
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001 2015

A Prefetching Protocol for Continuous Media
Streaming in Wireless Environments
Frank H. P. Fitzek, Student Member, IEEE,and Martin Reisslein, Member, IEEE

Abstract—Streaming of continuous media over wireless links
is a notoriously difficult problem. This is due to the stringent
quality of service (QoS) requirements of continuous media
and the unreliability of wireless links. We develop a streaming
protocol for the real-time delivery of prerecorded continuous
media from (to) a central base station to (from) multiple wireless
clients within a wireless cell. Our protocol prefetches parts of
the ongoing continuous media streams into prefetch buffers in
the clients (base station). Our protocol prefetches according to a
join-the-shortest-queue (JSQ) policy. By exploiting rate adapta-
tion techniques of wireless data packet protocols, the JSQ policy
dynamically allocates more transmission capacity to streams with
small prefetched reserves. Our protocol uses channel probing to
handle the location-dependent, time-varying, and bursty errors
of wireless links. We evaluate our prefetching protocol through
extensive simulations with VBR MPEG and H.263 encoded video
traces. Our simulations indicate that for bursty VBR video with
an average rate of 64 kb/s and typical wireless communication
conditions our prefetching protocol achieves client starvation
probabilities on the order of 10 4 and a bandwidth efficiency of
90% with prefetch buffers of 128 kbytes.

Index Terms—CDMA, channel probing, multimedia,
prefetching, prerecorded continuous media, rate adaptation,
real-time streaming, wireless communication.

I. INTRODUCTION

DUE TO THE popularity of the World Wide Web, retrievals
from web servers are dominating today’s Internet. While

most of the retrieved objects today are textual and image ob-
jects, web-based streaming of continuous media, such as video
and audio, becomes increasingly popular. It is expected that by
2003, continuous media will account for more than 50% of the
data available on the web servers [1]. This trend is reflected in
a recent study [2], which found that the number of continuous
media objects stored on web servers has tripled in the first nine
months of 1998. At the same time there is increasingly the trend
toward accessing the Internet and Web from wireless mobile de-
vices. Analysts predict that there will be over one billion mobile
phone users by 2003 and more people will access the Internet
from wireless than wireline devices [3].

The stringent quality of service (QoS) requirements of
continuous media and the unreliability of wireless links

Manuscript received December 18, 2000; revised June 5, 2001. A shorter
version of this article has appeared under the title “A Prefetching Protocol for
Streaming Prerecorded Continuous Media in Wireless Environments” inProc.
SPIE ITCom 2001, Internet Performance and QoS, Denver, CO, Aug. 2001.

F. H. P. Fitzek is with the Department of Electrical Engineering, Technical
University Berlin, 10587 Berlin, Germany (e-mail: fitzek@ee.tu-berlin.de).

M. Reisslein is with the Department of Electrical Engineering, Arizona State
University, Tempe, AZ 85287 USA (e-mail: reisslein@asu.edu).

Publisher Item Identifier S 0733-8716(01)08478-5.

combine to make streaming over wireless links a notoriously
difficult problem. For uninterrupted video playback the client
has to decode and display a new video frame periodically;
typically every 40 ms with MPEG encoded video. If the client
has not completely received a video frame by its playback
deadline, the client loses (a part or all of) the video frame
and suffers playback starvation. A small probability of play-
back starvation (typically, 10 –10) is required for good
perceived video quality. In addition to these stringent timing
and loss constraints, the video frame sizes (in byte) of the
more efficient variable bit rate (VBR) encodings are highly
variable; typically with peak-to-mean ratios of 4–10 [4]. These
properties and requirements make the real-time streaming of
video over packet-switched networks—even for the case of
wireline networks—a challenging problem [5]. The problem
is even more challenging when streaming video over wireless
links. Wireless links are typically highly error prone. They
introduce a significant number of bit errors which may render
a transmitted packet undecodable. The tight timing constraints
of real-time video streaming, however, allow only for limited
retransmissions [6]. Moreover, the wireless link errors are
typically time-varying and bursty. An error burst (which may
persists for hundreds of milliseconds) may make the transmis-
sion to the affected client temporarily impossible. All of these
wireless link properties combine to make the timely delivery of
the video frames very challenging.

In this paper, we develop a high-performance streaming
protocol for the real-time delivery of prerecorded continuous
media over wireless links. Our protocol is equally well suited
for streaming in the downlink (base station to clients) direction,
as well as the uplink (clients to base station) direction. We
focus in the following discussion on the downlink direction
(uplink streaming is discussed in Section V-C). Our protocol
allows for immediate commencement of playback as well as
near instantaneous client interactions, such as pause/resume
and temporal jumps. Our protocol gives a constant perceptual
media quality at the clients while achieving a very high band-
width efficiency. Our protocol achieves this high performance
by exploiting two special properties ofprerecordedcontinuous
media: 1) the client consumption rates over the duration of the
playback are known before the streaming commences and 2)
while the continuous media stream is being played out at the
client, parts of the stream can be prefetched into the client’s
memory. (These properties may be exploited to some extend
when streaming live content with some prefetch delay budget;
see Section V-B.) The prefetched reserves allow the clients
to continue playback during periods of adverse transmission
conditions on the wireless links. In addition, the prefetched

0733–8716/01$10.00 © 2001 IEEE

2016 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

reserves allow the clients to maintain a high perceptual media
quality when retrieving bursty VBR encoded streams.

The prerecorded continuous media streams are prefetched
according to a specific join-the-shortest-queue (JSQ) policy,
which strives to balance the prefetched reserves in the wireless
(and possibly mobile) clients within a wireless cell. The JSQ
prefetch policy exploits rate adaptation techniques of wireless
data packet protocols [7]. The rate adaptation techniques allow
for the dynamic allocation of transmission capacities to the
ongoing wireless connections. In the code division multiple
access (CDMA) IS-95 (Revision B) standard, for instance, the
rate adaptation is achieved by varying the number of codes (i.e.,
the number of parallel channels) used for the transmissions
to the individual clients. (The total number of code channels
used for continuous media streaming in the wireless cell may
be constant.) The JSQ prefetch policy dynamically allocates
more transmission capacity to wireless clients with small
prefetched reserves while allocating less transmission capacity
to the clients with large reserves. The ongoing streams within a
wireless cell collaborate through this lending and borrowing of
transmission capacities. Channel probing is used to judiciously
utilize the transmission capacities of the wireless links, which
typically experience location-dependent, time-varying, and
bursty errors. Our extensive numerical studies indicate that this
collaboration is highly effective in reducing playback starvation
at the clients while achieving a high bandwidth efficiency. For
bursty VBR video with an average rate of 64 kb/s and typical
wireless communication conditions our prefetching protocol
achieves client starvation probabilities on the order of 10
and a bandwidth efficiency of 90% with client buffers of 128
kbytes. Introducing a startup latency of 0.4 s reduces the client
starvation probability to roughly 10 .

This article is organized as follows. In Section II, we
describe our architecture for the streaming of prerecorded
continuous media in the downlink direction. Our focus is
on multirate CDMA systems. In Section III, we develop the
components of our JSQ prefetching protocol. Importantly,
we introduce channel probing; a mechanism that handles the
location-dependent, time-varying, and bursty errors of wireless
environments. In Section IV, we evaluate our prefetching pro-
tocol both without and with channel probing through extensive
simulations. In Section V, we discuss several extensions of
the prefetching protocol. We consider streaming with client
interactions, such as pause/resume and temporal jumps. We
also consider the streaming of live content, such as the audio
and video feed from a sporting event. We outline how to use
the prefetching protocol for prefetching in the uplink (clients
to base station) direction. Moreover, we outline how to deploy
the prefetching protocol in third generation CDMA systems
as well as TDMA and FDMA systems. We also discuss the
deployment of the prefetching protocol on top of physical
layer error control schemes. We discuss the related work in
Section VI and conclude in Section VII.

II. A RCHITECTURE

Fig. 1 illustrates our architecture for continuous media
streaming in the downlink direction. A central base station

Fig. 1. Architecture: A central base station streams prerecorded continuous
media to wireless (and possibly mobile) clients within a wireless cell.

provides streaming services to multiple wireless (and possibly
mobile) clients within a wireless cell. Let denote the number
of clients serviced by the base station. We assume for the pur-
pose of this study that each client receives one stream; thus there
are streams in process. (Although some clients might receive
the same stream, the phases (i.e., starting times) are typically
different.) The basic principle of our streaming protocol—ex-
ploiting rate adaptation techniques for prefetching—can be
applied to any type of wireless communication system with
a slotted time division duplex (TDD) structure. The TDD
structure provides alternating forward (base station to clients)
and backward (clients to base station) transmission slots.

We initially consider a multicode CDMA system. Such a
system adapts rates for the synchronous transmissions in the
forward direction by aggregating orthogonal code channels,
that is, by varying the number of code channels used for
transmissions to the individual clients. The second generation
CDMA IS-95 (Rev. B) system [8] is an example of such a
system; as is the third generation UMTS system [9] in TDD
mode. Let denote the number of orthogonal codes used by
the base station for transmitting the continuous media streams
to the clients. Let , denote the number
of parallel channels supported by the radio front-end of client
. The CDMA IS-95 (Rev. B) standard provides up to eight

parallel channels per client; in the TDD mode of UMTS up
to 15 parallel code channels can be assigned to an individual
client. Let denote the data rate (in b/s) provided by one
CDMA code channel in the forward direction.

