical network settings, such as
Ethernet, with a maximum transfer unit of 1500 bytes and a
Galois field size q = 28, an Ethernet frame is represented
using m = 1500 elements of GF(28). Shorter frames are
padded with zeros at the end.

We note that one research direction on network coding for
low-delay communication has developed alternative coding
approaches, e.g., coding based only on XOR operations,
which essentially corresponds to networking coding for the

special case of the binary Galois field GF(2) [33]–[39].
In contrast, we consider RLNC with a general Galois field
GF(q), which achieves the optimal throughput [4], [35] and
has negligible linear dependencies of the coding coefficient
vectors for sufficiently large Galois fields, e.g., GF(28).
Another research direction has explored adaptations of var-
ious network coding parameters based on feedback from
the receivers to the sender, see e.g., [40]–[45]; in contrast,
we consider a network setting without feedback. A few
related studies have examined network coding in specific
networking contexts, e.g., in the context of delay-tolerant
networks in [46], for video delivery in [47] and [48], for
industrial networks in [49] and [50], and for sensor net-
works in [51]. We consider a general network context without
feedback.

B. BLOCK BASED RLNC
Block based RLNC [24], [25] groups source symbols into
equally sized ‘‘blocks’’ of g subsequent source symbols
each. Such a block is also called a ‘‘generation’’, and g is
called the generation size or block size. Conventional block
based RLNC creates nc, nc ≥ 0, coded symbols to protect the
block of g source symbols. The coding step can be expressed
as matrix multiplication of a coefficient matrix C (consisting
of g + nc rows and g columns of coefficients in GF(28))
with the source symbol matrix X (consisting of g rows and
m columns). For systematic block based RLNC [26]–[28],
the top g rows of the coefficient matrix C consist of a g × g
identity matrix, whereas the bottom nc rows of C represent
the random coefficients for generating the redundant coded
symbols. The result of the matrix multiplication

Y = CX (1)

gives for systematic block based RLNC g rows containing
the original source symbols, followed by nc coded symbols,
whereby each symbol consists of m elements (bytes with
GF(28)) Note that for conventional block based RLNC, the
coding window size is effectively we = g and the code rate is
R = g/(g+ nc), as illustrated for g = 4 in Fig. 1(a).
A plethora of studies has examined the throughput-delay

performance of block based RLNC, see e.g., [52]–[67],
including for specific link layers, such as the LTE and
WiMAX link layers [68]–[71]. Dynamic adaption of the
generation size of block based RLNC has been examined
in [23] and [72]–[74], while multi-generation mixing, which
jointly encodes the source symbols from multiple successive
generations, has been studied in [75]–[78] and RLNC with
overlapping blocks has been investigated in [79] and [80].
The Pace variation [29] of block based RLNC uniformly
distributes the nc coded symbols among the g source symbols
to enable fast recovery of dropped symbols without waiting
for the end of the generation. When applying Pace to the
example in Fig. 1(a), the first coded symbol is shifted up to
linearly combine the first two source symbols in a generation,
whereas the second coded symbol in a generation still linearly
combines all g = 4 source symbols in a generation. Thus,
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Fig. 1. Examples for the compared systematic RLNC coding schemes
with the code rate R = 2/3. Systematic (uncoded) source symbols are
represented by a single blue dot on a horizontal line. Multiple blue dots
on a horizontal line indicate the specific source symbols that are
combined to generate a coded symbol. E.g., block-based RLNC in
part (a) combines the first four source symbols to generate each
of the first two coded symbols. (a) Systematic block-based RLNC, g = 4.
(b) Finite sliding window, CRLNC, we = 4, ns = 2. (c) Pace RLNC, g = 4.
(d) Infinite sliding window, ns = 2.

the first two source symbols are protected by two coded
symbols, whereas the last two source symbols are protected
by only one coded symbol, as illustrated in Fig. 1(c). Overall,
block based RLNC approaches are not well suited for packet
streaming applications as they introduce either high delays or
compromise the reliability.

C. SLIDING WINDOW RLNC
Sliding window RLNC [30], [81]–[84] does not group the
source symbols into artificial blocks or generations. Instead,
all source symbols within a consecutive sequence of source
symbols are considered for creating coded symbols. This
consecutive sequence of source symbols is referred to as slid-
ing window. Appending new source symbols to the bottom
(end) of this sequence of symbols is commonly referred to as
opening the window. In contrast, removing source symbols
from the top (beginning) of the sequence is referred to as
closing the window. This sliding window RLNC has demon-
strated superior delay properties for streaming applications
compared to block based RLNC [30], [81]–[84]. However,
the existing sliding window RLNC studies generally assume
an infinite sliding window, or a sliding window of dynamic
size, which is closed by feedback [85]–[91]. Reliable feed-
back is not available in some networks. Without feedback,
dynamic window approaches need to store all symbols, i.e.,
require essentially an infinite sliding window. An infinite
sliding window is impractical, mainly due to prohibitive stor-
age requirements. Therefore, we propose CRLNC, a prac-
tical sliding window approach with a fixed-sized window
that can be efficiently implemented without feedback.
CRLNC combines the good delay properties of sliding

window RLNC with the efficiency and reliability properties
of conventional block based RLNC.

The code rate in sliding window RLNC is commonly
controlled by the number of source symbols ns that are sent
before one coded symbol, i.e., the code rate is R = ns/
(ns + 1). More specifically, for systematic infinite sliding
window RLNC, ns uncoded source symbols are sent followed
by one coded symbol, as illustrated for ns = 2 in Fig. 1(d).
A given coded symbol is obtained by linearly combining all
preceding source symbols of the considered source symbol
sequence.

