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Abstract— After the successful development of JPEG2000,
many state-of-the-art wavelet-based image coding algorithms
have been developed. However, the traditional discrete wavelet
transform (DWT) is implemented with memory intensive
and time-consuming algorithms and, therefore, has very high
system resource requirements. In particular, the very large
requirement of memory poses a serious limitation for multimedia
applications on memory-constrained portable devices, such as
digital cameras and sensor nodes. In this paper, we propose a
novel wavelet-based image coder with low memory requirements
and low complexity that preserves the compression efficiency.
Our encoder employs the fractional wavelet filter (FrWF)
to calculate the DWT coefficients, which are quantized and
encoded with a novel low memory block tree coding (LMBTC)
algorithm. The LMBTC is a listless form of the wavelet block
tree coding algorithm. Simulation results demonstrate that the
proposed coder significantly reduces memory requirements and
computational complexity and has competitive coding efficiency
in comparison with other state-of-the-art coders. The FrWF
combined with the LMBTC is, thus, a viable option for image
communication over wireless sensor networks.

Index Terms— Fractional wavelet filter, low memory image
codec, visual sensors, wireless sensor networks.

I. INTRODUCTION

A. Motivation

W IRELESS Sensor Networks (WSNs) consist of a group
of geographically distributed, low-power sensors,

which monitor physical or environmental conditions [1].
Recent advances in micro-electromechanical systems, wire-
less communication technology, and low-cost digital imag-
ing cameras have made it conceivable to build a wireless
network of visual sensors (VSs) [2]–[6], called visual
sensor network (VSN). Inside a VSN, each VS node has
the ability to acquire, compress, and transmit visual data to
the base station, also called sink. Visual sensor nodes with
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multimedia capabilities can ubiquitously retrieve and transmit
video, audio, and image data from the environment. The devel-
opment of such networks was originally motivated by military
applications, such as battlefield surveillance. However, these
networks are now used in many civilian applications, including
environment and habitat monitoring, healthcare applications,
home automation, and traffic control. Multimedia contents,
especially images and videos require extensive bandwidth for
transmission. Due to the limited available bandwidth, an image
captured by a sensor node typically needs to be processed and
compressed before transmission [7]–[13].

Efficient image compression techniques mainly rely on
removing the redundant information from the raw data.
A typical image coder consists of a transform (discrete cosine
transform (DCT) or discrete wavelet transform (DWT)) block,
as well as quantization and entropy coding blocks. Some
modern image coders combine the quantization and encoding
blocks into a single unit. In order to implement each of
these blocks some on-chip memory is required. Depending
on the image resolution and algorithmic complexity, often a
large amount of working memory is required to compress the
images. Due to space and energy restrictions and the high
cost of providing large amounts of memory, on-chip memory
available on sensor nodes is typically limited and has become a
major constraint for the processing of large images [14], [15].

A wireless sensor network consists of a large number of
sensor nodes. The cost of a single node is very important to
justify the overall cost of the network. Low-cost sensor nodes
are generally used for environmental monitoring or object
tracking applications. These nodes have limited resources in
terms of processing power and memory. The on-chip random
access memory (RAM) of most low-cost sensor nodes is of the
order of 10 kB [16]. In order to equip these nodes with a visual
sensor (camera) to capture visual information and to transmit
them over WSNs, memory-efficient and low-complexity image
codecs are needed [17]–[20].

The memory requirements of the transform and quantiza-
tion/encoding stages need to be minimized in order to encode
images on low-memory sensors. Since JPEG2000 [21] was
developed, many efficient DWT-based image coders have been
developed, e.g., [22]–[29]. However, most of them require
very large amounts of dynamic memory (RAM), restrict-
ing their uses for low-power portable devices. Most of the
existing research on memory efficient image coders either
tries to minimize the memory requirement of the DWT
stage [16], [30]–[34] or that of the quantization/encoding
stage [35]–[47].
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B. Related Work

1) Low-Memory DWT: The traditional method of comput-
ing the DWT of images requires large memory. In order to
reduce the memory requirement, a line-based version of the
DWT was proposed in [30]. A line-based DWT using the
lifting scheme is also proposed in [31] and [48]. The line-based
approach requires 26 kB of RAM for a six level transform
of a 512 × 512 gray scale image [16]. Another approach to
reduce memory is to apply the DWT on a block-by-block
basis, rather than on the entire image [32], [33]. However, the
block-based approach requires almost the same memory as the
line-based approach [16]. Strip-based low memory image and
video coding architectures are suggested in [49] and [50] for
wireless sensor networks applications. Recently, the Fractional
Wavelet Filter (FrWF) has been proposed to compute the
DWT of images [34], which requires memory of the
order of 2.304 kB to calculate the DWT of an image of
size 256 × 256 pixels. To the best of our knowledge, only
limited efforts, e.g., [51], have been made to minimize the
overall memory requirements of image codecs.

