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SUMMARY

Fine granularity scalability (FGS), a new coding technique that has recently been added to the MPEG-4
video coding standard, allows for the flexible scaling of each individual video frame at very fine granularity.
This flexibility makes FGS video very well suited for rate-distortion optimized streaming mechanisms,
which minimize the distortion (i.e. maximize the quality) of the streamed video by transmitting the optimal
number of bits for each individual frame. The per-frame optimization of the transmission schedule,
however, puts a significant computational burden on video servers and intermediate streaming gateways.
In this paper we investigate the rate-distortion optimized streaming at different video frame aggregation
levels. We find that compared to the optimization for each individual video frame, optimization at the level
of video scenes reduces the computational effort dramatically, while reducing the video quality only very
slightly. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The MPEG-4 video coding standard has recently been augmented by fine granularity scalability
(FGS), which has been designed to increase the flexibility of video streaming. An FGS encoded
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video stream consists of one base layer and one enhancement layer. The base layer must be
completely received to decode and display a basic quality video. The FGS enhancement layer
can be cut anywhere at the granularity of bits and the received part (below the cut) can be
decoded and improves upon the basic quality video. This fine granularity scalability, which is
achieved by a bitplane coding technique [1, 2], allows the server or intermediate network nodes
or gateways to adapt the transmission rate finely to changing network conditions. In a typical
scenario for transmitting MPEG-4 FGS encoded videos over the Internet, the base layer is
transmitted with high reliability (achieved through appropriate resource allocation and/or
channel error correction) and the FGS enhancement layer is transmitted with low reliability (i.e.
in a best effort manner and without error control).

The goal of video streaming is to maximize the overall quality of the delivered video, which is
generally achieved by first maximizing the quality (minimizing the distortion) of the individual
video frames and then minimizing the variations in quality between consecutive video frames [3].
These goals have been pursued at the relatively coarse basis of video layers by the streaming
mechanisms for conventionally coded layered video that maximize the number of delivered
layers and minimize the changes in the number of completely delivered layers, see for instance
References [4–6]. Rate-distortion optimized streaming mechanisms [3, 7, 8] exploit the rate-
distortion characteristics of the encoded video to minimize the distortion, i.e. maximize the
overall video quality at the receiver, while meeting the constraints imposed by the underlying
network. This optimization of the overall video quality is in general approached by algorithms
that take the rate-distortion functions of all individual video frames into account. FGS-encoded
video makes it possible to implement optimized transmission schedules that transmit
the optimal number of enhancement layer bits for each individual video frame (image),
subject to the bandwidth constraints. This per-frame optimization can be computationally
very demanding, especially for the typically non-linear rate-distortion characteristics of
the FGS enhancement layer. The large computational burden of the streaming optimiza-
tion may thus limit the number of simultaneous streams that a video server may support.
Also, the optimization may need to be done at intermediate streaming gateways (e.g. base
stations in a wireless system) to optimize the video delivery subject to the available down-
stream bandwidth.

To address this large computational burden on video servers and intermediate streaming
gateways we examine in this paper the rate-distortion optimization for different aggre-
gation levels of video frames. We explore the optimization approaches where the server/
intermediate streaming gateway groups several consecutive frames of the video into streaming
sequences and performs rate-distortion optimization over the streaming sequences. With this
aggregation approach, the optimization assigns a specific bit budget to each streaming
sequence. Within a given streaming sequence we then split the bit budget evenly across the
frames of the streaming sequence, i.e. we allocate each frame within a given sequence the same
number of bits.

More specifically, we consider a commonly studied two-tiered streaming system which
employs (i) a coarse-grained streaming strategy which negotiates bandwidth (i.e. a bit budget)
with the network for so-called allocation segments that are on the order of tens of seconds or a
minute long, and (ii) a fine-grained streaming strategy which conducts rate-distortion
optimization to optimize the video quality of the allocation segment given the allocated bit
budget. This second tier}the fine-grained streaming strategy}is where generally the
computationally highly demanding frame-by-frame rate-distortion optimization is conducted.
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We seek to overcome this high computational burden by examining the aggregation of the
frames over (i) a group of pictures (GoP), (ii) a scene of the video, (iii) a constant length segment
with the duration of the average scene length in the allocation segment, or (iv) over the entire
rate allocation segment. We compare the video quality achieved with these different aggregation
levels with the video quality achieved with the frame-by-frame optimization. We demonstrate
that by exploiting the strong correlations in quality between the consecutive video frames within
a video scene, the scene aggregation approach dramatically decreases the computational
requirement of the optimization procedure while reducing the video quality only very slightly. In
typical scenarios, the scene based optimization approach reduces the computational load by
two or more orders of magnitude while reducing the average PSNR video frame quality by less
than 0:1 dB:

This paper is organized as follows. In the following subsection we discuss the related work. In
Section 2, we describe the streaming scenario and the different aggregation levels studied in this
paper. In Section 3, we present the evaluation framework and define the notation used to
formulate the streaming optimization problem. In Section 4, we formulate the optimization
problem and describe its solution. We present the results of the optimization for the different
aggregation levels in Section 5 and briefly summarize our conclusions in Section 6.

1.1. Related work

Over the past few years, streaming video over the Internet has been the focus of many research
efforts (see References [9, 10] for comprehensive surveys). Because of the best-effort nature of the
Internet, streaming video should adapt to the changing network conditions. One of the most
popular techniques for network-adaptive streaming of stored video is using scalable video (see
for instance References [11, 12]). Video streaming applications should also adapt to the
properties of the particular encoded video [8]. Recently, rate-distortion optimized streaming
algorithms have been proposed (e.g. [7, 13]) to minimize the end-to-end distortion of media, for
transmission over the Internet. Our work is complementary to these studies in that we evaluate
video streaming mechanisms for a specific type of video, namely FGS encoded video.

Significant efforts have gone into the development of the FGS amendment to the MPEG-4
standard, see for instance References [1, 2] for an overview of these efforts. Models for the rate-
distortion characteristics of FGS video are developed in References [14, 15]. Recently, the
streaming of FGS video has been examined in a number of studies, all of which are
complementary to our work. General frameworks for FGS video streaming are discussed in
References [16–18]. The error resilience of FGS video streaming is studied in References
[3, 19, 20]. In Reference [21] the FGS enhancement layer bits are assigned to different priority
levels, which represent the importance of the carried content. In Reference [22] a real-time
algorithm for the network adaptive streaming of FGS-encoded video is proposed. The proposed
algorithm does not take the rate-distortion characteristics of the encoded video into
consideration. The concept of scene-based streaming is briefly introduced in Reference [23],
but not evaluated with rate-distortion data. Streaming mechanisms which allocate the FGS
enhancement layer bits over fixed length segments are studied in References [24, 25] and
evaluated using the well-known short MPEG test sequences. In contrast, in this paper we study
the allocation of the FGS enhancement layer bits on individual frame, fixed-length segment, and
video scene basis using traces of long videos. A bit allocation scheme with sliding window is
developed in Reference [26].
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A packetization and packet drop policy for FGS video streaming is proposed in
Reference [27]. The transmission of FGS video over multiple network paths is studied
in Reference [28]. An efficient approach for the decoding of streamed FGS video is proposed in
Reference [29]. Refined video coding mechanisms and bit allocation mechanisms to equalize
the quality over the area of a given video frame are developed in References [30, 31].
Finally, streaming of FGS video over multicast [32] and to wireless clients [33–39] has also
been considered, while issues of FGS complexity scaling and universal media access are
addressed in [40, 41].

For completeness we also note that streaming algorithms for various refinements of the basic
fine granularity scalability considered in this paper have begun to attract interest, see for
instance References [42–46].

2. COMPARISON SET-UP: DEFINITION OF DIFFERENT STREAMING SEQUENCES

In this section we describe our set-up for the comparison of the rate-distortion optimized
streaming of FGS-encoded video at different levels of video frame aggregation. We suppose that
the transmission of the base layer is made reliable, and we focus on the streaming of the
enhancement layer. When streaming video over the best-effort Internet, the available bandwidth
typically fluctuates over many time-scales. However, for the streaming of stored video, the user
can usually tolerate an initial build-up delay, during which some initial part of the video is
prefetched into the client before the start of the playback. Maintaining a sufficient playback
delay throughout the rendering allows the application to accommodate future bandwidth
variations (see for instance References [11, 12]).