To the best of our knowledge, finite sliding window
RLNC has received relatively little research attention to date.
An initial comparison of a finite sliding window RLNC
approach with a block based forward error correction (FEC)
approach based on Reed-Solomon codes has recently been
presented in [92]. In contrast, we focus on RLNC throughout
and consistently compare block based RLNC with finite and
infinite sliding windows. We consider the in-order delay over
burst error (two state) channels, whereas only a memoryless
channel without the in-order requirement was considered
in [92]. In addition, we provide detailed specifications of
efficient practical algorithms for finite sliding window
RLNC encoding and decoding.

III. PROPOSED CATERPILLAR RLNC (CRLNC):
OVERVIEW AND ENCODING
For our proposed CRLNC, we use a finite sliding encoding
window of size we, we ≥ ns. The CRLNC encoder uses
the last we source symbols to create a coded symbol, while
the code rate is fixed at a prescribed R = ns/(ns + 1) as
in conventional sliding window RLNC. A CRLNC example
with encoding window size we = 4 and code rate R = 2/3,
which implies ns = 2 uncoded source symbols between two
successive coded symbols, as illustrated in Fig. 1(b). We note
that the code rate R accounts for the coding overhead due to
one coded symbol per ns source symbols. The code rate R
does not account for the overhead required for the packet
headers that are introduced in Section III-B and illustrated
in Fig. 2.

A. SETTING AND OVERVIEW
We focus on network streams where a consecutive sequence
of source symbols with source symbol sequence number i,
i = 0, 1, 2, . . ., are to be transmitted in order, from a single
source to one or multiple destinations. We focus on intra-
session RLNC which combines symbols from a single given
stream to create redundant coded symbols. We propose a
systematic sliding window RLNC scheme with a prescribed
finite encoding window size we in terms of the number of
successive source symbols that are combined to form a coded
symbol. The main notations are summarized in Table 1.
The coded symbols are created using RLNC [4], combining
only the source symbols within the sliding encoding win-
dow of fixed size we. The window size constraint we limits
the computational complexity, the required memory at all
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Fig. 2. Packet format consisting of header (containing block number for
block based RLNC and packet sequence number sp for CRLNC and coding
coefficients cηi ) and payload (containing uncoded source symbol or coded
symbol) for example parameters of Fig. 1. The coding coefficient cηi
specifies how source symbol i is included in the linear combination to
form the corresponding (ηth) coded symbol. The coefficient of the latest
source symbol is highlighted through shading in each row. (a) Block RLNC
packets for g = 4, R = 2/3. (b) Caterpillar RLNC (CRLNC) packets for
we = 4, ns = 2, R = 2/3.

TABLE 1. Summary of main notations.

network nodes, and the overhead in each packet. We pro-
ceed to introduce the CRLNC encoding and the format of
the coded packets in Section III-B. The CRLNC decoder is
introduced in Section IV.

B. CRLNC ENCODING AND PACKET FORMAT
A packet carries a symbol, i.e., either an uncoded source
symbol or a coded symbol, over the network channel.
A packet consists of a header, which contains auxiliary infor-
mation and the coding coefficients, as well as the packet
body (packet payload), which contains the symbol data.
We note that there are various sophisticated header compres-
sion schemes, e.g., [81], [93], [94] However, for simplicity,
we consider only a simple elementary header representation
in this study. For ease of terminology, we refer to a packet
carrying an uncoded source symbol as a ‘‘source packet’’ and
to a packet carrying a coded symbol as a ‘‘coded packet’’.

For block based RLNC, the auxiliary information is the
block number as indicated in the left-most column in the
example illustrated in Fig. 2(a). As illustrated in Fig. 2(a)
for g = 4, the coding coefficient row vector has the fixed
size of g coefficients. For an uncoded (systematic) source
symbol, the coding coefficient vector is a unit vector with a

one at the respective index representing the position of the
source symbol within the block, e.g., for source symbol i = 2
in Fig. 2(a), the coefficient vector is (0, 0, 1, 0). For a
coded packet, the coding coefficient cηi indicates how source
symbol i is included in the linear combination of the source
symbols in the block to obtain the ηth coded packet. For block
based RLNC, the coefficient vector in a coded packet can be
represented as a simple ordered sequence of g coefficients cηi ,
e.g., as c44, c

4
5, c

4
6, c

4
7, in the bottom packet in Fig. 2(a), since

the correspondence of a coding coefficients to the correct
respective source symbol is signalled through the block id
number and the ordering of the cηi in the packet header.
In contrast, as a sliding window approach, CRLNC lacks

the block id number.We propose to signal the correspondence
between coding coefficients and source symbols as follows.
First, we define the packet sequence number sp: For a source
symbol, which is transmitted uncoded with the considered
systematic RLNC, the packet sequence number sp is set equal
to the source symbol sequence number i. For a coded packet,
the packet sequence number sp is set to the highest source
symbol sequence number i that has been considered for form-
ing the coded symbol. In other words, from the perspective of
a coded packet, the packet sequence number sp indicates the
last source symbol that was included in the linear combination
to form the coded symbol carried in the considered coded
packet.

Second, we place the coding coefficient cηi correspond-
ing to source symbol i at position i mod we among the
we coding coefficient row vector positions, i.e., the positions
0, 1, . . . ,we−1 for coding coefficients in the packet header,
as illustrated for we = 4 in Fig. 2(b). For instance, the coding
coefficients corresponding to source symbol i = 5 are placed
at position 5 mod 4 = 1, i.e., at the second position from
the left among the coding coefficient positions in the packet
header. With this format, the coding coefficient cηi for a
specific source symbol number i and coded packet number η
can always be found at a well-defined prescribed position.
This specific positioning of the cηi will be utilized by the
decoder to efficiently build the decoding matrix.