2) Low-Memory Quantization and Encoding: For quantiz-
ing and/or encoding DWT coefficients, most algorithms exploit
the fact that the majority of the coefficients are centered
around zero and very few coefficients have large values.
This means that most of the information is concentrated in
a small fraction of the coefficients and therefore the image
can be compressed efficiently. Thus, the success of a wavelet-
based image coding algorithm depends on the exploitation
of this energy clustering property of the wavelet transform.
Over the years, a number of successful wavelet-based image
coding algorithms have been proposed. The state-of-the-art
image coding algorithms, such as embedded block coding with
optimized truncation (EBCOT) [28] (used in JPEG2000 [21]),
embedded zero tree of wavelet coefficients (EZW) [22],
set partitioning in hierarchical trees (SPIHT) [23], set par-
titioned embedded block coding (SPECK) [24], wavelet
block tree coding (WBTC) [25], sub-band block hierar-
chical partitioning (SBHP) [27], and embedded zero block
coding (EZBC) [29] support a wide range of functionali-
ties but either have a very high computational complexity
(e.g., EBCOT), or very high data-dependent memory require-
ment (e.g., SPIHT, SPECK, WBTC, SBHP, and EZBC).
A common feature of these algorithms is that they use data-
dependent lists to keep track of already coded and yet to
be coded transform coefficients. Due to these high memory
requirements, these coders are typically unsuitable for WSNs.

In order to reduce the memory requirement of image cod-
ing algorithms, listless significance map coding was initially
proposed by Lin and Burgess in their work on the Listless
Zero-tree Coding (LZC) for color images [36]. LZC avoids the
use of variable data-dependent lists by using fixed-size state
tables or markers. The markers are placed in state memory
and are updated as per partitioning decisions in the coding
process. A number of low-memory versions of SPIHT have
been developed in recent years [35], [37]–[39]. Among these,
No List SPIHT (NLS) [38] is very popular. NLS uses 4 bit per
coefficient marker. Listless versions of the SPECK algorithm
have been proposed in [40] and [41]. Among low-memory

versions of the SPECK algorithm, Listless SPECK (LSK) [40]
is very popular and uses markers with 2 bit per coefficient. The
No List SPECK coder (NLSK) [41] uses 0.75 bit per coeffi-
cient state memory to keep track of blocks and coefficients
to be tested for their significance. An improved LSK (ILSK)
is proposed in [42] to encode discrete Tchebichef trans-
formed (DTT) coefficients. It uses a single array of memory
and requires less memory than LSK at lower bit-rates (early
coding passes), but its memory requirement increases with the
bit-rate. Recently, listless versions of WBTC, called Listless
Block Tree Coder (LBTC) [43] and modified wavelet block
tree coding (MLBTC) [44], have been proposed. Though these
coders use fixed-size memory, their memory requirements are
quite high.

A backward version of SPIHT, called Backward Coding
of Wavelet Trees (BCWT) has been reported in [45].
A low-memory version of BCWT, named as line-based BCWT
has been proposed in [46] and [47]. Line-based BCWT
requires less memory than BCWT, while it has the same
coding efficiency as BCWT. Although, the listless implemen-
tations of state-of-the-art image coders result in significant
memory reduction compared to their counterparts, the memory
requirement is still very high for low-cost sensor nodes.

The Wavelet image two line coder (Wi2l) [51], which
combines FrWF with line-based BCWT, has made signif-
icant progress towards low-memory image coding. How-
ever, the drawback of the Wi2l coder is that it generates a
non-embedded bit-stream. That is, with the Wi2l coder, the
lower bit rate (coarser quality) encodings are not necessarily
embedded at the beginning of the bit stream for a given
target bit rate. Embedded coders are highly desirable for
flexible image coding and transmission in heterogeneous net-
works [22]. A few scalable extensions of the BCWT algorithm
have been proposed in the literature [52]–[55], however at
the cost of reduced rate-distortion performance or increased
complexity. Thus, there is a need to design efficient, feature-
rich and low-memory embedded image codecs for visual
sensor nodes.

C. Contribution of This Paper

In this paper, we propose a novel low-memory block
tree coding (LMBTC) algorithm, which is a listless form of
WBTC. Further, to reduce the overall memory requirements,
we combine the proposed LMBTC image coder with FrWF.
The memory requirement at the transform stage is reduced by
the FrWF and the memory requirement of the quantization and
entropy coding stage is reduced by the LMBTC algorithm.
The proposed coder generates an embedded bit-stream.
Therefore, the proposed codec is suitable for low-memory
devices. To the best of our knowledge, the proposed coder
requires the least memory among the available state-of-art
wavelet-based image coding algorithms, while retaining the
coding efficiency and scalability feature. Simulation results
demonstrate that the coding efficiency and computational
complexity of the proposed LMBTC algorithm are at par
with other state-of-the-art image coders.