Our streaming protocol is suitable for any type of prere-
corded continuous media (an extension for live content is
developed in Section V-B). To fix ideas we focus on video
streams. A key feature of our protocol is that it accommodates
any type of encoding; it accommodates constant bit rate (CBR)
and burstyVBR encodings as well as encodings with a fixed
frame rate (such as MPEG-1 and MPEG-4) and a variable
frame rate (such as H.263). For the transmission over the
wireless links the video frames are packetized into fixed length
packets. The packet size is set such that one CDMA code

FITZEK AND REISSLEIN: PREFETCHING PROTOCOL FOR CONTINUOUS MEDIA STREAMING 2017

channel accommodates exactly one packet in one forward slot;
thus the base station can transmitpackets on the orthogonal
code channels in a forward slot.

Let , denote the length of video stream
in frames. Let denote the number of packets in theth

frame of video stream. Note that for a CBR encoded video
stream the s are identical. Let denote the interar-
rival time between the th frame and the th frame of
video stream in seconds. Frame is displayed for a frame
period of seconds on the client’s screen. For a constant
frame rate encoding the frame periods are identical. Be-
cause the video streams are prerecorded the sequence of in-
tegers and the sequence of real
numbers are fully known when the
streaming commences.

When a client requests a specific video the base station relays
the request to the appropriate origin server or proxy server. If the
request passes the admission tests the origin/proxy server im-
mediately begins to stream the video via the base station to the
client. Our focus in this article is on the streaming from the base
station over the wireless link to the client. The streaming from
the origin/proxy server to the base station is beyond the scope
of this article. We assume for the purpose of this study that the
video is delivered to the base station in a timely fashion. Upon
granting the client’s request the base station immediately com-
mences streaming the video to the client. The packets arriving at
the client are placed in the client’s prefetch buffer. The video is
displayed on the client’s monitor as soon as a few frames have
arrived at the client. Under normal circumstances the client dis-
plays frame of video stream for seconds, then removes
frame from its prefetch buffer, decodes it, and displays it
for seconds. If at one of these epochs there is no com-
plete frame in the prefetch buffer the client suffers playback star-
vation and loses the current frame. The client will try to conceal
the missing encoding information by applying error conceal-
ment techniques [10]. At the subsequent epoch the client will
attempt to display the next frame of the video.

In our protocol the base station keeps track of the contents of
the prefetch buffers in the clients. Toward this end, let

, denote the number of packets in the prefetch buffer of
client . Furthermore, let , denote the length
of the prefetched video segment in the prefetch buffer of client

in seconds. The counters and are updated 1) when
the client acknowledges the reception of sent packets, and 2)
when a frame is removed, decoded, and displayed at client.

First, consider the update when packets are acknowledged.
For the sake of illustration suppose that the packets of
frame of stream have been sent to clientduring the just
expired forward slot. Suppose that all packets are ac-
knowledged during the subsequent backward slot. When the
last of the acknowledgments arrives at the base station,
the counters are updated by setting , and

.
Next, consider the update of the counters when a frame is

removed from the prefetch buffer, decoded, and displayed at
the client. Given the sequence , and the
starting time of the video playback at the client the base station
keeps track of the removal of frames from the prefetch buffer

of client . Suppose that frame is to be removed from the
prefetch buffer of client at a particular instant in time. The base
station tracks the prefetch buffer contents by updating

(1)

and

(2)

where . Note that the client suffers playback
starvation when , that is, when the frame that
is supposed to be removed is not in the prefetch buffer. To ensure
proper synchronization between the clients and the base station
in practical systems, each client sends periodically (every few
slots, say) an update of its buffer contents (along with a regular
acknowledgment) to the base station. These buffer updates are
used at the base station to re-validate (and possibly correct) the
variables and .

III. COMPONENTS OFPREFETCHPROTOCOL

For each forward slot the base station must decide which
packets to transmit from the ongoing streams. The prefetch
policy is the rule that determines which packets are transmitted.
The maximum number of packets that can be transmitted in a
forward slot is . The JSQ prefetch policy strives to balance the
lengths of the prefetched video segments across all of the clients
serviced by the base station. The basic idea is to dynamically
assign more codes (and thus transmit more packets in parallel)
to clients that have only a small reserve of prefetched video in
their prefetch buffers. The JSQ prefetch policy is inspired by the
earliest deadline first (EDF) scheduling policy. The EDF sched-
uling policy is known to be optimal among the class of nonpre-
emptive scheduling policies for a single wireline link [11]. It is
therefore natural to base the prefetch policy on the EDF sched-
uling policy. With JSQ prefetching the base station selects the
packet with the earliest playback deadline for transmission. In
other words, the base station transmits the next packet to the
playout queue with the shortest segment of prefetched video
(i.e., the shortest queue).

In order to simplify the discussion and highlight the main
points of our approach we first introduce a basic prefetch policy.
This basic prefetch policy assumes that all clients 1) support
parallel channels and 2) have infinite prefetch buffer space. We
shall address these two restrictions in a refined prefetch policy.
Also, we initially exclude client interactions, such as pause/re-
sume and temporal jumps; these are discussed in Section V-A.

A. Basic JSQ Prefetch Policy

Let , denote the length of the video seg-
ment (in seconds of video run time) that is scheduled for trans-
mission to client in the current forward slot. The following
scheduling procedure is executed for every forward slot. At the
beginning of the scheduling procedure all s are initialized to
zero. The base station determines the clientwith the smallest

(ties are broken arbitrarily). The base station sched-
ules one packet for transmission (by assigning a code to it) and
increments :

2018 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

where is the frame (number) of stream that is carried
(partially) by the scheduled packet. (Although the length of the
prefetched video segment grows in increments of seconds
whenever the transmission of the packets carrying frame

of stream is completed; for simplicity we account for par-
tially transmitted frames by incrementing the prefetched seg-
ment by for each transmitted packet. This approach
is further justified by error concealment techniques that can de-
code partial frames [10].) The base station repeats this procedure

times, that is, until the available codes are used up. At each
iteration the base station determines thewith the smallest

, schedules one packet for client and increments
.

Throughout this scheduling procedure the base station skips
packets from a frame that would miss its playback deadline at
the client. [Specifically, if frame is to be removed before
the end of the upcoming forward slot and if , the
base station skips frame and prefetches for frame .
Moreover, frame is skipped if ,
where is the number of forward slots before frame is
removed.]

During the subsequent backward slot the base station waits
for the acknowledgments from the clients. (Typical hardware
configurations of wireless communication systems allow the
clients to acknowledge the packets received in a forward slot of
the TDD timing structure, immediately in the following back-
ward slot [12].) If all packets sent to clientare acknowledged
by the end of the backward slot we set .
If some of the acknowledgments for a streamare missing at
the end of the backward slot, is left unchanged. At the end
of the backward slot the scheduling procedure starts over. The

s are reinitialized to zero and the base station schedules
packets for the clients with the smallest .

Note that the acknowledgment procedure outlined above con-
siders all of the packets sent to a client in a forward slot as lost
when one (or more) of the packets (or acknowledgments) is lost.
We adopt this procedure for simplicity and to be conservative.
A refined approach would be to selectively account for the ac-
knowledged packets. However, this would lead to “gaps” in the
prefetched video segments that take some effort to keep track
of. We also note that because of the bursty error characteris-
tics of wireless links typically either all or none of the packets
sent to a client in a forward slot are lost. Also, since the ac-
knowledgment can be sent with a large amount of forward error
correction, the probability of losing an acknowledgment is typ-
ically small. Nevertheless, we point out the implications of the
conservative acknowledgment procedure. Note that the buffer
variables and maintained at the base station are the
basis for the JSQ scheduling. It is therefore important that the
buffer variables and correctly reflect the actual buffer
contents at client . Our conservative acknowledgment proce-
dure clearly ensures that the actual buffer content at clientis
always larger than or equal to the buffer variables and .
Note that only 1) sporadic packet losses (i.e., loss of a subset of
the packets sent to a client in a slot), or 2) the loss of an acknowl-
edgment (of a packet that was correctly received) can cause the
actual buffer content to be larger than the corresponding buffer
variables. As pointed out above these two events are rather un-
likely, therefore the actual buffer content is typically not larger

than the buffer variables. Also, if the buffer content is larger
than the buffer variables, then typically by a small margin. Now,
whenever the actual buffer content at a clienthappens to be
larger than the corresponding buffer variables and ,
then the buffer content and the buffer variables are reconciled
when either one of the following three events happens. i) The
packets that were considered lost by the base station (but ac-
tually received by the client) are re-transmitted (as part of the
regular JSQ schedule) and their acknowledgments arrive at the
base station. (The client acknowledges all successfully received
packets, and then discards packets that are received in dupli-
cate.) ii) The frame (of which packets are considered lost at the
base station) is consumed (before a re-transmission could take
place). In this case, (1) and (2) set the buffer variables to zero.
The client empties its prefetch buffer and decodes the part (if
any) of the frame that it received. iii) A buffer update message
gives the base station the actual client buffer content. We finally
note that in our performance evaluation in Section IV the losses
are counted based on the buffer variables and at the
base station. Thus, our performance results are on the conserva-
tive side.