We note that both schemes exhibit an overhead of we
elements of GF(q) for the coding coefficients, which could
be compressed [81], [93], [94]. In addition, the packet header
has to carry the block number for block RLNC, while
CRLNC requires the packet sequence number sp in the packet
header. With a block containing g source symbols, the packet
sequence number sp field in the packet header requires log2 g
more bits than the block number field to index the same total
number of source symbols. This additional CRLNC over-
head of log2 g bits is negligible for typical communication
settings.

IV. CRLNC DECODING
A. GENERAL CONVENTIONAL DECODING APPROACH
In general, the decoding step is the inversion of the encod-
ing. For a block based scheme, the receiver collects g lin-
early independent coding coefficient vectors in the receiver
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coding coefficient matrix R with the corresponding matrix of
received symbols Ȳ. The source symbols can be reconstructed
by Gaussian elimination that computes the coefficient matrix
inversion and multiplication:

X = R−1Ȳ (2)

with computational complexity O(g3) [95]. Note that this
general decoding approach operates on one block at a time in
constant memory, similar to the block based RLNC encoder.
After a block is decoded, or a symbol from the next block is
received, the matrices R and Ȳ can be cleared and reused for
decoding the next block.

B. OVERVIEW OF CRLNC DECODING: ITERATIVE
GAUSSIAN ELIMINATION
In contrast to the conventional general decoding of a block of
g symbols, we iteratively update the receiver coding coeffi-
cient matrix and decode symbol by symbol. Formally, we let
wd , wd ≥ we, denote the decoding window size in number
of considered successive packets. For ease of explanation,
we initially focus on the special case where the decoding
window equals the encoding window, i.e., wd = we; we
subsequently explain the extension of the presented decod-
ing approach to general wd values in Section IV-D. We let
R denote the receiver coding coefficient matrix consisting of
wd rows and wd columns of GF(q) elements.

Our overall strategy is to keep the receiver coding coef-
ficient matrix R in a ‘‘shifted version’’ of the conventional
reduced row echelon form. The conventional reduced row
echelon form (row canonical form) [95] has (i) nonzero rows
with at least one non-zero element above the rows with all
zeros, and (ii) the leading coefficient, i.e., the first nonzero
element from the left (often referred to as the pivot), of a
nonzero row strictly to the right of the pivot of the row
above the considered row, and (iii) each pivot equal to one
as the only nonzero element in its column. The ‘‘shifting’’
moves the position of the pivot of the top-most row of the
matrix R relative to the fixed memory locations holding the
matrix elements as the sequence number of the received
packets increases, as explained in detail in Section IV-C.
The shifting is neglected for now, as we explain the overall
CRLNC decoding strategy.

The CRLNC decoding strategy is to iteratively solve the
system of linear equations of the form of Eqn. (2) with
Gaussian elimination. More specifically, let Rt denote the
receiver coding coefficient matrix in reduced row echelon
form at a given time t . Suppose that a new packet is received
over the communication channel at time t + 1. The updated
receiver coding coefficient matrix Rt+1 is formed as follows.
First, the newly received coding coefficient (row) vector is
inserted into the matrix Rt (the specific inserting procedure
will be explained in Section IV-C), resulting in an interme-
diate matrix R′t (that is no longer in reduced row echelon
form). Then, Gaussian elimination is applied to trans-
form the intermediate matrix R′t into reduced row echelon
form to yield Rt+1. This Gaussian elimination step can be

conducted with a slightly modified version of the stan-
dard block-based RLNC tools [96]; specifically, the standard
RLNC tools expect the top-most pivot in the upper left of the
coding coefficient matrix, whereas our modification allows
for arbitrary column positions of the top-most pivot.

If a row of the obtained receiver coding coefficient matrix
Rt+1 consists of a single one and all remaining row elements
are zero, then the corresponding symbol has been success-
fully decoded. The successfully decoded symbol can then be
delivered to the next higher communication protocol layer,
possibly after ensuring that in-order delivery constraints are
satisfied.

In conventional infinite sliding window RLNC, the size of
the receiver coding coefficient matrix is not bounded. Every
preceding received packet in a packet sequence could be
required for decoding a given packet. In contrast, we design
CRLNC decoding to operate with a receiver coding coeffi-
cient matrix R with limited size of wd , wd ≥ we, rows and
wd columns ofGF(q) elements (and a corresponding received
symbol matrix Ȳ holding at most wd rows and m columns
of GF(q) elements). In order maintain the size limit of the
receiver coding coefficient matrix R, we remove a coding
coefficient row vector from R if the coding coefficient row
vector can no longer be fully held in R as the sequence
number of received packets advances. In particular, when
the decoder receives a new packet with sequence number sp,
all rows with a nonzero coefficient at a column position
corresponding to a sequence number less than sp − wd + 1
are removed from R, as explained in detail in Section IV-C.2.

C. INSERTING ARRIVING PACKETS INTO R: SHIFTING
OF THE ROW ECHELON FORM
This section explains the details of inserting the coding coef-
ficient row vector from packets arriving to the receiver into
the receiver coding coefficient matrix R. The symbols from
arriving packets are correspondingly inserted into the receiver
symbol matrix Ȳ. More specifically, we introduce the pre-
processing manipulations that have to be made to the receiver
coding coefficient matrix R such that the infinite stream of
incoming packets with the proposed CRLNC approach of
finite sliding window RLNC can be processed with the mod-
ified block based RLNC decoder outlined in Section IV-B.
For ease of explanation, we initially consider a decoding
window equal to the encoding window, i.e., wd = we. Recall
from Section III-B that sp denotes the sequence number of
an arriving packet. We define the sequence number sd of
the decoder as the highest packet sequence number that the
decoder has received thus far. When a new packet arrives,
the matrix R has to be manipulated based on the sequence
number of the packet sp and the sequence number of the
decoder sd . There are three distinct cases to consider.