The rest of the paper is organized as follows. Section II
presents an overview of the FrWF and WBTC algorithms.
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In Section III, we introduce the novel LMBTC image coder.
Simulation results and related discussions are presented in
Section IV and finally the paper is concluded in Section V.

II. BACKGROUND

In this section the FrWF scheme to compute the DWT of
images and the WBTC algorithm are briefly reviewed.

A. Fractional Wavelet Filter (FrWF)

A recent technique known as the Fractional Wavelet
Filter (FrWF) has been proposed in [34] to compute the DWT
of images. For an image of size N × N , the FrWF uses
three buffers, each of dimensions N . The buffers are, ‘s’ for
the current input line, LL_HL for the LL/HL sub-band desti-
nation line, and LH_HH for the LH/HH sub-band destination
line [56]. The memory (in Bytes) required for the wavelet
transform of an N×N image with ‘level’ decomposition levels
using floating-point and fixed-point arithmetic [16] are:

Bytes f loat =
{

9N, level = 1
12N

level
, level > 1

(1)

Bytes f ixed =
{

5N, level = 1
6N

level
, level > 1.

(2)

B. Overview of WBTC Algorithm

Since the proposed coding algorithm is based on the WBTC
algorithm [25], this section presents an overview of the WBTC
coding algorithm and related terminology. WBTC is a wavelet-
based image coding algorithm which exploits redundancies
among sub-bands, along with partial exploitation of redundan-
cies within sub-bands. Similar to SPIHT, WBTC is a bit plane
coding algorithm where magnitude and bit plane ordering of
the coefficients are used such that first transmitted coefficients
yield the largest decrease in mean squared error distortion.

Consider an image X of size R × C pixels that after
Nd levels of wavelet transformation exhibits a pyramidal sub-
band structure. The transformed image is represented by an
indexed set of transform coefficients ci, j with row index i and
column index j . The coefficients are grouped in blocks of
size m × n coefficients and then block-trees are formed with
roots in the topmost (LL) sub-band. A block-tree is a tree
of all descendent blocks of a root block. This approach has
three distinct advantages over SPIHT. First, it combines many
clustered zero-trees of SPIHT, which may occur in the early
passes, thus creating zero-trees with more elements. Secondly,
intra-sub-band correlations can be partially exploited. Thirdly,
because of its block-based nature, compared to pixel-based
techniques, the memory requirement for storing the lists and
the encoding time are significantly reduced.

Except for the lowest and highest resolution bands, each
block has four offspring blocks that correspond to the same
spatial orientation in the higher frequency sub-bands. In the
LL-band, out of each group of 2 × 2 blocks, one (top-left)
block has no descendent, and each of the other three blocks has
four offspring blocks in the high frequency sub-bands of their
corresponding orientations. By creating a block-tree, many of

SPIHT’s spatial orientation trees (SOTs) are combined into
a single spatial orientation block tree (SOBT). A set of all
descendent blocks is referred as type ‘A’ block-tree, while
the set of grand descendent blocks (set of descendent blocks
minus set of offspring blocks) is referred as type ‘B’ block-
tree. In particular, for a block size of 2 × 2, four SOTs of
SPIHT are combined into a single WBTC SOT. Significant
information is stored in three ordered lists: a list of insignifi-
cant blocks (LIB), a list of insignificant block sets (LIBS), and
a list of significant pixels (LSP). At the initialization step, the
blocks in the LL-band are added to the LIB, and those with
descendants are added to the LIBS as type ‘A’ entries. The
LSP starts as an empty list. Similar to SPIHT and SPECK,
WBTC is a bit-plane based coding algorithm comprising of
two main stages (passes) within each bit-plane: the sorting
and refinement passes.

The coding process starts with the most significant bit plane
and proceeds towards the finest resolution. During the sorting
pass, the encoder first traverses through the LIB, testing the
significance of a block against the current threshold. For each
block in the LIB, one bit is used to describe its significance.
If the block is not significant, then it is a zero-block and a ‘0’ is
sent, it remains in the LIB and no more bits will be generated.
Here, insignificant information of m×n individual coefficients
is conveyed using a single ‘0’ bit, whereas SPIHT generates
m ×n ‘0’ bits. This is how WBTC partially exploits intra-sub-
band correlation. Otherwise, if the block is significant, then the
block is a non-zero block and a ‘1’ is sent. A significant block
is partitioned into four adjacent blocks (quad-tree partitioning).
The division operation is recursively repeated until no further
division is needed or the smallest possible block size (indi-
vidual coefficient) is attained. At this stage, four coefficients
and their significance are individually tested. If a coefficient is
insignificant, then a ‘0’ is sent and the coefficient is moved to
the LIB as a single coefficient block. Otherwise, if a coefficient
is significant, then a ‘1’ is sent and its sign bit is also coded and
the coefficient is moved to LSP. After testing all four individual
coefficients in the block, the current block is deleted from
the LIB. The encoder then examines the LIBS and performs
a significance test on each set. Insignificant sets remain in the
LIBS, while the significant sets are partitioned into subsets.