To account for bandwidth variability, we model bandwidth constraints and client buffering
resources as follows. As shown in Figure 1, a video consisting of N video frames is partitioned
into L allocation segments, with each allocation segment l containing the same number of frames
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1 ... ...

l L

S l

Ns frames

π max

sequence s

πssegment l
Streaming

Streaming

sequencess
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Video

Allocation
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Figure 1. The video is partitioned into L allocation segments, each consisting of Sl streaming sequences.
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N=L: While the server is streaming the video, for each allocation segment l; the server assigns
a maximum bandwidth budget of Bmax ¼ CmaxNT=L bits to be allocated across all the
frames in the segment, where T denotes the frame period (display time of one video frame). The
maximum average bit rate Cmax typically varies from one allocation segment to the next and is
typically the outcome of a negotiation between the video server/intermediate streaming gateway
with the downstream network for the available bandwidth. The values for Cmax are determined
by a coarse-grain streaming strategy, such as those given in References [11, 22, 47]. In this
study, we focus on the fine-grain streaming strategy, namely, the allocation of the band-
width budget to the individual frames within an allocation segment. In our experiments, we
use allocation segments consisting of N=L ¼ 1000 frames, which correspond to about 30 s
of a 30 frames=s video.

Due to the client buffering, the server has great flexibility in allocating the given band-
width budget to the frames within an allocation segment. Given the rate-distortion functions
of all video frames, the server can optimize the streaming within the allocation
segment by allocating bits from the bandwidth budget to the individual frames so as to
maximize the video quality. Alternatively, the server can group several consecutive video frames
of an allocation segment into sub-segments, which we refer to as streaming sequences, and
perform rate-distortion optimization on the granularity of streaming sequences. In this
case, each frame in a given streaming sequence (that is sub-segment) is allocated the
same number of bits. We denote by Sl the number of streaming sequences in a given allocation
segment l; l ¼ 1; . . . ;L:

We consider five aggregation cases for streaming sequences:

* Video frames}each video frame of the considered allocation segment forms a distinct
streaming sequence (Sl ¼ 1000 with the allocation segment length of 1000 frames
considered in this study).

* GoPs}we group all video frames from the same GoP into one streaming sequence. In this
case, the number of streaming sequences in allocation segment l is equal to the number of
distinct GoPs in the allocation segment (Sl ¼ 1000=12� 83 with the 12 video frame GoP
used in this study).

* Scenes}we group all video frames from the same video scene into one streaming sequence.
In this case Sl ¼ Sscene

l ; where Sscene
l denotes the number of distinct scenes in allocation

segment l:
* Constant}allocation segment l is divided into Sconst

l ¼ Sscene
l streaming sequences,

each containing the same number of frames. Consequently, each streaming
sequence contains a number of frames equal to the average scene length of the allocation
segment.

* Total}all the video frames from allocation segment l form one streaming sequence
(Sl ¼ 1).

In order to simplify the notation, we focus in the following on the streaming of a particular
allocation segment l:We remove the index l from all notations whenever there is no ambiguity.
Let S denote the number of streaming sequences in the considered allocation segment. Let Ns

denote the number of frames in streaming sequence s; s ¼ 1; . . . ;S (see Figure 1). Furthermore,
let n; n ¼ 1; . . . ;Ns; denote the individual frames in streaming sequence s: The main notation
used in this paper is summarized in Table I.
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3. EVALUATION SET-UP: RATE-DISTORTION TRACES AND PERFORMANCE
METRICS

In this section we briefly describe the FGS rate-distortion traces employed in our study and
define the considered performance metrics. We also define the notation used in the formulation
of the rate-distortion streaming optimization.

We use the rate-distortion traces of the videos listed in Table II, which we obtained from
Reference [48]. The traces give the quality of each decoded video frame qn as a function of the
number of enhancement layer bits pn that have been delivered to the client for frame n; i.e. the
traces give qnðpnÞ; see References [49, 50] for details. The video frame quality is given in terms of
the peak signal-to-noise ratio (PSNR) in dB units, which is a widely used metric for the quality
of video frames [51]. For ease of formulating the streaming optimization, we will consider the
video frame distortion in terms of the mean square error (MSE) dn in our formulation. The
quality and distortion of a video frame n are related by

qn ¼ 10 log
2552

dn
ð1Þ

To assess the quality of a streaming sequence s containing video frames n; n ¼ 1; . . . ;Ns;
we average the MSE distortions of the individual frames, which is common in assessing
the quality of sequences of video frames. Thus, the distortion of streaming sequence s
is obtained as

Ds ¼
1

Ns

XNs

n¼1

ds;n ð2Þ

where ds;n denotes the distortion of frame n of sequence s: The quality Qs of the sequence s is
then obtained by converting the MSE distortion Ds into PSNR quality using (1). Analogously
we define D for the distortion and Q for the quality of a given allocation segment containing the
streaming sequences s; s ¼ 1; . . . ;S; i.e.