1) SAME SEQUENCE NUMBER: sp = sd
An arriving packet with a sequence number sp equal to the
decoder sequence number sd can, for instance, be a coded
packet that follows an uncoded packet, e.g., the coded packet

VOLUME 5, 2017 20187



S. Wunderlich et al.: CRLNC: A Practical Finite Sliding Window RLNC Approach

Fig. 3. Example illustrations of the three different cases for inserting the coding coefficient row
vector from a newly received packet with sequence number sp into the receiver coding
coefficient matrix Rt with decoder sequence number sd . In the example, the encoding window
size we and decoding window size wd are equal to eight, i.e., we = wd = 8. The red line
represents the latest sequence number. White spaces indicate zero-valued coefficients. (a) Same
sequence number sp = sd : packet is inserted. (b) sp > sd : increment sd , erase rows with nonzero
coefficients at sequence numbers less than sp −wd + 1 = 12− 8+ 1 = 5. (c) sp < sd : packet can
only be inserted because of the zero coefficients at sequence number positions 1 and 2.

carrying the coded symbol 0–3 in Fig. 2b. The coding
coefficient row vector of the received packet aligns perfectly
with the decoder coding coefficient matrix Rt , that is, the

column positions in both the packet and the decoder matrix
correspond to the same sequence numbers, as illustrated for
an example with wd = 8 for sp = sd = 10 in Fig. 3a.
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Thus, the packet can be directly inserted into the present form
of the receiver coding coefficient matrix Rt to obtain the
intermediate matrix R′t . The decoder then applies Gaussian
elimination to R′t so as to obtain the updated matrix Rt+1 in
reduced row echelon form.

2) NEW PACKET: sp > sd
If the newly arriving packet has a higher sequence number
sp than the decoder sequence number sd , then the decoder
sequence number needs to be advanced, implying a shift of
the reduced row echelon form of Rt , as illustrated in Fig. 3b
for sp = 12 and sd = 10. Moreover, coding coefficient
row vectors that cannot be fully held in Rt+1 after the
shift are deleted. That is, coding coefficient rows with non-
zero elements at column positions corresponding to sequence
numbers less than sp−wd + 1 need to be removed. In partic-
ular, in the example in Fig. 3b, the first (top-most) coding
coefficient row in Rt on the left, has a one at the col-
umn position corresponding to sequence number 3, which
is less than sp − wd + 1 = 5. Hence, this top-most coding
coefficient row can no longer be fully held and needs to
be removed as the decoder sequence number is advanced
to sd = 12.

The remaining coding coefficient vectors in Rt that can
still be fully held after the advance of the decoder sequence
number sd remain at their memory locations. The decoder
sequence number sd is advanced to sp, resulting in the shifted
reduced row echelon form illustrated in the middle in Fig. 3b.
Now, the column positions of decoder matrix and received
packet align to correspond to the same sequence numbers and
the packet can be inserted into the decoder matrix to obtain
the intermediate matrix R′t .
Subsequently, Gaussian elimination is applied to R′t so

as to restore the reduced row echelon form in Rt+1 on the
right in Fig. 3c. Notice that with the advance of the decoder
sequence number to sd = 12, the reduced row echelon form
has shifted to have the top-most pivot in the position corre-
sponding to sequence number 5. Also, the receiver coding
coefficient matrix now (after the advance to sd = 12) covers
the sequence number range 5 through 12.

3) OLD PACKET: sp < sd
A newly arriving old packet with sp < sd can only be used
if all non-zero coding coefficients of the coding coefficient
row vector (covering the sequence number range sp, sp −
1, . . . , sp − we + 1) of the arriving packet fall within the
sequence number range sd , sd − 1, . . . , sd −wd + 1 covered
by the decoder matrix. In other words, the old packet can only
be used if all coefficients outside of the sequence number
range that is currently covered by the decoder window are
zero. When checking these sequence numbers it is critical
to keep in mind the specific placement of coding coeffi-
cients according to the CRLNC packet format introduced in
Section III-B, i.e., the coefficient cηi corresponding to source
symbol sequence number i is placed in column position i
mod we.

In the example with sp = 8 and sd = 10 illustrated
in Fig. 3c, the newly arriving packet has zeros in the col-
umn positions corresponding to sequence numbers 9 and 10
in Rt (these column positions correspond to sequence num-
bers 1 and 2 from the packet’s perspective). Thus, the newly
arriving old packet can be inserted intoRt without losing any
non-zero coding coefficient. The situation would be different
if there were non-zero elements in these column positions
corresponding to sequence numbers 1 and 2 from the packet’s
perspective. Then, the packet could not be inserted into Rt
since the non-zero elements in the column positions corre-
sponding to sequence numbers 1 and 2 from the packet’s
perspective would align with the sequence numbers 9 and 10
from the decoder’s perspective.

D. EXTENSION TO DECODING WINDOW wd > we

The CRLNC decoding approach has so far been described
for the special case when the decoding window size wd
equals the encoding window size we. The CRLNC decoding
operates analogously for decoding windows larger than the
encoding window, as illustrated in Fig. 4, for an example
with wd = 8 and we = 4. The longer decoding window
can permit the decoding of more packets and reduce the
loss probability, as quantitatively examined in Section V-D.
In particular, newly received packets may help in the success-
ful decoding of older packets that are still kept in the decoding
window. In the example illustrated in Fig. 4, the decoding of
the rows with the ones in the column positions corresponding
to sequence numbers 5 and 6 is aided by the newly received
packet with sequence number sp = 10, since the second non-
zero elements in these rows at sequence number 7 receive
an additional non-zero element at sequence number 7 in the
newly received packet. (Note that with a decoding window of
wd = we = 4, the rows with the ones at sequence numbers
5 and 6 would already have been erased—and consequently
constitute losses—since for sd = 10, the decoding window
would only cover the sequence numbers 10, 9, 8, and 7.)