A significant type ‘A’ set with root block Bm,n
k,l is partitioned

into a type ‘B’ set Lm,n
k,l and four offspring blocks Om,n

k,l . The
type ‘B’ set is added to the end of the LIBS while the four
offspring blocks (each of the same size as the root block Bm,n

k,l )
are immediately examined for their significance in the same
manner as if they were in the LIB. Here, any zero-block will
result in bit savings. A significant type ‘B’ set is partitioned
into four type ‘A’ sets; all of them are added to the end of
the LIBS. Since all the newly generated insignificant sets are
added to the end of the LIBS, they are all processed in the
same manner for a given threshold until each set is examined.

After each sorting pass, the coefficients in the LSP, except
those added in the current bit plane, are refined with one bit.
The algorithm then repeats the above procedure by decreas-
ing the current threshold level by a factor of two until
the desired bit rate is achieved. Similar to SPIHT, WBTC
provides an embedded bit-stream that allows bit rate scalability



TAUSIF et al.: FrWF-BASED LMBTC: MEMORY-EFFICIENT IMAGE CODING FOR VISUAL SENSORS 6221

TABLE I

SET STRUCTURES IN TWO DIMENSIONAL ARRAY (2D INDEXING) AND LINEAR ARRAY (LINEAR INDEXING)

Fig. 1. Block diagram of proposed image codec for WSNs: The Fractional
Wavelet Filter (FrWF) computes the wavelet transform coefficients, which are
encoded with the novel Low Memory Block Tree Coding (LMBTC) algorithm.

i.e., progressive refinement of the image quality. For very
low bit rates, the rate distortion performance of WBTC is supe-
rior to that of SPIHT [25]. The use of linked lists in WBTC
requires large run time memory (dynamic memory) and neces-
sitates memory management. Multiple memory accesses and
complex memory management limit the application of WBTC
in resource-constrained environments, such as handheld
multimedia devices and wireless sensor networks.

III. PROPOSED FrWF-BASED LMBTC IMAGE CODEC

A. Overview

The low processing power and limited RAM of sensor
nodes are the major constraints in the processing of images
on wireless nodes. A low complexity image compression
technique that gives good quality for high compression ratios
and requires low memory is required for resource-constrained
WSNs. The compression can also save energy within the
network, as the coding energy is typically lower than the trans-
mission energy [51]. We combine FrWF, a recently developed
technique requiring only low memory to compute the discrete
wavelet transform of images (as reviewed in Section II.A.),
with the novel Low Memory Block Tree Coding (LMBTC)
algorithm to develop a new image coder. The block diagram of
the proposed codec is shown in Fig. 1. The input image is first
transformed using FrWF and then quantized and entropy coded
by the LMBTC algorithm. The bit-stream thus generated is
embedded in nature. This bit-stream is decoded by the decoder

and finally the image is reconstructed using the traditional
inverse DWT.

B. Proposed Low Memory Block Tree Coding (LMBTC)

1) Data Structures: LMBTC is a listless form of the WBTC
algorithm that replaces data-dependent lists with a small-size
static memory. The transformed image, which is generally
stored in raster fashion, is then converted into a linear index.
An important property of the linear indexing is that it effi-
ciently supports the operations on coefficient positions, needed
for tree-based and block-based algorithms with one operation
instead of two [38]. Table I defines the symbols and set
structures used in WBTC (2D indexing) and LMBTC (which
uses linear indexing). It is evident that a block of size m × n
has mn consecutive indices while the coordinates of a set at
a higher resolution level in a block tree can be obtained by
multiplication by 4. The linear vector data structure and its
linear indexing facilitates addressing of a set/block and block
tree while facilitating breadth search in hierarchical trees.

2) Significance Testing: The significance function of a block
set B against a threshold T = 2t is given as [57]:

Sn(B) =

⎧⎪⎪⎨
⎪⎪⎩

1 i f T ≤ max
i∈B

(|ci |) < 2T

0 i f max
i∈B

(|ci |) < T

NU L L i f max
i∈B

(|ci |) ≥ 2T,

(3)

where NULL represents no output.
The significance of a block tree set BT (Type A or B) is

given as

Sn(BT ) =
{

1 if T ≤ max
i∈BT

(|ci|) < 2T

0 if max
i∈BT

(|ci|) < T.
(4)

The use of the LSP is avoided in LMBTC by merging
the refinement pass with the sorting pass through modifying
the significance function of WBTC as given in (3).
A coefficient/block set is significant if it includes either a



6222 IEEE SENSORS JOURNAL, VOL. 15, NO. 11, NOVEMBER 2015

newly significant pixel, or a pixel requiring refinement, or
both. Thus, LMBTC generates a bit stream of the same size
as WBTC, but in a different order. The different order may
result in slight degradation of the decoded image quality. The
slight degradation occurs if the bit budget is exhausted in the
middle of a bit plane, as the bit budget will also be used in
refinements thereby reducing the newly identified significant
pixels. However, at the end of a sorting pass, LMBTC encodes
the same information as WBTC.