We note that if for all , it is not nec-
essary to signal the assigned codes to the clients as each client is
capable of monitoring all of the orthogonal channels. In case
there are some clients with , the code assignment
must be signaled to these clients, this could be done in a sig-
naling time slot (right before the forward slot) on a common sig-
naling channel, e.g., the network access and connection channel
(NACCH) of the integrated broadband mobile system (IBMS)
[13].

With prefetching it is possible that all frames of video
stream have been prefetched into the client’s prefetch buffer
but not all frames have been displayed. When a stream reaches
this state we no longer consider it in the above JSQ policy. From
the base station’s perspective it is as if the stream has terminated.

B. Refined JSQ Prefetch Policy

In this section we discuss important refinements of the
JSQ prefetch policy. These refinements limit 1) the number
of packets, that are sent (in parallel) to a client in a forward
slot, and 2) the number of packets that a client may have in its
prefetch buffer. Suppose that the clients , sup-
port at most parallel channels, and have limited prefetch
buffer capacities of packets. Let ,
denote the number of packets scheduled for clientin the
upcoming forward slot. Recall that is the current number
of packets in the prefetch buffer of client. The refinements
work as follows. Suppose that the base station is considering
scheduling a packet for transmission to client. The base
station schedules the packet only if

(3)

and

(4)

If one of these conditions is violated, that is, if the packet would
exceed the number of parallel channels of clientor the packet
would overflow the prefetch buffer of client , the base sta-
tion removes connection from consideration. The base station

FITZEK AND REISSLEIN: PREFETCHING PROTOCOL FOR CONTINUOUS MEDIA STREAMING 2019

next finds a new that minimizes . If (3) and (4)
hold for the new client , we schedule the packet, update
and , and continue the procedure of transmitting packets to
the clients that minimize . Whenever one of the con-
ditions (3) or (4) (or both) is violated we skip the corresponding
client and find a new . This procedure stops when we have
either 1) scheduled packets, or 2) skipped over allstreams.
The JSQ scheduling algorithm can be efficiently implemented
with a sorted list [using as the sorting key].

C. Channel Probing

In this section we introduce a channel probing refinement
designed to improve the performance of the purely JSQ based
prefetch protocol. Note that the prefetch protocol introduced
in the previous section does not directly take the physical
characteristics of the wireless channels into consideration. The
JSQ transmission schedule is based exclusively on the prefetch
buffer contents at the clients (and the consumption rates of
the video streams). Wireless channels, however, typically
experience location-dependent, time-varying, and bursty errors,
that is, periods of adverse transmission conditions during which
all packets sent to a particular client are lost. Especially detri-
mental to the prefetch protocol’s performance are the persistent
bad channels of long-term shadowing that is caused by terrain
configuration or obstacles. Long-term shadowing typically
persists for hundreds of milliseconds, even up to seconds [14].
To see the need for the channel probing refinement consider
a scenario where one of the clients experiences a persistent
burst error on its wireless link to the base station. The burst
error cuts the client off from the base station and the client
continues video playback from its prefetched reserve. As its
prefetched reserve decreases the JSQ prefetch policy allocates
larger and larger transmission capacities to the affected client.
The excessive transmission resources expended on the affected
client, however, reduce the transmissions to the other clients
in the wireless cell. As a result the prefetched reserves of all
the other clients in the wireless cell are reduced. This makes
playback starvation—not only for the client experiencing the
bad channel, but all the other clients as well—more likely.

To fix this shortcoming we introduce the channel probing re-
finement, which is inspired by recent work on channel probing
for power saving [15]. The basic idea is to startprobing the
channel (client) when acknowledgment(s) are missing at the end
of a backward slot. While probing the channel the base station
sends at most one packet (probing packet) per forward slot to
the affected client. The probing continues until an acknowledg-
ment for a probing packet is received. More specifically, if the
acknowledgment for at least one packet sent to clientin a for-
ward slot is missing at the end of the subsequent backward slot,
we set . This allows the JSQ algorithm to schedule at
most one packet (probing packet) for clientin the next forward
slot. If the acknowledgment for the probing packet is returned
by the end of the next backward slot, we set back to its
original value; otherwise we continue probing with .

IV. SIMULATION OF PREFETCHPROTOCOL

In this section we describe the simulations of our protocol
for continuous media streaming in wireless environments. In

our simulations we consider a generic wireless communication
system with Time Division Duplex. We assume throughout that
the base station allocates channels (e.g., orthogonal
codes in CDMA or time slots in TDMA) to continuous media
streaming. We assume that each channel provides a data rate of

kb/s in the forward (downlink) direction. Throughout
we consider scenarios where allclients have the same buffer
capacity of packets and support the same number of parallel
channels , i.e., and for all .

We evaluate our streaming protocol for three different encod-
ings of video streams: i) video streams encoded at a CBR and
a constant frame rate; ii) video streams encoded at a VBR and
a constant frame rate (e.g., MPEG-1 encodings); and iii) video
streams encoded at a variable frame rate and a variable bit rate
(e.g., H.263 encodings). In the CBR scenario we assume a video
stream with a frame rate of 25 frames/s and a bit rate (including
packet headers and padding) of kb/s.

For the VBR MPEG scenario we generated 10 pseudotraces
by scaling MPEG-1 traces obtained from the public domain
[16]–[18] to an average rate of kb/s. The traces have a
fixed frame rate of 25 frames/s and are 40 000 frames long. The
generated pseudotraces are highly bursty with peak-to-mean ra-
tios in the range from 7 to 18; see [19] for details. For the H.263
scenario we generated ten H.263 encodings with an average rate
of kb/s and one hour length each. The frame periods of
the encodings are variable; they are multiples of the reference
frame period of 40 ms. The H.263 encodings have peak-to-mean
ratios in the range from 5 to 8; see [4] for details.

For each of the ongoing streams in the wireless cell we
randomly select one of the MPEG (H.263) traces. We generate
random starting phases , into the selected
traces. The s are independent and uniformly distributed
over the lengths of the selected traces. The frame is
removed from the prefetch buffer of client at the end of
the first frame period. All clients start with empty prefetch
buffers. Furthermore, we generate random stream lengths

. The s are independent and are
drawn from an exponential distribution with mean frames
(corresponding to a video runtime of seconds). (We chose
the exponential distribution because it has been found to be a
good model for stream lifetimes. We discuss the impact of the
stream lifetime on the prefetch protocol performance in more
detail in Section IV-B.) We initially assume that the client
consumes without interruption frames, starting at frame
number of the selected trace. The trace is wrapped around
if extends beyond the end of the trace. When the

th frame is removed from the prefetch buffer of client,
we assume that the client immediately requests a new video
stream. For the new video stream we again randomly select one
of the traces, a new independent random starting phase
into the trace, and a new independent random stream lifetime

. Thus there are always streams in progress.
In simulating the wireless links we follow the well-known

Gilbert–Elliot model [20], [21]. We simulate each wireless
link [consisting of up to parallel code channels] as an
independent discrete-time Markov Chain with two states:
“good” and “bad.” (The two state model is a useful and accu-
rate wireless channel characterization for the design of higher

2020 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

layer protocols [22]–[24]. It may be obtained from a more
complex channel model, which may incorporate adaptive error
control techniques (see Section V-E), using weak lumpability
or stochastic bounding techniques [25].) We assume that all
parallel code channels of a wireless link (to a particular client)
are either in the good state or the bad state. The Gilbert–Elliot
channel model is typically characterized by 1) the steady-state
probability of being in the good state, denoted by, (
denotes the steady-state probability of being in the bad state),
and 2) the average sojourn time in the bad channel state,
denoted by . For a flat fading channel the Gilbert–Elliot
model parameters can be expressed analytically in terms of the
Rayleigh fading parameters [26]. Withdenoting the ratio of
the Rayleigh fading envelope to the local root-mean-square
level, the steady-state probability of being in the good state is
given by (and). We conservatively
assume a fade margin of 10 dB (i.e., 10 dB) of the
client’s radio front end (even 20 dB may be assumed [27]). This
gives the steady-state probabilities and ,
which are typical for burst-error wireless links [28]. These
steady-state probabilities are used throughout our simulations.
The average sojourn time in the bad channel state, that is, the
average time period for which the received signal is below a
specified level, is given by . Here,

denotes the maximum Doppler frequency given by ,
where denotes the speed of the wireless terminal and
denotes the carrier wavelength. A UMTS system carrier wave-
length of m (corresponding to a carrier frequency of
1.885 GHz) and a typical client speed of m/s suggest

ms. However, we chose a larger of one second
for most of our simulations. We did this for two reasons. First,
to account for the detrimental effects of long term shadowing,
which may persist for hundreds of milliseconds even up to sec-
onds, as well as Rayleigh fading. Secondly, we observed in our
simulations (see Section IV-B) that our prefetch protocol gives
slightly larger client starvation probabilities for larger .
Thus, a larger gives conservative performance results. We
set the channel error probabilities such that all the packets sent
to a client in a slot are lost with probability in the
good channel state, and with probability in the bad
channel state. We assume that acknowledgments are never lost
in the simulations.

For our quantitative evaluation of the JSQ prefetch protocol
we define two key measures of the performance of a streaming
protocol. We define the bandwidth efficiencyof a wireless
streaming protocol as the sum of the average rates of the streams
supported by the base station divided by the total available ef-
fective transmission capacity of the base station, i.e.,

We define the client starvation probability as the long
run fraction of encoding information (packets) that misses its
playback deadline at the clients. We conservatively consider all

packets of frame as deadline misses when at least one
of the frame’s packets misses its playback deadline. We warm
up each simulation for a period determined with the Schruben’s
test [29] and obtain confidence intervals on the client starvation

Fig. 2. Sample path plot: Prefetch buffer contents (in kbytes) of 3 clients as a
function of time: Client 1 starts over.