Fig. 4. Example illustration of decoding with wd = 8 > we = 4.

However, when the sequence number range covered by the
encoding windows of the newly received packets has moved
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past the second nonzero coefficient of an older packet, then
the decoding of the older packet is not further aided by the
newly received packets. Consider for instance, the decoding
of the top-most row in Fig. 4 with a one in the column position
corresponding to sequence number 3 and the second non-
zero coefficient at sequence number 4 (this scenario can arise
when the packet with sequence number 4 is dropped by the
channel). The decoding of this top-most row is not aided by
the newly received packet with sequence number sp = 10 as
the newly received packet only covers the sequence numbers
from 7 to 10.

E. SEQUENCE NUMBER REPRESENTATION
The sequence numbers need to uniquely identify the pack-
ets within the decoding window wd , wd ≥ we. The
sequence number behaviors of sliding window protocols
have been extensively studied for communication networks,
see e.g., [97]–[100]. For the general setting of a transport
channel that can lose, duplicate, and reorder sent packets,
the sequence number space, i.e., the number S of unique
sequence numbers, needs to cover at least twice the window
size plus the maximum lifetime of packet in the network
divided by the minimum packet transmission time [99].
We envision CRLNC RLNC mainly for low-latency appli-
cations, which will typically have limited packet lifetimes in
the network. Nevertheless, as for the wide range of existing
network protocols based on the sliding window protocol prin-
ciple, the sequence number space requires careful considera-
tion in our proposed CRLNC.

F. CRLNC DECODING COMPLEXITY ANALYSIS
By design, the CRLNC decoder has a storage complexity of
w2
d elements of GF(28) for the receiver coding coefficient

matrix R and mwd elements of GF(28) for the corresponding
symbols (packet data) in Ȳ. In addition, the decoder has to
store the decoder sequence number sd , which requires log2 S
bits for the sequence number range S. Note that by the design
of the decoding process, the receiver symbol matrix Ȳ holds
the decoded symbols until they can be delivered in order to
the receiving application (or a symbol loss is determined).

In terms of computational complexity, the processing of g
arriving packets at the decoder requires g times the execution
of the coding coefficient row vector insertion described in
Section IV-C. Each coding coefficient row vector insertion
requires a constant computational complexity for advanc-
ing the decoder sequence number and deleting rows, see
Section IV-C.2. In particular, for each increment in the
received packet sequence number sp, at most one row will be
removed from the matrix Rt . This is due to the row echelon
form of the matrix Rt . More specifically, by the definition
of row echelon form, a matrix R ∈ GF(q)m×n with columns
c1, c2, . . . , cn in row echelon form has at most x rows with
nonzero elements among the columns c1, c2, . . . , cx .
In addition, each coding coefficient row vector insertion

requires a computational complexity ofO(w2
d ) for re-creating

the reduced row echelon form, i.e., for completing the trian-
gulation steps followed by the backward substitution steps
to re-create the reduced row echelon form. Thus, the overall
computational complexity for processing a sequence of wd
source packets in the CRLNC decoder is O(w3

d ), which is
equivalent to the computational complexity of a conventional
block based RLNC decoder. We further quantify the com-
putational complexity by evaluating the number of symbol
vector operations for both CRLNC and block based RLNC
decoding in Section V-E.

V. CRLNC EVALUATION
A. SIMULATION SETUP
For the CRLNC evaluation, we implemented a time-slotted,
stochastic discrete event simulator. The simulator models
a sender-receiver process with a binary erasure channel.
We compare the packet loss probabilities and the in-order
packet delays of the proposed finite sliding window CRLNC
approach with conventional block (generation) based RLNC,
with the Pace approach [29], and with infinite sliding window
RLNC [30], [81]. We define a packet loss to occur when a
source symbol (source packet) has not been decoded when it
is shifted out of the decoding window (in CRLNC), or when
the next block is started (in block based RLNC), or when
the simulation replication is completed (in infinite window
RLNC). That is, a packet loss occurs when a sent source
symbol cannot be recovered (decoded) by the decoder at the
receiver. The packet loss probability is defined as the long-
run proportion of the number of source symbols that have not
been decoded to the total number of sent source symbols.

We consider in-order packet delivery at the receiver. The
decoder delivers a newly decoded packet to the next higher
protocol layer if the immediately preceding packet has
already been delivered or the decoder has determined that the
preceding packet cannot be recovered anymore.We define the
in-order packet delay as the number of elapsed time slots from
the time instant when a source symbol is pulled by the RLNC
encoder (at the sender) from the next higher protocol layer
(e.g., the network layer) to the time instant when the source
symbol is delivered in order by the decoder to the next higher
protocol layer at the receiver. We assume that the RLNC
encoding and decoding computation times [101], [102] and
the channel propagation delay are negligible compared to a
packet transmission time slot.