Consider an image X of size (R, C) with the dc removed
and the image having been wavelet transformed using FrWF.
The transformed image is read into the linear array � of
Npix = RC coefficients using linear indexing. The linear
array � exhibits a hierarchical pyramidal structure defined by
the levels of decomposition, with the leftmost position in the
array being the root.

3) Encoding Sequence: The proposed algorithm follows the
set structures and partitioning rules of WBTC. The pseudo
code of the LMBTC encoder is given in TABLE II. The
encoder algorithm is performed for each bit plane n starting
from the most significant bit plane with threshold T = 2t

and decrementing down to 0 or until a prescribed bit budget
is achieved. The algorithm begins by consecutively coding
blocks in the LL band. Each block set is tested against the
threshold T = 2t and its significance is encoded using (4).
A newly significant block set or a block set containing a
refinement is recursively partitioned into four adjacent blocks
using quad partitioning until partitioning is no longer needed
or a block of size 2×2 is attained. For a significant 2×2 block,
significance of each of the four coefficients is encoded. For
a newly significant coefficient, its sign bit is coded, and
if the coefficient is found significant in previous passes, it
needs refinement and its nth bit is transmitted. To encode
the remaining sub-band coefficients, they are linked through
spatial orientation block -trees with their node block in the
LL sub-band. In order to define a uniform child-parent rela-
tionship, it is assumed that the first quarter of the LL sub-band
coefficients have no descendants and the remaining three-
quarter of the coefficients have their children in sub-bands
of corresponding orientation.

A static memory referred to as Static memory for Insignifi-
cant Block Tree (SIBT) of size {1 × N

4β } keeps track of block
tree partitioning in the pass. The static memory SIBT maps all
possible block tree nodes of the transformed image and records
the states of the block tree nodes. The SIBT is initialized
at the beginning of the encoding with the states of the tree
nodes in the LL band as state ‘1’, and the remaining nodes
are set to state ‘0’. A state ‘1’ represents a type ‘A’ bock tree
while block-trees that are not considered for the significance
test are represented by state ‘0’. The algorithm proceeds by
checking the state of all tree nodes in the SIBT using the
significance function given by (4) and their significance is
encoded. If the type ‘A’ block tree is found significant, its
descendant blocks (offspring blocks) are immediately encoded
as explained earlier.

Next, the significance of the grand-descendant set
is encoded and if it is found significant, four new
type ‘A’ block-trees are formed. In particular, offspring blocks

TABLE II

PSEUDO CODE OF PROPOSED LMBTC ENCODING ALGORITHM

are formed as new nodes by changing the state of the offspring
nodes from ‘0’ to ‘1’ in the SIBT and the state of the parent
node is marked as ‘3’. For a significant type ‘A’ block tree
with an insignificant set of grand decedents, the parent node
is marked as type ‘B’ tree by changing the state of the node
from ‘1’ to ‘2’. The new type ‘A’ block-trees are tested for
significance in the same sorting pass, while new type ‘B’ sets
will be tested for significance in the next pass.

For a type ‘B’ bock-tree node, at first, descendent blocks
(offspring blocks) are processed. Then, the significance of the
set of grand-descendants is encoded and, if found significant,
four new type ‘A’ block-trees are formed with offspring blocks
as new nodes by changing the states of the offspring nodes
from ‘0’ to ‘1’ in the SIBT.

If the state of a block node is ‘3’ (i.e., the block tree
has already been found significant in previous passes), the
offspring blocks are processed as explained earlier.
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TABLE III

COMPARISION OF MEMORY REQUIRED BY FRACTIONAL WAVELET FILTER (FrWF) AND CONVENTIONAL DWT

AS WELL AS PROPOSED LMBTC FOR DIFFERENT TRANSFORM LEVELS AND BLOCK SIZES

4) Decoding Sequence: The decoder follows the same over-
all procedure as the encoder with some low-level changes and
an additional step of significance testing of coefficient/block
sets to identify coefficient/block sets containing coefficients
requiring refinement. To decode, (use input) instead of output,
and set the (bits) and signs of coefficients, the decoder
performs mid-tread de-quantization for coefficients that are not
fully decoded [57].

5) Memory Requirements: The LMBTC algorithm uses a
static memory SIBT to store the state of a node. Only four
markers are used to define a node state thereby requiring two
bit per node. For an image size of R × C with L transform
levels, the LMBTC algorithm requires a memory size [57] of:

MemoryLMBTC = 2RC

4β
bits = RC

16β
bytes. (5)

For example, for an image size of 512 × 512 pixels with
5 levels of transform, the static memory sizes required by
the LMBTC algorithm, for block sizes β = 4, β = 16, and
β = 64 are 4.096 kB, 1.024 kB, and 0.256 kB, respectively.