D ¼
1

S

XS
s¼1

Ds ð3Þ

The traces from Reference [48] provide the boundaries of the scene shots, which we employ in
our evaluation of the scene-based streaming optimization. The total number of scene shots, the
average length %NN of the scene shots in number of video frames, as well as the coefficient of

Table I. Summary of Notation.

N Total number of frames in video
%NN Average number of frames in a scene in given video
L Number of allocation segments in video (¼ N=1000 in this study)
T Frame period (1=30 s in this study)
Bmax Maximum bit budget for an allocation segment (¼ CmaxNT=L)
S Number of streaming sequences in a given allocation segment
Ns Number of video frames in streaming sequence s; s ¼ 1; . . . ;S
ps Number of bits allocated to a frame in streaming sequence s (decision variable in opt. problem)
ds;nðpsÞ Distortion of frame n in streaming sequence s when ps bit are allocated to it
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variation (standard deviation divided by mean), and ratio of largest to average scene shot length
are provided in Table II. We note that the segmentation of the video into scene shots is relatively
coarse in that it only considers director cuts and ignores other changes in the motion or visual
content between two successive director cuts. A finer scene segmentation that takes into
consideration those changes between director cuts is largely still a subject of ongoing research.
Nevertheless, distinct scene shots are likely to have distinct visual characteristics, so we believe
that considering scene shot segmentation instead of a finer segmentation does not have a strong
effect on the conclusions of our study. In fact, a finer segmentation would only increase the total
number of distinct video scenes, and increase the correlation between the qualities of the frames
in a scene. Henceforth we refer to a scene shot in short as scene.

4. FORMULATION OF RATE-DISTORTION STREAMING OPTIMIZATION

In this section we formally describe the rate-distortion optimization of the streaming of a given
allocation segment. Recall that we consider a typical scenario, where a coarse-grain streaming
strategy gives the allowed average bit rate Cmax; i.e. the bit budget Bmax ¼ CmaxNT=L; allocated
to the transmission of the enhancement layer frames in the allocation segment. Our goal is to
compare different frame aggregation levels in the streaming optimization, whereby the same
number of bits is allocated to each frame inside a given frame aggregate (streaming sequence),
i.e. the enhancement layer streaming bit rate is adjusted more or less frequently. Formally, we
denote ps for the number of bits allocated to each video frame among the Ns video frames in
streaming sequence s: We define p ¼ ðp1; . . . ;pSÞ as the streaming policy for a given allocation
segment. We denote by pmax the maximum number of enhancement layer bits that can be
allocated to any video frame of the video.

We study the quality QðpÞ of the current allocation segment as a function of the streaming
policy p: We denote DðpÞ for the distortion of the allocation segment as a function of the
streaming policy p:

With these definitions we can formulate the streaming optimization problem as follows:
For the given allocation segment, a given bandwidth constraint Cmax; and a given aggregation

case, the optimization procedure at the server consists of finding the policy pn ¼ ðpn
1 ; . . . ; p

n
SÞ

Table II. Scene shot length statistics of considered videos.

Avg. scene Coefficient of Peak-to-mean
Run time # of frames # of scenes length %NN variation of ratio of scene
(min) N in video in video (video frames) scene length length

The Firm 60 108 000 890 121 0.94 9.36
Oprah with Commercials 60 108 000 621 173 2.46 39.70
Oprah 38 68 000 320 215 1.83 23.86
News 60 108 000 399 270 1.67 9.72
Star Wars 60 108 000 984 109 1.53 19.28
Silence of the Lambs 30 54 000 184 292 0.96 6.89
Toy Story 60 108 000 1225 88 0.95 10.74
Football 60 108 000 876 123 2.34 31.47
Lecture 49 88 000 16 5457 1.62 6.18
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that optimizes:

minimize DðpÞ ¼
PS

s¼1
1

Ns

PNs

n¼1 ds;nðpsÞ
� �

subject to
PS

s¼1 Nsps4Bmax

ps4pmax; s ¼ 1; . . . ;S

We denote Dn ¼ DðpnÞ (respectively Qn) for the minimum distortion (maximum quality)
achieved for the considered allocation segment. Our problem is a resource allocation problem,
which can be solved by dynamic programming [52]. Dynamic programming is a set of
techniques that are used to solve various decision problems. In a typical decision problem, the
system transitions from state to state, according to the decision taken for each state. Each
transition is associated with a profit. The problem is to find the optimal decisions from the
starting state to the ending state of the system, i.e. the decisions that maximize the total profit, or
in our context minimize the average distortion.