In the simulator, we considered an infinite field size, which
avoids linear dependencies of the coefficient vectors. That is,
every received coded packet increases the rank of an incom-
plete decoding matrix. In practice, a sufficiently large finite
field [30], e.g., GF(28), can be used to achieve equivalent
results, as we have verified through comparisons between the
simulator and a proof-of-concept implementation based on
Kodo [96] with GF(28).
We consider a discrete-time Gilbert-Elliot channel

model [103], [104] with γ denoting the transition probability
from the ‘‘good’’ state, where all packets arrive, to the ‘‘bad’’
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Fig. 5. Packet loss probability as a function of code rate R for Caterpillar RLNC (CRLNC) with encoding window sizes we, we = {8, 32, 128} compared to
conventional block (generation) based RLNC and Pace with block sizes g = we and infinite sliding window RLNC for different expected numbers E [B] of
successive channel packet drops. Fixed parameters: CRLNC decoding window wd = we; channel packet drop probability πB = 5 %. (a) E [B] = 2. (b)
E [B] = 4. (c) E [B] = 8.

state, where all packets are dropped. The parameter β denotes
the transition probability from the ‘‘bad’’ state to the ‘‘good’’
state. We set the transition probabilities γ and β to give
a prescribed steady-state probability for the ‘‘bad’’ state
πB = γ /(γ + β), which corresponds to the expected long-
run channel packet drop probability, and the expected sojourn
time in the bad state E[B] = 1/β, which corresponds to the
expected number of successive packet drops on the channel.

For each evaluation scenario, we conduct 103 independent
replications, each simulating the transmission of 106 source
symbols (source packets). The resulting 95 % confidence
intervals are smaller than 2 % of the corresponding sample
means and are not shown in the plots to avoid visual clutter.

B. PACKET LOSS
Fig. 5 shows the packet loss probabilities as a function of the
code rate R for different expected numbers E[B] of successive
packet drops on the channel. We observe from Fig. 5 that
CRLNC with a given encoding window size we achieves
(i) slightly lower loss probabilities than conventional
block (generation) based RLNC with block size g = we,
and (ii) substantially lower loss probabilities than Pace with
block size g = we. Block based RLNC is restricted to attempt
the recovery of packets dropped on the channel within each
given individual block. In particular, if the number of received
coded packets is equal to or larger than the number of dropped
source packets within a block, then all dropped source packets
can be recovered. On the other hand, if the number of dropped
source packets within a block exceeds the number of received
coded packets, then none of the dropped source packets can
be recovered and become lost packets for the evaluation.
Block based RLNC attempts the recovery on a block-by-
block basis, i.e., moves the decoding window effectively in
steps of complete blocks.

In contrast, CRLNC slides (advances) the decoding win-
dow as specified in Section IV-C; i.e., the decoding window
advances by one sequence number position with a newly
received in-order source packet, or by n sequence number
positions if the preceding n − 1 source packets have been
dropped. For each given position of the decoding window,
CRLNC recovers dropped source packets if the number of

received coded packets is equal to or larger than the number
of dropped source packets within the particular range of
packets covered by the decoding window. For small expected
numbers E[B] of successive channel packet drops, CRLNC
thus advances the decoding window in smaller steps and has
more chances for packet recovery than block based RLNC,
which effectively advances the decoding window in steps
of complete blocks, i.e., in steps of g source packets. Thus,
CRLNC achieves slightly lower packet loss probabilities than
block based RLNC.

The substantially higher Pace loss probability is due to the
distribution of the coded packets among the source packets
in Pace. This distribution of the coded packets provides only
weak protection for the source packets at the end of a gener-
ation. Specifically, the first source packet is protected by all
nc coded packets of the generation, whereas the last source
packet is protected by only one coded packet. This distribu-
tion of the coded packets results in non-uniform protection
levels for the source packets in a generation. That is, source
packet towards the end of a generation experience a higher
loss probability than source packets near the beginning of a
generation [29]. Thus, the source packets in Pace are on aver-
age protected by fewer coded packets than in conventional
block based RLNC and in CRLNC. Pace leads therefore to
substantially higher packet loss probabilities, as observed
in Fig. 5.

Fig. 5 also confirms that for increasing encoding window
size we and block size g, the CRLNC and block based RLNC,
respectively, approach the low loss probability achieved
by infinite sliding window RLNC. Infinite sliding window
RLNC, in turn, exhibits a jump to high packet loss probabil-
ities when the code rate R becomes so high that the long-run
ratio of the number of coded packets to the number of source
packets drops below the channel packet drop probability πB.
In other words, when the code rate R (ratio of source symbols
to sum of source symbols and coded packets) exceeds the
theoretical channel capacity of 1 − πB packets per time slot
then there are too few coded packets to recover the source
packets that are dropped by the channel.

We furthermore observe from Fig. 5 that CRLNC and
block based RLNC exhibit higher packet loss probabilities
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Fig. 6. Mean in-order packet delay as a function of code rate R for range of CRLNC encoding window sizes we compared to conventional block
(generation) based RLNC and Pace with block sizes g = we and infinite sliding window RLNC for different expected numbers E [B] of successive
channel packet drops. Fixed parameters: CRLNC decoding window wd = we; channel packet drop probability πB = 5 %. (a) E [B] = 2.
(b) E [B] = 4. (c) E [B] = 8.

for longer expected bad channel sojourn times E[B], i.e., for
higher mean numbers of successive packet drops on the chan-
nel. Infinite sliding window RLNC is not affected by E[B]
since any dropped source symbol can be recovered over a
long time horizon of future coded packets (provided the code
rate R is less than the channel capacity 1 − πB). In contrast,
CRLNC and block based RLNC can only recover dropped
source packets within the finite decodingwindowwd . For low
code rates R, R < 1 − πB, CRLNC and block based RLNC
can recover individual channel packet drops (occurring with
probability πB) that are sufficiently far spaced apart to have
more coded packets than dropped source packets within the
decoding window. However, increased expected bad channel
sojourn times E[B] tend to increasingly ‘‘clump’’ the channel
packet drops together. Consequently, it becomes increasingly
likely that there are more dropped packets than coded packets
within the decoding window, making the recovery of channel
packet drops impossible and leading to actual packet losses.