IV. SIMULATION RESULTS

This section compares the memory requirement, coding
efficiency, and computational complexity of the LMBTC-
based image codec with other codecs, including SPIHT,
SPECK, NLS, LSK, and WBTC, for nine different test
images. The test images are from the Waterloo Repertoire
(http://links.uwaterloo.ca) and the standard image database
(http://sipi.usc.edu/database). Among these nine images, five
are of dimension 512 × 512 (each 8 bits/pixel) and the
remaining four are of dimension 256×256 (each 8 bits/pixel).
The five images of dimension 512 × 512 are Lena, Barbara,
Baboon, Goldhill, and Boat. The remaining four images of
size 256 × 256 are Barbara, Goldhill, Bridge, and Baboon.
Unless otherwise noted, all reported results are averages of
the considered images for a given image dimension. Up to
five levels of wavelet decomposition are performed using the
9/7 Daubechies filter by both the fractional wavelet filter
(FrWF) scheme and the traditional DWT scheme. Floating
point transform coefficients are quantized to the nearest inte-
gers, and read into the linear array using linear indexing. The
coefficients in the linear array are then encoded using the
LMBTC, SPIHT, SPECK, NLS, LSK, and WBTC algorithms.

The image is decoded by the decoder and reconstructed by
the inverse traditional DWT. The decoding of the bit-stream
is typically done outside the sensor network, at workstations
that are not constrained in memory and processing power.

Thus, the reconstruction is done using the traditional inverse
DWT. For a fair comparison all the codecs (LMBTC, SPIHT,
SPECK, NLS, LSK, and WBTC) are implemented using
MATLAB 2011 and are executed on a Pentium I3 computer
system equipped with a 2.4 GHz processor and 4 GB RAM.
The results are presented in the following three subsections
that focus on the memory analysis, coding efficiency, and
complexity analysis.

A. Memory Analysis

Limited memory is one of the main constraints, when
image coding algorithms are implemented on wireless sensor
nodes. Many of the low-cost sensor nodes have on-board
memory (RAM) of the order of 10 kB [16]. Table III compares
the working memory required by FrWF and conventional
DWT (for different transform levels) as well as by the LMBTC
algorithm (for different block sizes). It can be observed from
the table that FrWF requires much less memory than the
conventional DWT. Specifically, the memory requirement of
FrWF is in the range of 5-12.5 kB (depending on image
size and number of decomposition levels), whereas the con-
ventional DWT needs memory of the order of 0.7-2.8 MB.
This is because the FrWF stores only three image lines in
memory, whereas the conventional DWT stores the entire
image in memory. Further, Table III indicates that the memory
requirement of the LMBTC algorithm is a function of the
image size and the block size, as indicated by Eqn. (5). It is
evident that increasing the block size reduces the memory
requirement of LMBTC quite significantly. This is due to the
fact that a larger block size in the LMBTC algorithm reduces
the number of elements in the SIBT. From Table III we also
observe the increase of the memory requirement with increas-
ing image sizes, which require more coefficients to be stored
and processed. The table also illustrates that the memory
requirement of LMBTC is independent of the transform level.
In nutshell, the LMBTC algorithm needs on-board RAM of the
order of hundreds of bytes to a few kilo bytes, depending on
the image size and block size. Overall the memory requirement
of an image coder is the maximum of the two memory
requirements, i.e., the memory requirements of the wavelet
transform and the encoding/quantization stages. Most of the
memory is consumed by the wavelet transform stage, which
therefore governs the overall memory requirement.

The results in Table III, indicate that the FrWF-based
LMBTC with 5 levels of wavelet decomposition requires less
than 10 kB of memory for images of size 256 × 256 pixels,
for block sizes ranging from 4 to 64. Moreover, an image



6224 IEEE SENSORS JOURNAL, VOL. 15, NO. 11, NOVEMBER 2015

Fig. 2. Comparison of memory requirements of image coding algorithms as a function of bit rate [in bit per pixel, bpp] for (a) 256 × 256 image,
(b) 512 × 512 image.

TABLE IV

EFFECT OF BLOCK SIZE IN LMBTC CODER IN TERMS OF PSNR AS WELL AS ENCODING AND DECODING TIMES

FOR BARBARA (512 × 512) IMAGE; THE CODER MEMORY REQUIREMENTS ARE GIVEN IN TABLE III

of size 512×512 can be wavelet transformed with 3 decompo-
sition levels with less than 10 kB of memory and then requires
only about 4 kB of memory for the LMBTC encoding of the
wavelet transform coefficients.