Fig. 3. Sample path plot: Prefetch buffer contents (in kbytes) of 3 clients as a
function of time: Client 1 experiences a bad channel.

probability using the method of batch means [30]. We run
the simulations until the 90% confidence interval of is less
than 10% of its point estimate.

Unless stated otherwise, all the following experiments are
conducted for the streaming of VBR MPEG video to clients with
a buffer capacity of kbytes and support for par-
allel channels. The average lifetime of the video streams is set
to minutes unless stated otherwise. Throughout, the
base station has a total of channels available for video
streaming.

A. Simulation of Refined Prefetch Protocol
Without Channel Probing

Figs. 2 and 3 show typical sample path plots from the sim-
ulations. In this experiment we simulate the streaming of VBR
MPEG-1 videos to clients with a buffer capacity of
kbytes. The figure shows the prefetch buffer contents of three
clients in kbytes. The plots illustrate the collaborative nature of
the JSQ prefetch policy in conjunction with the rate adaptation
of the wireless communication system. We observe from Fig. 2
that at time s the buffer content of client 1 drops to zero.
This is because the video stream of client 1 ends at this time;
the client selects a new video stream and starts over with an
empty prefetch buffer. Note that already at time second
all frames of the “old” video stream have been prefetched into
the client’s buffer and the client continued to consume frames
without receiving any transmissions. When the client starts over
with an empty prefetch buffer, the JSQ prefetch policy gives pri-
ority to this client and quickly fills its prefetch buffer. While the

FITZEK AND REISSLEIN: PREFETCHING PROTOCOL FOR CONTINUOUS MEDIA STREAMING 2021

prefetch buffer of client 1 is being filled, the JSQ prefetch policy
reduces the transmissions to the other clients; they “live off”
their prefetched reserves until client 1 catches up with them. No-
tice that the buffer of client 1 is then filled faster than the buffers
of clients 2 and 3. This is because the JSQ prefetch policy strives
to balance the lengths of the prefetched video segments (in sec-
onds of video runtime) in the clients’ buffers; clients 2 and 3
just happen to have video segments with lower bit rates in their
buffers in the time period from 5.8 s to 6.4 s.

Notice from Fig. 3 that at time s the buffer occu-
pancy of client 1 drops. This is because this client experiences
a bad channel that persists for 2.1 s (a rather long period chosen
for illustration, in our numerical work we set the average so-
journ time in the bad channel state to 1 s), that is, the client
is temporarily cut off from the base station. The prefetched re-
serves allow the client to continue playback during this period.
As the prefetched reserves of client 1 dwindle the JSQ prefetch
policy allocates larger transmission capacities to it. This, how-
ever, cuts down on the transmissions to the other clients, causing
their prefetched reserves to dwindle as well. This degrades the
performance of the streaming protocol as smaller prefetched
reserves make client starvation more likely. The JSQ prefetch
policy tends to waste transmission resources on clients that ex-
perience a bad channel. Adverse transmission conditions to just
one client can decrease the prefetched reserves of all clients in
the wireless cell. For this reason we have introduced the channel
probing refinement in Section III-C. In the next section, we con-
duct a detailed quantitative evaluation of the JSQ prefetch pro-
tocol with channel probing.

B. Simulation of Refined Prefetch Protocol With
Channel Probing

To evaluate the performance of the simple channel probing
scheme introduced in Section III-C, we compare it with an
ideal scenario where the base station has perfect knowledge of
the states of the wireless channels. In the perfect knowledge
scenario, the base station schedules packets only for clients in
the good channel state. The base station does not schedule any
packet (not even a probing packet) for clients experiencing a
bad channel. (Note that in this perfect knowledge scenario no
packets are lost due to a bad channel; however, packets that are
sent to clients with a good channel are lost with probability

.)
Fig. 4 shows the client starvation probability without

channel probing, with channel probing, and with perfect
knowledge of the channel state as a function of the average
sojourn time in the “bad” channel state. For this experiment
the number of clients is fixed at (and 12 respectively).
We observe from the figure that over a wide range of channel
conditions, channel probing is highly effective in reducing
the probability of client starvation. For fast varying channels
with an average sojourn time of ms in the bad
channel state, prefetching with our simple channel probing
scheme gives a loss probability of , while
prefetching without channel probing gives
(for). As increases the client starvation probability
for prefetching with channel probing increases only slightly; the

Fig. 4. Client starvation probabilityP as a function of the average sojourn
time in the “bad” channel state for prefetching of VBR video without channel
probing, with channel probing, and with perfect knowledge of the channel state.

gap between prefetching with channel probing and prefetching
without channel probing, however, increases dramatically. For

ms and larger the client starvation probability
of prefetching with channel probing is over one order of
magnitude smaller than the client starvation probability of
prefetching without channel probing. We also observe that the
client starvation probabilities achieved by our simple channel
probing scheme are only slightly above the client starvation
probabilities achieved with perfect knowledge of the channel
state. This indicates that more sophisticated channel probing
schemes could achieve only small reductions of the client
starvation probability. A more sophisticated channel probing
scheme could probe with multiple packets per slot when the
affected client has a small prefetched reserve and with one
packet every th slot, , for clients with a large prefetched
reserve. We also note that reducing the slot length of the TDD
would make channel probing more effective at the expense of
increased overhead; inspired by the UMTS standard [9] we
used a short fixed TDD slot length of 12 ms throughout. We
set the average sojourn time in the “bad” channel state to one
second for all the following experiments.

Fig. 5 shows the client starvation probability as a func-
tion of the maximum number of parallel channelsthat can
be assigned to an individual client. The figure gives results for
JSQ prefetching without channel probing, with channel probing,
and with perfect knowledge of the channel state. We observe
from Fig. 5 that for all three approaches, drops by over one
order of magnitude as increases from one to two, allowing for
collaborative prefetching through the lending and borrowing of
channels. Now consider prefetching with clients. For
prefetching with channel probing and with perfect knowledge
of the channel state, drops steadily as increases. For
prefetching without channel probing, however, increases
as grows larger than two, that is, allowing for more exten-
sive lending and borrowing of channels is detrimental to perfor-
mance in this scenario.

This is because JSQ prefetching without channel probing
tends to waste transmission channels on a client experiencing
a persistent bad channel. This reduces the prefetched reserves
of all clients in the cell, thus increasing the likelihood of client
starvation. The larger the number of parallel channelsthat
can be assigned to an individual client, the larger this waste

2022 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

Fig. 5. Client starvation probabilityP as a function of the maximum
number of channelsR per client for prefetching of VBR video without channel
probing, with channel probing, and with perfect knowledge of the channel state.

Fig. 6. Client starvation probabilityP as a function of the bandwidth
efficiency� (obtained by varying the number of clientsJ) for VBR video and
prefetch bufferB = 32 kByte.

of transmission channels (resulting in a larger). Now
consider prefetching with clients. drops both for
prefetching without and with channel probing asincreases
to nine. As grows larger than nine, however, increases
for prefetching without channel probing. This is because in
this low load scenario a client experiencing a bad channel
may occupy nine out of the 15 available channels without
doing much harm to the prefetched reserves of the other six
clients. (The noise level, however, is unnecessarily increased.)
As grows larger than nine, however, a client experiencing a
persistent bad channel tends to reduce the prefetched reserves
of the other clients. Another important observation from Fig. 5
is that already a low-cost client with support for a few parallel
channels allows for effective prefetching.

Fig. 6 shows the client starvation probability as a func-
tion of the bandwidth efficiency. The plots are obtained by
varying the number of clients. Noteworthy is again the effec-
tiveness of the simple channel probing scheme. The client star-
vation probability achieved with channel probing is i) gen-
erally over one order of magnitude smaller than without channel
probing, and ii) only slightly larger than with perfect knowledge
of the channel state. Throughout the remainder of this article we
use prefetching with channel probing. Importantly, the results in
Fig. 6 indicate that a crude admission control criterion that limits

Fig. 7. Client starvation probabilityP as a function of the client buffer
capacityB for VBR video.

Fig. 8. Client starvation probabilityP as a function of the bandwidth
efficiency� (obtained by varying the number of clientsJ) for B = 32 kbytes
for VBR MPEG-1, CBR, and H.263 video.

the bandwidth efficiency to less than 0.9, say, is highly effec-
tive in ensuring small client starvation probabilities. We note,
however, that more research is needed on admission control for
streaming in wireless environments.

Fig. 7 shows the client starvation probability as a func-
tion of the client buffer capacity . The results demonstrate
the dramatic improvement in performance that comes from
prefetching. For ongoing VBR streams the client
starvation probability drops by over two orders of magnitude
as the client buffers increase from 8 kbytes to 128 kbytes. (A
buffer of 128 kbytes can hold on average 16-s segments of the
VBR videos with an average rate of kb/s.) With client
buffers of kbytes and ongoing streams our
prefetch protocol achieves a client starvation probability of less
than 10 and a bandwidth efficiency of 90%! Our protocol
achieves this remarkable performance for the streaming of
bursty VBR videos with a typical peak-to-mean ratio of the
frame sizes of ten. In the long run, each wireless link is in the
“bad” state (where all packets are lost) for one percent of the
time; the average sojourn time in the “bad” state is 1 s.