C. IN-ORDER PACKET DELAY
Fig. 6 plots the mean in-order packet delay as a function of
the code rate R for different expected bad channel sojourn
times E[B]. We observe from Fig. 6 that the infinite sliding
window RLNC delay increases with the code rate R. With a
higher code rate R, R→ 1, there are more (R/(1−R)) source
packets between successive individual coded packets. Thus,
the recovery of a dropped source packet has to wait longer
until sufficiently many coded packets have been received.
This waiting is exacerbated for long E[B] when the channel
typically drops multiple successive source packets.

For CRLNC, we observe from Fig. 6 for low code rates R
the same low delays as with infinite sliding window RLNC,
while achieving shorter delays than block based RLNC
(except for the E[B] = 8 scenario). For increasing code
rates R, the CRLNC delays flatten out while climbing slightly
above the block based RLNC delays. For low code rates R,
individual coded packets are interspersed frequently among
the source symbols, e.g., with R = 1/2, every second packet
is a coded packet, while for R = 2/3 every third packet is a
coded packet. Thus, with infinite sliding window RLNC and
CRLNC there are only short wait times for recovering source
packets dropped by the channel with the next coded packets.

In contrast, in block based RLNC all coded packets appear
at the tail end of the block. Thus, any packet recovery has
to wait until the end of the block. For instance, if the first
source packet in a block of g = 16 source packets is dropped
by the channel, then the source packet recovery has to wait
until all subsequent 15 source packets and then enough coded
packets (as many as source packets dropped by the channel)
are received. Thus, larger generation sizes g lead to longer
delays in block based RLNC, as observed from Fig. 6.

For high code rates R, packet losses become more
likely. CRLNC determines a packet loss when the affected
packet sequence number slides out of the decoding win-
dow, i.e., CRLNC can only detect a loss after advancing the
decoding window by the full decoding window duration wd .
Block based RLNC determines a packet loss when there are
not enough coded packets at the end of a block to recover
the dropped source packets of the block. Thus, the wait
time until the loss determination is upper bounded by the
total number of packets in the block, but is shorter when
the affected source packet is positioned later in the block.
Overall, CRLNC incurs therefore slightly longer delays than
conventional block based RLNC for high loss scenarios,
which are typically not practically relevant.

Pace achieves somewhat shorter delays than CRLNC,
whereby the Pace delays converge to the delays of con-
ventional block RLNC for high code rates R. The shorter
Pace delays compared to the CRLNC delays are due to a
combination of the fast recovery of some dropped packets
by the distributed coded packets in Pace and the faster loss
determination in blocked based RLNC.

In order to obtain additional deeper insights into the delay
dynamics for practically relevant loss scenarios, we plot in
Fig. 7 the cumulative distribution function (CDF) of the
packet delays. For Fig. 7, we set the code rate R to the highest
value that achieves a packet loss probability below 0.1 % for
CRLNC with we = 64. We observe from Fig. 7 that CRLNC
achieves generally the same low delays as infinite slidingwin-
dow RLNC up to a maximum delay value that corresponds
to the determination of a packet loss (when the decoding
window has slid beyond the affected sequence number in
CRLNC, or when all coded packets at end of the block have
been received in block based RLNC). This maximum delay
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Fig. 7. Cumulative distribution functions (CDFs) of the in-order packet delays for code rates R ensuring low losses for range of encoding window sizes
we and block sizes g. Fixed parameters: CRLNC decoding window wd = we; channel packet drop probability πB = 5 %. The solid CRLNC curves essentially
follow the infinite sliding window curve up to a maximum delay value that depends on the window size. (a) E [B] = 2, code rate R = 0.8. (b) E [B] = 4, code
rate R = 0.667. (c) E [B] = 8, code rate R = 0.5.

TABLE 2. Effects of increasing the decoding window size wd relative to the encoding window size we in CRLNC: Packet loss probability and delay
for different encoding window sizes we. Fixed parameters: channel packet drop probability πB = 5 %, E [B] = 4 successive channel packet
drops on average, code rate R = 2/3.

value grows with the decoding window size wd , or block
size g, and the average bad channel state sojourn time E[B].
Rare instances of maximum delays longer than wd , or g, time
slots arise when more than wd , or g, successive packets are
dropped by the channel. Such a rare scenario prevents the
CRLNC decoder from advancing the sliding window until a
new packet (with a sequence number more than wd positions
ahead) arrives; while the block based decoder waits until a
new packet (with a higher block id number) arrives.

Importantly, we observe from Fig. 7 that for CRLNC, the
probability for delivering source packets within a prescribed
practical delay tolerance threshold is independent of the win-
dow sizewe. In contrast, for conventional block based RLNC,
the probability for timely packet delivery drops as the block
size g is increased. For instance, we observe from Fig. 7(b)
that 97 % of the packets are delivered within 10 slots for
g = 8. For g = 32, only 84 % of the packets are delivered
within 10 slots, while only about half of the packets are
delivered within 10 slots for g = 128. CRLNC consistently
delivers about 96 % of the packets within 10 slots, indepen-
dent of the window size. Thus, CRLNC allows for increas-
ing the reliability, i.e., reducing the packet loss probability,
through increasing the window size we without reducing the
proportion of packets that are delivered within a prescribed
delay tolerance threshold.