The most popular technique to solve such an optimization problem is recursive fixing.
Recursive fixing recursively evaluates the optimal decisions from the ending state to the starting
state of the system. This is similar to the well-known Dijkstra algorithm which is used to solve
shortest-path problems. We note that due to the non-linear shape of the rate-distortion curves,
which as observed in Reference [48] are neither convex nor concave, we cannot employ the
computationally less demanding marginal analysis technique of dynamic programming. It was
found in Reference [48] that sampling the values of enhancement layer bits per video frame in
steps of 833 bytes with a maximum of pmax ¼ 8333 bytes per video frame accurately captures the
characteristics of the rate-distortion curve. Hence we employ the same step size of 833 bytes and
pmax in the recursive fixing solution of our dynamic program.

The computational effort required for resolving our problem depends largely on the number
of decision variables ps; s ¼ 1; . . . ;S; i.e. on the number S of streaming sequences in a given
allocation segment. In particular, note that S depends on the aggregation case which is
considered, namely video frame, GoP, scene, constant, or total, as well as on the length of an
allocation segment (and also on the number of scenes within a given allocation segment for the
scene and constant aggregation cases). For a given fixed length of the allocation segment (which
is typically dictated by the bandwidth negotiation mechanisms in the network), the
computational effort depends primarily on the aggregation case and scene length characteristics.
In particular, we observe from Table II that the average scene length %NN is typically on the order
of hundreds to thousands of frames. In other words, the scene aggregation approximately
reduces the computational effort for the streaming optimization by a factor of %NN; i.e. by two to
three orders of magnitude compared to video frame-by-video frame optimized streaming.

Aside from these computational savings, the streaming with aggregation has the side effect of
smoothing the network traffic, which is beneficial for a variety of networking mechanisms, such
as link load probing, buffer management, and congestion control.

5. COMPARISON RESULTS

Figure 2 gives plots of the maximum quality Qn for each individual allocation segment, for an
average target rate of Cmax ¼ 1000 kbps for the first four videos listed in Table II. Not
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surprisingly, for all allocation segments, the quality with video frame-by-video frame streaming
optimization is higher than that for the other aggregation cases. This is because the video frame-
by-video frame optimization is finer. However, the quality achieved by the other aggregation
cases is very close to that of video frame-by-video frame streaming: the difference is usually only
approximately 0:1 dB in PSNR. This is due to the high correlation between the enhancement
layer rate-distortion curves of successive frames.

We show in Figure 3 the maximum quality averaged over all allocation segments for the entire
video as a function of the target rate constraint Cmax:We observe again that the frame-by-frame
streaming optimization gives slightly better quality. Importantly, we also observe that
transmitting the same number of bits for each frame in a given allocation segment (case of
total aggregation) tends to give quite significantly lower quality than the other aggregation levels
for some ranges of the bit rate allocation Cmax: For the target bit rates of 400 and 600 kbps; for
instance, the total aggregation gives a up to 1 dB less in average quality for The Firm and News,
which is typically considered a significant difference in quality. We observed similar behaviours
for the other videos and also for allocation segments that contain more than 1000 frames. The
observed relatively large quality degradation with total aggregation is primarily due to
the relatively steep rate-distortion curves of the individual video frames in that bit rate range.
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Figure 2. Maximum (PSNR) quality Qn for each individual allocation segment for Cmax ¼ 1000 kbps
for (a) The Firm, (b) News, (c) Oprah with Commercials, and (d) Oprah.
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The steep rate-distortion curves make the quality relatively more sensitive to changes in the bit
budget, resulting in a more degraded video quality for the relatively coarse optimization over the
entire allocation segment.