Fig. 8 shows the client starvation probability as a
function of the bandwidth efficiency for the streaming of
VBR MPEG-1 video, CBR video, and H.263 video. The
prefetch buffer is fixed at kbytes in this experiment.
Fig. 9 shows the client starvation probability as a function

FITZEK AND REISSLEIN: PREFETCHING PROTOCOL FOR CONTINUOUS MEDIA STREAMING 2023

Fig. 9. Client starvation probabilityP as a function of the client buffer
capacityB for J = 13 streams of VBR MPEG-1, CBR, and H.263 video.

TABLE I
CLIENT STARVATION PROBABILITY P AS A FUNCTION OF THEAVERAGE

STREAM LIFETIME T FOR VBR VIDEO

of the client buffer capacity for the streaming of
streams of VBR MPEG-1 video, CBR video, and H.263 video.
We observe from the plots that H.263 video gives generally
smaller client starvation probabilities than VBR MPEG-1
video. This is primarily because H.263 video has for a given
average bit rate, larger frame sizes and correspondingly
larger frame periods than MPEG video [4]. For H.263
video the prefetch protocol has therefore more freedom in
scheduling the frames’ packets, resulting in smaller client
starvation probabilities. Moreover, the used H.263 traces are
less variable than the VBR MPEG-1 traces. We also observe
from the plots that CBR video gives smaller client starvation
probabilities than the very variable VBR MPEG-1 video.

Table I gives the client starvation probability as a func-
tion of the average stream lifetimefor the streaming of VBR
MPEG-1 video to clients each with a buffer capacity
of kbytes. Our prefetching protocol performs very
well for stream lifetimes on the order of minutes or longer. For
stream lifetimes shorter than one minute increases con-
siderably as the lifetime decreases. This is because stream life-
times this short allow for very little time to build up prefetched
reserves. Even for an average stream lifetime of s,
however, prefetching reduces the client’s starvation probability
from without any prefetching to with
prefetching. We note that (given a fixed mean) the distribution
of the stream lifetime has typically little impact on the perfor-
mance of the prefetch protocol. It is important, however, that the
starting times of the streams do not collude too frequently. This
is because the JSQ policy allocates more transmission resources
to a new stream (with an empty prefetch buffer) to quickly build
up its prefetched reserve (see Fig. 2 for an illustration where
the new stream’s reserve is build up in less than one second). If
several streams start at the same time it takes longer to build up
their reserves. The longer build-up period makes losses more
likely. This is because streams without sufficient reserves are
more vulnerable to playback starvation due to wireless link fail-
ures (or bursts in the video traffic). In our simulations we draw

TABLE II
CLIENT STARVATION PROBABILITY P AS A FUNCTION OF THESTART-UP

LATENCY FOR VBR VIDEO

random stream lifetimes from an exponential distribution and
start up a new stream immediately after an ongoing stream has
terminated. With this approach the starting times of the stream
collude only infrequently. We believe that this is an appropriate
model for an on-demand streaming service.

We observed in our simulations that losses typically occur
right at the beginning of the video playback when the client has
no prefetched reserves. This motivates us to introduce a short
startup latency allowing the client to prefetch into its prefetched
buffer for a short period of time without removing and dis-
playing video frames. Table II gives the client starvation prob-
ability as a function of the startup latency for on-
going VBR streams and client buffers of kbytes. We
observe from Table II that very short startup latencies reduce
the client starvation probability significantly; a startup latency
of 400 ms , for instance, reduces the client starvation proba-
bility by roughly one order of magnitude. With a startup latency
of 400 ms the client prefetches for 400 ms without removing
video frames from its prefetch buffer; the first frame is removed
and displayed at time 400 ms , where denotes
the frame period of the first frame of the video stream.

V. EXTENSIONS OFPREFETCHPROTOCOL

A. Client Interactions

In this section, we adapt our streaming protocol to allow for
client interactions, such as pause/resume and temporal jumps.
Suppose that the user for streampauses the video. Upon re-
ceiving notification of the action, the base station can simply
remove stream from consideration until it receives a resume
message from the client. While the client is in the paused state,
it’s prefetch buffer contents remain unchanged; a slightly more
complex policy would be to fill the corresponding buffer once
all the other (“unpaused”) client buffers are full or reach a pre-
specified level.

Suppose that the user for streammakes a temporal jump of
frames (corresponding to seconds of video runtime) into

the future. If we discard frames from the head of
the prefetch buffer and set ; is adjusted
accordingly. If we set and and
discard the prefetch buffer contents. Finally, suppose that the
user for stream makes a backward temporal jump. In this case
we set and and discard the prefetch buffer
contents.

In terms of performance, pauses actually improve perfor-
mance because the video streams that remain active have
more transmission capacity to share. Frequent temporal jumps,
however, can degrade performance because prefetch buffers
would be frequently set to zero. We now give some simulation
results for client interactions. In our simulations we consider
only forward and backward temporal jumps and ignore pauses
because pauses can only improve performance. We furthermore

2024 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

TABLE III
CLIENT STARVATION PROBABILITY P AS A FUNCTION OF THEAVERAGE

SPACINGD BETWEENCLIENT INTERACTIONS FORVBR VIDEO

assume that for all forward temporal jumps. Thus,
the prefetch buffer is set to zero whenever the corresponding
user invokes such an interaction. Our results give therefore
a conservative estimate of the actual performance. In our
simulations, we assume that each user performs temporal
jumps repeatedly, with the time between two successive jumps
being exponentially distributed with meanseconds. Table III
gives the client starvation probability as a function of the
average spacing between temporal jumps. This experiment
was conducted for the streaming of VBR MPEG video to
clients with buffers of kbyte and support for
parallel channels. The bandwidth efficiency is fixed at %
(). The average stream lifetime is fixed at
s. As we would expect, the loss probability increases as the
rate of temporal jumps increases, however, the increase is not
significant for a sensible number of temporal jumps.

B. Prefetching for Live Streams

Although we have developed our prefetching protocol pri-
marily for the streaming of prerecorded continuous media, in
this section we explore the prefetching oflive (i.e., not prere-
corded) continuous media. In particular, we focus on the trans-
mission of the coverage of a live event, such as the video and
audio feed from a conference, concert, or sporting event. In the
case of a live video feed the delay budget from capturing a video
frame to its display on the client’s screen is typically on the
order of hundreds of milliseconds. (One satellite hop, for in-
stance, introduces a propagation delay of 240 ms.) We intro-
duce an additional prefetch delay budget (on the order of a few
hundred milliseconds) to allow for prefetching over the wireless
link (i.e., the last hop). Specifically, let denote the prefetch
delay budget for streamin seconds. With prefetching the be-
ginning of the playback at the user is delayed by an additional

. However, we believe that an increase of the startup delay
of a few hundred milliseconds is acceptable to most users. (We
note that the situation is different for interactive communica-
tion, e.g., video conferencing, where the total delay budget is
typically limited to 250 ms.)

When commencing the transmission of a live stream the base
station immediately starts to transmit the stream’s packets. The
client starts to play out the stream seconds after the stream
transmission has commenced. The base station may support
live streams and prerecorded streams at the same time. The
base station schedules both the live streams and prerecorded
streams according to the refined JSQ prefetch policy with
channel probing. Packets are scheduled for the streamwith
the smallest prefetched reserve , that satisfies: i) the client
reception constraint (3) (which is set to one packet per slot if
client is in probing mode) and ii) the client buffer constraint
(4). In addition, for a live stream the base station checks
whether the packet considered for transmission exceeds the

TABLE IV
CLIENT STARVATION PROBABILITY P AS A FUNCTION OF THEPREFETCH

DELAY BUDGETP (j) FOR THESTREAMING OF LIVE VBR MPEG-1 VIDEO

prefetch delay budget. Specifically, when considering a packet
for transmission to client the base station verifies whether

(5)

where is the frame (number) of streamthat is (partially)
carried by the considered packet. This constraint ensures that
the base station does not exceed the prefetch delay budget by
scheduling a packet that has yet to be delivered from the live
video source. The constraint (5) ensures that the base station
does not prefetch more than seconds “into the future.”

In our simulation study we consider a scenario where all
ongoing streams arelive streams. [Note that our performance
results are thus somewhat conservative compared to a more
realistic scenario where the base station supports a mixture
of live streams and prerecorded streams. This is because the
base station is not constrained by the prefetch delay budget (5)
when prefetching for the prerecorded streams.] We consider
the streaming of live VBR MPEG-1 streams to clients,
each with a buffer capacity of kbytes and support
for parallel channels. The average lifetime of the
video streams is set to minutes. The base station has
a total of channels available for video streaming; the
bandwidth efficiency is fixed at . Table IV gives the
client starvation probability as a function of the prefetch
delay budget (which is the same for all streams). In the
considered scenario, prefetching with a prefetch delay budget
of 400 ms (the typical delay requirement for voice over IP)
gives a client starvation probability of less than 10(a typical
loss requirement for MPEG-4 video). The client starvation
probability for prefetching of live content with a prefetch delay
budget of four seconds is almost as small as for the streaming of
prerecorded content without a prefetch delay budget constraint.