D. DECODING WINDOW wd LARGER THAN
ENCODING WINDOW we

Table 2 reports the packet loss probabilities and delays as a
function of the ratio wd/we of the decoding window size wd

to the encoding window size we. We observe from Table 2
that slight increases of the decoding window size wd relative
to the encoding window size we substantially reduce the loss
probability, while incurring only modest delay increases. For
instance, for we = 32, increasing wd from 32 to 48 reduces
the loss probability from 0.30 % to 0.10 %, while increasing
the delay only from 2.48 slots to 2.64 slots. Further wd
increases beyond 1.5 we generally give only minute loss
probability reductions while further increasing the delay. The
delay increases are particularly pronounced for small encod-
ing windows we which give relatively high loss probabilities.
For instance, for we = 8, we observe a mean delay increase
to 4.15 slots for wd = 4 we; this high delay is mainly
due to the long delay for determining a loss in CRLNC.
In contrast, for we = 128, the loss probabilities are very
low, avoiding delay increases due to the determination of
loss events. Overall, we conclude that a decoding window
size wd on the order of 1.5 times the encoding window size
we achieves a good compromise between reducing the loss
probability while maintaining short delays.

E. COMPUTATIONAL COMPLEXITY
To validate the practicality of our CRLNC approach, we eval-
uated the computational effort required for decoding. The
matrix inversion and multiplication make RLNC decoding
much more computationally demanding than RLNC encod-
ing [101], [102]. Therefore, studies on RLNC computation
typically focus on the decoding operation.

For conventional systematic block based RLNC, we used
the implementation provided by the Kodo library [96],
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Fig. 8. Computational complexity: Average number of symbol vector
operations for decoding operations in one simulation replication with
106 transmitted source packets as a function of code rate R for range of
encoding window sizes we and block sizes g. Fixed parameters: CRLNC
decoding window wd = we; Channel packet drop probability πB = 5 %;
Mean number of E [B] = 4 successive channel packet drops.

which we also used as a basis for the Pace implementation.
We implemented CRLNC on top of Kodo with the mod-
ifications described in Section IV-C. We did not evaluate
the computational complexity of the infinite sliding win-
dow due to its prohibitive computational complexity when
used without feedback for closing the decoding window.
Following the computational complexity evaluation approach
in [29] and [105], we count the number of operations for
the decoding operations. Specifically, we count the number
of symbol vector operations in one simulation replication
of 106 transmitted source symbols and report averages over
103 independent replications. The resulting 95 % confidence
intervals are less than 2 % of the sample means and are
omitted from the plot. We observe from Fig. 8 that CRLNC
has essentially the same computational complexity as con-
ventional block RLNC; whereas Pace has somewhat lower
computational complexity. The reduced Pace computational
complexity is due to the increased number of zero-valued
coding coefficients that correspond to source packets that
are not considered for the coded packets early in a gener-
ation [29]. Thus, the reduced computational complexity of
Pace is directly related to the lower level of protection pro-
vided to the source packets in Pace compared to conventional
block RLNC and CRLNC.

We also observe from Fig. 8 that the number of opera-
tions drops with increasing code rate R. This is because an
increasing code rate R, R → 1, results in fewer generated
coded packets, namely one coded packet for every R/(1−R)
source packets. On the other hand, the number of operations
increaseswith increasing block size g, or window sizewe. The
decoding complexity of block-based RLNC scales generally
as O(g3) [101], [102]. With increasing g, the number of
blocks (for a given number of source symbols) decreases lin-
early, while the computational complexity in terms of vector
element operations per block increases with the third power
of g [101], [102]. However, the symbol vector length also
increases linearly with g. Thus, the number of symbol vector
operations for a given number of source symbols increases
linearly with g, as observed in Fig. 8.

For sliding window decoding, the number of insertions
of received coding coefficient vectors into the receiver

coding coefficient matrix R according to Section IV-C
remains unchanged as the window size (we = wd ) grows.
However, both the number of rows and the number of
columns of the receiver coding coefficient matrix R increase
linearly with the window size (cf. Section IV-F). Hence,
the number of triangulation steps in the Gaussian elimi-
nation increases linearly with the window size. Similarly,
the number of backward substitution steps in the Gaussian
elimination, which follow sequentially after the triangulation,
increases linearly with the window size. Thus, the number
of symbol vector operations increases overall linearly with
the window size, matching the computational complexity
scaling of conventional block RLNC. (We note that the num-
ber of element operations per symbol vector operation also
increases linearly with the window size.)

VI. CONCLUSION
We have proposed and evaluated a Caterpillar RLNC
(CRLNC) approach with a finite encoding window and a
finite decoding window. We specified the CRLNC encod-
ing process and packet format as well as the CRLNC
decoding process. CRLNC requires only minor modifica-
tions to the packet structure and encoder of conventional
block based RLNC. Furthermore, CRLNC requires only low-
complexity pre-processing of the received packets at the
decoder; the pre-processed packets can then be fed into a
standard block based RLNC decoder.

We compared CRLNC through extensive simulations with
conventional block based RLNC with coded packets at the
end of a block, block based RLNC with paced coded pack-
ets [29], and infinite sliding window RLNC. We found that
the finite sliding window CRLNC approach combines the
benefits of existing block based and infinite sliding window
RLNC approaches: CRLNC achieves the low loss prob-
abilities (i.e., high reliability) and has the low computa-
tional complexity of block based RLNC, while achieving
the typically low delays of infinite sliding window RLNC.
Moreover, CRLNC achieves substantially shorter delays
than block based RLNC, while CRLNC does not achieve
lower loss probabilities than infinite sliding window RLNC.
CRLNC appears therefore well suited for streaming applica-
tions, such as VoIP and video streaming.

There are many exciting directions for future research on
CRLNC. One direction is to enhance CRLNC with feed-
back mechanisms that could improve performance in net-
works that support feedback messages from the receiver to
the sender [106]–[108]. Another direction is to examine the
recoding of packets in network nodes, such as intermediate
switches, so as to increase the resilience for subsequent net-
work links with high packet drop probabilities [109], [110].
Packets could also be recoded in multi-hop mesh networks,
where the packets of a given stream may travel over multiple
paths.
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