From the results considered so far we may draw two main conclusions. First, streaming
optimization on the basis of individual video frames gives typically only insignificantly higher
quality than optimizing on the basis of streaming sequences that have the length of video scenes.
Secondly, allocating the same number of bits for each frame in an allocation segment may give
significantly lower quality than optimizing the streaming on the basis of streaming sequences
that have the length of video scenes. Consequently it appears that both the scene aggregation
and the constant aggregation are equally well suited for video streaming. In other words, it
appears that there is essentially no difference between the maximum quality achieved when
aggregating over scenes or arbitrary sequences. We now proceed to examine these two
aggregation cases more closely.

Despite the essentially same average quality for the scene and constant aggregation, the
actual perceived quality may be somewhat different. This is because the average PSNR quality
does not account for temporal effects, such as the variations in quality between consecutive
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Figure 3. Maximum (PSNR) quality Qn averaged over the individual allocation segments as a function of
bit rate allocation Cmax in kbps for (a) The Firm, (b) News, (c) Oprah with Commercials, and (d) Oprah.
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video frames: two sequences with a same average quality may have different variations in video
frame MSE, and thus different perceived quality. To illustrate this phenomenon, we monitor the
maximum quality variation between consecutive video frames maxi¼2;...;Ns

fjqs;iðpsÞ � qs;i�1ðpsÞjg
of a given streaming sequence.

Table III gives the maximum variation in quality averaged over all streaming sequences in the
video for different Cmax rates. We observe that the average maximum variation in quality for a
given FGS rate is always smaller with scene aggregation than with constant aggregation. The
difference is insignificant for the Lecture video which is characterized by slow motion and long
scenes, but reaches close to 0.3 dB for the News, Toy Story, and Football videos which are
characterized by high motion as well as relatively short and highly variable scene lengths.
Overall, the results in the table indicate that selecting a constant number of bits for the
enhancement layer of all video frames within a given video scene yields on average a smaller
maximum variation in video frame quality than selecting a constant number of bits for fixed-
length sequences with a sequence length equal to the average scene length. Note that both
approaches have the same computational effort for the streaming optimization. Therefore, it is
preferable to choose streaming sequences that correspond to visual scene shots rather than
segmenting the video arbitrarily. This result is intuitive since frames within a given scene shot
are more likely to have similar visual complexity, and thus similar rate-distortion characteristics,
than frames from different scenes.

To further examine this effect, we plot in Figure 4 the minimum value of the maximum
variation in quality over all streaming sequences of a given allocation segment. We observe that
the min–max variation in video frame quality is typically larger for arbitrary segmentation. This
indicates that the minimum jump in quality in the streaming sequences is larger for arbitrary
segmentation (constant aggregation). In the case of scene segmentation the minimum jumps in
quality are smaller; when the scene shot consists of one homogeneous video scene without any
significant changes in motion or visual content, the maximum variation is close to 0 dB: As
shown in Figure 4, for some allocation segments, the difference with arbitrary segmentation can
be more than 1 dB:

More generally, we expect the difference in rendered quality between scene-based
segmentation and arbitrary segmentation to be more pronounced with a scene segmentation
that is finer than scene shot-based segmentation. A finer segmentation would further segment

Table III. Average of maximum quality variation (in dB) for scene aggregation and constant aggregation.

Cmax ¼ 800 kbps Cmax ¼ 1600 kbps

Scene Const. Scene Const.

The Firm 1.84 1.99 0.81 0.92
Oprah with Commercials 2.64 2.77 2.68 2.76
Oprah 2.43 2.47 2.60 2.64
News 2.22 2.55 1.43 1.64
Star Wars 1.90 2.11 0.85 0.97
Silence of the Lambs 1.33 1.37 1.37 1.40
Toy Story 2.34 2.54 1.46 1.74
Football 2.21 2.56 1.09 1.38
Lecture 2.64 2.69 2.06 2.08
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sequences with varying rate-distortion characteristics, e.g. sequences with changes in motion or
visual content other than director’s cuts. This would increase the correlation between the
qualities of the frames within a scene, which would further reduce the quality degradation due to
scene-based streaming optimization over video frame-based streaming optimization.

6. CONCLUSIONS

We have investigated the rate-distortion optimized streaming at different video frame
aggregation levels. We have found that the optimal scene-by-scene adjustment of the FGS
enhancement layer rate reduces the computational complexity of the optimization significantly
compared to video frame-by-video frame optimization, while having only a very minor impact
on the video quality. We also found that reducing the computational optimization effort by
aggregating the video frames arbitrarily (without paying attention to the scene structure) tends
to result in significant quality deteriorations.
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