C. Uplink Streaming

In this section, we outline the streaming of prerecorded con-
tinuous media from multiple clients to a central base station.
We assume a multirate CDMA system with a TDD timing struc-
ture. For every uplink stream a prefetch buffer is allocated in the
base station. The base station tracks the prefetch buffer contents
and schedules the uplink packet transmissions according to the
JSQ policy. The base station sends out the uplink transmission
schedule in the forward (downlink) slot. In the subsequent back-
ward (uplink) slot the clients send the scheduled packets to the
base station; pseudonoise codes are used for these asynchronous
transmissions. The base station processes the received packets,
computes the next uplink transmission schedule, and sends it
out in the following forward slot.

When packets are missing at the end of the backward slot
(i.e., when the schedule or a packet was lost) the affected
client is probed. While probing the affected client sends one

FITZEK AND REISSLEIN: PREFETCHING PROTOCOL FOR CONTINUOUS MEDIA STREAMING 2025

(probing) packet per backward slot. The probing terminates
when a probing packet is received by the base station.

D. Prefetching in Third Generation CDMA Systems and
TDMA Systems

We have discussed the JSQ prefetch policy in the context
of a second generation CDMA IS-95 (Rev. B) system, where
rate adaptation is achieved through code aggregation, that is,
by dynamically assigning multiple code channels to one par-
ticular client (stream). We have considered a scenario where the
base station usesorthogonal codes for the downlink streaming
service and client can receive (and process) code chan-
nels in parallel. JSQ prefetching is equally well suited for the
rate adaptation techniques used in third generation CDMA sys-
tems. The third generation North American CDMA standard,
cdma 2000, adapts data rates by employing code aggregation
and variable spreading gains [31]. With a 5-MHz carrier, for
instance, the data rate of one CDMA code channel can be ad-
justed from 9.6 kb/s to 614.4 kb/s by varying the spreading
factor. With code aggregation a maximum data rate of 2048 kb/s
can be achieved. Similarly, the universal mobile telecommu-
nications system (UMTS) wideband CDMA (WCDMA) stan-
dard for Europe and Japan adapts data rates by employing code
aggregation in conjunction with variable spreading gains and
code puncturing [9]. UMTS may run in the frequency division
duplex (FDD) or the TDD mode. In the TDD mode, which
we assume throughout this article, time is divided into 10 ms
frames, which are subdivided into 16 minislots of 625s each.
A minislot is spread with a unique code and may carry either
forward or backward traffic. Each minislot has a total of 15
code channels, which may be dynamically assigned to the indi-
vidual clients. To illustrate JSQ prefetching in these third gener-
ation CDMA systems, suppose that the forward (base station to
clients) transmission capacity allocated to streaming services al-
lows for the transmission of packets in one forward slot of the
TDD. The base station executes the JSQ scheduling algorithm
to determine the number of packets scheduled for client

, in the upcoming forward slot. The spreading
factors and code channels for the forward slot are assigned ac-
cording to the transmission schedule .

The JSQ prefetch policy is also suited for the rate adaptation
techniques of wireless time division multiple access (TDMA)
systems. In generalized packet radio service (GPRS) and en-
hanced GPRS (EGPRS), the GSM standards for packet data
services, rate adaptation is achieved through adaptive coding
and time slot aggregation, that is, by assigning multiple time
slots within a GSM frame to a particular client (stream) [32].
Up to eight time slots per GSM frame can be allocated to a
client, giving maximum data rates of 160 kb/s in GPRS and
473 kb/s in EGPRS. Similarly, in GPRS-136, the IS-136 TDMA
standard for packet data services, rate adaptation is achieved
through adaptive modulation and time slot aggregation [33]. Up
to three time slots per 20 ms TDMA frame can be allocated
to a client, giving a maximum data rate of 44.4. kb/s. Suppose
that the base station allocatestime slots of the forward por-
tion of the TDMA frame to continuous media streaming. The
base station executes the JSQ scheduling algorithm to deter-
mine the number of time slots (packets) assigned to client

, in the upcoming TDMA frame. The base
station then assigns time slots to client in the forward
portion of the TDMA frame (using, for instance, the dynamic
slot assignment (DSA++) protocol [34]). The prefetching pro-
tocol may be employed in a frequency division multiple access
(FDMA) system with TDD in analogous fashion.

E. Physical Layer Refinements

In this section we outline how our prefetch protocol may be
used in conjunction with physical layer techniques designed to
improve the throughput over wireless channels. Recall from
Section III that the prefetching protocol distinguishes two
states of the wireless channel: a “good” state where packets
are successfully received, decoded, and acknowledged, and
a “bad” state where packets (and/or acknowledgments) are
lost (due to an excessive number of bit errors or complete
shadowing). The prefetch protocol may run on top of adaptive
error control schemes employed at the physical layer. These
schemes may adapt the forward error correction [35] or trans-
mission power [8] based on pilot tone or signal to noise and
interference measurements. As long as these techniques are
able to successfully return an acknowledgment for a transmitted
packet, the prefetching protocol “sees” a good channel and
schedules packets according to the length (in runtime) of the
prefetched reserve. When the physical layer techniques fail
(due to severely deteriorated channel conditions or complete
shadowing), the prefetching protocol switches to the probing
mode.

An avenue for future research is to use interleaving schemes
or turbo codes [36] in conjunction with the prefetching protocol.
Interleaving or turbo codes could exploit the delay tolerance of
clients with a large prefetched reserve to successfully decode
packets under adverse channel conditions.

VI. RELATED WORK

There is a large body of literature on providing QoS in
wireless environments. Much of the work in this area has
focused on mechanisms for channel access; see Akyildizet al.
[37] for a survey. Choi and Shin [38] have recently proposed
a comprehensive channel access and scheduling scheme for
supporting real-time traffic and nonreal-time traffic on the
uplinks and downlinks of a wireless LAN.

Recently, packet fair scheduling algorithms that guarantee
clients a fair portion of the shared transmission capacity have re-
ceived a great deal of attention [39]–[42]. These works adapt fair
scheduling algorithms originally developed for wireline packet-
switched networks to wireless environments. They address the
key difference between scheduling and resource allocation in
wireline and wireless environments: wireline links have a fixed
transmission capacity while wireless links experience location-
dependent, time-varying, and bursty errors, which result in sit-
uations where the shared transmission capacity is temporarily
available only to a subset of the clients. Another line of work ad-
dresses the efficiency of reliable data transfer over wireless links
[43], [22]. Krunz and Kim [44], [45] study the packet delay and
loss distributions as well as the effective bandwidth of an on–off

2026 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

flow over a wireless link with automatic repeat request and for-
ward error correction.

We note that to our knowledge none of the existing schemes
for providing QoS in wireless environments takes advantage
of the special properties (predictability and prefetchability) of
prerecorded continuous media. Prerecorded continuous media,
however, are expected to account for a large portion of the future
Internet traffic. There is an extensive literature on the streaming
of prerecorded continuous media, in particular VBR video,
over wireline packet-switched networks; see Krunz [46] as
well as Reisslein and Ross [47] for a survey. In this literature a
wide variety of smoothing and prefetching schemes is explored
to efficiently accommodate VBR video on fixed bandwidth
wireline links. The proposed approaches fall into two main
categories: noncollaborative prefetching and collaborative
prefetching. Noncollaborative prefetching schemes [48]–[50]
smooth (i.e., reduce the peak rate and rate variability of) an
individual VBR video stream. The smoothing is achieved by
transmitting the video traffic at a piecewise constant-rate trans-
mission schedule. The piecewise constant-rate transmission
schedule relies on prefetching of some parts of the prerecorded
video (also referred to as work-ahead) into the client buffer.
The noncollaborative prefetching schemes compute (typically
off-line) a transmission schedule that is as smooth as possible
while ensuring that the client buffer neither overflows nor
underflows. The video streams are then transmitted according
to the individually precomputed transmission schedules. The
statistical multiplexing of the individually smoothed video
streams is studied in [51], [52].

Collaborative prefetching schemes [53], [54], on the other
hand, determine the transmission schedule of a video stream
on-line as a function ofall the other ongoing video streams. In
particular, the collaborative prefetching schemes for wireline
networks take the prefetch buffer contents at all the clients into
consideration. We have built our prefetch protocol for wireless
environments on the principle of collaborative prefetching
for two main reasons. First, the time-varying, bursty, and
location-dependent wireless link errors make it very difficult
(if not impossible) to transmit according to a fixed transmission
schedule that is pre-computed for an individual video stream by
some noncollaborative prefetching scheme. Wireless systems
experience situations where the shared transmission capacity
is temporarily available only to a subset of the clients. At any
given point in time there may be good transmission conditions
on the wireless links to some clients while the transmission
conditions are adverse on the wireless links to some other
clients. It is therefore natural to build upon the principle of col-
laborative prefetching when designing a prefetching protocol
for wireless environments. Secondly, it has been shown in the
context of wireline networks that collaborative prefetching
outperforms noncollaborative prefetching when multiple video
streams share a single bottleneck link [47]; that is collaborative
prefetching achieves higher average link utilizations and
smaller client starvation probabilities. Wireless networks and
wireline networks have fundamentally different characteristics.
However, streaming from a central base station to wireless
clients is similar to streaming over a wireline bottleneck link.
In both cases multiple video streams share a common resource.

In the wireless setting this common resource is the downlink
transmission capacity of the base station.