Figs. 2(a) and (b) compare the memory requirement of the
LMBTC algorithm (with block size of 4) with other state-
of-art wavelet-based coding algorithms, such as SPIHT [23],
SPECK [24], WBTC [25], NLS [38], LSK [40], Wi2l [51],
and LBTC [43], for image sizes 256 × 256 and 512 × 512,
respectively. All images are transformed using FrWF with
5 levels of decomposition. The figures show the average
memory (averaged over all test images of corresponding size).
Fig. 2(a) indicates that for an image size of 256 × 256,
the LMBTC algorithm requires the least memory among the
considered coders. Although the memory required by the
Wi2l image coding algorithm is quite low, the Wi2l coder
generates a non-embedded bit-stream, making it unsuitable
for heterogeneous networks. For a 512 × 512 image, LMBTC
requires 4.096 kB, 1.024 kB, and 0.256 kB for block sizes
of 4, 16, and 64, respectively, whereas the Wi2l coder requires
2.046 kB of memory. Therefore, the LMBTC coder with
large block size has lower memory requirements than the
Wi2l coder.

Further, it may be noted that the lower memory require-
ment of LMBTC with large block size is achieved at the
cost of insignificant quality reduction of the decoded image
(as evident from Table IV). The increasing block size in
LMBTC increases the location/significance bits of the signifi-
cant blocks and block trees. Therefore, bits saving due to larger

insignificant blocks and block trees are compensated by the
extra bits required in searching for the significant coefficients.

From both Figs. 2(a) and (b), we also observe that the
memory required by the SPIHT, SPECK, and WBTC coding
algorithms increases as the bit rate increases, whereas the
memory requirement is independent of the bit rate for the
other algorithms, i.e., the listless coding algorithms.

B. Coding Efficiency (Rate-Distortion Performance)

Coding efficiency is the measure of rate-distortion (RD) per-
formance of an image coder. Coding efficiency is commonly
measured in terms of bits/pixel to achieve a minimum desired
quality of the image. The quality of the reconstructed image
is measured in terms of Peak-Signal-to-Noise-Ratio (PSNR),
defined [16] as:

PSN R = 10log10
2552

MSE
, (6)

where MSE is mean square error of the reconstructed image
with the original image

M SE = 1

N

∑
x,y

[ f (x, y) − g (x, y)]2. (7)

Here, N denotes the total number of pixels in each image,
f (x , y) is the original image, and g(x , y) is the reconstructed
image. For perfect reconstruction, the PSNR value is infinity.
However image degradations with a PSNR of 40 dB or
higher are nearly invisible by human observers [16]. If the
PSNR is in the range of 25-30 dB, then the image quality
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Fig. 3. PSNR image quality for different coding algorithms combined with FrWF as a function of bit rate for (a) 256×256 image, (b) 512 × 512 image.

is typically acceptable. In this section the coding efficiency
of the LMBTC based codec is evaluated for all test images.
The test images are transformed using FrWF and then coded
using the WBTC, SPIHT, SPECK, NLS, LSK, and LMBTC
coding algorithms at a range of bit-rates. The average PSNR
values (averaged over all test images of the same size) of the
reconstructed images at various bit-rates for 256 × 256 and
512×512 images are given in Figs. 3(a) and (b), respectively.

From Figs. 3(a) and (b), we observe that up to 0.125 bpp, the
LMBTC codec gives very slightly higher PSNR values than
the other codecs. However, at bit-rates higher than 0.125 bpp,
the performance of the LMBTC codec is slightly inferior
compared to the other codecs. The reason for this performance
characteristic is that in the LMBTC coding algorithm, the
sorting and refinement passes are merged, and if the bit budget
is exhausted before the end of a bit-plane, then fewer signif-
icant coefficients are encoded compared to the corresponding
coding algorithm with separate sorting and refinement passes
(i.e., WBTC). It may be noted that a bit representing a new
significant pixel provides more improvement in PSNR than
a bit representing a refinement pixel. However, it is expected
that at the end of a bit-plane, the coding efficiency of LMBTC
coding algorithm is equivalent to that of WBTC. Since
WSNs require generally a high compression (small bpp) [16],
the FrWF-based LMBTC codec appears highly suitable
for WSNs.

C. Complexity Analysis

The computational complexity of the proposed codec is
evaluated by estimating the computation time required for
encoding the transformed coefficients (with FrWF and tradi-
tional DWT) and for decoding the generated bit-stream at each
bit-rate. The complexity of the LMBTC codec is compared
with other state-of-art codecs (each with FrWF and DWT). The
encoding and decoding times are measured on a Pentium I3
Computer system with 2.4 GHz processor and 4 GB RAM.
The encoding time and decoding time (combined with FrWF)
for image size of 256 × 256 are given in Figs. 4(a) and (b),
respectively. The encoding time is the total time required for
calculating the transform as well as the time required for
encoding the transform coefficients. The decoding time is the
time required for decoding the bit-stream as well as the time
required for reconstructing the image.