Among the collaborative prefetching schemes for wireline
environments is a prefetching scheme based on the JSQ prin-
ciple developed by Reisslein and Ross [53]. Their scheme is de-
signed for a Video on Demand service with VBR encoded fixed
frame rate MPEG video over an ADSL network or the cable
plant. The protocol proposed in this article differs from the pro-
tocol in [53] in two major aspects. First, the protocol in [53] is
designed for a shared wireline link of fixed capacity. It does not
handle the location-dependent, time-varying, and bursty errors
that are typical for wireless environments. Second, the protocol
in [53] is designed for fixed frame rate video. It assumes that all
ongoing video streams have the same frame rate. Furthermore, it
requires the synchronization of the frame periods of the ongoing
streams. Our protocol in this article, on the other hand, does not
require synchronization of the ongoing video streams. Our pro-
tocol accommodates video streams with different (and possibly
time-varying) frame rates. It is thus well suited for H.263 en-
codings which are expected to play an important role in video
streaming in wireless environments.

Elaoud and Ramanathan [55] propose a scheme for pro-
viding network level QoS to flows in a wireless CDMA system.
Their scheme dynamically adjust the signal to interference
and noise ratio requirements of flows based on MAC packet
deadlines and channel conditions. The simultaneous MAC
packet transmission (SMPT) scheme of Fitzeket al. [56]
provides transport level QoS by exploiting rate adaptation
techniques of CDMA systems. The SMPT scheme delivers
transport layer segments (e.g., UDP or TCP segments, which
are divided into several MAC packets) with high probability
within a permissible delay bound. Our work in this paper
differs from the network/transport level schemes [55], [56] in
several aspects. First, [55], [56] propose decentralized schemes
for backward (uplink) transmissions, that is, the schemes are
designed for uncoordinated transmissions from distributed
clients to a central base station. Second, there is no prefetching
in [55], [56]; the SMPT scheme resorts to rate adaptation (i.e.,
parallel packet transmissions) only to recover from gaps caused
by errors on the wireless link within a given TCP or UDP
segment. Moreover, [55], [56] do not take the characteristics of
the application layer traffic into consideration; the scheme [55]
operates on one MAC packet at a time and SMPT [56] operates
on one TCP or UDP segment at a time. Our protocol in this
article, on the other hand, exploits two special properties of the
prerecordedcontinuous media streaming traffic: 1) the client
consumption rates over the duration of the playback are known
before the streaming commences; and 2) while the continuous
media stream is being played out at the client, parts of the
stream can be prefetched into the client’s memory.

We note in closing that Chaskar and Madhow [57] and An-
drewset al.[58] study the sharing of the base station’s downlink
transmission capacity by multiple flows. Chaskar and Madhow
[57] propose a link shaping scheme where the flows are as-
signed individual packet slots or entire rows in an interleaver
block matrix. Andrewset al. [58] propose a modified largest
weighted delay first (M-LWDF) scheme, which is designed to
provide throughput and/or delay assurances. In the M-LWDF

FITZEK AND REISSLEIN: PREFETCHING PROTOCOL FOR CONTINUOUS MEDIA STREAMING 2027

scheme the base station maintains a transmission queue for each
ongoing downlink flow. Roughly speaking, packets are sched-
uled for the flow with i) the largest transmission queue, and ii)
relatively good transmission conditions.

VII. CONCLUSION

We have developed a high performance prefetching protocol
for the streaming of prerecorded continuous media in a cellular
wireless system. Our prefetching protocol can be employed on
top of any of the rate adaptation techniques of wireless commu-
nication systems. Our protocol accommodates CBR and VBR
encodings as well as fixed frame rate and variable frame rate en-
codings. Channel probing is crucial for the performance of our
protocol. With channel probing the base station allocates trans-
mission resources in a judicious manner avoiding the allocation
of large portions of the available transmission capacity to clients
experiencing adverse transmission conditions.

In our ongoing work, we study service differentiation
among the ongoing streams. In a crude service differentiation
scheme, the base station prefetches for low priority clients
only if the prefetched reserves of the high priority clients
have reached prespecified levels. We are also extending the
prefetching protocol to scalable (layered) encoded video.
With layered encoding, the video is typically encoded into a
base layer, which provides a basic video quality, and one (or
more) enhancement layer(s), which improve the video quality.
Layered encoded video has the decoding constraint that an
enhancement layer can only be decoded if all lower layers are
given. Layered encoded video makes it possible to provide
different video qualities to clients with different decoding and
display capabilities. Importantly, layered encoded video also
allows for graceful degradation of the video quality. During
periods of bad channel conditions the client may run out of the
enhancement layer(s) and continue displaying the lower quality
base layer video (provided a sufficiently long segment of the
base layer has been prefetched). With layered encoded video
there is a tradeoff between prefetching: 1) a shorter segment of
the complete [base layer enhancement layer(s)] stream; or
2) a longer base layer segment. We are exploring this tradeoff
and are developing policies that prefetch the enhancement
layer(s) only if a minimum-length base layer segment has been
prefetched.

ACKNOWLEDGMENT

The authors are grateful to Prof. A. Wolisz for providing the
environment that allowed us to pursue the work presented in this
paper.

REFERENCES

[1] G. A. Gibson, J. S. Vitter, and J. Wilkes, “Storage and I/O issues in
large-scale computing,” inACM Workshop on Strategic Directions in
Computing Research, ACM Computing Surveys, 1996.

[2] Inktomi Inc., “Streaming media caching white paper,” Inktomi Corpo-
ration, Technical Report, 1999.

[3] L. Roberts and M. Tarsala, “Inktomi goes wireless; forms alliances,” in
CBS MarketWatch, Mar. 14, 2000.

[4] F. Fitzek and M. Reisslein. MPEG-4 and H.263 video traces for net-
work performance evaluation. IEEE Network[Online]Preprint and video
traces available at . Available: http://www.eas.asu.edu/~mre

[5] G. Karlsson, “Asynchronous transfer of video,”IEEE Commun. Mag.,
vol. 34, pp. 106–113, Feb. 1996.

[6] H. Liu and M. El Zarki, “H.263 video transmission over wireless net-
works using hybrid ARQ,”IEEE J. Select. Areas Commun., vol. 15, pp.
1775–1785, Dec. 1997.

[7] S. Nanda, K. Balachandran, and S. Kumar, “Adaptation techniques in
wireless packet data services,”IEEE Commun. Mag., vol. 38, pp. 54–64,
Jan. 2000.

[8] EIA/TIA-95 Rev. B, “Mobile station–base station compatibility standard
for dual-mode wideband spread spectrum cellular systems,”, 1997.

[9] UMTS 30.03, “Universal mobile telecommunications system (UMTS);
selection procedures for the choice of radio transmission technologies
of the UMTS,”.

[10] Y. Wang and Q. Zhu, “Error control and concealment for video commu-
nication: A review,”Proc. IEEE, vol. 86, pp. 974–997, May 1998.

[11] L. Georgiadis, R. Guerin, and A. K. Parekh, “Optimal multiplexing on a
single link: Delay and buffer requirements,” inProc. IEEE Infocom ’94,
Toronto, Canada, June 1994.

[12] F. Wegner, “Personal communication,” Siemens AG, Mobile Radio Ac-
cess Simulation Group, Berlin, Germany, May 2000.

[13] M. Bronzel et al., “Integrated broadband mobile system (IBMS) fea-
turing wireless ATM,” inProc. ACTS Mobile Commun. Summit, Aal-
borg, Denmark, Oct. 1998.

[14] M. D. Yacoub, Foundations of Mobile Radio Engineering. Boca
Raton, FL: CRC, 1993.

[15] M. Zorzi and R. R. Rao, “Error control and energy consumption in com-
munications for nomadic computing,”IEEE Trans. Comput., vol. 46, pp.
279–289, Mar. 1997.

[16] M. W. Garret, “Contributions toward real-time services on packet net-
works,” Ph.D. dissertation, Columbia Univ., May 1993.

[17] M. Krunz, R. Sass, and H. Hughes, “Statistical characteristics and multi-
plexing of MPEG streams,” inProc. IEEE Infocom ’95, vol. Apr., 1995,
pp. 455–462.

[18] O. Rose, “Statistical properties of MPEG video traffic and their impact
on traffic modeling in ATM systems,” Univ. Wuerzburg, Inst. Comput.
Sci., Tech. Rep. 101, Feb. 1995.

[19] F. Fitzek and M. Reisslein. (2001, June) A prefetching protocol for
continuous media streaming in wireless environments (extended
version). Tech. Univ. Berlin, Dept. Elect. Eng., Germany. [Online]Tech.
Rep. TKN-00-05, available at . Available: http://www-tkn.ee.tu-
berlin.de/~fitzek and http://www.eas.asu.edu/~mre

[20] E. N. Gilbert, “Capacity of a burst-noise channel,”Bell Syst. Tech. J.,
vol. 39, pp. 1253–1266, Sept. 1960.

[21] E. O. Elliot, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. J., vol. 42, pp. 1977–1997, Sept. 1963.

[22] P. Bhagwat, P. Bhattacharya, A. Krishna, and S. K. Tripathi, “Using
channel state dependent packet scheduling to improve TCP throughput
over wireless LANs,”ACM Wireless Networks, vol. 3, pp. 91–102, 1997.

[23] M. Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy of a first-
order Markovian model for data block transmission on fading channels,”
in Proc. IEEE Int. Conf. Universal Personal Commun., Nov. 1995, pp.
211–215.

[24] H. S. Wang and N. Moayeri, “Finite-state Markov model—A useful
model for radio communication channels,”IEEE Trans. Veh. Technol.,
vol. 44, pp. 163–177, Feb. 1995.

[25] R. R. Rao, “Higher layer perspectives on modeling the wireless
channel,” in Proc. IEEE ITW, Killarney, Ireland, June 1998, pp.
137–138.

[26] G. L. Stüber, Principles of Mobile Communications, second
ed. Boston, MA: Kluwer Academic, 2001.

[27] C. Chien, M. B. Srivastava, R. Jain, P. Lettieri, V. Aggarwal, and R. Ster-
nowski, “Adaptive radio for multimedia wireless links,”IEEE J. Select.
Areas Commun., vol. 17, pp. 793–813, May 1999.

[28] C. Hsu, A. Ortega, and M. Khansari, “Rate control for robust video
transmission over burst-error wireless channels,”IEEE J. Select. Areas
Commun., vol. 17, pp. 756–773, May 1999.

[29] L. W. Schruben, “Detecting initialization bias in simulation output,”
Oper. Res., vol. 30, pp. 569–590, 1982.

[30] G. S. Fishman,Principles of Discrete Event Simulation. New York:
Wiley, 1991.

[31] D. N. Knisely, S. Kumar, S. Laha, and S. D. Nanda, “Evolution of wire-
less data services: IS-95 to CDMA 2000,”IEEE Commun. Mag., vol.
36, pp. 140–149, Oct. 1998.

[32] ETSI GSM 03.60, “Digital cellular telecommunications system (phase
2+); General packet radio service (GPRS); Service description; stage
2,”.

2028 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

[33] K. Balachandran, R. Ejzak, S. Nanda, S. Vitebskiy, and S. Seth,
“GPRS-136: High-rate packet data service for north american TDMA
digital cellular systems,”IEEE Personal Commun., vol. 6, pp. 34–47,
June 1999.

[34] G. Anastasi, L. Lenzini, E. Mingozzi, A. Hettich, and A. Kramling,
“MAC protocols for wideband wireless local access: Evolution toward
wireless ATM,” IEEE Personal Commun., vol. 5, pp. 53–64, Oct. 1998.

[35] H. Liu, H. Ma, M. ElZarki, and S. Gupta, “Error control schemes for
networks: An overview,”Mobile Networks and Applications, vol. 2, no.
2, pp. 167–182, Oct. 1997.

[36] T. Duman and M. Salehi, “New performance bounds for turbo codes,”
IEEE Trans. Commun., vol. 46, pp. 717–723, June 1998.

[37] I. F. Akyildiz, J. McNair, L. C. Martorell, R. Puigjaner, and Y. Yesha,
“Medium access control protocols for multimedia traffic in wireless net-
works,” IEEE Network, vol. 13, pp. 39–47, July/Aug. 1999.

[38] S. Choi and K. G. Shin, “A unified wireless LAN architecture for
real-time and nonreal-time communication services,”IEEE/ACM
Trans. Networking, vol. 8, pp. 44–59, Feb. 2000.

[39] C. Fragouli, V. Sivaraman, and M. B. Srivastava, “Controlled multi-
media wireless link sharing via enhanced class-based queueing with
channel-state-dependent packet scheduling,” inProc. IEEE Infocom ’98,
San Francisco, CA, Apr. 1998.

[40] T. S. E. Ng, I. Stoica, and H. Zhang, “Packet fair queueing algorithms
for wireless networks with location dependent errors,” inProc. IEEE
Infocom ’98, San Francisco, CA, Apr. 1998, pp. 1103–1111.

[41] S. Lu, T. Nandagopal, and V. Bharghavan, “A wireless fair service algo-
rithm for packet cellular networks,” inProc. ACM/IEEE MobiCom ’98,
Dallas, TX, Oct. 1998, pp. 10–20.

[42] P. Ramanathan and P. Agrawal, “Adapting packet fair queueing algo-
rithms to wireless networks,” inProc. ACM MobiCom 1998, Dallas, TX,
Oct. 1998.

[43] E. Amir, H. Balakrishnan, S. Seshan, and R. Katz, “Efficient TCP over
networks with wireless links,” inProc. ACM Conf. Mobile Computing
and Networking, Berkeley, CA, Dec. 1995.

[44] J. G. Kim and M. Krunz, “Bandwidth allocation in wireless networks
with guaranteed packet loss performance,”IEEE/ACM Trans. Net-
working, vol. 8, pp. 337–349, June 2000.

[45] M. M. Krunz and J. G. Kim, “Fluid analysis of delay and packet dis-
card performance for QoS support in wireless networks,”IEEE J. Select.
Areas Commun., vol. 19, pp. 384–395, Feb. 2001.

[46] M. Krunz, “Bandwidth allocation strategies for transporting vari-
able-bit-rate video traffic,”IEEE Commun. Mag., vol. 37, pp. 40–46,
Jan. 1999.

[47] M. Reisslein and K. W. Ross, “High-performance prefetching proto-
cols for VBR prerecorded video,”IEEE Network, vol. 12, pp. 46–55,
Nov./Dec. 1998.

[48] W. Feng and J. Rexford, “A comparison of bandwidth smoothing te-
chiniques for the transmission of prerecorded compressed video,” in
Proc. IEEE Infocom, Kobe, Japan, Apr. 1997, pp. 58–67.

[49] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley, “Supporting stored
video: Reducing rate variability and end-to-end resource requirements
through optimal smoothing,”IEEE/ACM Trans. Networking, vol. 6, pp.
397–410, Aug. 1998.

[50] Z. Jiang and L. Kleinrock, “A general optimal video smoothing algo-
rithm,” in Proc. IEEE Infocom ’98, San Francisco, CA, Apr. 1998, pp.
676–684.

[51] M. Grossglauser, S. Keshav, and D. Tse, “RCBR: A simple and efficient
service for multiple time-scale traffic,”IEEE/ACM Trans. Networking,
vol. 5, pp. 741–755, 1997.

[52] Z. Zhang, J. Kurose, J. Salehi, and D. Towsley, “Smoothing, statistical
multiplexing and call admission control for stored video,”IEEE J. Se-
lect. Areas Commun., vol. 13, pp. 1148–1166, Aug. 1997.

[53] M. Reisslein and K. W. Ross, “A join-the-shortest-queue prefetching
protocol for VBR video on demand,” inProc. IEEE Int. Conf. Network
Protocols (ICNP), Atlanta, GA, Oct. 1997, pp. 63–72.

[54] S. Bakiras and V. O. K. Li, “Smoothing and prefetching video from dis-
tributed servers,” inProc. IEEE Int. Conf. Networking Protocols (ICNP),
Toronto, Canada, Oct. 1999, pp. 311–318.

[55] M. Elaoud and P. Ramanathan, “Adaptive allocation of CDMA
resources for network-level QoS assurance,” inProc. ACM MobiCom
2000, Boston, MA, Aug. 2000.

[56] F. H. P. Fitzek, B. Rathke, M. Schlager, and A. Wolisz, “Quality of
service support for real-time multimedia applications over wireless
links using the simultaneous MAC-packet transmission (SMPT) in a
CDMA environment,” inProc. 5th Int. Workshop on Mobile Multimedia
Commun. (MoMuC), Berlin, Germany, Oct. 1998, pp. 367–378.

[57] H. M. Chaskar and U. Madhow, “Statistical multiplexing and QoS pro-
visioning for real-time traffic on wireless downlinks,”IEEE J. Select.
Areas Commun., vol. 19, pp. 347–354, Feb. 2001.

[58] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R.
Vijayakumar, “Providing quality of service over a shared wireless link,”
IEEE Commun. Mag., vol. 39, pp. 150–154, Feb. 2001.

Frank H. P. Fitzek (S’98) received the Dipl.-Ing.
degree in electrical engineering from the University
of Technology—Rheinisch-Westfälisch Technische
Hochschule (RWTH)—Aachen, Germany, in 1997.

He is currently working toward the Ph.D. degree
in electrical engineering with the Telecommunication
Networks Group, Technical University Berlin, Ger-
many. His research interests are in the areas of mul-
timedia streaming over wireless links and quality of
service support in wireless CDMA systems.

Martin Reisslein (S’97–M’98) received the
Dipl.-Ing. (FH) degree from the Fachhochschule
Dieburg, Germany, in 1994, and the M.S.E. degree
from the University of Pennsylvania, Philadelphia,
in 1996, both in electrical engineering. He received
the Ph.D. degree in systems engineering from the
University of Pennsylvania in 1998.

He is an Assistant Professor with the Department
of Electrical Engineering, Arizona State University,
Tempe. He is affiliated with ASU’s Telecommuni-
cations Research Center. During the academic year

1994–1995, he visited the University of Pennsylvania as a Fulbright scholar.
From July 1998 through October 2000, he was a scientist with the German Na-
tional Research Center for Information Technology (GMD FOKUS), Berlin.
While in Berlin he was teaching courses on performance evaluation and com-
puter networking at the Technical University Berlin. His research interests are
in the areas of Internet quality of service, wireless networking, and optical net-
working. He is particularly interested in traffic management for multimedia ser-
vices with statistical quality of service in the Internet and wireless communica-
tion systems.

Dr. Reisslein has served on the Technical Program Committees of IEEE In-
focom, IEEE Globecom, and the IEEE International Symposium on Computer
and Communications. He has organized sessions at the IEEE Computer Com-
munications Workshop (CCW).