From these figures we observe that for each codec, the
encoding time increases as the bit-rate increases. This is
expected because more coefficients need to be encoded and
hence the encoding time increases as the bit-rate increases.
This is also evident from Table IV. Further, at each bit-rate,
the encoding time of the listless coding algorithms, namely
LMBTC, NLS, and LSK, is lower than their corresponding
list-based algorithms, such as WBTC, SPIHT, and SPECK.
The list-based algorithms use linked-lists to keep track of the
order of the transform coefficients that have been coded or
are yet to be coded. The processing and management of these
lists lead to higher computational demands and thus longer
encoding times compared to their listless versions. Especially
at high bit-rates, the SPECK and SPIHT algorithms have long
encoding times because of the processing and managing of
long lists. The multiple accesses of linked lists further add to
the computational complexity of these codecs [25].

The listless codecs (NLS, LSK, and LMBTC) use fixed-size
state tables instead of lists. The state tables do not require any
memory or processing management. Therefore, these listless
codecs require less time for encoding the transform coeffi-
cients compared to the list-based SPIHT, SPECK, and WBTC
codecs. Among the listless codecs, NLS uses 12 markers, each
of 4 bits, whereas LSK uses only 4 markers, each of 2 bits [43].
Hence, the encoding time of LSK is shorter than that for NLS.
LMBTC has an additional step of significance testing of
blocks, therefore the encoding time of LMBTC is slightly
higher than for LSK and NLS.

The encoding times when the algorithms employ FrWF
are slightly longer than for DWT. This is because the time
required by FrWF to compute the transform is longer than
that required by DWT. From Fig. 4(b) we observe that the
decoding time increases with increasing bit-rate. Fig. 4(b)
also indicates that the decoding times of the WBTC, SPIHT,
and SPECK algorithms are longer compared to the listless
NLS, LSK, LMBTC coding algorithms. This is because list-
based codecs need to perform multiple memory accesses due
to their bit-plane coding nature [14]. Comparing Fig. 4(a)
with Fig. 4(b), we observe that the encoding time is longer
than the decoding time because encoders compare coeffi-
cients or blocks against a threshold to check their signifi-
cance, but no comparisons are required at the decoders [14].
In additional evaluations that are not included due to space
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Fig. 4. (a) Comparison of encoding time for image size (256×256) for different image coding algorithms combined with FrWF. (b) Comparison of decoding
time for image size (256 × 256) for different image coding algorithms.

TABLE V

COMPARISON OF PSNR, MEMORY, ENCODING TIME, AND DECODING TIME FOR DIFFERENT CODECS AT 0.25 bpp

constraints, we found that the images of size 512 × 512 show
similar trends to those observed for 265×256 size images
in Figs. 4(a) and (b). However, the absolute encoding and
decoding times for each codec are higher for the large-sized
images.

Finally, Table V summarizes and compares the coding
efficiency and memory, as well as encoding and decoding
times of all considered image codecs with and without FrWF
at 0.25 bpp, for image sizes of 256×256 and 512×512 pixels.
In these tables, the block size is set to 4 in the WBTC
and LMBTC algorithms. These tables indicate that the PSNR
image qualities achieved by LMBTC are comparable with
other image codecs; whereas, the memory requirement of
LMBTC is significantly smaller than the other image codecs.
The complexity (encoding and decoding time) of the LMBTC
codec is lower than that of the SPIHT, SPECK, and WBTC
codecs, while it is higher than that of the NLS and LSK
codecs.

V. CONCLUSION

In order to satisfy the memory constraints of low-cost
visual sensor nodes, a low-memory image codec is required.
In this study the memory requirement at the transform stage
is reduced by using the Fractional Wavelet Filter (FrWF) [56]
and the memory for encoding the transform coefficients
is reduced by using a novel Low Memory Block Tree
Coding (LMBTC) algorithm. From the simulation results, it is
observed that the FrWF requires only 6.246 kB memory for
five levels of wavelet decomposition of a 256 × 256 image;
the memory required by FrWF increases with the image size
and the number of wavelet transform decomposition levels.

The transform coefficients are encoded using the LMBTC
algorithm. LMBTC requires only 0.064 kB memory for a
256 × 256 image and 0.256 kB for a 512 × 512 image,
when the block size is 64. The overall memory, which is
the maximum of the memory requirements of FrWF and
LMBTC (with block size 4), is 6.246 kB and 12.493 kB
for 256 × 256 and 512 × 512 size images, respectively.
The memory required by the proposed LMBTC coder is
independent of the bit-rate. Compared with other state-of-art
coders, such as SPIHT, SPECK, WBTC, NLS, and LSK, the
proposed LMBTC coder has significantly reduced memory
requirements, and can be implemented on low-memory sensor
nodes. The memory required by the Wi2l coder [51] is of
the same order, but the Wi2l coder generates a non-embedded
bit-stream. In contrast, the LMBTC coder generates a fully
embedded bit-stream, which is highly desirable for flexible
image encoding and network transmission. Overall, the pro-
posed FrWF-based LMTBC image coder appears very well
suited for wireless sensor networks. Future research direc-
tions include the examination of the proposed efficient image
coding within the specific constraints of embedded sensor
platforms [5], [6] as well as innovate multimedia network
transport paradigms, e.g., information-centric and name-based
networking [58], [59].
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